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1. INTRODUCTION: THE GENERALIZED MOMENT PROBLEM

The (generalized) moment problem:

find P: A ——=> [0,1] such that (1.1)

Jv(8) pag) < By 1= 1,0uuys

Jv (8) P(dE) =By, 1 =s+1,...,m,

and z = ,va(E) P(d&) is maximized
with A the sigma-field of events defined on E --here a subset of RN-- is of
general interest in statistics, in stochastic optimization, etc. The
underlying premise is that some information is available about certain
moments, or generalized moments, of an unknown probability distribution. This
determines a class P, i.e., the probability measures that satisfy the
constraints of (1.1). This limited information is to be used in order to
obtain an upper (or/and lower) bound on some other moment of the
distributions in this class. This problem has been studied in detail in the
classical framework of‘statistical theory, see for example [9] where the
accent is placed on those problems of type (1.1) that can be solved
analytically (in the framework provided by Chebyshev systems). The
connection between the generalized moment problem and optimization theory has
been clarified by Kemperman [8], but so far the computational tools provided
by linear or nonlinear programming have only been used sparingly in the
development of general solution procedures for generalized moment problems.
This paper is one contribution in that direction.

Dupaéové [2.3] was the first to rely on some (classical) results for the

moment problem to obtain bounds for the optimal value of certain stochastic
programming problems; the class P is usually determined by first-—or possibly

second order--moments and vq 1S a 1-dimensional convex or concave



nondifferentiable function. 1In such cases it is possible to obtain an
explicit characterization of the extremal measure that solves the
corresponding moment problem. This is not the case in general. Although it
is known that if the support of the probability measures Z is convex compact,
then the linear programming problem (1.1) admits as optimal solution, an
extremal measure whose support is concentrated on at most m+1 points of =
(see [1, Theorem 6.9] for a constructive proof of this result). There is
usually no closed form expression that allows us to easily identify this
extremal measure. There are no conceptual difficulties in designing solution
procedures for solving (1.1), see [1, Section 6], however some of the
operations that must be carried out may be in practice extremely onerous.
Much depends on the properties of the functions Vo and Vi i=1,...,m. In
this paper we shall be mostly concerned with the case when Vo is convex, and
the functions Vi i=1,...,m are linear or piecewise linear. We extend and
sharpen the results of Gassmann and Ziemba [4] who were first in developing
an implementable procedure for the restricted, but important, case when Vo is
convex and there is just one constraint on the expectation (with respect to

P).

2. LINEAR CONSTRAINTS
Most of the literature devoted to generalized moment problems works with
the assumption that Z 1s.compact (7], [1, Section 6]. Here we drop this
assumption. It is possible to do so by relying on an appropriate
compactification of R, viz. by adding to R" the space of directions of
recession.
Let us suppose that = ¢ RN is a nonempty convex set, if not we would

work with co = the convex hull of = . Let



rc E : = cone of the directions of recession of &H.
This corresponds to the largest (closed) convex cone such that
£ + (rc8)e & for all & in &;

it is called the recession cone of £. It is nonempty, in fact 0 € rc &, since

by assumption S is nonempty. For more about recession cones, consult [10,
Section 8]. Let

ext Z: = extreme points of E.
If % has no extreme points, set ext £ = {0}, and let

ext-rc= : = extreme directions of rec-E

by which we mean a collection of points in RN such that
rcE = pos (ext-rcZ ),

(where pos T denotes the positive hull of the points in Tc:RN, i.e.

q
pos T: = { ¢ m £k | W > 0, tK e T, q finitel),
k=1 :

-

and no element of ext-rc E can be obtained as a positive linear combination of

The elements of ext-rc T are positively linearly

(1]

other elements of

independent. Since ¥ is convex, we have
E = co(extZ ) + pos (ext-ret ).
Every point £ in 5 has at least one representation of the form:

E = eME&, de) + ru(g, dr) (2.1)
)th g }(

ext-rc g
with A(E,*) a probability measure on (ext &, E) and u(§, *) a nonnegative
measure on (ext-rc =, R); E and R are the Borel fields. In fact, the
theorems of Carathébdory and Steinitz guarantee that for each & there exists

one representation involving no more than N+1 points of ext ¥ and 2N points of

ext-rc £, i.e. the measures A(Z, +) and (g, *) have then finite support.



Now, suppose Vot & --=> R is a proper convex function, and consider & as

as given by (2.1) with

8 : = /' ru(g, dr),
ext-rc=
then
g = / (e+g)x &, de), (2.2)
ext B
and
vo(8) ¢ / vole + £) A (£, de). (2.3)
exts
By
| v0(£+tC) - vo(i) vo(g+tc) - vo(i)
re vo(Z): = lim = sup = (2.4)
t==> » t £>0 t

we denote the recession function of v, in the direction g [10, Section 81].

This is a sublinear function (positively homogeneous and convex). Since Vo is
convex, the ratio
AN e+ T) - voe))

is a monotone nondecreasing function of A (when A>0) and thus the supremum is
"attained" at A = ®, This justifies the equivalence of the two formulas in
(2.4). It also means that for all e € ext &,

vole + &) < vgole) + re vy(g)
and hence (2.3) yields

o€ < [ vl alE g v re vyl (2.5)
extE

Since rc Vo is a sublinear function, this implies that

o) < [

vole) A(g, de) + / re vo(r) u(g, dr). (2.6)
ext®

re—-ext®

Integrating on both sides with respect to P, we obtain

/"o(é') P(dg) < / Vo(e) A(de) + / re vo(r) H(dr) (2.7)

ext rec-exts

1



where

ACT) =.l;?X(€' ) P(dE) (2.8)
and i
u(*) =f=u(€, *) P(dg), (2.9)
(assumiﬁg that ; and 1 have been chosen measurable with respect to §).
Moreover
£ 1 o= fg P(dg) = f e\ (de) + f ru(dr), (2.10)
ext = ext-rc E

—_
[}

f“de) ] f P(dE) A(E, de) =fn><da> (2.11)
= exts

and both )\(defined on E) and p(defined on R) are nonnegative.

The inequality (2.7) holds for any nonnegative méasures A and ¥ that
satisfy (2.8)-(2.11) and (2.1). Given the bound provided by (2.7) one may be
tempted to ignore (2.8) and (2.9)--i.e., that it must be possible to
"disintegrate" A and U in measures A(§, *) and U(&, *) that satisfy (2.1) --
but this would render (2.7) invalid as an easy example will show readily.
However, there always exists one pair (A,H) for which it is not necessary to
verify if A and Y can be "disintegrated" so as to satisfy (2.1): namely, if

(X,u) maximizes the right-hand side of (2.7)! We have thus shown

2.1 THEOREM. Suppose Et:RN is a nonempty convex set, P is a probability

e ——————

measure on (%, A), and vy is a proper (nowhere - « and finite-valued somewhere)
—.—F——O_— — — —

extended-real valued convex function defined on RN, Then

fvo(’é) P(dg) < supy ’u)f ~ vple) A (de) +f re vqo(r) u(dr) (2.12)
extE ext-rci

where )\ is a probability measure on (ext &, E), and y is a nonnegative measure

on (rc ext E, R) such that




f e A(de) + / ru(dr) = £ °P(d&) = é (2.13)
ext = ext-rcs

This yields an upper bound on the optimal value of (1.1) when the
constraints are determined by the linear system _'.E P(dg) = é It should be
emphasized that (2.12) yields in some sense the worst possible bound f‘_or'
fvo(i) P(d£) among all those generated by (2.7)-(2.11), but it may be the only
one that is sufficiently easy to compute and to integrate into an
approximation scheme for solving stochastic optimization problems. The next
result goes even further in that direction. It sharpens and extends [4,

Theorem 4] or [1, Section 5(v)] for the case of bounded convex polyhedral support.

2.2 COROLLARY. Suppose E€C = co(e1,...,ep) + pos(r1,...,r‘q) and h:

RN —-—=> ﬁi_s_ a convex function such that h 2 Vo on =

Then

P . q .
fvo(é:) P(dE) < sup(, u)[ I Mh(ed) + 5y (re h)(rl)IAjZO, Hy20,
UEL 3= t=1

n Mo

. q . p .
AjeJ + I uir'l =£, I Xed = 1]. (2.14)
1 i= -

PROOF. Note that

fvo(E) P(d&) Sf h(g) P(dg) =f h(g) P(dg)
E “

where P has been (trivially) extended to C. It now suffices to apply Theorem
2.1. 1

All the results and remarks of this section apply equally well to the
case when P is simply a bounded measure, in particular to the case when P is
the restriction of some probability to a subset of the space of events, making
of course the obvious adj‘ustments. This simple observation yields directly

the versions of Theorem 2.1 and Corollary 2.2 with conditional expectations.



PIECEWISE LINEAR CONSTRAINTS.

The extension to the case when the constraints are piecewise linear, or
more precisely piecewise affine, is straightforward. Details are worked out
in this section. The importance of this case, rests on the potential use of
piecewise linear approximations for handling the (general) nonlinear case, see
Section 4 for an elementary example.

Suppose E is partitioned in L subregions Ep, & =1,...,L,

and in (1.1) the functions v,

i that define the constraints, are piecewise

linear: for i=1,...,m,

vi(g) =ajy ‘- O when £ e EQ,' (3.1)
We then have
L
=1 =
L -2
Z (ai,Q, * (E - ai'ql) P,QI (3'3)
£ =1
where
-9 ~
€ = E {g ‘ g € :'SZ,}’
p,Q, = P(E,Q)'

Thus, the (generalized) moment problem becomes:

find Q¢ A---->[0,1], a probability measure, such that (3.4)
-9 -
& = Elgleeglp = Q)

L L

X (P aiz).gz- X pﬂlam S Bip i=1,...,s,

=1 & %=1

L L, b

z (p a; ) .E_: - Z pu' = B 9 i=S+1,.--,m.

%<1 2 i 051 g i

and z = [v4(E) Q(dE) is maximized.
Our objective is to obtain an upper bound on the optimal value of this

problem. Let P be any probability measure that satisfies the constraints of



(3.4); P could be the measure that we are trying to approximate.

Let CZ’ 2=1,...,L, be a collection of (nonempty) convex sets such that
for all 4, 52<: CQ. One possibility is to choose for all & =1,...,L,
Cz = ¢co Z: = the convex hull of E .

Let Aﬁ(g,‘) be probability measures defined on (ext CQ, Ei) and ué(&, *)

nonnegative measures on (ext-rc CQ’ Rl) such that for all € ¢ 52

g = e Ai (&, de) +‘j~ rué (, dr). (3.5)
ext CQ ext-rc CQ

Here EQ (Rg resp.) is the Borel field on ext Cy(ext-rec Cy resp.) and we assume

that Xé and ui are A-measurable with respect to £. For any A € EQ, set

kQ(A): =J‘_ A&, ) P(dE). (3.6)

-
-

and for any B ¢ RQ, set

u (B): =L w(E, B) P(dE). (3.7)
"2
We have from (3.6):

2
2

From (3.2), after replacing & by its representation (3.5), and interchanging

A,(de) = X (ext C,) = P(E)=p,. (3.8)
fext C . . L

the summands using the definitions of Azand ul, we obtain:

L
.Ivi(i) P(dg) = ( ¢ J~ aiz‘exzde + j' aig'rpﬁfdr) - ogpg).  (3.9)
=1 ext Cy ext-rc CQ

From the above, by the same arguments as in Section 2, in particular, by the

convexity of Vg on Cz, we prove the following generalization of Theorem 2.1.

3.1 THEOREM. Suppose ECZRN is nonempty, {Ez, 2=1,...,L} a partition of =,
{CR’ 2=1,...,L} nonempty convex sets such that Eﬂc C2 for all g, P a

probability measure, Vo an extended real-valued proper convex function on RN,




and for i = 1y...,m, v, is a piecewise affine function on RN with

1l —

Vi(g) = aiz'g - ailQl _‘ihﬂg EFEQ,.
Then
J ; '
va(E) P(dE) < sup I f vole) 1 (de)
0 =0 0 Jext ¢, 7 M
+f (re vo)(r)ug(dr):, (3.10)
ext-rc Cz

where for %=1,...,L, AR and W, are nonnegative measures on (ext CQ’%Z) and

(ext-re Cy, Ry) respectively, such that Az(ext CQ) = P(Ez) =: (3.11)

Py

é_rﬁ.f_ol:i=1,-co’m’

L L -
pX fa o 'ehy(de) + f a;,'ru (dr'))= v (p.as,) ‘&, (3.12)
g=1 ( exticR . ext-rég‘cz % o L PR

Observe that no convexity conditions are necessary on the functions Vi
i=1,...,m. Suppose, for example with N=1, that

the i-th condition of (3.12) would require that the measures be chosen so that

/ e), (de) +[ ryldr) = pkgk'
ext Ck ext-rc Ck

This means that the measures on the extremal structure of C, must satisfy this
conditional expectation condition. Approximation schemes can be built by
requiring that the chosen measures satisfy conditional expectation conditions
that involve finer and finer partitions of E. Kall and Stoyan [6] and Huang,
Vertinsky, and Ziemba [5] have studied constraints‘of that type. The
constraints (3.7), however, are much more general, in that they allow for
tighter restrictions so that sharper bounds may be obtained. The
approximations in [5], [6] rely on the extreme points of the 52 for all

2=1,...,L, and therefore require the evaluation of the Vi at each of these

10



points. Here only the extreme points of some convex set containing E are

needed, indeed simply choose Ez =¢co = for all &=1,...,L. Restriction of Cy
to subsets of =, however, still imposes additional restrictions on the set of
feasible probability measures and can, therefore, improve the bounds.

There is also in the piecewise affine case a generalization of Corollary

2.2. We do not need Vo convex, only that it be dominated by a convex

function.
) 9,
o 1 1
3.2 COROLLARY. Suppose :QCZCQ: =co(e'yseeye ) +pos(r',..u,r ),
{52, 2=1,...,L} is a partition of &, and h: RN ——> R is a proper convex
function such that h > Vo on E. Then for any probability measure P: A —-=>

(0,1], we have

L P,Q, QQ’
K k
‘fvo(E)P(dE) < sup(y (2 n(e®Ag + I (reh)(ru k] (3.13)
Qo [0l oy k=1 2
L re " dy ) L E
such that I (I aje®\g * L ajrdg)= I ppa
41 k=1 107 ek ket ig " N 2919
for i =1,...,m,
'
Z )\Qlk - le 9 Q/ = 1,0 C’L
k=1

M 205 Mg 2.0

where for 2=1,...,L, py: = P(%;) and EQ is the conditional expectation (with
—f‘ s 2, gl et e 4 c4

respect to P) given that £ ¢ El'

Of course to obtain this upper bound on §'VO(E)P(d£) it is not necessary to
know P. It suffices to know the values of Py and z . In fact we do not even
=2
need the individual values of the & . It is only necessary to know for each

i=1,...,n,

11



More generally, suppose it is known that
a{_(_fvi(i) P(dg) < of
but the precise value of this integral (with respect to P) is not known. In
this case the constraint (3.12) could be replaced by
L
0‘;5_ z(f ajg ‘e )\R(de) + f ajy'r uz(dr))g oc’{ . (3.14)
L=1\Yext C2 ext-re Cy

This is the case when the generalized moment problem involves
inequalities and the v; are piecewise linear. This yields immediately an
extension of Theorem 3.1 (to the inequality case) that turns out to be quite
useful when dealing with higher order méoments approximations. If it is known
for example, that

fgz P(AE) < ay, (3.15)

then by defining a piecewise affine (lower) approximation v; such that v; (&) <
52, the optimization problem (3.10) with the constraint (3.14) -- defining
d;: = 0 and a; = ai ~- yields an upper bound on all probability measures
satisfying the second moment condition (3.15). The bound can be improved by
refining the approximation Vi

For other than piecewise linear functions, limited results are still
available. Suppose for example vy is concave and

fvi(i) P(E) < oy - (3.16)

We can substitute for its representation (3.5) to obtain

L
z f_ vy f e A'(g,de) + f ru'(g, dr)) |P(d€) <a; .
L=1 2 ext Cy ext-re Cy

Now if we use the concavity of v; and the definitions (3.6) of AQ and (3.7) of
Uz, we have

L
Z (
2=1

f Vi(e, (de) +f re Vi(r)uz(dr)) <oy, (3.17)
ext Cy ext-rc Cy

12



Therefore we can replace the constraint (3.16) by (3.17) and again obtain an
upper bound on the expectation of v, that satisfies (3.16). Obviously the
same technique can also be used if vy is convex and we know a lower bound on

the expectation of Vi

4, EXAMPLES.

The results of Section 3 can be used to obtain bounds for a variety of
lower dimensional cases. In this section we consider two piecewise affine
approximations of the second moment function, vi(g) = gz. We take & to be a
1-dimensional random variable distributed on the interval [Bq, B8,] with
31 <0< B, Let P([By, 01) =py, P((0, B,]) = p, and suppose P({0}) = 0.

| As upper approximate we define
vi (&) = Y1 & £<0 (4.1)
[ Y28 £20
with Yy, Yo > 0. If 'yq =Y, then v;(§) = |£] . 1In general we define Y, and

Y2 so as to best fit the case at hand, see Figure 1.

\

L]
1 B2
Figure 1. Upper "absolute value" approximate.

With C = co(B,= e1,82=e2), the linear program (3.13) becomes:

13



“YB1A T YBA2 t YaBiAyr t YoBohop = o

AMp ot M2 =D
Aoy ¥ Ao = Pps
2 2
and w = 5 3 h(B)rg is maximized.
2=1 k=1

We set

3, 0 B, ) )

o Je vi(€) P(dg) = -y, fBaP(ds) + Y, ]5 P(E) = =Y{P1&y *+ YoP2kp

0
1 1

where 51 and EZ denote conditional expectation with respect to [8,, 0] and
(o, 82] respectively. Thus we can view (4.2) as finding a probability that
assigns weights to the extreme points of [By, 8,1, viz. (X4 + Xyq) to B, and
(A12 + A22) to B, in such a way that a certain generalized conditional
expectation condition is satisfied.

There are four possible bases -- each one corresponding to having 1
variable Akk nonbasic -~ depending on the values of the coefficients. The
following table gives the solution values and optimality conditions when
Y1 =Y, > 0, and for 2 of the 4 possible bases ( the other two have A21 and

X5, nonbasic resp.):

Nonbasic Variable A1 X2
Dual feasibility h(8,) > h(§g,) h(B,) > h(g,)
By - Eé B2 ~ éé
Primal feasibility P L pp | mmmm—— P {pp |
2 = & By - &
Solution: A12 = P A22 = Pp
Aot = P2 Ay Mz = Py~ Ay
1 - -
Aoz = g“"g‘[tp1(32“51) + P2(32'51)3] My o= e
2™

Table 1: Optimality Conditions: Y1 =Y, >0

14



The dual feasibility conditions are the same for all Y1 and Y2 positive. The
primal feasibility conditions depend on the relative sizes of the slopes.
We can also work with a lower approximate for & p--> gz, for example

with the cup-shaped function:

Vi(g) = Y1(B1 -£) if B1_<_€_<_B1‘|
0 i Byp <8< By
1208 = Byp) it By < €< By

where B, < B,, <0< By <B,. SeeFigure 2.

approx.

2 L

84 ® By @ B 21 ® B>
Figure 2. Cup-shaped approkimation for 62 .

If vy is this cup-shaped function, the associated linear program (that yields

an upper bound) reads:

find Ay >0, A5 >0, ..uy Agy > 0 such that (4.3)
YiBiAr “YBoAo + YgBiA3 * VB2l = a -
ARA + AQ»Z =p2’ 2'=1’233
3 2
and w = I T h(Bk)Azk is maximized,
=1 k=1
where
a: = = P1Y1g1 * P3Y3§3-

15



There are 8 feasible bases, The solutions are of the same type as in Table 1.
The solution of (4.6) is useful in conjunction with the solution of
(4.2). As we noted earlier, if vi(E) < &2 then the solution of (3.13) yields
an upper bound on .fvo(E)P(di). If, however, vi () > 52, then the solution of
(3.13) yields a lower bound on the supremum over all distributions satisfying
the second moment condition. The two bounds can be used to determine how well

the second moment condition has been approximated.

5. APPLICATIONS IN STOCHASTIC PROGRAMMING

Bounds on the expectation of a convex function can be particularly useful
in the solution of stochastic optimization problems. In these problems, it is
often necessary to perform an optimization to evaluate a function at a single
point. Taking the expectation of such functions presents a formidable task.
By limiting the support of the distribution to a finite number of points, as in
the development above, the set of problems to optimize is limited, and one can
efficiently obtain bounds on the expectation.

A typical stochastic optimization problem has the following form:

inf e(x) + f Q(x,&) P(dg), (5.1)

xeK )
where Q(x,E) is itself the optimal value of a mathematical program whose
coefficients depend on x and £. To solve (5.1), we need to evaluate .fQ(x,é)
P(dE) for many values of x chosen in an optimization procedure. An upper bound

on the integral that is easily calculable may lead to useful bounds on the

optimal value of (5.1).

16



As an example, consider

Q(x,&) = min Syq + 10y, + 10y3 (5.2)
Soto y‘l + Y2 = £1 = x1
Y1 Y3 = €2 = Xo,

Y‘lo YZ’ Y3 g O‘

Note that this problem has the values

1051 +5X2"'5E2" 10)(1 €1 "X] 252_)(220
Q(XQE) =
10&2 + 5X1 - 5€1 - 1OX2 52 - X2 Zg1 - X1 Z 0
+ ® 51—x1<00r£2-x2<0.
A A 1 gz ‘.2&1 ~2E2
We wish to consider the case where x = (0,0) and P[£,<&,E<8E5] = le e
0J0

dE1 d£2, where %1 and 82 are any given nonnegative values of the random
variables 51 and EZ' In this way, g1 and £2 are independent exponential
random variables with means 1/2.

We wish to investigate how to find an upper bound on

_[Q((0,0),F,) P(dg) (5.3)

without computing the integral exactly. We first note that the exact value is
6.25. The other methods we will try will be Gassmann and Ziemba's approach, a
solution using Corollary 3.2 and not exploiting the independence of the random
variables, and a solution using Corollary 3.2 and the independence of the random
variables.

A lower bound on (5.3) is found using Jensen's Inequality as Q((0,0), &) =
2.5. An upper bound is available using the Gassmann - Ziemba approach which
reduces to (3.13) with ajp = § and L=n. Using the extreme directions of
% =[0,9 *[0,0) as (1,0) and (0,1), an extreme point of (0,0), and noting

that re Q((0,0), (1,0)) = rc Q((0,0), (0,1)) =10, the following version of

17



(3.13) is obtained,

IQ((0,0), &) P(dg) < sup 10 uy + 10 uy (5.1
(A, 1)
s.t.
0Ny + 1y =1/2
0}, * U5 =172
}\1 =1

Mo My wp 2 0
The only feasible solution to (5.4) is My =M, =1/2, Ay =1, and the upper
bound so obtained is 10. By using the independence of ﬁhe random variables,
we can see that, for any value §2 of g5, Q((0,0),(&,, 82)) defined on [0,+ )
has a value of 1052 at (0,0) and a recession function value of 10 in the
direction of increasing 51. A Gassmann-Ziemba bound on the integral over 51,
is therefore, 10&2 + 5 for any éz. Using this value, we can then solve the
problem in EZ and again obtain a value of 5 at (0,0) and a recession function
of 10, The resulting Qpper bound is again 10, so the use of independence does
not improve the bound.

To provide a more precise bound on (5.3), we include more constraints in
(3.13). Note that E(E5) = E(£,%) = 1/2. A function v; (£, £,) such that v; <
512 is

0 if Ei < 1/2 (5.5)
26,1 if g > 1/2,
a cup=shaped function as in Figure 2. This can be used with bounds of 1/2 for
i=1,2 to obtain additional constraints to mean value constraints. The
12 4

region of ¥ must then be partitioned into =', =°, 53, and = as in Figure

3- In (3-13)!

18



€2

[1}
[1]

1/2

[$3]
23]

0 1/2 61

Figure 3. Partitions of =.

o

we use h = Q((0,0), £) and C with constraints on v) = ¢ _5, 4= 3,4, and

vy as in (5.5). The resulting linear program has an optimal value of 8.98.

We can improve on this solution value by using the independence of 61 and
52' We consider first J'Q((0,0), (51, 0)) P1(dg1) where p! is the marginal
probability distribution of E1. Clearly, this has a value of 10 €1 = 5 since
Q((0,0), (&, 0)) is linear. Next, consider Q((0,0), (&, 1/2))P'(dg,).
For this problem, we use v (&) as in (5.5) and an upper bound of 1/2 and solve
the resulting program (3.13) in € only. The result is an upper bound of 6.25.
We note here that using the partition 2] = [0, 1/2], 83 = (1/2, +=),
without the constraint on v1(£) leads to an upper bound of T7.24. The
restriction on the second moment therefore allows for a 14% improvement in the
bound.

The bound on J.Q((O 0), (£1, 1/2)) P’ (dg;) can then be used to bound
(5.3). We use that 5 is a bound at 52 = 0, that 6.25 is a bound at E =1/2
for J.Q(0,0), (€4, EZ)P (d€4) and that the recession function value of

J.Q((0,0), (51,52))P1(d£1) is 10. This yields another problem (3.13) that can

be solved with a constraint on v,(£) to yield an overall upper bound of 8.12.
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This represents a 10% improvement over the bound without using independence,
and a 19% improvement over the bound which only considers mean values. The

results are summarized in Table 2.

Constraints Independent Upper Bound
Computation

Means No 10.00

Means Yes 10.00

Means & Second Moments No 8.98

Means & Second Moments Yes 8.12

Table 2. Bounds on _[Q((o,o),E)P(dS).

This example provides one indication of the usefulness of including
constraints on second moments in the solution of stochastic optimization
problems. As a second. example, we consider a region that is not bounded in any
direction and a nonlinear function vny. Let

x, &) = [E-x2 if |E-x|<5 (5.6)
10x =25 if &-x2>5
-10x - 25 if E-x <5,
where £ is normally distributed. We wish to bound J'Q(O, £)P(dE) where £ = 0

and E(gZ) = 1/4. We use vy = ¢ for the mean value constraint and

2 g1 if £ > 1/2, (5.7)
vy () = {0 if =172 < & < 1/2,
28 -1 if g < -1/2,

where VZ(E) < Ez. The resulting linear program (3.13), with L (=», =1/21,
82 = (-1/2, 1/2], 8% = (1/2, +=), and a bound of 1/4 on [v,(E)P(eE) has an

optimal value of 1.5. Without the bound on 'fvz(E)P(dE), however, the linear
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program is unbounded because of the distribution's symmetry. In this case, it
is essential to include additional piecewise linear constraints to the mean

value constraint.
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