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Abstract:

When linear programs need to be solved many times with only changes in the
right-hand side vector, approximation by sublinear functions can provide
solutions very efficiently. This paper presents this sublinear approximation
and its properties. The method may be especially useful if implemented on
parallel processors.
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Introduction

Many uses of linear programming require the repeated solution of a
single linear programming model with varying parameters. It is often
important in these situations to solve the problems extremely quickly. The
control of a ship or plane, for example, requires repeated optimization in
real time.

A specific example of this need for precise, quick solutions is the
model of ship control in restricted waters in Cuong [1980] and Al-Idrisi
(1981]. 1In their model, several unknown parameters that depend on the
waters mus: be identified to determine the ship's course. These parameters
should be continuously updated as the ship moves. Rudder controls are also
continuously determined to maintain the ship on a desired course. The
parameters and controls can be found by solving a sequence of linear
programs to minimize absolute deviation from observed data and the desired
course. Only the right-hand side vector changes as observations are made
on the ship's actual trajectory.

The goal of this paper is to present an efficient method for solving
these sequences of linear programs with varying right-hand sides. We,
therefore, wish to evaluate the function

p(t) : = inf {ex | Ax = t, x 2 0}, (1.1)
x€R"
where t € R™ represents the right-hand side parameters which may vary. We
present a method for quickly evaluating or approximating y(t) based on
sublinear approximations. The method has especially strong potential for
applications with parallel computation. We demonstrate this applicability
by showing that our method's running time is lower even than average-care

claims for general linear programming algorithms.



The method is based on an approximation scheme first developed for
stochastic programs in Birge and Wets [1986a], and extended to a procedure
for calculating upper bounds in Birge and Wets [1986b]. Its use with
parallel processors was introduced in Wets [1985].

Section 2 presents useful properties of y(t) and gives the basic
sublinear function method. The accuracy and effort involved in the method
are also discussed. Section 3 describes properties of the sublinear
approximation and presents alternative strategies for its implementation.
We conclude with a discussion of its running time on parallel processors in

comparison with the simplex method and Karmarkar's projective method.

Sublinear Approximation Method

We assume that (1.1) is well-formulated so that the linear program is
bounded below for all t. In this case, y(t) is a proper (nowhere -« and
somewhere finite), sublinear (positively homogeneous and convex) function.

Another useful property of ¢ concerns its epigraph.

PROPOSITION 2.1 The epigraph of ¢ (epi ¢y) is a convex polyhedral cone

(i.e.,, ¥ is a polyhedral convex function).

Proof: A point (a,t;,...,ty) = (a,t) € epi y if and only if o > y(t). By

duality, if y(t) < +=, then
p(t) = max {mt | mA > c}, (2.1)

where we need only consider the finite set of basic solutions, {w basic ]

mA > c} = {n‘,...,wK}. We then have
epi ¥ = ((a,t) | (a,t)(=1,7%) < 0, 2=1,...,k}. (2.2)

This completes the proof. ]



Since epi y is polyhedral, we can also write it as

o
pos [ (¢Y), & =1,...,L]

epi y =
o ol L o
{e)y er™ | ) = ot Wby o,
R=1
2= 1,...,L }, (2.3)
so that
o Lo
p(t) = infa | (€) = T oy (£, wp >0, & =1,...,L}. (2.1
g=1

This leads to our first fundamental approximation. Suppose

S ,
{(£3) ¢ epi ¥, s = 1,...,8}, (2.5)

is a collection of vectors in Rm+1. We then have that

(IS
ug (£%), ug >0, s = 1,...,5}. (2.6)
1

oW

o(t) < inf {a | (£) =
S

The right-hand side of (2.6) is another sublinear function that approximates
y(t) from above. We show how to choose the vectors (%g) so that the
approximation is reasonable and the computation of the approximation (finding
the infimum) is straightforward.

First note that a good approximation would be exact along the
directions ts, s=1,...,35. Hence, we require that od = w(ts), and assume
that o° and t° are defined in this way in our discussion below. We assume
that the effort to calculate these oS values is small in comparison with
the number of times y(t) must be found. The solutions x5 such that cx® =
oS are also stored, in general, so that a primal solution x* = i wSx

s=1
obtained for each solution in (2.6). If the x5 solutions are not

S is
available, then the dual may be used to find x* (see below).

The set of vectors {t‘,...,ts} must be sufficient for the

approximation to be reasonable. For pos A = {y | Ax =y, x2 0}, we



generally assume that

pos (t‘,...,ts):b pos A. (2.7)
To ensure (2.7), we often have

pos (t!,...,t5) > R™, (2.8)
Conditions for the set to obtain equality in (2.6) are given in the following

proposition.

PROPOSITION 2.2 If {tl,...,ts}:D {AIA.1,...,AnA.n} for A; > 0, i=1,...,n,

and o5 = p(t%), s=1,...,S, then inequality (2.6) is satisfied as an equality

for all t.

o]

Proof: Suppose t! = A; A ;, i=1,...,n. Let y(t) = Loy x;. Note that,
. i . n * nooi Xy
by the assumptions, a~ < A;q;. Since L A ; x; = t, we have L t* (-=-) = ¢t.
- i=1 o101 i= A

Hence,
a S S
inf {a | (t) - L ug (¢%), ug > 0, s=1,...,8}
X*
i i n
(---) (11 < 'Z qi X‘)-(' = w(t)o (2.9)
Ai - l=1 1

[N el

= i=1

Combining (2.9) and (2.6) yields the result. =

A difficulty in using the expression in (2.6) is that another
optimization problem is required in computing the bound. Exact results could
be obtained as in Proposition 2.2, but no clear time savings would be made.
The situation is simplified if the expression in (2.6) has a unique solution

for all t €.Rm, i.e., if t‘,...,ts form a positive linear basis for R™.

Positive linear bases can be easily obtained from linear bases by including
the negative vector of each vector in the linear basis. Let D = [p:,...,0M]

form a linear basis for R®, then [D,-D] = [D%,...,D™, -D*,...,-D™] form a



positive linear basis for R™., This is the form we shall use for

approximations of y(t).

+

J

The sublinear approximation using basis D is defined as

For each DJ used in the approximation, let § w(Dj) and 63 = w(-Dj).

a n st n 8.
bp(6) = inf {a | (0) = T WD)+ T Wi )
D jop M0 . Hitops’
+ - .
i, H3 20, 3 =1 yeeo,nt. (2.10)

Note that y(t) < bp(t) from (2.6) and that
W(E) = ypt) if t =D, j=1,...,m.

The expression for wD(t) can also be simplified to

m .
wpt) = Ty, (2.11)
j=1
where _ 5075 ¢ it 07Ny t> 0 (2.12)
yp(t) = TR 0
‘Gj(D )j-t if (D )j- t S 0.

Computing wD(t), therefore, only requires multiplication of t by the rows of
D'1 for each j, a sign check, multiplication by Gji and addition of the wg.
This decomposition of computational effort leads to the parallel computation
gains discussed in the next section. In general, wD(t) can be evaluated
quickly given initial evaluation of Gji, §=1, ... ,m.

A single basis D does not in general provide good bounds on y(t) for
all t. A collection of bases, D = {D(v), v =1,...,N}, can be used

instead. The approximations derived from this collection are described in

the next proposition.

PROPOSITION 2.3. Let {D(v), v=1,...,N} be a collection of linear bases of

R™, then



¥(t) < co ‘JJD(\)) (t) < inf wD(\))(t)’ (2.13)
where
a
co ¥p(,) (t) = inf [a | (£) € colept VD (y) (2.1h)
v=1,.0,0)]

and "co" denotes "convex hull."

Proof: Note that epi y Depi YD (v) for v=1,...,N, from (2.6). Hence, since
epi ¢ is convex, it contains the smallest convex set containing epi wD(v)'
v=1,...,N, i.e.,

epi Y > co(epi YD (v) v=1,...,N). (2.15)
From (2.15), we obtain y(t) < cowD(v)(t). The other inequality,

co¥p (t) < inf v wD(v)(t) follows from the definition in (2.14). =

V)
By taking the convex hull of the functions wD(v)’ the approximation can
improve and approach the exact value of y. The inclusion of more bases in
the collection, {D(v), v=1,...,N}, also improves the solution. Conditions

for a collection to obtain equality in (2.13) are given in the following

proposition.

PROPOSITION 2.4 Let the collection {D(v), v=1,...,N} contain all dual

feasible bases in W(i.e., a basis B such that mB=cg, mA < c), then

v(t) = co wD(\J)(t) = inf\) wD(\)) (t). (2.16)

Proof: Let ¢(t) = cx* = t*t where Bx;

t, T™B = cg, and T*A < ¢. For tl

1

= Bi, i=1,...,m we again have o~ < ¢;, so for D(j) = B, wD(j)(t) =

[y
nm~Bs
[

x;(i) < cx* = y(t). From (2.13), we obtain (2.16). =
Using all dual feasible bases in D would generally not be efficient.
The convex hull function can also be a computational burden on the sublinear

approximation method. The next section discusses these implementation



concerns and describes other properties of the sublinear approximation

method.

Uses of the Approximation

To compute co wD(v)(t), the optimization problem in (2.14) must be
solved. Since this problem may, in general, be difficult, the simpler bound
of infv wD(v)(t) is indicated. Another alternative that is especially
useful when y(t) is part of a higher level optimization problem is to use
the conjugate function of co wD(v)' The conjugate of ¢ is by definition

y*(a) = sup fut - w(t)]. (3.1)
teR™

The following proposition provides the conjugate of wD(v)'
PROPOSITION 3.1 The conjugate of wD(v) is given by

Vp(p)*(w) = 0 if -6y ¢ u(D(v)).j < 55,
Jo=1,...,m

+o  otherwise. (3.2)

Proof: From the definition in (3.1) and for D(v) a linear basis,

W) = sup [wr = wy(yy (D) ]
+ .
M (u(D(v))'j - cj)xj if A2 0.
= I sup
j=1 )R (u(D(v))‘j + 53)xj if A5 <0

Equation 3.2 follows immediately from (3.3). =
The conjugate functions of wD(v) can be used to obtain the conjugate

function of co and a bound on y*(u).
D(v)



PROPOSITION 3.2 The conjugate function of ¥ is bounded by

v*(u) > (co wD(v)]*(u) = sup wD(v;' (3.4)

V= g 00y

Proof: From the definition in (3.1) and (2.13)

p*¥(u) = sup [ut - y(t)]
teR™
= (co wD(v))*(u).
From Theorem 16.5 in Rockafellar [1970], (co wD(v))* (u) = sup wD(v)*(u),
v=1,...,N

proving (3.4). =

From (3.4) and (3.2), the lower bounding function on y¥*(u) is

* . - +
y*¥(u) > sup ¥p(y) (u) = { 0 if -§j < u(D(v))j < 85, (3.5)
velyeee, J=l,e00,m; v=1,..,N,
+o otherwise.

The bound in (3.5) can be useful when a dual program is formulated in place
of a primal problem involving y(t). The optimization for y(t) is replaced by
additional feasibility conditions in the dual. Note also that (3.5) provides

an alternative method for finding (co wD(v)) (t). We have

(co vy, (L) = izgm {ut - sug=1 NwD(v§(u)}
- +
-oup e | -8y culdn) 5 <o,
J=1,c.0,m; v=1, .00, N} (3.6)

For problems with special structure, the dual formulation for co wD(v) in
(3.6) may provide an efficient method for calculating co ¥p(v)*
The subgradients of yp are other useful properties of yp when used as an

approximation in optimization problems involving y.



PROPOSITION 3.3. The subdifferential of Yp(t) is given by

d wD(t) ={r| =0 D_1, 0; é,Zj, j=1,...,m} (3.7)
where
J . -57 i “ley,
z GJ if (D t)J <0
&= &t -1 -
C GJ, Sj] if (D t)j 0
+ . -1
Proof: From (3.6), for N=1, and letting t = DA,

+

Up(y)(®) = sup {(w D) | =65 <uldw) 5 <6

ueR™ 3’
i=1,...m} (3.8)
. +
j=1 5] A0 A5 20,

where AJ = (D'1t)j. Note that w is a subgradient of wD(v) at t if =t =

wD(v)(t) and 1z £ wD(v)(z) for all z. Hence, any m such that

s~ (p-1 -1
m 85,0 t); ,  (Dt); <0
= I R -1
j=1 85 07ty (D t)y 20, (3.9)
and
- + .
SRR (D(\’)),j < 855 J=Tyeen,m, (3.10)

is a subgradient. The conditions in (3.9) and (3.10) determine dYp in
(3.7). =
The subdifferential of co wD(v) is also useful in approximating

optimization problems involving y. From (3.6), this is

+

3(co ¥p(y))(t) = {n|w € argsup {ut | -67 < u(d(v)] j < 6,

UéR
Jo=1,.0.,m v=1,...,N}. (3.11)
As in the calculation of co ¥p(,y, the expression in (3.11) may be readily

calculable when co wD(v) has special structure.

10



A subgradient of co wD(v) is also valuable in calculating a primal
solution x* such that cx* - y(t). For m & 9 co wD(v)(t), let B be a

maximal, linearly independent set of columns chosen from A* = {A | c; =

i i

mA . $ 0}. In general, B has full rank, and we let x* = B~

i t. We then

have cx* < co wD(v)(t) for any choice of B from A*.If {D(v), v=1, ...,
N} is sufficiently large, then for all A€ A*, c; - mA ; =0, and cx¥ =
Y(t). When B does not have full rank, a looser approximation is obtained
by sequentially including columns into B in increasing order of c; - vA.i.

Determining which bases to include in D is an important aspect of the
evaluation of the sublinear approximation of y. From Proposition 2.4, if all
dual feasible bases are included in D, then the sublinear approximation is
exact. In general, including all such bases would be inefficient. Instead,
we can describe a sequential procedure, in which, new bases are added to D in
order to improve the approximation as much as possible.

A suitable beginning basis, such as D(1) = I, is chosen that provides a
rough approximation of y. Assume that N bases, D(1),...,D(N), have been

chosen and that ¢ is inf-compact (i.e., has compact level sets, (Wets

[1973]). Consider the level sets

levy v o= {t | y(t) < al

and lev, (co wD(v)) = {t | co wD(v)(t) < al).

We would like to make leva(co ¢D(v)) as close as possible to lev, ¥. To find

these level sets, we use the following result.

PROPOSITION 3.4, If f is a polyhedral function such that

T k r% . .
£(t): =dinf {t ] (&) = = (5 A, At >0, 1 =1,...,k],
i=1

"



then 1eva f

]
~—
cr
ct
"
[ o BN

i=1,..., K} (3.12)

co {(-=)tt, 1 =1,...,k}.
,[l

Proof: Suppose that uiti ééleva f, then ui ri < a, so levaf includes

a : : : a .
(==)t*At for 0 < A* < 1 and, by convexity, co{(-I)tl, i=1,...,K}. Irte

! T
lev f, then t = % tiui where f(t) = § Tiui. Let ui = (-S)Xi. Since f(t) <
i=1 i=1 t
@ L ! < 1 and T belongs to co{(;%)ti, i=1,...,k}. =
From Proposition 3.4, we have that
lev, ¥ = co {(q31 W.j), j=1,...,n}, (3.13)
and

lev, (co wD(v)) = Co {(gi;)(i(D(v)).j, J=1,..0,m; v=1,...,N}. (3.14)
To improve the approximation of ¢ by co wD(v)' we would like to minimize the
(Hausdorff) distance between lev, y and lev, (co wD(v))’ We try to do this by
creating new bases with

tV € argmax {dist(t, lev, (cowp(yy) | t € lev, v}. (3.15)
The nonconvex optimization problem in (3.15) can be solved by searching
through the extreme points of lev, y, but, in practice, search would only
continue until a sufficiently large distance is found (according to some
user-specified criterion). When tV is found, new matrices, D(N+1)...,D(N+q),
are created so that

N+q

pos [tY, D(v),-D(v), v=1,...,N] = U Pos[D(v),-D(v)]. (3.16)
v=1

12



Another possibility for finding new matrices for D is to choose the D(v)
as rotations of D(1)=I. This procedure provides a systematic way for every
region of t to be investigated. A third alternative is to choose (randomly
or according to a pattern) various values of t and let D(v) be the basis
that is optimal in finding y(t). All of these procedures require further
examination and testing before their relative merits can be established.

Given a collection of chosen bases D, the calculations for a sublinear
function approximation can be substantially performed in parallel (Wets
[19851). The steps of the method to find inf yp(,)(t) (assuming &}, 6]

known) are

1. Perform mN inner products (D(v)'1] t and determine wD(g)(t) in (2.12).

J
2. Perform N sums of m elements to find wD(v)(t) as in (2.11).

3. Sort wD(v)(t)’ v=1,...,N, to find the least element.

With mN parallel processors, Steps 1 and 2 above can be performed in 0(m)

time. With N? parallel processors, Step 3 can be performed in 0(logN) time.

PROPOSITION 3.5. The running time of the sublinear function method to

find inf wD(v)(t) is O(m + log N) on max (mN, N2?) parallel processors.

The time can vary from the result in Proposition 3.5, especially if
fewer than mN or N2 processors are available. Taking advantage of sparsity,
however, and the availability of more processors (to accelerate the inner
product) could decrease the running time.

The result in Proposition 3.5 demonstrates the potential for parallel
processing with the sublinear function method given here. Approximate
solutions of linear programs can be obtained in linear or better than linear
time. This can be compared to parallel processing applied to other linear

programming algorithms (Pan and Reif [1985]). From Pan and Reif, if

13



Karmarkar's projective algorithm [1984] requires 0(m1/2) iterations in
practice (as some conjecture), then its running time is o(m'+> log m) with m?
parallel processors. If the simplex method (see Dantzig [1963] for a
discussion of average case behavior) requires 0(m) iterations in practice,
then its running time is 0(m?) on m parallel processors. The sublinear
function method compares favorably with either of these general-purpose

solution methods.

14
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