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1. Introduction. Many problems in applied mathematics involve an integral or an
expectation of a convex function. For example, in mechanics, the average load on a given
structure may be expressed as the expectation of convex functions (or linear combinations
of convex functions) of the stresses. In finance, the present value of an option on a stock
may be the expected value of a convex function of the future value of the stock price. In
computer systems, the performance (throughput) may be a concave (i.e., the negative of a
convex) function of the system load. The average performance is then the expectation of
this performance function. Our interest has been in functions arising in stochastic programs,

mathematical optimization models that involve random variables.

The basic problem is to find:
By () = EU ()} = [ 1(a(0)P(d0), 1y

where z is a random vector mapping the probability space, (2, 4, P), onto (R¥,8" ,F), F
is the distribution function of z, and z € X C R¥. The ezpectation functional, E;(z), can

also be written as a Lebesgue-Stieltjes integral with respect to F:

Ei(z)= | f(z)dF(a). (12)

RN

Difficulties arise in evaluating E; (z) when either the function f is difficult to evaluate
(for example, requiring a complex simulation for each function evaluation as in the computer
system example) or the distribution function F is not known exactly (for example, when
the demands on the computer system are not known beforehand). Many approximation
formulas for integrals (1.2) have been given (see Davis and Rabinowitz [8]), but they either
do not provide efficient error bounds or impose strict differentiability requirements on
the integrand. In this paper, we review methods for evaluating upper bounds on E;(z)
with limited distribution information and convex f. In addition, we provide a method for
evaluating upper bounds on a large class of convex functions on R! given first and second
moment information about the distribution of z. We also show how this result can be
extended to a general bound for convex functions on R®¥. The bounds extend from basic
properties of convex functions and from a generalized moment problem interpretation of

the problem.



Section 2 provides background on previous approaches to bounding expectations. The
- generalized moment problem interpretation is given in Section 3. Section 4 presents basic

results and some examples in R!. Section 5 provides the multi-dimensional extension.

2. Background and previous integral approximations. For f(z) = z, the
expectation functional is the first moment or mean of the random vector, z, with respect
to the distribution function, F. For f(z) = z*, the expectational functional is the ith
moment of z with respect to F. A function f : X — (—00,+00] for X a convex set is
convez on X if and only if f((1 - A)z+ Ay) < (1 - A)f(z) + Af(y) for all A € (0,1) and
every z and y in X. In the following, we assume that X is convex and that every convex
function f on X is proper, i.e., there exists z € X such that f(z) < 400 and f(z) > —o0
for all z € X. A function f is concave on X if —f is convex on X. A function f is affine
on X if f is finite-valued, convex and concave on X. If f(Az) = Af(z) for all A € (0,00)
- and z € RV, then f is positively homogeneous (of degree one). A positively homogeneous
function f : RN — (—o00,+00] that is also convex on R¥ is sublinear. A sublinear function

associated with any convex function is the recession function, f0*, defined as (see [31])
(f0)(y) = sup{f(z + ) - f(z) | f(2) < o0}. (2.1
In the sequel, we also consider optimization problems of the form,
sup f (=), (2.2)

where C is a subset of a linear space. A point z is feassble in (2.2) if z € C. A feasible
point z is an eztreme point of C if there does not exist y and z in C such that z =
(1-X)y+Az,0 < A < 1 other than z = y = z. A point z* is optimal in (2.2) if it is feasible
and f(z*) = sup,¢c f(z). In this case, z* attains the supremum of f over C. When the
supremum of f is assumed to be attained for some z* € C, we replace “supremum” by

“maximum.”

For general functions f, the basic procedures to approximate E;(z) use some form of
a discrete approximation for the distribution of z. For X = [a,}] C R!, the most basic

procedures are the midpoint and the trapezoidal approximations. If one interval is used,
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these approximations apply to a uniform distribution on [a,b]. They are M;(f) = f((a +
b)/2) for the midpoint and T (f) = (f(a)+ f(b))/2 for the trapezoidal approximation. The
approximations are improved by dividing [a,b] into subintervals, appropriately weighting

the subintervals and applying M; and T; on each subinterval.

A more sophisticated procedure is gaussian quadrature to find an integral formula that
fits all polynomials up to some degree. As noted by Miller and Rice [29], this can be used to
find a discretization with N values that matches the first N 41 moments of the distribution
of z. To match the first three moments of the uniform distribution on [a,b], for example,
gaussian quadrature selects two points, (a + b)/2 £ (v/3/6)(b — a), with equal probability,
1/2.

A difficulty with using the gaussian quadrature formulas is that they do not generally
provide bounds on the expectation. Restrictions on higher—order derivatives and Peano’s
theorem [30] may be used to provide bounds but that requires, at least, differentiability
of f and a density function that may not be available. Generalizations of the mid-point
and trapezoidal approximations do, however, obtain bounds on the expectation of a convex
function. Jensen’s inequality [21] can be interpreted as a generalization of the mid-point
approximation that provides a lower bound on the expected value of convex f through the

following:

f@F(G) 2 £([ | aF (), (23)

RN

where Z = [, v zdF(z) is assumed finite.

Madansky, following Edmundson, ([27], [12]) provided a generalization of the trape-
zoidal approximation, called the Edmundson-Madansky inequality, that gives an upper

bound on the expectation of a convex function. For N = 1, the basic inequality is:

(46— 2)f(a) + (2 - a) /(%)
(b~ a) ’

where [a,d] is a finite interval. The Edmundson-Madansky inequality (2.4) can also be

f(z)dF(z) < (2.4)
RN
extended to multiple dimensions and infinite intervals (see, for example, (1], [14], and [16]).

Refinements of the Jensen and Edmundson-Madansky inequalities are possible by

subdividing the interval (or, more generally, the region) into smaller pieces on which the
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bounds can be reapplied as in the traditional mid-point and trapezoidal approximations
(see [3], [15], [19], and [22]). These refinements require additional functional evaluations
and conditional expectations on the subregions. As has been observed, the Jensen lower
bound is generally reasonably accurate relative to the Edmundson-Madansky upper bound
(e.g., [17]), which requires more function evaluations. The primary concern is then in
obtaining more accurate upper bounds without additional computational effort. This paper
shows that this is possible for a class of convex functions, if second moment information
is available. The next section provides the generalized moment problem formulation that

leads to this new bound.

3. Generalized moment problem. To obtain bounds that hold for all distributions

with certain properties, we can find

Q € P a set of probability measures on (X, 8" ) subject to

/ vi(2)Q(dz) < a4,i=1,...,8,
X

(3.1)
/xv.-(:c)Q(d:z) =o,i=8+1,...,M,

to maximize /x f(2)Q(dz),

where M is finite and the v; are bounded, continuous functions. A solution of (3.1) obtains
an upper bound on the expectation of f with respect to any probability measure satisfying
the conditions above. Problem 3.1is a generalized moment problem ( [25]). When the v; are
powers of z, the constraints restrict the moments of z with respect to Q. In this context,
(3.1) determines an upper bound when only limited moment information on a distribution

is available.

Problem 3.1 can also be interpreted as an abstract linear program since the objective
and constraints are linear functions of the probability measure. The solution is then an
extreme point (see [33] for a discussion of properties) in the infinite dimensional space of
probability measures. The following theorem, proven in [23, Theorem 2.1], gives the explicit

solution properties.



Theorem 1. Suppose X 1is compact. Then the set of feasible measures in (3.1),
Q, 18 convez and compact (with respect to the weak® topology), and Q is the closure of
the convez hull of the extreme points of Q. If f 1s continuous relative to X, then an
optimum (mazimum or minimum) of [, f(z)Q(dz) is attained at an extreme point of Q.
The extremal measures of Q are those measures that have finite support, {z;,...,z.}, with

L < M + 1, such that the vectors,

v1(z,) vy(zL)
v (1) va(21) , (3.2)
vn (21) vy (21)

are linearly independent.

Kemperman [24] showed that the supremum is attained under more general continuity
assumptions and provides conditions (which we assume to hold) for Q to be nonempty.
Dupatova’s (formerly Zatkova) [9, 10, 36] work on a minimax approach to stochastic pro-
gramming led to the use of the moment problem as a bounding procedure for stochastic
programs. She showed that (3.1) attains the Edmundson-Madansky bound (and the Jensen
bound if the objective is minimized) when the only constraint in (3.1) is v; = z, i.e., the
constraints fix the first moment of the probability measure. She also provided some prop-
erties of the solution with an additional second moment constraint (v,(z) = z2) for a
specific objective function f. The general problem can be solved using the generalized

linear programming procedure in (7, Chapter 24]. This procedure is given below.

Generalized Linear Programming Procedure for the Generalized Moment
Problem (GLP)

Step 0. Instialization. Identify a set of L < M + 1 linearly independent vectors as
in (3.2) that satisfy the constraints in (3.1). (Note that a phase-one objective ([7]) may
be used if such a starting solution is not immediately available. For N = 1, the gaussian

quadrature points may be used as mentioned above.) Let v = L, k=1, go to 1.
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Step 1. Master problem solution. Find p; > 0,...,p, > 0 such that

Zpl = 11
=1

Zvl(zl)pl S at')i = 1)' <8
=1

Zv,(a:,)p, =a;,1=8+1,...,M,and

=1

(3.3)

z= Z f(z)p is maximized.

=1

Let {p%,...,pk} attain the optimum in (3.3), and let {6*,=%,.

dual multipliers such that

M
0+ wfvi(m) = f(z), if p >0,1=1,...
=1

M
6+ wFui(m) > f(m), if p' =0,0=1,...
1=1

>0,i=1,...,s.

~ Step 2. Subproblem solution. Find z*! that maximizes
M
ol 74) = f(z) - # = 3 b u(a).
=1

If p(zv*1,6F,7%) > 0,let v=v+1,k=k+1 and go to 1.

..,m%.} be the associated

(3.5)

Otherwise, stop, {p*,...,pk} are the optimal probabilities associated with {z,,...,z,} in

a solution to [5].

The proof of the convergence of GLP is given in |7, Chapter 24]. This result is used

in [13] to solve a class of problems (3.1). The difficulty in GLP is in the solution of
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the subproblem (3.5), which generally involves a nonconvex function. Birge and Wets
[3] describe how to solve (3.5) with constrained first and second moments, if convexity

properties of p can be identified. Cipra [6] describes other methods for this problem based

on discretizations and random selections of candidate points, z;.

This paper considers specific conditions so that (3.1) can be solved without requiring
the repeated nonconvex optimization in (3.5). The goal is to show that a large class of
problems for N = 1 require only L = 2 points of support that can be identified in one
line search, that the points of support are analytically calculable for certain functions, and
that the solution procedure can be extended to a general class of functions in multiple

dimensions. The next section describes the basic results.

1.0}
08}
06}
04}
02}

0 — —
Io) =] .———‘""

R\ ops éﬁ 0.4

-hf?,o‘ 0.2

o X

Figure 1. The generalized moment problem in ®!.

4. Two-point support functions. In this section, we restrict (3.1) to the case
of N=1,8=0, and M = 2, where again the constraints correspond to first and second
moment constraints. To distinguish this case of (3.1), we refer to it as Problem (3.1-(1,0,2)).
The problem is illustrated geometrically in Figure 1. Here, X = [0,.6] and C = the convex
hull of (2,22, f(z)) for z € X. The first moment, Z, and the second moment, z(?, are
shown. The objective in (3.1-(1,0,2)) is to find y* = (2,2(),2*) € C that maximizes 2.
A generalization of Carathéodory’s theorem ([35]) for the convex hull of a connected set
tells us that y* can be expressed as a convex combination of at most three extreme points
of C, giving us a special case of Theorem 1. Therefore, an optimal solution to (3.1-(1,0,2)

can be written, {z*,p*}, where the points of support, z* = {z},z},z;} have probabilities,

8



p* = {p},p5,p3}. We will show that, for a broad class of two-point support functions, this

can indeed be further restricted to two points, {z},z3}, with positive probability.

A useful result of the linear programming interpretation of (3.1) is the presence of
a dual problem to (3.1). The dual to (3.1) is known as a semi-infinite program ([18])
that appears, for example, in Chebyshev approximation ([32]). For the one-dimensional,

two-moment constraint problem considered here, this dual is to find 8, x;, 7, such that

0+ 7z + mp2® > f(z),Vz € X,
(4.1)

and 0 + 7, % + 7,z(?) is minimized.

Note that (4.1) involves three variables and an infinite number of constraints in constrast to
the infinite dimensional, finitely constrained primal problem (3.1-(1,0,2)). Note also that an
optimal solution to (4.1) is a quadratic function that dominates f and that has minimum

expectation with respect to any probability measure in Q.

The optimality conditions on a feasible solution to (3.1), z* = {z}, z3, z3 }, with asso-
ciated probabilities, p* = {p},p3,p;3}, are that there exist dual variables, 8*, 7}, 73, such
that

0° + miz; +m3(2f)" = f(27) if §} >0,
(4.2)
0* +miz+my2° > f(z),Vz € X,

where the first condition is known as complementary slackness condition and the second
condition is dual feasibility. A useful interpretation of these conditions in terms of the
function p defined in (3.5) is that z} has a positive probability, p;, only if p(z;,6*,7*) = 0
and z; maximizes p over X for fixed (8*,*). It is convenient to let p(z,8, 7) = f(z) - ¢(z),
where ¢(z,7,0) = 0 + 7,z + 7,22, The following lemmas give additional properties for an

optimal solution {z*,p*} to (3.1-(1,0,2)). We assume that f is always convex below. The

first lemma refers to feasible solutions of (3.1-(1,0,2)).

Lemma 1. If a feasible solution to (8.1-(1,0,2)) is obtained with positive probability
support points, T, < Z, < Z3, then another feasible solution exists with support points, z,

and z,, where z, < r, < z3.



Proof: This result is straightforward. Feasibility of {z,,z;,z3} implies there exists
{p1,p2,ps} > O such that 3°0_, pi(z;,2?) = (£,2?)) or (z1,22) + pa(z3 — 71,22 — 22) +
ps(zs — z,,73 — 22) = (2,2(?)). This implies that the line (z; +¢(z — z,),z? + t(z(2) — 2?))
is a convex combination of the lines, (z; +t(z; — z,),z% + t(z? — 22),1 = 2,3. All three lines
intersect (z,z?) at (z;,22). The convexity property implies (z, +t(Z—z,), 22 +t(z(?) — z2))

intersects (z,z?) at z4 such that z; < 7, < z3.0

The next lemma considers f with a derivative f' that has local convexity or concav-

ity properties. These properties form the basis for the bounding approach given in this

paper.

Lemma 2.If p(%, ,1‘r) =0 for some (0 #) feasible in (4.1), & 1s in the interior of X,
and f' is convez or concave on A = (£ — n,%) or B = (£,% + n) for some n > 0, then,
there exzists § > 0, such that, for any € > 0,e < §, f'(2—€) > ¢'(Z — ¢, A #) for f' convez

or concave on A and f'(£+¢€) < ¢'(Z+¢, 6, #) for f' convez or concave on B.

Proof: Let p() = p(+,0,#) and let §(-) = q(-,4,#). Note that § is differentiable on X
and that, for f convex, f is continously differentiable on all but a countable number of points
in X. Since g is then densely differentiable, there exist right and left open neighborhoods

of £ on which j is differentiable. The following limits are well-defined

7 (2) =limp'(2 - 1); 5" (2) = limp' (2 + ). (4.3)

If 5() = O for feasible (4, &) in (4.1), then £ maximizes . Therefore, 0 € [§'~ (£), 5'* (£))].
By the local convexity (or concavity) assumption for f' around Z, there exist intervals

a

(2—t, %) or (2,2+t) (t > 0) over which p' has constant sign. Suppose f'(£—¢) < ¢'(2—¢, 0, )
forall0 <e<tand f'(2-38) <¢'(%- s,é,ﬁ') for some 0 < s < t, then j(£) < p(% - t),
contradicting the maximality of Z. A similar argument holds for (z,z + t), proving the

result.m

The previous lemma considers local convexity properties of f' when it exists. The

following results refer to functions with derivatives that are convex and then concave.
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Lemma 3. Let g(z) = h(z) — c(z) be a function such that g(z) is increasing on R, h 1s
convez on (—00,y) and concave on (y,o0), and c(z) 1s an affine function on R. Then there
ezists a partition of (—o0,00) into subintervals, I; = (—00,a,), I, = [a1,4a2), I3 = [az,4a3),
I, = [a3,+00), —00 < a; < a3 < a3 < oo, such that g(z) > 0 for allz € I, UL, and

9(z) <0 for allz € L U I4.

Proof: First note that g is continuous on (—o00,c¢) and (¢,00). Also, g cannot change
sign from negative to positive twice on (—oo,c) by the convexity of h in that region. If ¢
has two sign changes on (—00, y), then there exists intervals, I, Iz, I3 such that g is positive
on I; U I; and negative on I;. For g increasing, g(y) > 0. By k concave on (y, o), g has at
most one sign change on (y, 00), giving the result when g has two sign changes on (—o0, y).

A similar argument applies if g has one or no sign changes on (—o0,c).n

The next lemma considers the case where ¢ = p’ is constant on an interval. In the
following, we use the notation X = [a,}] for convenience. It is assumed that this also
includes the cases X = (—o0,b], X = [a,+00), and X = (—00,+00) unless explicitly stated

otherwise.

Lemma 4. If f is convez on X = [a,b] with derivative f' defined as a convez function
on (a,c) and as a concave function on (c,b) for a < ¢ < b and if p(z,é, %) = 0 for some
(6,#%) feasible in (4.1) and for allz € (2 — €,% + €) for some £ € X and € > 0, then there
ezists an interval D O (% — €, 2+ €) such that p(z,0,#) = 0 for all z € D and p(z,0,#) > 0
for all z ¢ the closure of D.

Proof: Let D = (d,e) be the largest interval including (Z — ¢, Z + €) such that j(z) =0
for all z € D. By Lemma 2 and the assumption, if d > a, there exists an interval, (d—1n,d),
and, if e < b, there exists an interval (e,e+ 1), for n > 0, such that 5’ > 0 on (d -7, d) and
p' < 0on (e,e+n). By the convex—concave assumption, f' is convex on [a,d) and concave
on (e, b] since §' is affine. Hence, ' would be strictly positive on [a,d) and strictly negative

on (e,b]. This would imply that j is negative on (e, b], violating the feasibility of (4, #) in
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(4.1). Hence, e = b, giving the result.m

The convex—concave property is now used to derive our main result about two-point

support functions.

Theorem 2. If f is convez with derivative f' defined as a convez function on (a,c)
and as a concave function on (c,b) for X = [a,b] and a < ¢ < b, then there ezists an
optimal solution to (3.1-(1,0,2)) with at most two support points, {z,,z2}, with positive

probabilities, {p;,p;}.

Proof: Let {6, #} be an optimal solution to (4.1). First, assume that there does not
exist € > 0, £ € (a,b) such that p(:z:,é, #) =0for allz € (£ — ¢, +¢). By Lemmas 1 and 3,
the only isolated points where 5 could be 0 and maximized are @, and a; if [a¢,b] D L, U ;.
If [a,b] A I, then a can replace a, and if [a,b] P I, then b can replace as, but, in either
case, at most two points meet the conditions for optimality.

If there exists € > 0, £ € (a,b) such that p(z,8,#) = 0 for all z € (£ — ¢, + ¢), then
Lemma 4 implies that any optimal solution {z,,z;,z3} must be in the closure of D and
that the 5(z) = 0 for all z € D. By Lemma 2, we can select z, in (z;,z3) such that there
exists {p,,ps} so that {z;,z,,p;,ps} is feasible in (3.1-(1,0,2)). The optimality conditions
still hold for j(z,) = 0. Hence, {z;,24,p1,ps} is optimal in (3.1-(1,0,2)).0

A corollary of Theorem 2 is that any function f that has a convex or concave derivative
has the two—point support property. The class of functions that meets the criteria of

Theorem 2 contains many useful examples. Some of these functions are given below:
1. Polynomials defined over ranges with at most one third derivative sign change.

2. Exponential functions of the form, coe**, ¢y > 0.

w

. Logarithmic functions of the form, log, (cz), for any k > 0.

[N

. Certain hyperbolic functions such as sinh(cz),c,z > 0, cosh(cz).
5. Certain trigonometric functions such as tan~*(cz),c,z > 0.

12



In fact, Theorem 2 can be applied to provide an upper bound on the expectation of any
convex function with known third derivative when the distribution function has a known
third moment, z(®. Suppose a > 0 (if not, then this argument can be applied on [a, 0]
and [0,b]), then let g(z) = az® + f(z). The function g is still convex on [0,b) for a > 0.
By defining & > (—1/6) min(0,inf, ¢4, f" (z)), ¢’ is convex on [a,b], and an upper bound,

UB(g), on E,(z) has a two—point support. The expectation of f is then bounded by

E;(z) < UB(g) - az®®. (4.4)

The conditions in Theorem 2 are only sufficient for a two—point support function. They
are not necessary. The following function, for example, has an optimal two—point support

at z* = {1/3,1} for any corresponding feasible p, and p; when X = [0, 1].

6/5 — 4z + 522 fo<z< .2
9z 41 if2<z< .4,
= e i 5
/(@) 1-(2/5)z—82%+10z° if.4<z<.6, (45)
1-—4z+ 422 if6<z<l1.

The function defined in (4.5) does not, however, meet the conditions of Theorem 2.

Note also that not all functions are two—point support functions (although bounds such
as (4.4) are generally available). A function requiring three support points, for example, is
f(z) = (1/2)-/(1/4) — (z - (1/2))2. This function and its optimal dominating quadratic

function are illustrated in Figure 2.

0.5

0.4

Hx).Qx)
0.3
T

0.2

Figure 2. A function requiring three support points.
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Given that a function is a two—point support function, the points {z;, z; } can be found
using a line search to find a maximum. For example, if some candidate z; < Z is given,
then a feasible corresponding z; is

(2 —z
T zz
2= ———, (4.6)
I—I
where p; = (z; — Z)/(z2 — z;) and p, =1 — p;. Note that the problem is obviously not

feasible if (z;,z;) # Z. The solution of (3.1-(1,0,2)) then reduces to maximizing :

Az1) = pi(z1) f(z1) + p2(21) f(z2(z1)) subject to z, € [a, Z). (4.7)

A line search to find the maximum in (4.7) can be performed efficiently using, for example,
Lemaréchal and Mifflin’s procedure in [26] if ¥ € C? or Mifflin and Strodiot’s [28] method
without derivatives. Table 1 gives the values (under “2-M”) that were obtained by this
procedure for three two—point support functions with distibutions on [0,1]. Figures 3-5
illustrate that the optimal points, {z},z}}, may be at either endpoint or interior to [0, 1].
The table gives the expectation for a random variable with beta distribution (under “Beta”)
with the given first and second moments for comparison. The Edmundson-Madansky upper
bound (“E-M”) is also provided. The “S-L” value (for “semi-linear bound”) given in Table

1 is discussed below.

Table 1. Bounding values

Function z z(?) Beta 2-M S-L E-M
e~? 0.500 0.333 0.622 0.624 0.651 0.684
3 0.833 0.714 0.625 0.629 0.675 0.833
sin(r(z + 1)) 0.500 0.333 0.363 0.384 0.577 1.000

+1
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Figure 3. Optimal bounding function for e™*.

0.8
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0.6
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f(x).q(x)
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Figure 4. Optimal bounding function for z°.
A line search is not necessary for solving (3.1-(1,0,2)) in certain cases. The support
points can be calculated analytically for semi-linear, convez functions that are defined by

_Jq(e-2) ifz<e,
f(z)-{f(z—c) ifz>e¢,

where gt + ¢~ > 0. These functions clearly meet the conditions of Theorem 2 and, hence,
require at most two points of support. The analytical results depend on the interval,
[a,b]. If [a,8] = [0,1], then consider the nonintersecting intervals, A = (0,z(?) /(2z)),
B = [z®)/(23),(1 - z®)/(2(1 - 2))], and C = ((1 - z®)/(2(1 - %)),1). The points of

support for a semi-linear, convex function defined on [0, 1] are

{0,2?) /z} ifce A,
{z,23} ={ {c-d,c+d} if c € B, (4.8)
{(z-2*)/(1-2),1} ifceC,
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where d = V/¢2 — 2¢Z + z(2). This result can be obviously extended to all finite intervals.

It results from analyzing the zeroes of +.

t(x).q(x)

Figure 5. Optimal bounding function for sin(x(z+ 1)) + 1.

Infinite intervals can also be solved analytically for semi-linear, convex functions. For
X = [0,00) , the results are as in (4.8) with B = [z(2) /(2Z),00) and C = 0. For the interval
(—00,00), the points of support are those for interval B in (4.8). We note that special cases

for these supports of semi-linear, convex functions were considered in [9], [20], and [34].

Semi-linear, convex functions are common in decision problems to represent penalties
for being above or below a preferred value, c. They can also be used, however, to provide
bounds for other convex functions when only the first and second moments of the distri-
bution function are known. For example, the following function dominates any convex

function on [0,1],

(z.o) = L (€= 2)(£(0) = f(e))/e) + £(c) ifz <e,
(=:c) {(z—0)((1'(1)—f(c))/(l—c))+f(c) ifz>c, (4.9)

where ¢ € (0,1). The function v is a semi-linear, convex function for any convex function,
f. The values of v at the points in (4.8) can, therefore, be used to bound [ v(z)Q(dz) >
[ f(z)Q(dz) for any Q that is feasible in (3.1-(1,0,2)). The results of using v to bound
f(z) = e %, z° and sin(n(z + 1)) + 1 are given in Table 1 as mentioned above. More
extensive results in [11] indicate that this approximation is accurate for many functions

and moment values.

Semi-linear, convex functions can also be defined to dominate functions defined on

unbounded ranges if those functions have finitely valued recession functions in each direc-
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tion. If f0*(y) < oo for all y € (—o0,00), then there exists some ¢ such that f(c) < oo and
v(z,c) = (f0*)(z— ¢)+ f(c) > f(z) for all z. The corresponding formulas for semi-linear,
convex functions on unbounded ranges can then again be used to bound E;(z) for any
feasible distribution that meets the conditions in (3.1-(1,0,2)). Bounds on the expectation
of sublinear functions are especially computable because (f0*)(y) = f(y) for sublinear f

by definition. The next section discusses how to use these bounds in multiple dimensions.

5. Bounds in multiple dimensions. The use of the generalized programming
formulation is limited in multiple dimensions because of the difficulty in solving the sub-
problem (3.5). Another difficulty is that, even with a bound only on the first moment of the
distribution function and constrained cross-moments, E[z;z;],t # 7, the moment problem
solution ([14]) involves positive weights on 2V extreme points of X when X is a compact
set in RY (and a corresponding number of recession function evaluations when X is not
compact ([5])). These computational disadvantages for large values of N suggest that a
looser but more computationally efficient upper bound on the value of (3.1) may be more
useful than solving (3.1) exactly for large N.

If a separable function, v(z,c) = Zfilu,-(x(i),c(i)), is available, it offers an ob-

vious advantage by only requiring single integrals. In this case, we would like to find
v(z,¢) = S, vi(2(5),¢(5)) > f(z) where each v;(z(i),c(i)) is a semi-linear, convex func-
tion. Methods for constructing these functions to bound the optimal value of a linear
program with random right-hand side are discussed in [2] and [4]. In these stochastic

linear programs,

f(z) = min {qy | Ay =z}, (5.1)

yeER"t

where ¢ € R and A € R**¥ are known parameters of the problem. Note that f defined

in (5.1) is sublinear.

The functions v; are found by solving for

= mi Ay = *e; 5.2
¢ = min {gy| Ay = e}, (52)
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where ¢; is the ith unit vector in V. We then have

. . _ q;*'x‘- if Z; 2 0)
vi(2:,0) = { -q;z; ifz; <0, &

whose expectation can now be bounded using the support points found in Section 4. Note

that this bound requires 2N function evaluations instead of the exponential number of

function evaluations required in the Edmundson-Madansky bound.

Different values of ¢; from 0 in (5.3) are used when a deterministic vector also appears
in the right-hand side of the linear program in (5.1) (i.e., the constraints are Ay = z—t for
some deterministic vector t). More precise bounding functions for f in (5.1) are possible
for distributions on compact regions ( [2]). Linear transformations can be used to obtain

other separable, semi-linear convex upper bounding functions ( [4]).

6. Conclusions. This paper describes how to bound the expectation of convex
functions when only limited distributional information is available. Given the difficulties in
estimating random phenomenon, limited information in terms of bounds on the mean and
second moments of distributions is a general practical situation. The bounds provided in
this paper allow for efficient computation. We note that these procedures can be extended to
lower bounds on the expectation of concave functions obviously. Since the Jensen inequality
is the solution of the generalized moment problem to minimize the expectation of a convex
function subject to a first moment equality constraint and an upper bound on the second
moment constraint, upper and lower bounds are computable on the expectation of general
functions that can be expressed as linear combinations of convex and concave functions.
Given this extension and the use of upper bounding separable, semi-linear convex functions

as in Section 5, the two—point support bounds apply to a wide range of problems.
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