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NOMENCLATURE

amplitude of wall vibration
length of 1/2 the plate, C = L/2
the specific heat per unit mass of the fluid
= du , v

- .
the divergence of the vector V, div V = — + —
ox 9y

the substantive derivative operator for the stationary coordi-
nate system :

the substantive derivative operator for the moving coordinate
system

base of the natural logarithm

defines the free convection velocity distribution
the Grashof number, gﬁLjAQ-;/vg

the Grashof number, gBX5AQO/v2

body force per unit mass acting parallel to the wall

defines the free dimensionless convection temperature distri=-
bution, Tg

the square root of =1
thermal conductivity of the fluid

dimensionless term @Qﬁg_
4JGRL

functions of Prandtl number

the length of the plate

the exponent in €%

the Nusselt number, hL/K

the local Nusselt number, hX/K

the Prandtl number of the fluid

pressure

xii



[Rav}

Tos T25

= |

V*

2x~1
2N x(x-1)

dimensionless temperature, o - Qw/@o -0,

pPressure from potential flow,

the steady components of the temperature distribution
TRT, + €T,

Ty = Real (Ty emwt)

dimensionless time, VV“%RL T
L

velocity parallel to the wall in the stationary coordinate
system

dimensionless velocity parallel to the wall in the moving
coordinate system

velocity parallel to the wall in the moving coordinate
system
ur = Real (u; eubt)

steady velocity normal to the wall in the moving coordinate
system

potential flow parallel to the wall in the moving coordinaté
system

component of the complex velocity

velocity of the plate normal to the wall in the stationary
coordinate system

velocity normal to the wall in the stationary coordinate
system

dimensionless velocity normal to the wall in the moving
coordinate system

velocity normal to the wall in the moving‘coordinate system

vy = Real (vy elwty

xiii



Voq steady velocity normal to the wall in the moving coordinate

system

v component of the complex velocity

W complex potential, for potential flow

x distance parallel to the wall in the moving coordinate system

X* distance parallel to the wall in the stationary coordinate
system

X dimensionless parallel distance, X =X/L

* distance normal to the wall in the stationary coordinate
system

pa distance normal to the wall in the moving coordinate system

Y dimensionless normal distance, Y = % &fGRL

Z coordinate normal to the X-Y plane

0 subscript indicating a condition far from the wall

GREEK LETTERS

a the thermal diffusivity of the fluid K/p Cp

B coefficient of thermal expansion, p = pg[1-BA8,]

26 temperature difference, M8, =6 - O

VQ the laplacian Operator in the moving coordinate system

W2 the Laplacian Operator in the stationary coordinate
system

d the boundary layer thickness

3 dimensionless distance, y~ﬁb/2

)¢ the stream function for y,g

xiv



Voq steady velocity normal to the wall in the moving coordinate

system

v component of the complex velocity

W complex potential, for potential flow

x distance parallel to the wall in the moving coordinate system

xX* distance parallel to the wall in the stationary coordinate
system

X dimensionless parallel distance, X =X/L

T* distance normal to the wall in the stationary coordinate
system

Y distance normal to the wall in the moving coordinate system

Y dimensionless normal distance, Y = % MNRQRL

Z coordinate normal to the X-Y plane

™) subscript indicating a condition far from the wall

GREEK LETTERS

o the thermal diffusivity of the fluid K/p Cy

B coefficient of thermal expansion, p = p,[1-BA0,]

08 temperature difference, 29, =06 -

VQ the Laplacian Operator in the moving coordinate system

Ve the Laplacian Operator in the stationary coordinate
system

o} the boundary layer thickness

£ dimensionless distance, yvw/2

L the stream function for y,

xiv



€ ¢ = aw/L (Chapter II), ¢ = (a/L) E?;%;— e (Chapter III)
N URL

¢(n) ¢(n) = iﬂ nH'(n)dn

1 the similarity variable, 17 = y/(hx)l/lL

nd the dimensional similarity variable

8] temperature

") the absolute viscosity of the fluid

v the kinematic viscosity of the fluid

P the density of the fluid

T time

Tg shear stress

¢ phase angle of velocisty and temperature oscillations

defined by, for example

Real ulejmt = |ul[ cos (wt + @)

wo the free convection stream function
Vog the secondary flow stream function
Q frequency of wall vibration
2
w dimensionless frequency, = L9
v Gpp
A acoustic wave length
/2
y y = oY



NOMENCLATURE FOR CHAPTER IV

All discussion directly involving the analysis of Chapter II
and III is done in terms of symbols used in those chapters. Additional
symbols used elsewhere in Chapter IV are given below.

A the total area of the heated section of the test plate
a the amplitude of plate vibration
D the diameter of stainless steel rods where they attach to the

corners of the heated section., See Figure 4-15

h the free convection heat transfer coefficient under non-
vibratory conditions at a particular value of /9.

h the free convection heat transfer coefficient under non-
vibratory conditions at a particular energy input to the
heated section corresponding to a temperature difference of 29,.

hy the conduction heat transfer coefficient
hL the heat transfer coefficient for losses
hLo the heat transfer coefficient for losses at a particular
energy input corresponding to a temperature difference of 19,
h,. the radiation heat transfer coefficient defined by Equation (L4-k)
hs the convection heat transfer coefficient for the rods
attached to the corners of the heated section. See Figure 4-15.
h the increase in the convection heat transfer coefficient due
M to vibration at a particular /20
kR the thermal conductivity of the rods attached to the corners of
the heated section. See Figure 4-15.
L the distance between the thermocouples mounted on the rods
attached to the corners of the heated section. See Figure 4-15
m,, see Equation (4-7). m, = L h/Dkr



NOMENCLATURE FOR CHAPIER IV

A1l discussion directly involving the analysis of Chapter II
and III i1s done in terms of symbols used in those chapters, Additional
symbols used elsewhere in Chapter IV are given below,

A the total ‘area of the heated section of the test plate
a the amplitude of plate vibration
D the diameter of stainless steel rods where they attach to the

corners of the heated section. See Figure 4-15

h the free convection heat transfer coefficient under non-
vibratory conditions at a particular value of /8,

h the free convection heat transfer coefficient under non-
vibratory conditions at a particular energy input to the
heated section corresponding to a temperature difference of 29,

hy the conduction heat transfer coefficient
hL the heat transfer coefficient for losses
hLo the heat transfer coefficient for losses at a particular
energy input corresponding to a temperature difference of 094
h. the radiation heat transfer coefficient defined by Equation (4-4)
hs the convection heat transfer coefficient for the rods
attached to the corners of the heated section. See Figure 4-15,
h the increase in the convection heat transfer coefficient due
v \ . .
to vibration at a particular 26
kR the thermal conductivity of the rods attached to the corners of
the heated section. See Figure 4-15,
L the distance between the thermocouples mounted on the rods
attached to the corners of the heated section. See Figure 4-15
m,, see Equation (L4-7), m, = ”f-hs/Dkr

xvi



the total rate of energy input to the heated section
heat transfer loss due to conduction through the rods
attached to the corners of the heated section. See

Figure 4-15

the combined heat transfer lossed due to conduction and
radiation. qp = (g + )

heat transfer loss due to radiation

%R

Rev vibrational Reynolds number,

Tp absolute temperature of the heated section of the test plate

Ta absolute temperature of the ambient

X, distance along the rods attached to the four corners of
the heated section,

GREEK LETTERS

€ the emissivity of the polished aluminum plates forming the
heated section

e temperature

@o temperature of the heated section of the test plate

O temperature of the ambient

o, temperature at a point on the rod shown in Figure 4-15

Jac) temperature difference between the heated section of the
test plate and ambient, /0 = (6, ~ 0_)

2, temperature difference 29 corresponding to steady state
under nonvibratory conditions at a particular energy input
to the heated section.

Aer difference between the temperature at a point along the
rod and ambient. 29, = (0, - O_)

BT

5 the Stefan-Boltzman constant, o = ,171% x 100 Y

hr-ft2-( °R) ¥
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CHAPTER I

INTRODUCTION AND LITERATURE SURVEY

This thesis treats the influence of transverse harmonic oscilla-
tions on the heat transfer from finite and infinite, vertical plates in
free convection. It attempts to resolve some of the questions pertaining
to steady effects produced-on free convection flews.from purely periodic
distrubances, mainly that of the time-independent modification of the
‘heat transfer coefficient. Both analytical and experimental methods have
been used to achieve this result.

The literature relating to this particular field is reviewed,
owing to its diversification it was expedient to divide it into three
groups designated as A, B, and C.

Group A includes papers o:
emphasis on oscillatory flows and t
Group B includes references on unsteady motions resulting from sound
waves, and the related heat transfer problems. Group C includes refer=-
ences and books concerned primarily with heat transfer which general na-
ture was helpful for a theoretical solution to this problem.

Papers from the field of acoustics were investigated because
they are related to oscillating boundary layers. When plane acoustic
waves interact with a stationary object a steady, i.e., time-independent
rotational flow occurs. Also, a steady rotational ‘flow occurs in an
oscillating fluid or is generated in a quiescent fluid where solid bound-
ary oscillate. These phenomena are sometimes called acoustic streaming

or secondary flow. Examples. of these phenomena are flow in a Kundt's

oi-



tube, that near vibrating cylinders and spheres, the flow near vibrating
plates and membranes, and that near orifices transversed by sound. Flow
in the vicinity of vibrating gas bubbles, and that associated with stand-
ing waves in tubes and between walls also are examples in which secondary
flows exist. For more details concerning these phenomena the work of
early observers can be found in the bibliographies of Holtsmark, Johnsen,
Sekkeland, and Skavlen (B-8), Nyborg (B-15,16), and Westervelt (B-2L).

The fluid dynamic problem in the absence of heat transfer will
be considered first.

Schlichting (A-32) used successive approximations to solve the
non-linear momentum equation, and therefore, illustrated streaming mathe-
matically. He showed that streaming is a consequence of the non-linear
characteristics, i.e., the convective inertia terms, of the momentum
equations for a viscous fluid. Absence of the inertia terms will result
mathematically in no streaming. Therefore, streaming is believed to be
the result of a physical interaction between inertia and viscous effects
in a fluid.

Schlichting (A-32) considered the case of a plane wall execut-
ing harmonic oscillations in an otherwise quiescent fluid and applied his
solution to a circular cylinder, using Prandtl's boundary layer simplifi-
cations of the Navier-Stokes equations. He also made experimental veri-
fications of streaming. Holtsmark, et al., (B-8) considered the flow
around a circular cylinder in two dimensiens for an oscillating incompressi-
ble fluid with the axis of the cylinder normal to the direction of oscilla=-
tion. They conducted both experimental and analytical studies. Using

successive approximations they solved the complete set of Navier-Stokes
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equations. Higher order apprqximations and discussions of these two
papers are in Andres and Ingard (B‘lx~2)4 Ramez, Corelli and Westervelt
(B-17). 1In the case of a cylinder, two regions of streaming were pre-
dicted in each quadrant around a cylinder. Next to. the cylinder an

inner vortex system which has-been called the DC boundary.layer was
found. = The thickness of the DC boundary is defined as the distance

- from the surface to the streamline { = 0. Next to this inner system

is an outer vortex system called the AC boundary layer. In limited
space the core of the AC vortices is located at a finite distance. In
unlimited space the outer vortex cores are an infinity. Schlichting

took photographs of a cylinder oscillating in water with fine metallic

- particles in it to render the motion visible and found good agreement
with the theoretical patterns of stream lines. Holtsmark, et al, (B-8)
used a Kundt's tube arrangement and MgO smoke in air oscillating around
a circular cylinder and took photographs. Their agreement between theory
and experiment is excellent for periodic flow and very good for streaming.
For limited space both Schlichting and Holtsmark found DC and AC systems
which were similar in general nature, but Schlichting's case gives a
much thinner DC system and the velocities in the outer system are higher.
For unlimited space Schlichting's analysis predicts no DC system. Raney,
et al, (B-17) pointed out that Schlichting's analysis'is characterized

by small values of vibration amplitude therefore is not necessarily valid
for large values of vibration Reynolds number. They also present experi-
mental curves showing the existence of a universal curve for the DC

boundary-layer thickness.
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Rott (A-30) and Glauert (A-11) both used the method of succes-
sive approximations to study cases of viscous incompressible stagnation
flow onto an infinite plate which is oscillating in its own plane where
the first approximation is Hiemenz flow. Glauert (A-11) used his re-
sults in applying them for a cylinder of arbitrary cross-section in the
following cases. 1) cylinder fixed, stream oscillates in magnitude;

2) cylinder fixed, stream oscillates in direction; 3) stream constant,
cylinder oscillates in the stream direction; 4) stream constant, cylin-
der oscillates in the transverse direction; and 5) stream constant, cylin-
der oscillates about its axis. Rosenblatt (A-24) using successive approxi-=
mations considered torsional oscillations of a plane in a viscous fluid.

He found that a true representation of this flow can only be obtained
through inclusion of the convective inertia terms, which is important in
determining the character of the flow at large distances from the plate.
This is another example of this streaming or secondary flow phenomena.

Lighthill (A-20) has considered the cases of incompressible
steady flow on an arbitrary cylinder which is oscillating with small ampli-
tude. This can be said to be the case of low-frequency small perturbation
analysis of Blasius flow. Cheng and Elliot (A-4) considered arbitrary
and specific time-dependent motions of a semi-infinite plate. They com=-
pared one of their cases, which corresponded physically, to that of
Lighthill. Lighthill used the momentum-integral technique and they used
a more rigorous mathematical procedure. It is significant that the
momentum-integral technique was checked because both solutions for the
case of wall shear stress were found to be in agreement in form and num-
erical constants. Lighthill (A-15) also discussed the temperature fluc-

tuations using successive approximations.
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Lin (A-22) has devised a linearized method to study boundary-
layers over a flat plate subjected to rapidly oscillating external flows.
He has shown that high-frequency oscillations behave like shear waves
of the Stokes type regardless of the mean flow. He reasoned that if the
frequency of oscillation is very high, then.local acceleration is much
larger than the time-dependent part of the convection or momentum. Then
the time-dependent part can be treated by linear theory which is then
related to the problem first studied by Rayleigh and Stokes.

Karlsson (A=-16) has considered an unsteady turbulent boundary
layer by studying the non-linear effects of low speed parallel flow,
harmonically oscillating in magnitude about a constant mean over a flat
plate. It was found surprisingly enough, that the effect due to non-
linear interaction was quite small for fluctuation amplitudes as large
as 34% of the free stream velocity. Tennekes (A-38) used the results
of Karlsson and suggested the possibility of constructing the response
of the boundary layer to any input transient by a linear Fourier syn-
thesis of the response. This theory compared favorably with Karlsson's
experimental results.

Hill and Stenning (A-15) have made a study of the effects of
free stream oscillations on laminar boundary layers of the Howarth type
and made experimental measurements. They found that the existing solu=-
tions of Lighthill (A-20), Lin (A-22) and Nickerson (A-26) for low and
high frequencies are adequate for describing the flow. For the inter-
mediate frequency range they solved for a theoretical solution which

accounted for the flow in that. region.
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The following papers include heat transfer effects along with
the fluid dynamic problems.

Stuart (A-36) solved the Navier-Stokes equations exactly for
incompressible flow for the case of a flat plate with constant suction
and a fluctuating free stream velocity. By including viscous dissipa-
tion he obtained the exact solution of the energy equation for the case
of zero heat transfer between the wall and fluid.

Ostrach (A-27) extended the Stokes solution by analyzing the
temperature distribution in a fluid over an oscillating infinite sur-
face with heat transfer by including . compressibility and viscous dis-
sipation. It was found that the heat transfer for the oscillating sur=-
face can be considerably different from that of conduction alone, and
that oscillation can alter the fluid temperature appreciably.

Moore (A=-25) analyzed the laminar compressible boundary layer
over an insulated semi-infinite flat plate moving with time-dependent
velocity. Ostrach (A-27) extended the results of Moore representing a
more exact treatment and included the effects of heat transfer. For the
particular case of a plate oscillating about a steady velocity the un-
steady effects can alter the boundary-layer characteristics appreciably.
This paper did not settle the question what effect oscillations have on
mean skin-friction and heat transfer.

Kestin, Maeder, and Wang (A-17) have considered the case of a
flat plate on which the free stream is a flow wherein a sinusoidal velocit
disturbance is carried downstream with the mean velocity. They obtained
a solution by expanding the velocities and temperatures in terms of series

expansions in increasing powers of the small relative amplitudes (A) of
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the sinusoidal disturbance. This procedure will yield an eguation to
solve for expansions up to 2B, The zero=~-order solution is. the case
of Blasius. By considering another series expansion for the first and
second~-order equations they were able to obtain the time-averaged skin
friction and heat transfer coefficient. This second expansion limited
their study to low frequencies and the first expansion to small ampli-
tudes. Their analysis predicts a slight increase in the skin friction
coefficient and a slight decrease in the heat transfer coefficient. It
is significant to point out that the terms that contribute to the time-
averaged coefficient in this analysis are part of an infinite series and
that only the first term was used. The part that contributes is from
the second order solution and is the steady part of that solution.

Nickerson (A-26) has considered a flat plate executing simple
harmonic oscillations in a steadily moving fluid with zero pressure
gradient. Using series expansions for .stream and temperature functions
he was able to obtain successive approximations and make experimental ob-
servations. He carried his analysis far enough to obtain steady second-
order velocity and temperature solutions which are the result of oscilla=
tions. He theoretically obtained the result that there would be a slight
steady increase in heat transfer and skin friction coefficients. The in-
crease in heat transfer coefficient was within the range of experimental
error and therefore:could not be checked. Velocity profiles obtained
using a hot-wire anemometer showed good agreement with theory.

Chung and Anderson .(A-6) analyzed the laminar free-convection
boundary layer on a vertical plate or a horizontal cylinder under un-

steady conditions. . For a Prandtl number of 0.72 they found that if the
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wall temperature increases with time there is an increase in the heat
transfer whereas the heat transfer is decreased when the acceleration
of gravity field is increased with time.

Schoenhals and Clark (A-33) have considered the response of
velocity and temperature of a laminar incompressible fluid to a verti=- .
cal plate oscillating harmonically in a horizontal direction. They
considered the harmonic oscillations of a semi-infinite plate with free
convection and the fluid response of a finite adiabatic plate to harmonic
oscillations. Using successive approximations streaming was found to
exist for the case of the finite plate. They did not theoretically con-
sider the time-averaged heat transfer coefficient, but studied the tempera-
ture and velocity response of a free convection boundary layer within the
first two approximations. Experimentally they studied the effects of
oscillation on free convection on a finite plate and presented results
showing the increase in heat transfer coefficient.

In the case of an infinite vertical plate oscillating vertically,
considered by Rott (A-30) and Glauert (A-11), should the oncoming stream
be of sufficient strength to permit ignoring the buoyancy effect of the
temperature field, then oscillations have no effect when the wall is
maintained at a constant temperature.

Analytical results for the increases of heat transfer rates
have not been as fruitful as the considerations of the fluid dynamics of
adiabatic systems. This is confirmed by experimental observations.

Experimentally there has been confirmation that oscillation of
a solid or oscillation of the flow over a solid increases the heat trans-

fer rate. Also, it has been experimentally confirmed that various types
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of sound fields increase the heat transfer rate. These facts have been
demonstrated by the papers (A-1,7,8,9,22,33,34,38,40,41) and (B-4,5,6,
18,19). For flow through tubes the increases have been demonstrated by
(A-12,18) and (B=10,20). Also the phenomena of transition from laminar
to turbulent flow and flow separation have been experimentally observed.

In the case of sound field effects on the free convection
boundary layer of a horizontal cylinder, flow visualizations and shadow=-
graph pictures were studied by Fand and Kaye (B=4), Holman (B-5), Holman
and Mott-Smith (B-6), Soehngen and Holman (B-18), and Sprott, Holman and
Durand (B=19). A critical or threshold sound pressure level of 136 db
was found below in which no increase in the heat transfer coefficient
was found and above which it increased. The point was made that stream-
ing is the physical mechanism causing the increase and that its interac-
tion is evident at the critical sound pressure level at onset of the in-
crease of heat transfer coefficient. Soehngen, et al, (B-18) found that
the heat transfer coefficient could be increased three times that of no
sound for the same temperature difference. Sprott, et al, (B~l9) and
Holman, et al, (B-6) found that the heat transfer coefficient could be
increased by 100%. Fand, et al, (th) found that the heat transfer co=-
efficient could be increased by 300% by high intensity stationary and
progressive sound fields on the free convection boundary layer of a
horizontal cylinder.

Fand and Kaye (A-7) investigated the influence of vertical
mechanically induced simple harmonic vibrations upon the rate of heat
transfer by free convection from a heated horizontal cylinder to air.

For intensities of vibration less than 0.3 ft/sec they reported negligible
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change in the heat transfer coefficient. Above this value the coeffi-
cient changes significantly. A flow-visualization method employing
smoke as the medium indicated that vibrationally induced turbulence is
the mechanism which caused the increase. They also reported that above
0.9 ft/sec and AT > 100°F there is a "fully developed turbulent flow."
Fand and Peebles (A-8) made an investigation of the comparison
of the influence of mechanical and acoustical vibration on free convec-
tion from a horizontal cylinder. They found that although there is a
ten=-fold difference in frequency and a difference in amplitude, the heat
transfer correlation for horizontal acoustical vibrations is also valid
for horizontal mechanical vibrations and the character of the boundary
layer is the same. They found a critical intensity of 0.36 ft/secu
Shine (A-35), Tsui (A-39) and Schoenhals, et al, (A-34) studied
experimentally the effects of a vertical plate oscillating horizontally
with free convection. §Shine and Tsui both used Zehnder-Mach interferome=-
ters in their studies. Tsui claimed that the flow seemed to be tranéi-
tional on the basis of his observations. In his experiment the maximum
percentage increase was found to be 24%. Shine defined a "critical in-
tensity" (amplitude times frequency) peculiar to his system, and showed
experimentally that above it heat transfer is increased and below it no
change was observed. He noted that coincident with the occurrence of
change in heat transfer coefficient there was an inception of waviness
in the fringes of the boundary layer, which was intensified by increases
in vibration intensity. He pointed out this waviness indicates a flow
transition from laminar flow and may represent the physical mechanism

causing the increases. Schoenhals, et al, (A-33) data do not show
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evidence of a critical intensity value. They experimentally found an
increase in the heat transfer coefficient of 46% due to horizontal
oscillations of a finite vertical plate.

Martinelli 'and Boelter (A-17) have investigated the effect of
vertical oscillation upon the rate of heat transfer from a. horizontal
tube immersed in otherwise quiescent water. They found increases up to
400%. It was found that the coefficient of heat transfer was unaffected
for low values of vibration . Reynolds number.

Teleki (A-38) has investigated a case physically similar to
that of Martinelli, et al, (A-22) except the media was air. He found
increases up to 200% and did experience a critical intensity in his heat
transfer coefficients.

Lemlich (A—l9) has investigated electrically heated wires sub-
jected to both vertical and horizontal vibrations in air and observed an
increase in heat transfer coefficient irrespective of the direction of
vibration. He did not experience a critical intensity in his heat trans-

fer coefficient. He found increases as high as MOO%.



CHAPTER II

FIRST AND SECOND ORDER PERTURBATIONS OF A LAMINAR
FREE CONVECTION BOUNDARY LAYER DUE TO
TRANSVERSE HARMONIC OSCILLATIONS OF A

THIN PLATE OF FINITE LENGTH

Statement of the Problem

-Figure 2-1 is a sketch of the physical system to be investigated.
Consider a heated thin plate of finite length L with the stationary co-
ordinate system fixed at the base of the plate. The plate is undergoing
transverse harmonic oscillations normal to the X¥ - 7Z*¥ plane, which is
in the stationary coordinate system. The analysis is restricted to two
dimensional incompressible flow in the X* - Y¥ plane. From a compressi-
bility standpoint it is necessary that the velocity of the plate be of a
lower order than the velocity of sound in the fluid. The harmonic oscil-
lation of the plate is Vo =a Q cos Qr where a is the amplitude of
vibration,  1is the frequency of vibration, T 1is time. The product
a § represents the maximum velocity of the plate and V, represents the
velocity of the plate with respect to time.

The plate is heated to a uniform temperature, ©,, and is main-
tained in contact with an otherwise quiescent fluid at temperature 0.
The fluid has constant viscosity u, ~-constant thermal diffusivity a,
and constant coefficient of thermal expansion p. There exists in the
fluid a uniform force field g which in the absence of the harmonic oscil-
lation would generate a free convection flow only.

The solutions of the governing equations of momentum, energy

and mass treat the case where buoyancy forces of free convective flow

-12~
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INFINITE INCOMPRESSIBLE
FLUID AT REST
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Figure 2-1. A Sketch of Heated Thin Plate of Finite Length
Oscillating Transversely in an Infinite Incom-
pressible Fluid at Rest.
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predominate over the effects of the transverse harmonic oscillations.
The effects of the transverse harmonic oscillations are treated as
first and second order perturbations of a free convection boundary
layer flow. These first and second order perturbations result mainly
from a potential flow pattern at the outer edge of the boundary layer.

Fundamental Equations and
Transformation of Coordinates

At first it is necessary to look at the governing equations
of conservation of mass, momentum, and energy. The flow analysis is
restricted to incompressible flow, although in free convection the gen-
erating force term is due to thermal expansion of the fluid. Therefore
it is necessary to investigate what restrictions are necessary to be
able to use an incompressible analysis. This has been discussed by
Ostrach (C-8) and Hellums (A-1k).

Presented below are the governing equations for viscous com-

pressible flow with K, u and C, Dbeing assumed constant and viscous

b
dissipation and the work of compression assumed negligible. A stationary
coordinate system will be considered first with the origin located at a

datum plane at the bottom edge of the plate, therefore
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For air one can consider
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where for an ideal gas

(2-2)

— A (2-3)
~ Coo

Consider pressure to be composed of the following:

P= PR+ P’ (2

where
Rn = pressure in the surrounding fluid, and
P\ = pressure due to motions,

therefore, we obtain

oF — P’

QX * OX *
(2-5)

oP _ opP’
OYA T oY ¥,

Since the quantity B(® - 6,), from Ostrach, (C-8), is

@(@"(‘)oo><< O(1> (2-6)
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then Equation (2-2) can be expressed as

P “/m)*&ﬁ—/@(é-@a)fmﬂ:ﬁopf/ﬁ’/@-@ﬂ (2-7)

and by defining T as a dimensionless variable
(2-8)

therefore Equation (2-7) is also expressed as
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and since BT A By < 0(/>
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and we have before reducing:
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The set of equations have reduced to:
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It is convenient to analyze the problem in a frame of reference
fixed in the plate, i.e., a coordinate system moving with the plate. As
pointed out by Lighthill (A=20) in the hydrodynamics of an incompressible
fluid, frames of reference are equivalent if they are in a uniform,
though not necessarily constant, translational motion to one another.
This is because any uniform inertial force per unit volume is automati-
cally canceled by a uniform pressure gradient. Therefore, it would ap-
pear that equivalent frames of reference could be employed on this sys-
tem without changing the equations. This would be true except for the
fact that there is relative acceleration between the moving system and
the stationary system in the Y direction. This alters the Y-momentum
equations and has been treated by Schoenhals (A-34). The alteration re-
sulting from the shift of reference systems produces a d'Alembert or body
force due to the vibratory acceleration of the fluid coupled with its own

inertia. By the adoption of a coordinate system attached to the
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accelerating plate, Equations (2=-12) become:

DU _
—98TA6, “F&x + VAU

DU —__13P 2 D\/
DT. T LAY +VVEU /0 o .

According to Ostrach, (C=8), the free convection flow along a
vertical plate is of the boundary-layer type for large, sub-transitional
Grashof numbers. This is the case in the present investigation. For
free convection boundary layer flow without oscillation the Y-momentum

equation is zero, but with oscillatory perturbations it becomes:

dP /0 g% - /05 2 (2-14)

By integrating Equation (2-14) from a distance Y;, with respect to Y,

outside the boundary layer, the pressure distribution is given as

Y
P =P(XZ,7)—4 /( | =BTAL,)

g,}‘{’f oy (2-15)

Differentiation with respect to X gives the pressure gradient along
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the wall to be

BY
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Y

The first term gives the pressure gradient due to the potential flow just

o7 oV, ‘ (2-16)
5 S# Y.

outside the boundary layer, and the second term gives the pressure dis=-
tribution due to the inertial force term. It should be noted here that
in this case the thermal variation of density provides the effect neces-
sary to effect the pressure gradient. If there were no thermal variation
of density then there would be no difference between a moving coordinate
system and a stationary one. Therefore the final equations to solve with

boundary-layer simplifications are :zr
/
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The Potential Flow Response

Schoenhals and Clark (A-33) have obtained the potential flow

response of a thin plate of finite length vibrating transversely in an
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incompressible fluid at rest using Lamb's treatment to obtain the poten-
tial flow about an elliptical cylinder. They approximated the thin

plate of finite length by letting the semi-minor axis of the elliptical
cylinder approach zero. Only the highlights of this development will

be given here, more detailed information may be found in References (A=-33)
and (A-34).

The coordinate system was fixed in the body as shown in Figure
2=2. Therefore the velocity of the fluid at large distances from the
plate is =~af cos Q1 and at the plate it is zero.

A complex potential W(Z) was utilized the Z Dbeing a com-
plex variable. In this representation the complex velocity is written

as

jﬂ - —U‘f'/(' 4 (2-18)

The complex potential was determined with the appropriate boundary con-

ditions so that the components of the complex velocity are
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Figure 2-2. Sketch Showing a Thin Plate of Finite Length
Vibrating Transversely in an Infinite Incom-
pressible Fluid at Rest.
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The oscillating potential flow streamline pattern, taken from

Schoenhals (A-34) is shown in Figure 2-3. Also values of the velocity
profiles, U and ¥V, are shown as function of x/c and y/c in
Figures 2-4 through 2-7.

For small values of Y, that is, the boundary layer regions,

the above equations reduce to

<\
I

o

(2-214)

I

I

X
(42) Vo cos_. T
ﬂﬁ'(zé)z (2-21B)

The values of the bracketed term in Equation (2-21B) are given in

Figure 2-8. There are singular points at the edges of the plates where
the theory would be invalid for a viscous fluid. Schoenhals, (A-3L4)
have found good agreement with theory by using a hot-wire anemometer,
except close to the singular points. This will be discussed in more

detail in Chapter IV.
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The Oscillating Potential Flow Streamline Patter for a
Plate Vibrating Transversely from Schoenhals (A-3L).



.Adm|<v sTeyUaCYDg WOXLI ATSsIvAsUBI], SULGeinTA 93BT B JIOF
UOTANQTIAISTA L3TO0TSA MOT TBTIUSYOJ SUTIRTILOSO UL =g INIT4

/%
14 € 4 - | - OQ
— 0= /K m\N\\\\\MﬂN
/ﬂ/ l\\o.,\\ e
\ /
A/
N ®.

~oh.
~_ |
©

T
°A/D

Ol

~———
\\

73

el

— ]
0=y

14



.A:m.&.v STRUUS0YDS WOIJ ATO9SISASUBI], SUILIBIGIA 998Td ®
JI0F UOTAN]TIISTQ LITOOTOA MOTJ TBIFUS30J BUTIBTITIOSO SUYL “G-g oanITJd

o/
€ r | (0]
L 0=9/X °
] ] =
/
//
N 2

//
RNAN

-25-~

°A/D




.Tﬂmli STRUUSOUDS WOIJ AT9SISASUBIL, BUTIRIGTA 93BT B
I0J UOTANQTIFSTQ AJTOOTSA MOTH TBTIUS%0J BUTIBTTIOSO YL

‘9-g aan3t4d

/X
v ¢ 2 I o)
0= 9/k °
2
"
@ \\\.
G \
Ve m_
/ &
"] <
/T |
Ol 8
/—— |02
I
\\.\\\\\\L ol
\ = /K
——
— /// 4
Al
0=/
//

14!



-27-

|
\
| .
\ ~ S

é\\\
\\

T~
\\ 10
]

y N
~

L
\AT*\X/C= 20
N\

(] \\‘O

© < o 5

1.2
10

NA -

Figure 2-7. The Oscillating Potential Flow Velocity Distribution for
& Plate Vibrating Transversely from Schoenhals (A-3h4),
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Non=-Dimensionalization of the Equations

Non-dimensionalization of the equations is fashioned after
Ostrach (C-8). The potential flow was determined with the reference
system fixed in the middle of the plate., In this problem it is more
convenient to fix the coordinate system at the bottom edge of the plate,

the same as the reference system of the governing equation. By de=

fining

X/c

— (2-22)

a \J- (% )3

we have by shifting the coordinate X +to (X-l)

_ (X/c> =
\/-(Er)-1)?

The pressure distribution is determined from the potential

(2-23)

s

flow by utilizing the Buler's equations. Euler's equations are

(2-2L)

and by utilizing the Equationsv(2-2l) at the outer edge of the boundary



layer we have

--__/_%f: gTE{’—+ U_C)_.g
~ / X (2-25)
_Lolf_

r oY O

_ X _aqw
Gl €= T
I _ BABG.
>/""Z__ Gr. Ko = e
9,820, L
Gn= \ 2 U= VVGr. v (2-26)
L

The dimensionless equations from Equations (2-17) are there-

fore represented as

DU o M aPCoswi'+6ZPdPC05 wt
=77 7 3v? @t

V) (2-27)
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Perturbation of the Equations

As stated in the preceding discussion, this problem treats
the case where buoyancy forces predominate. In other words, where the
flow is mainly that of free convection and the oscillations are imposed
as perturbations on the free convection velocity and temperature field.

This is expressed by the following expansion in terms of ¢

QU U ) €7
u;(//(X;YO)+ )€+ )“771—”‘ (2-28)
y c)é{:O dezéZ,

and is written in the form

u=’~uo+6b/z+52¢/zz%w (2-294)

The uy 1s the free convection velocity. This expansion is advantageous
because the first term is the velocity of the free convection boundary
layer which has been solved analytically by Ostrach (c-8). The expan-

sions are therefore taken as

u;u0+6(//z+62uﬂ+”0 (2-291)
V=Vot EVT +€2Ug + +° (2-298)

T=To €Tz 4€5Tm + (2-290)
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By substituting these expansions into Equations (2-27) and by separating
terms according to the powers of e®*, n =0, 1, 2, ..., the following
equations are found

Zero-order equations, €©

éUO CWB =
dX g

CBUD_}_'U’oaUO—QEQO + 7,

Vo 3% dy ~9vyz (2500
T. QA 7¢
Oo +7f5 <>To —,L%R—dyzo

First=-order equatlons, el

d(//1‘+ <37J3:___0

dX QY (2-314)

C)Ur Uz T, dUo dU_z OUp _ o* Uz
ot Uc)X+ Tox " d>’+v}'«9\/ 0 YR (2-318)

Y
——Z;[Pcoswz‘]+kow/ i%?d}’smbut

s oS B v lis Qe 4l 9T 4 OF

R
’/‘3/—' g;/z}: (2-31c)

l\

Second=order equations, 62

QUm , gV _
o X * =0

(2-321)
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au‘r Ju C)U o a[,/
at%—u UL 3 Uz I+L/jz<§.)? + V5 71-71-—

6”1' 'Zf é[//o__ Q:?_Uzz

C)Y &y ayz +7_ZZ_'7LP£)—/'DCOSZLUZL7L (2_523)

oX

@ 7-51_ (2-32C)

The value of € 1s chosen small so that the first three terms
of the expansion will approximate the physical problem. By choice of
small €, terms such as €up + eguj_f' soao will always be small. The
quantity (a/ L) must always be considered small to stay within compressi-
bility requirements. Since € includes w, then as frequency increases

(a/L) must decrease proportionately.

Zero=0rder Equations

Ostrach's (C-8) solution and tabulated values were used for the
zero-order equations. The non-dimensionalization of the equations was

made so that the zero-order equations would yield the form used by Ostrach.
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He utilized a stream function such that

C9 9%9 (2-33A)
9)

U=

and

- — Sﬁ.&t% 2-33B
V= X (2-33B)

so that continuity i1s satisfied. This produces

o %% _owdY ¥ _T=0
Jy oxXay oX dyZ oy:

, (2-34)
o% dTo Q% ITo _ 1 O*T,
3Y aX AX Y ~ Fe O VY?Z
o) ~ /9%) — [d¥) _
(W)o“(oy)o‘(oy)w‘o

(2-35)

(‘75,>o = / 3 (/jra_)cya = 0.

Final simplification of the equations was made by transforming the co-
ordinates using a "similarity transformation"

-
" (4x)%

(2-36)
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and a stream function

V= (4XT4F () (251

and a temperature function

’735 — /é/(/j7;) o (2-38)

The energy equation and the momentum equation were then reduced to the

following ordinary differential equations:

M)

Frr3FF = 2F %4+ H=0 (239)

'+ 2FPRFH =0 (2-10)

The boundary conditions are

FOO)=F0)=0
Ho)=1

and

F =) = H(oo) =0,

(2-k1)

Some of the results obtained by Ostrach are shown in Figures 9
through 14. His results agreed with measurements of Schmidt and Beckman
(C=11), and Eckert (C=1). Schmidt and Beckman performed experiments on
free=-convection flows in which velocity measurements at various points

along the plate were made by means of a quartz-filament anemometer and
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Layers as Reproduced from Ostrach (C-8),
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Figure 2-12, Velocity Measurements of Schmidt and Beckmen (C-11) and
Comparison with Theory as Reproduced from Ostrach (C-8)
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Figure 2-13. Temperature Measurements of Schmidt and Beckman (C-11) and
Comparison with Theory as Reproduced from Ostrach (C-8).
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the temperature measurements were obtained by means of manganese-
constantan thermocouples. Eckert made similar measurements by means
of a Zehnder-Mach interferometer. The lines shown in the figures are
the theory of Ostrach and the data is that of Schmidt and Beckman.

The results for the small plate are nearly identical to that
of theory especially for small values of 1. This was attributed to
the fact that for the small plates the flow was entirely laminar except
near the outer edge of the boundary layer where some slight turbulence
from the room air disturbed the measurements. As can be seen, in the
figures for the large plate the scatter of the data i1s more than that
of the small plate. Large periodic oscillations of the flow near the
downstream edge were reported for the large plate in addition to room
turbulence at the outer edge of the boundary layer. It is well known
that by increasing the Grashof number the transition region from laminar
to turbulent flow will move down a plate.

Heat transfer data correlate well with the theoretically com-
puted values except for those of oil. The Prandtl number of oil in the
experiment varies approximately from 90 to 500. The maximum error was
reported to be approximately 20 percent. The deviations were attributed
to either end effects in the measurements or to the fact that viscosity
changes in o0il are large for even small temperature differences.

As a result of the good correlation of the data of Schmidt and
Beckman (C=11) to the theory of Ostrach (C-8) for velocity, temperature
and Nusselt number, Ostrach's tabulated results were used for the zero-

order solution.
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Approximated Zero-Order Functions

In the first-order and second-order equations most terms de-
pend upon functions of solutions of the zero-order equations. = The zero-
order solutions are tabulated values which do not lend themselves to
convenient integration. The reason for their presence is due to physi-
cal interaction of the small effects of the oscillations on the free
convection field arising from inertia and viscous forces in the boundary
layer. Mathematically it is represented by the non=-linearity of the
governing partial differential equations.

The last term in the first=-order momentum equation can be cal-

culated as

° _.3/4_ 7 -3
(”’7’?04/(—?1‘—’0/}/ =@x) | TH)A 7 = (4x) 4f/7/) (2-k2)
7y 9 e
Schoenhals (A=-34) has done this, and the solid line in Figure 2-15 is
values of his result. His tabulated results can be found in Appendix IIIA.
In order to solve the first order momentum equation a simple but satis-
factory analytical expression has been found in the present study for

t(n) which adequately fits the data. These are shown as the dotted line
in Figure 2=-15. The equation which fits approximately the data for two

Prandtl numbers is
7%/ ‘ '747/73) = /(/3*
m? = ke T e (@)

This normalized representation is exact at n = 0. This curve approximates

very well t(n) for low values of 7 and for extremely high values of My
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where it approaches zero. More terms or a higher order polynomial with
exponential terms would give an improved fit but the effort required
compared to the additional accuracy gained would be excessive. The value
of t(n) at any point in the boundary layer indicates the order of mag-
nitude of the oscillating pressure gradient produced by wall vibration
arising from thermal variation of density. In the next section the order
of magnitude of this quantity will be discussed with respect to the pres=-
sure gradient arising from the potential flow. Since the derivatives of

the free convection temperature can be expressed as

o -
oX T “4x) LA

C>7(‘J )
5 =ansT

a simple but satisfactory expression was found in this present study

(2=44)

which adequately approximated the curve of H'(n). The solid line in
Figure 2-16 represent the tabulated results of Ostrach (C-8) and the

dashed lines are the values of

n -Ki (R "
(7():/'/}(0)@'« (PW_/{Z(/ 2) e (2 )7/

(2-45)

All the coefficients K; and K, are constants for a particular Prandtl
number. K and KXp are given on Figure 2-16 for two Prandtl numbers,

0.72 and 10. The values are exact for 7 =0 since here it is equal to
H'(0). The curves for both Prandtl numbers fit well for small values of

n and for large values of 7. The intermediate values of 1 are slightly
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Figure 2-16. Comparison of -H'(q) from Ostrach (C-8) to that of Equation (2-45).
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higher than the theoretical results of Ostrach (C-8). The approximated
expression was made specifically to fit closeiy for small regions of 7
gince this region 1s of more interést because it determines the Nusselt
number and shear stress. Since free convection velocity and stream func-

tion in terms of the "similarity transformation" are

W= 9x07% A7)
U= (4072 F(7),

it was decided to fit F'(n) also to a simple but satisfactory expres-

(2-46)

sion. The result can be seen in Figure 2-17. This expression was found

to be

FYn) = ko(R) &P (e

This expression fits extremely well for small values of n and also
represents the peaking of F'(n) in a very exact manner. For large
values of n, the Pr = .72 curve is higher and for Pr = 10 the

curve is lower than that‘of Ostrach's (C-8) results. This expression

is a better fit of the small plate data for large values of n but as
reported previously the flow was entirely laminar except near the outer
edge of the boundary-layer where slight turbulence from the room air dis-
turbed the measurements., Therefore it is well to say that F'(n) for

Pr = 0,72 1s high for large values of 1. This expression 1s not as

important as the others, as will be brought out in the next section,
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First-Order Velocities

The governing equations of momentum and energy are

(ﬁL/ZTi L/ C)t/r é)LAQ

S U Sy Ly Iy I vd%w

c)y -
2 48a)

C)?UI K
«1-7 7l- Pcoswz‘ + K ow t sVl

) ORT¢
a "OX Jy ay PE)W

(2-48B)

It is convenient to adopt complex notations and to write

UI(X)\/)ZL>:/’*PEAL[DT(X) y)eiwfj
Vi (X, /f) /?/:/4/[7)’()( v)E wt]

Fcoswt=FRea [P edwtj

(2-49)

jqﬁ)S//\/WZf :,RE/—’)L[“/(: jp(')?) “D“A:Wij

L0y =Rear [T (x, )&% ]

The momentum Equatlon (2-484) vecomes

UL/ +U C) ’H,/ J Us %C)U/ Uy —
9 'ax d/+yd/

éj“#T% WP - AL Py
QY7 (4X)74

(2-50)
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where i =+v=1 and only the real part of ul(x,y)eL”t has significance.

This can also be written as

Rear T Y%= 1ty cos (wt +d)
or | (2-51)
Rea T, &M = Pras U, coswt - Imae. U, Sivwt
where @ is the phase angle and [ul] is the absolute magnitude of the
vector quantity uj.

For large frequencies all convective terms and the temperature
term are negligible with respect to the terms containing frequency as a
factor in Equation (2-50). Therefore the terms retained are the inertia
terms, the pressure gradient due to the potential flow and the forcing
function ¢(n) which all have frequency as a factor. The highest order
derivative also is retained. This has been done by Lighthill (A-20) and
is in agreement with the theory of differential equation with large

parameters. By dropping the vector superscript, Equation (2-50) becomes

2

. AU, Ko W,
AWU = C)72+4WP_ (4)03/ f(”?) (2-52)

It is convenient to find solutions in terms of the similarity variable

of the zero=-order equations. By the change of variable

Y
7‘"(4x>'/4

the following equation is obtained

_gl__df__%w(% =-iwen: +”"L§;f(“7) (2-53)

oA n*
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with the boundary conditions

U o)=0
LJ,(CO);: P

(2-54)

We now have an ordinary differential equation which requires a particular

and a homogeneous solution. The solution to this is

-l (4)&)& v _m77u» —~ K
ua:(‘P‘M)€4W s Z‘P*V/f Flz e " (2-55)

where

Vi = A Ko Y10) K
2

@08 (KR—iw@x)")
(2-56)

\, = Afew 7(0) L 2k
(4X)'/4(K;2-,Lwc4>o’/2) (K2—iw(4x)%2)

Now the relative effect of the pressure gradient due to potential flow

and the pressure gradient due to thermal variations can be investigated.
The ratio of the pressure gradient due to potential flow to that due to

thermal variations of density is

P _ pd " Var
Ko F10) T B(Gw=Bso)

(2-57)

This quantity has very large values for all values of X except where

X = 0,5 where = 0, The reason for the large values is that

o (BwBie) << 001)
Gr >> 0(1)

(2-58)
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The expression B(OW - 6,) is a small quantity. The coeffi-
cient of volumetric expansion for gases is B = l/T and in general it
is of the order of magnitude between 1072 and lO'h. The analysis of
Ostrach ((«-8) points out the fact that free convection flow is of the
boundary layer type only for large Grashof numbers. The value of P,
which is given as a dimensionless term in Equations (2-26), can become
large. This suggests that Equation (2-57) would certainly assume large
values. This wés checked by numerical evaluation of the solution to uj.
The resulting values of wu; for both finite and zero K, were essen=-
tially identical. It is concluded that the effect on uj due to thé
thermal variation of density arising from the inertial force term is in-
significant compared to the effects from an oscillating potential flow.
Therefore all results given in this chapter are for K, = 0. Figure 2=-18
shows some representative values of wuj, where K, = O. For high fre-
quencies wuj; 1is not a function of Pr number but only a function of
X and w. This is due to the fact that wu; 1s responding to the poten-
tial flow which is only a function of the dimensions of the thin plate.
The u; was multiplied by w in order to show the frequency dependency.
The multiplicative term comes from €, € = aw/L. With K, = 0 the first
order velocity is identical to the periodic velocity of an adiabatic plate,
treated by Schoenhals (A-3L4).

The first part of the solutioh and all subsequent solutions have
been programmed on the 709 IBM computer at the University of Michigan
Computing Center. Two representative methods of evaluation are presented

in Appendix I.
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For intermediate frequencies, the whole momentum equation
should be integrated with the exception of T;. For small frequencies,
the total momentum equation and the energy equation would have to be
integrated together since they would be coupled. ‘To ascertain where
the high frequency case describes the flow the intermediate case was
solved. - This was done by assuming that the high-freguency case is the
first approximation to the intermediate frequency case, using the follow=-
ing
__‘—&- — —

l/f;c = (///,9 + ng
(2-59)
. —_— —
Ve = YJZH r 7’@3
The quantity wu;, 1s up of the preceding case of high frequency. The

conditions here on the approximation is, of course

Uy > Us

(2-60)
Via 72 Vis .,
The problem is to decide where
—_ o =
L/Iﬁ = L//C.
' —_ (2-61)

‘—:AN
?j;q = L),c;
When the above condition holds this is a cut-off point and the high fre-

quency solution describes. the problem, Otherwise the .solution holds for

intermediate frequencies.



55

To find the governing equation for wujp, the superscripts
having been dropped for convenience, consider Equation (2552) where
ul = ulp and also substitute ujl = ujp + ujp into Equation (2-L48A).

By subtraction it is found that:

/LW(//)B‘/‘L/DC?;/’C-}— e QUe F U d”/¢+y¢dé/p ~

X oy (2:62)
02 Ua - -d/
SIAS
Therefore, the following is obtained.
2
C> U’B—/(w(// L/oau/(,_/_u, C‘)Uo _71_)" (50}67\_ p— (5 7z (2-63)

0y? oy "oy

Since ujp > uyp, uwe and vy are replaced by uj, and vy in
the right hand side of the above equation. This represents a type of

forcing function. By change of variable from y to n we have

&)ZU]B__/(W(‘%() (4)0[U06M0+Mﬂd MD7LD—®UM 7!.2/’ @—7] (2=-6k4)
7 .

with the boundary conditions

LAB /0)J:'C>

(2-65)
Uig(e) =0 '
so that
(//c (0) =0 (266)

U (Oo)-':/s
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This is carried out by using the continuity equation to find
vip and then evaluating the forcing function on the right hand side of
Equation (2-64). Some characteristic results are shown in the form of
graphs in Figure 2-19 through Figure 2-21. At X = 0.5, Uy is zero.

For X > 0.5 the phase angle leads by 45 degrees at 1 =0 and for

large values of 7 it is O degrees. For X < 0.5 the phase angle
leads by 235 degrees at n =0 and for large n it is 180 degrees.

If the phase angle were referenced to the oscillating potential flow as
has been done in Schoenhals (A-34) and Schlichting (A-34) the phase

angle would be 45 degrees at the wall and O for large values of 1.

The significance of the method of plotting phase angles as used here is

to preserve fhe absolute phase angle relationships for the first order
complex vectors in the second order perturbations. The graphs reveal

that for w = 10 and greater, the high frequency solution is valid.

High frequency analysis is discussed in the next section in more detail.
Schoenhals (A-34) using a hot wire anemometer found good agreement for
periodic velocities of an adiabatic plate. For high frequencies, as dis-
cussed previously in this section, the first order velocities with Kb =0
is identical with the velocities in the region of an oscillating adiabatic
plate. Schoenhals eﬁperimental results are discussed in more detail in

Chapter IV and graphs of his data are shown.

First Order Temperatures

The energy equation with the adopted complex notation is

WL 4 9%y 9T 4 o T - OPT)
AT T X %dy+7f’<}y0”@ OYR  (2-61)
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From the preceding analysis it is known that
U™~ O(1)
V, ~0(1)
Uy ~o()
U ~odl) (2-68)
T, ~0(1)
T ~ow)

Therefore it is found that

/
"ox 07 B oyz =%
(144) 0(/ /) o) )0(/ /) |
it ‘is apparent then that
ua% 4V, 9L I o7 _}_p—@T (5270)

X JY > U"dX

for the case of high frequencies. The governing equation is therefore

d*7 _ 9% 4 3T 2
s —AWAT = arlusy +usE | .

which becomes, after the change of variable from Y to 1,

d I ’;'AW/%(‘?X) /= /%(4)() [037; 2)»67‘] (2-72)
d

with the boundary conditions
T (0)=0
7, (60)= 0

(2-73)
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The integration has been performed and the results are shown in
Figures2-22 through 2-26. To find the cut=-off point between inter-
mediate and high frequencies it is necessary to perform the same type
of process of determining where the criteria of high frequency is valid

as was done for velocities therefore
Tie=Tat+ T8 (2-74)

The governing equation is

iwTatlQle | 1)59% <>//c &75—-_’__.@,5.2/—8 .
8 0X+ /de ?[ 7)’67 —= O yz (2-75)

Since Typ > T1py Tic 1is replaced by Ty in the above equation. By

change of variable from Y +to 17, Equation (2-75) becomes

d*Te T,

Vo -
o AWR N AT, = R 4% [u

(2-76)

Q7 @7—» d 7o
LJNB ();( 2/‘ %‘ ZI}B (ﬂ )/
with zero boundary conditions at 7 =0 and 7 =,

Graphs of TlA show that the phase angle at 1n =0 approaches

90 degrees. The phase lag for large values of 7 1is asymptotic to 90
degrees. For intermediate n the phase lag increases and then decreases.
For the same values of w and X the temperature profiles for Pr = 0.72
peak at a higher péint than those of Pr = 10. The temperature profiles

for Pr = 10 peak for smaller values of 17 than those of Pr = 0.72.
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This is because H'(n), see Figure 2-15, has a smaller thermal bound-
ary layer thickness for larger Prandtl numbers.

Figures 2-22 through 2-25 show the convergence of Typ to
that of Ty¢ for high frequency. The circles and squares are values
of Ty and the solid lines are values of Typ. As can be seen in‘
these figures, convergence is better for large values of X, Pr and w.
The graphs indicate the rate of convergence for increasing X, Pr and w.
The criteria for Tjp to be used in place of T;p was found from the

results to be
J
PRO'Z/W (4x) 2> 25 (2-77)

This represents the fact that for the high frequency solution, Tip, to
be valid the above group of parameters must be approximately greater than
25, The values of frequency which permit Tj, to describe the periodic
temperature solutions are greater for low Prandtl numbers than those of
high Prandtl number. Also if X Dbecomes very small thenm w would have
to become very large to satisfy Equatiqn (2=77). Figure 2-27 shows

characteristic values of wIyp for two Prandtl numbers.

First=Order Shear=-Stress and Nusselt Number

The shear stress will be evaluated first. The derivative of
u] without the term ¢(n), described by X, =0, which was found to
be negligible, is

QU _ o— _ Mwittp) .
C)\/O-)W_/?EAL[PW@ ] (2-78)
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The expression for the zeroth and first order (periodic) velocities is

: ) , (Wt
U= LU, +ERFL U, € o (2-79)

which can be writtéen as

:Uo?"é/&///COS(W‘ZLngé)%“’ (2-80)

The expression for the zeroth and first order (periodic) shear-stress is
(tﬁ/éh/

/s ,Mx) 9)}6—--- o cos(wiip)s o (2-61)

/MC\’ 4)<>/Z

which can also be written as

- (ﬁ’)()'#/’”//))fépy—* Cos(WL+45)F v (o
e DK

The first-order contribution in the shear stress is not a func-
tion of Prandtl number, as may be seen in Equation 2-82). It is, however,
a function of viscosity. It leads the disturbance by an angle of ﬁ/ha
At X = 0.5 there is a line of symmetry for P, but the X-dependency of
the first order (periodic) shear stress is not symmetrical around X = 0.5
because of the influence of the factor (4X)l/2. The frequency depend-
ency of the first order (periodic) shear stress is w3/2 because € 1is
proportional to w.

The derivative of the first-order temperature distribution is
presented in the form of graphs in Figures 2-28 through 2-30. Figures
2-28 and 2-30 for Pr = 0.72 have the same ordinate values. The differ-

ence in the plots is in the abscissa so that the effects of frequency
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and X can be shown separately. The same is true for Figures 2-29
and 2-31 for Pr = 10.
The expression for the zeroth and first order temperature
is
— . dwt
- ) -
[ = To +ERFALT E  Her (2-65)

and the derivative is

Il _He) L AT posiwr
— + v v o
5y = TE gy WP o

The derivative was represented only in the limits from
=0.2 to X =0.8. Figures 2-30 and 2-31 of the first order tempera-
ture derivative versus X show the asymmetrical character of the deriva-
tive. The limitations on X are necessary because of the existence of
singular points at X =0 and X =1.0. These singularity points origi-
nate in the potential flow and the solutions do not apply at or very
close to the singularity points.

For increasing frequency the phase lag approaches 90 degrees
for both Prandtl numbers and the absolute magnitude of the first order
temperature derivative decreases. For large frequency the absolute
magnitude decreases as w"l. The absolute magnitudes and phase angles
of first order temperature derivatives as a function of frequency versus
X for two Prandtl numbers are shown in Figures 2-30 and 2-31.

The local Nusselt number, in terms of dimensional quantities

of Equation (2-26), is defined as

Ny = DE 99
vz = "k T \OY (2-85)
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which, in terms of the zeroth and first order temperature derivatives,

results in

¢ > £

N
7 ...'.Z

/i
S /// f{i COSCWE+qp)r
A6, (Gfx)é/X Vz ) d// (2-6)

By simplification and division the following relationship is obtained

MMy o
" = |=¢ RO Costwt i)+
(-#0)(Grz/4) % (— H0)) / - (2-87)

Second=0rder Velocities

The governing equation of momentum is Equation (2-32B) with

K, = 0. It is seen in Equation (2-32B) that certain terms will contri-

()

bute terms with cos2wt. These terms are

r YL = e (6 ) S (Reae che™?)

Ao
\.‘

Ur %—g- = an(ﬁe t) (/-(rm (///@w ‘{)

9-?% cosfwt

These relationships can be reduced to terms which contain only cos2wt

(2-88)

and steady terms, as

U 2 I—/?Fm[u, U,

/?rm_[ul AU

AUz _ Hfﬂé oU Hzm QU]
Uy 59 = [?f, CoS2WT 4 [?/‘d/ (2-85)

P<.>><CO5 WZL"‘E‘&‘“}? cosauwt 4L PW
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By Equations (2-89) the result can be seen why oscillations
of a body in a fluid at rest induce characteristic secondary flowé or
streaming flows, whose nature are such that a steady motion occurs in
the fluid from a purely periodic disturbance. The only conclusion
that can be made is that secondary flqw is a result of viscous terms
and convective terms, i.e., the non-linear terms. Therefore, it may
be assumed that the solution has the following form of time-dependent

and time=-independent solutions

Uz = Uzs + Rear (U, 842“}2‘)
T = Tzs + Rear (Tz €72%%)

The two following equations, which are obtained by substituting Equations

{£-90)

(2-89) and (2-90) into Equation (2-32B) and separating according to time-

dependency, are

AAZLU(JZ f‘L/D

C)(//Z an d//z dl/
ox TUroy Ty T U5y

2
+/?F/!)L u dUl+ (‘)Ul]___z)__ 56__/371_ o UZ

(2-914)

9 Uas AUe o Uas % o Uo .
Uodx'/'u dx*%6y+ y+&_[

c)Ul c)U: C)ZLA?.S
c)x”f ] de QYR

(2-91B)
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The bar over the symbols denotes the respective conjugate complex quanti-
ties. The order of magnitude of the quantities above have been investi-
gated previously, Equations (2-67), with the exception of upg and Vog.
The unsteady solution Upy. Was not solved since it is doubly harmonic.

The steady part u,g, was solved because of its importance to a time-steady
shear stress and Nusselt number. The order of magnitude of Uog cannot

be greater than O(m’l)° The forcing terms in Equation (2-91B), the
underlined terms, have the order of magnitude 0(1). Each integration

will decrease the order of magnitude by Vz; and since two integrations

are required the resulting order of magnitude of Uy will be O(w"l)n

Then upg and vpg are treated as having O(wal) and it is found that

[
i

dv? = TPax 0 QY oY
O(l-w') o' 1) o1-6'%) ofw))

—»P ‘/‘RL‘/)L[M I/ '5@%’]

O(1+1) o(1+1) 0(lw?)

Ilas _ ),
2255 g, Qs &i/o + o c_)(_,/35+y35c>1//o

(2-92)

By retaining only the higher-order terms for large frequency Equation

(2=92) reduces to

I“U,
*= Reae ol 'Zr C)L/ 1 pdP
e (//I /7L 2 /DdX

Equation (2-93) was found by inspection to be that first solved

(2-93)

by Schlichting (A-BE) for an adiabatic plane executing harmonic wall mo=

tion. He applied the result to a circular cylinder. Equation (2-93) was
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also solved by Schoenhals (A-34) for an adiabatic finite plate executing
harmonic transverse motion. The potential flow is, of course, different
for both cases. Their similarity results from the fact that the solu-
tions to each are restricted to high frequency. Schlichting obtained
Usg as the product af a x-dependent function (potential flow) and a &-
dependent function, as shown in Equations (2-94) and (2-95). Although
Equation (2-93) was not solved here in this way, the y-dependent results
are the same as given by Schlichting. The form of Equation (2-94), par-
ticularly convenient for plotting the stream function, is
Ues = 1 P2 2'(F) -
wooox

where

/;
% =Y (‘E‘u) < (2-95)
Z([) satisfies

WM_ L ylgn ) =N =
- ZC)Zo"Z(ToZ:"*ZZZO)) (2-6)

where p'Zg is the first-order velocity. The solution in terms of ('

and & 1is

u‘uﬂ-""—+ +Z S/l\/ 7" ;
Z 2 e e 3 ge cCos ¢ (2-97)
"%é;(Cosi—“S/Nf).

This is plotted in Figure 2-32. The steady velocity can only satisfy

)

boundary conditions at the wall. At distances outside the boundary layer
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it is possible to make the velocity finite but not zero. The value of
¢' is
1 '(00)=-2
- 4 (2-98)
Schlichting (A-34) was able to verify secondary flow movement by photo-

graphing the movement of fine métallic particles about an oscillating

cylinder in a tank filled with water. The stream function is

ng: 7: . (2-99)

W2
)
By integrating 7: the result was found to be
/3 3? | SRY 3 ° -7
I=¢g -~z f-zC -fecosi-p'smw
8; + 8 R (f 7 (2-100)
] - :
-5 3Ee°sivg
2
which is plotted in Figure 2-33.
The previous discussion leaves the stream function in a very
convenient form for finding constant values of 1V, the streamlines. A

new variable is defined as

SV = %5 (W)'?/z/fz—' . (2-101)

By shifting the coordinate of ‘P. from the bottom edge of the plate to
the middle and by letting X/L = X/C for this development Equation

(2-99) reduces to

- X | 102
W = F-x7e Z(%) (2-102)
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which is written as
|=2X*+ X5 = X Z({)/ ¥ (2-103)

For a chosen 1 there are particular values of X and £ which satisfy
this equation.

The sclution of Equation (2-103) can be done in several ways.
One way is to select values of ¢ and V¥ and then solve for the fourth
order roots of X. This method is difficult. A more convenient way has
been ascertained by realizing that the root-locus method from automatic
control theory can be applied here. It was realized that Equation (2-103)
~ has the form of a closed-loop transfer function for a feed=-back system.
A brief account of root=-locus theory will be given here as explanation.
The root=-locus method represents, through simple and analytic techniques,
the changes in position of the poles and zeros of the closed-loop trans-
fer function as the gain of the open-loop transfer function is varied.
From this point on X is replaced by Z, a complex variable, where only
X, the real part, has significance. The closed-loop transfer function

can be written as
(2-104)

where D represents the gain. Root-locus will yield where

|-GD=0 (2-105)

G has a zero at Z = 0, double order poles at Z =+ 1 and a third
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order zero at «, With this known and by utilizing the rules for the
asymptotes of the root-=locus, the root-locus plots were made and are
shown in Figure 2-3L,

As can be ascertained from the root-locus plots there will
be, on one side of the plate, four regions of . In Figure 2-3k4 is
shown one of these areas’and in Figure 2-35 is shown the right half
side of the plate.

The streamline, Vogs Of Equation (2-99) decreases by w'5/2

1

and upg of Equation (2-L44) decreases by ™. Since the second-order

time=-independent contribution to velocity is e2u2S (e = aw/L) the
frequency dependency of velocity is w. The inner vortex of Figure 2-36
on the upper quadrént goes up and the one on the lower gquadrant goes
down, near the plate., The result is that free convection (time-independ-
ent) velocities are increased in the upper quadrant and decreased in the
lower quadrant near the wall due to time-independent second=-order pertur=-
bations. Also for increasing frequencies the vortices move inward toward
the plate. The streamlines touch at X =1 and ¢ =0 and 2.63 due

to the approximations imposed on the potential flow. In reality these
would not touch but would be close together in these regions.

Second-Order (Time=Independent) Shear
Stress and Nusselt Number

Taking the expression from the steady velocity and differenti-
ating it, the time-independent derivative is found to be
(C)Uzs)____/____ pIP

Y %

2W)% OX (2-106)
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Figure 2-36,

A Representative Plot of Time-Tndependent
Flow Streamlines,
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Therefore the second-order or time-independent contribution, Tog

can be written as

7~ ol
/25 2 Pax

—

Moo 2k (40) %

This result is not a function of the Prandtl number since for

(2-107)

high frequency the non-negligible terms in Equation (2-92) are independ-
ent of Prandtl number. The result in Equation (2-106) decreases for in-

3/2

'1/2. Tpgs» however, increases as since

creasing frequency as
€ = aw/L. Except for the (MX)1/2 in the denominator, the contribution

to o/t (40)/2

for X < 0.5 1is equal and of opposite sign to that
of X <O0.5.

It is appropriate at this point to investigate the second-
order energy equation. The governing Equation (2-31C) will yield terms
which contribute coswt terms. These were reduced to terms which con-
tained only cos 2wt and steady terms exactly like the procedure used
for the steady velocities. The two resulting time-dependent and time-
independent equations are

o T a7 97 or o7
7 0 2 497 Qo
lﬂMZ%U %ildxi+16 29y

Reat Ty a Ly QT 7_ L O%T:
2 ‘oY P/? ERZ:

(2-108)

des J7, o7z o7, — 5T
% L/ ~ O 25 v };%1% QQJQ
Us 5y x*”_dy P s 53+ B 17 oy

o7 . é
7, oy 1~ % 0/2
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where the bar over the symbols denotes the respective  complex conjugate
quantities. Only the steady equation is treated because of its im-
portance as a steady contribution to the Nusselt number. The order of

magnitude is

2T
“3x JX o oy T gyt

ol ) ofwlr ) vli- ) olw!ii)

, ( 7m

f/\// /l } L/ ;) / o -W[ \)

) 5 | 37
0//’00”) 01+ 6%)

Therefore we conclude that Tpg will be approximately of the order of

(2-109)

2

magnitude of w'5/ . By change of variable from Y to n and retain-

ing only higher order terms Equation (2-109) reduces to

Q' Les_ ) 02 97

= (X /‘?C’QL 7/ C) ]’

a7 > [M 55y -
]

U 32+ Vi j?’, /.

This was integrated to (BTES/Bn)O . By one simple integration and

(2-110)

evaluation at 71 = O some of the burdensome algebra was eliminated.
Furthermore the steady=-state contribution to the Nusselt number is the
prime objective and (BTES/én)O yields this information. The zeroth

and second=order Nusselt number is C>7.
25

M (),

s e e A Ay

el 62)s T Loy -
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The steady-state contribution is shown in Figures 2=37 through 2-40. As
can be seen in these figures, there 1s an asymmetrical nature to the
gradient along the X-direction. This asymmetry is due to the fact that
the potential flow is symmetrical about the middle of the plate and the
free convection (zero-order) part is similar from the leading edge up
and the net effect is a non-symmetrical result. The gradient is posi=-
tive and therefore the second=-order contribution is to decrease the
Nusselt number. The gradient (BTgs/an)O increases approximately as
o=l as frequency ié increased. Since € = aa/L the second order per-
turbation dependency on frequency is w which decreases as w increases.
Also the second order dependency on amplitude is (a./L)2 and the Nusselt
number decreases as (a/L)°. The Nusselt number in Equation (2-111) de-

creases at higher Prandtl number.

Solutions Up to Second QOrder

The velocity in dimensional quantities is

‘ZZ‘“ /N/ 505( Wt + 4 U'?S 2-112
Z@EE“" ﬁﬁ%{ @+€ oS, )

To express (BQ/BY)G in terms .of the known functions, there is obtained

by substitution of these functions into Equation (2-112) the following

equation C9/Lﬁ/

QU 4 2 [ 7
Cﬁ:f-@@«z) F () +¢ 7y cos(wt+¢)

2 @L/,?s __,,_ (2-113)
7¢ O/ (4X) %
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By definition the shear stress is

e ((%g_

so that substitution of Equation (2-113) into Equation (2-11L) will

0 (2-114)

yield

)/
7 \) (fcj
= F 7 2. cos(wt
[46&)'4(2.343) (0)+€ P oS (Wi @)

(2-115)

2 (QUs) L, |,
7€ o o(‘?X)'/‘i?L

The steady-state shear stress is Equation (2-115) without the

second term on the right hand side of the equation. The periodic middle
term will contribute nothing when integfated over a whole cycle.

The local Nusselt number is defined as

hE _ X (28
Moo= =5 = 2o Y/, (e

and to express (BG/GY)O in terms of the known functions, there is ob-
tained by substitution of these functions into the derivative of the

zeroth, first and second order temperatures the following equation

_____~__ _ Ab, ng . ____7:/ |
dY =5 ( [/7("/ H Sy, (os(wi+p)

e (S5 |

(2-117)
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so that substitution of Equation (2-117) evaluated at 17 =0 into
Equation (2-116) yields
N 971
u — 87 ,
y =/ 5 \ D/ Cos(wt+d)
(GRX/4>4(‘//)/0)) (v,i/ ’/0))

(2-118)
2 azf ,_L, Iy
Od Jo (-H'10))

Again the middle term contributes nothing to the steady-state

o

—€

value. The values for all of these expressions are presented in the

previous sections either in the form of graphs or the expression itself.

Discussion of Results

In the preceding sections an analysis of the effects of trans-
verse vibrations of a finite, vertical flat plate in an otherwise free
convection field was presented. The case treated was that of free con-
vection with a perturbing effect from a potential flow of small aQ and
high frequency. The external periodic potential flow induces oscilla-
tions of temperature and velocity in the boundary layer. The phase angle
and magnitude of thesé,oscillations as well as the secondary or steady-
state alterations of the free convection boundary layer were obtained.
These were present in the second-order perturbations and arise from the
inertia terms of the governing equations of momentum and energy.

Also studied were shear stress and Nusselt number changes due
to the external potential flow oscillations. These effects were both

periodic and steady=-valued. The effect of oscillations produced a slight
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decrease in the heat transfer coefficient. Experimental observations,
discussed in Chapter IV, support this result and explain a phenomenon
which is prevalent in experimental data in the literature. This phenome-
non is reported to be a transition from a laminar to a turbulent flow

at a critical condition of vibration.



CHAPTER IIT
FIRST AND SECOND ORDER PERTURBATION
OF A IAMINAR FREE CONVECTION BOUNDARY LAYER DUE
TO TRANSVERSE HARMONIC OSCILLATIONS OF AN INFINITE PIATE
Introduction
This chapter is an extension of work on the subject of
vibrational effects in heat transfer completed recently by the Heat
Transfer and Thermodynamics Laboratory (A-3L4), Schoenhals and Clark
reference (A-33) treated the first order perturbation, The present
results disclose the existence of a steady streaming or secondary
flow phenomena, Shear stress and Nusselt number are presented in
the form of series solutions, A revision is made in the analysis
from that of reference (A-33) in that mathematical relations are
fitted to the important variable functions and the derivates of the
free convection boundary layer, This revision is found to allow more
freedom in the solution, The present results and those found earlier
(A-34) are identical in these regionsvwhere both are applicable, This
revision was found also to be more convenient for utilization in the

second order perturbation.

Formulation of the Problem

The physical problem is that of a vertical heated flat plate
in an otherwise quiescent fluid, The surface of the plate 1s maintained
at a constant temperature © for X > 0, Figure 3-1, In the absence of

oscillations the problem .would be that of free convection previously

=97 =
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treated by Schmidt and Beckman (C-11) and Ostrach (C-8). Their
results will be called herein the zeroth-order solution.

For transverse sinusoidal oscillation the first-order
approximation has been determined (A-34), and has a periodic
character. The plate is considered to be of infinite extent. 1In
a practical case this would require that edge effects be negligible
in the central portions of the plate. If the plate were of finite
extent the problem would be that of Chapter II.

This chapter is concerned with the effects of transverse
wall vibration on a free convection flow at high frequencies for an
infinite plafe. The perturbation method of solution used linearizes
the governing of equations. Therefore by the nature of the solution
the effects of vibration are expected to be small. It is in this
way the problem can be rendered mathematically amenable.

The analysis is concerned with incompressible flow. The
question of compressibility is examined in reference (A-3L4) and is
repeated here. The motion of the plate is Vo = a  sinQt. If the
plate is considered to be the source of a sound wave propagating
normal to its surface with velocity Vg and frequency §, then the
acoustic wave length normal to the wall is A = VS/Qn Q. It was
found that compressibility is not important as long as aOQ is small
compared to the velocity of sound of the surrounding fluid. For
example with air let a, = 1l inch and § = 30 cps then the relative

compressiblity is about 0.1 per cent.
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The problem is formulated in a frame of reference fixed
to the oscillating plate. The governing equations of momentum,

energy and mass are (A 3k4)

Dur
— —_— -1
o BZ: AGFAM “U (3-14)

P
A -2:”': é 7L VQV‘/O 5 ;/i (3-1B)
C/IV _\7 =0 (3-1C)
Do 2
'D_;C = V4o (3-1D)

If there were no oscillations the last term of Equation (3-1B)
would be zero. Utilizing the usual boundary layer assumptions these

equations reduce, from reference (A-3k4),

dP y o OV
/DD/ = /Q%Mdyz (3-24)

oF _ c/_/& COs 77~
ay = -0 (3-23)

dvVv

2
o> = 0(3702 o

(3-2¢)

with the boundary conditions
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v=0 U=V=0,0-6,
>/==CX3 YJF=:C><5 O = Bos

(3-3)

Equation (3-2) introduces the influence of the oscillation.
Should the’frequency be zero then Equations (3-2) would describe the
laminar free convection heat transfer. In Chapter II the method is
described for treating the pressure distribution due to the thermal

variations of density. This is not repeated here and it is seen from

Chapter II that

gV’ 4.8(6- 9%)+\7§ U?“C/ﬁﬁ/a %/Yéafﬁ (3-#),

is the governing equation for momentum.

The governing equations are non-dimensionalized by the same

relationships used in Chapter II. The result is

DU aau 6?_/[2 .

with the boundary conditions
Y=0 U=V=0,7= /
>/: 98 U=7=0
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The quantity in parenthesis in Equation (3-5) 1is defined as

_ an* 2
£ = g (Gf 78 (L)(GA,L)@(/U | (3-7)

This Chapter treats small € and high frequencies. It can be seen that

€ will be small even if w 1s high because of the extremely small
magnitude of the coefficient of of in Equation (3-7), It should be
noted that ao/L has to be small because of the compressibility restraint.
Considering the requirements of compressibility and free convection flow

it can be stated that
(¢/, )<< 0O (1)
a1 << o) (3-8)
BATH << 0(1)
Gr >>0(1)

The first three are related with compressiblity restraints. The last
two are conditions that are necessary for the treatment of free convection
as used by Ostrach (C-8) which are inherent to this problem as previously

explained in Chapter II.

Perturbations of the Equations

Equations (3-5) are coupled, non-linear partial differential
equations. Owing to these complexities a solution is sought using the
perturbation technique. The solution is a convergent series expansion

in the following form
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U=UD+EL/1’+€2U11+"£ (3-94)
V= Vo +€VL +€°U 4 (3-98)
=7;+673:7L6272+"' (3-9C)

These expansions are discussed in Chapter II in the section
concerning the perturbationé of the equations.

The n-number of differential equations are found by substituting
Equations (3-9) into Equations (3-5) and separating according to powers
of €. The continuity equation is, of course, linear. The equation found
with €' as the common coefficient is called the first-order equation,
that with e2 the second-order approximation, etc. The results up tor
second~order are as follows:

Zeroth order, e©

Uo SX @y =R 572 (3-10)

Qo , Vs _
5X 7oy ~©

with the boundary conditions

V=0 U=Vs=0 5 To =
Y=o Uo=7,=0

(3-11)
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first order, €'

C)Ur U, QU ol aUr U
Uiz QYo o
5t Tax TS T ey TGy

Aéj
7 4 2 +/ o/ycoswt

% ;0% avz; 9% 0% — | O°F
ot Teon TeoX T 5y F UGy T Rays 0o

QUr , 9
5—;1: + é—;I =0 (3-120)

with the boundary conditions
=0 Uz=VUr=7z =0
7 d (3-14)
V=00 Ur=Tz =
second-order, €

U |
a yIa a(/ﬁ U dUI U dUO+'y'aUE7L-?/' @ I (3-15A)

ox T ox oY

s D
Y

%.
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()Tz 67{: o7t 675 . O ) 9
ot P gy THES) PHE S Ve ST S
<97; _ ) (_)2732 (3-15B)
AY R IYR

Ur aVJI__ O (3-15C)
5x T3y

with the boundary conditions
Y=0 Ug=Vgp=Tx=0
Y= Ur=Tp=0

Except for the gzeroth-order equations, the solution of the governing non-

m

Vi

(3-16)

. linear equations, valid only for high frequencies are formed from a con-

vergent series of linear solutions. To have convergence it is necessary

that
Up>€EUr >€EXUT >+
Vs> €V > E V>

(3-17)
T €Tz > €T e

Zero-Order Solution

The zero-ordér solutions are exactly those of Ostrach (C-8)
and were discussed in Chapter II. It is appropriate here to recall the

similarity variable
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1= Y e

and

Y, = (4X7 4 F () (3-19)
To= H(7)

where ¥ _ is the stream function. F(n) and H(n) are tabulated values of

Ostrach (C-8) and are listed in Appendix III.

First-Order Solutions

Two solutions desired are of a steady-periodic nature. This is
facilitated by the use of a complex variable time function as was done in
Chapter II. By realizing the trignometric relationship

' ) )
: AWE
Coswt = KeaL @ (3-20)
we can therefore say

Up = /<5 ( Ll C'.‘i/( wi ) (3-21)

where ug is a complex quantity. Then the solution can be written in the

D{I:/U//Cﬂé(Wi‘+¢> (3-22)

where ¢ is the phase lag and |uI( is the sbsolute magnitude of the vector

quantity g Therefore we have

, 'w
QUr = Kol AW L//(f’(
ot (3-23)

) L AwT
T = Rin L AW7T; E
ot
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By substitution of these two relationships into Equations (3-12) if‘ is
seen that the exponential term drops out. For large frequencies all
convective terms are negligible in the momentum equation for a first
approximation. In view of ‘this ﬁhe terms retained are the inertia terms
involving w, the highest order derivative and the forcing function t(n).
This method has been used by Lighthill'(A-QO) and is in agreement with
the theory of differential equations with large parameters. For the
energy equation the two underlined terms of Equation (3-12B) are retained
along with the inertia term involving w and the highest order derivative.
The two underlined terms represent. a type of forcing function for the
energy equation. This was done because the subscripted zero terms have
approximately the same order of magnitude and u; and vy are larger than

Tlu This results in

?j;;lzl —w U, -(4X)3/7L 7(7) (3-24)

a e, 7= Z///C)/O E)_Z_(;

—A W TN -
/DR d V4 0y )

By changing from the variable y to n they become

2 -
@-——U' — ALY U, = (4x)% 7(7) (3-26A)
Xk
= AT = (4X) 2 U %V C>T : | (3-26B)
L 'd)( - (
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where

%
a/: 2 (4)() Zv (3_27:)

The solution to the first-order momentum equation is
o, kT -y’ K
U=vel-ye + W e’ ' (3-28)

By introducing the variable ;l¢9

A
;’/ e k/b/ ’ (3-29)
A

Vl and Vé are complex functions which can be described as

-S| & M)
V= , + -30
T (anh gy ! 20 A ( it

The solution of reference (A-33) for u is

U = ) Jen évj—?) T (3-31)
RICIKIINIO)

By replacing £(1)/¢(0) by the fitted curve in Chapter II this function is

given as

ﬂ()) -k -k =VAY ‘»7
- e '—e
U il ) = 7"-‘/ Y 3-32)
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It was found that solution (3-28) and that obtained by
Schoenhals (A-33) are identical for large values of 7 and hence small
values of ;Vﬁ as 1is easily seen by letting 944*0 in Equation (3-29).

In solution (3-28) V; and V, are evaluated completely by a numerical
method and are not approximated by the series of Equations (3-30).

The series were used only to compare solutions (3-28) and (3-31). The
solution of reference (A-33) treats large y and w therefore moderately
large values of X. The present solution treats large w and therefore
almost any value of y and X. Although X cannot be too small, because
the non-oscillating free convection boundary layer solution is not
valid in that region and C(q) is dependent on its results. The reason
the present solution, Equation (3-28), was derived was to have a form
which is not dependent upon the tabulated results of the free convection
solution. Solution (3-28) is in closed form and has been evaluated for
numerical results on an IBM 709 digital computer. Two typical programs
for the computation are given in Appendix I.

Figure 3-2 shows how Equations (3-28) and (3-31) compare for a
moderate value of ¥ = 10. The agreement is quite good for small values
of n and it is fair for large values of n. For smaller values of X the
comparison would not be as favorable, but for moderately large values of
n the two solutions coincide within the limits of the fitted curve and
the assumption for the solution of reference (A-33). For this value of
7 the phase angie appears to oscillate. This is due to the fact that
£(n) is actually zero but the fitted curve is not.

Figures 3-2 through 3-6 show some representative values of the

first-order velocities. They are represented in the form of a@ times
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to that of Schoenhalsand Clark (A-33).
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absolute magnitude and phase angle. The absolute magnitude was
multiplied by the a@ taken from ¢ in order to show the whole effect
of frequency. The motion of the plate is sin.Jlrt and the oscillating

pressure distribution has a timewise variation of cosflt. The solu-

tion is represented as

Rea U, éwi/?em/u//edwf@:/L/,/Cws[wt%/) (333

so that in this case phase lag refers to the bscillating pressure
gradient.

The phase lag of Pr = 0.72 some distance out in the bdundary
layer has a value of 900 for sufficientiy large values of w and X. For
smaller values of X for the same frequendy the phase ‘lag is greater and
for the same value of X with increasing frequency the phase lag is
approximately 900. A similar phenomena is Qbserved for Pr = 10 except
that larger values of frequency and X are required for the phase angle
to approach 90O as an asymptotic value.

It can be seen in Figures 3-2 through 3-6 that the apbsolute
magnitude of velocity decreases as X increases. This is explained by-
considering the fact that the oscillating pressure distribution is de-
pendent upon thermal density variations which are a result of the non-
oscillating free convection boundary layer temperature distribution.
The derivative of the free convection temperature distribution decreases
with increasing X and therefore the oscillating pressure distribution
decreases. Since this serves as a type of forcing function for the

first-order momentum equation the velocity will decrease with increasing
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X. With everything else being constant it was found from Figures 3-2
through 3-6 that the magnitude of velocity decreases for increasing
Prandtl number.

To solve the energy equation of Equations (3-20) use was made
of the simple curve of the derivative of the free convection temperature
distribution which is given in Figure 2-16 of Chapter II. Rather than
fitting a curve to the free convection temperature and then having to
differentiate it which has a large possibility of error, a curve was
fit to the derivative of free convection temperature, H'(n). This is

very convenient because

9% __ % Y
5% = s 7)

o _ L 1)
oY (4%

which requires only one fitted curve for both derivatives. By the use of

this fitted curve it was possible to get a solution for all values of 7

whereas in reference (a-33) the solution for temperature was valid for

small values and large values of n only. Then with these two regions an

intermediate region of n was approximated. The present solution applies

to all values of n. By performing the necessary operations on the energy

Equation (3-26B) the following solution was found to be
T= e vy +6)E v iy &
Ve 2) 8T L s Yy Vi 1
WzVBQQva

(3-35)
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The V's in this equation are complex quantities due to the exponential
time factor - and consist of real and imaginary parts. The boundary
conditions are zero at 1 = 0 and n = » so that V3 =V, - Vg - V9. This
solution is evaluated numerically in the computer program which is
discussed in Appendix I.

Figures 3-7 through 3-11 show representative values of the
first-order»temperature distribution. Figure 3-T7 shows the relationship
of the temperature distribution for two different Prandtl numbers,
Figures 3-7 through 3-11 show the relationship of the first-order
temperature distribution for different X, w and Prandtl number.

The first-order temperature perturbations show that for higher
Prandtl numbers, with everything else constant, there is less temperature
response to the same oscillation. This is due to the fact that both
viscosity and thermal diffusivity are having an effect. A more viscous
fluid cannot respond with the same velocities as that of a less viscous
fluid and therefore the temperature field is less. The thermal diffusivity
being lower in higher Frandtl numbers may also keep the temperature response
low. The smaller response of first-order temperature for higher Prandtl
numbers actually originates in the non-oscillating temperature field
which causes the thermal density variations thereby prcduciang with the
oscillations an oscillating pressure distribution, which decreases for
increasing Prandtl numbers. The quantity a?[Tli increases with frequency
for the values of frequency given in Figures 3-7 through 3-11. The
quantity a?|Tl[ for larger values of frequency approaches an asymptotic

constant velue. The ratio of peak values of temperature to velocity
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magnitudes for Pr = 0.72; w =8 and X = ,25 is less than 10 per cent,
for X = 1.0 the fatio is less than 5 per cent, The ratio of peak
values of temperature to velocity megnitudes for Pr = 10, w = 8 and
X = 1,0 is less than 3 per cent, For X = 1,0 the ratio is less
than 2 per cent, This proves thé original assumotion that at high
frequencies the momentum equation and the -energy equation would not
be coupled. First-order temperature decreases with increasing X due
originally to the fact that the oscillating pressUfe distribution
decreases,

Phase angles for the first-order temperature solutions at
n — 0 are around -150° to -180°. As 7 increases the phase angles
increase for a while, peak and then decrease again, As w and X
are both increased the values of ¢ at 1 = 0 and large 7 both
asymptotically approach -180°, The peaking of the phase angles is

higher for larger Prandtl numbers,

Second-Order Solutions

Utilizing the exponential time factor with double harmonics
and the theory of differential equations with large parameters, the

second-order momentum Equation (3-15A) reduces to

I dUz XIQW_Z_L
o0y oyz | =

~ -
S—)?/;Tdy echosw z,

(2w, +u§”’ F;

(3.36)



It is useful to repeat that only the real part of the solutions con-

sidered here have significance, Therefore it is necessary to note that

T gt Rene [OTi, OT1 &4
s stwr.— 2 Lox ox© ]

Ren [Uz Wz]/?f’m.[ QU/@ ] [L/ ) +

_ é>£4{;7 L ;?FﬁﬂzL Zjé/ é>t/l 'J‘“VZS

\4;9\

(3-37)

__/?Em_ (")U/ udb’/ gAw
| Dox T Mox J

where the bar denotes the complex conjugate. This is true also for all
first-order products. Realizing this, the second-order momentum equation
is separable into two equations, a time-dependent equation and a time-
independent equation. The time-independent solution of the momentum
equation is what has been called the secondary-flow velocity or "stream-
ing" velocity. This has its origin in the convective terms and is due

to the interaction between the effects of inertia and viscosity. There-
fore it is plausible to write

Uz = éli(/z + Uzs

(3.38)

Tz = T2 +72s

The following time-dependent and time-independent equations result from



=125~

Equation (%-15A) with the change of variable from 7y to 7

0%l U U /
5;7-22 —A2WIFX Uz = W}?m [u,d ’+D’d /O/d)/

O%Uos _ Vax'p_ [ o OU/ wd//
5";71 - E"/QJ:/M (// +U7 / §

The convective terms Wthh were omltted from Equation (3-15A) are those

(3.39)

containing u, and Upge A solution was found only for u,_ because of its

2s
time-independent nature and therefore the alteration of the steady
velocity of free convection. For this to be true Ung should decrease
in accordance with w™2 for increasing frequency., This was found to be
the case, This solution will consider large X and large frequency.

The boundary conditiomns, zero at the wall and at infinity,
- for the second harmonic perturbation can be satisfied at the wall and
at infinity. The steady-state contribution can be satisfied at the
wall, and at large distances the value can be maae finite but not zero
This is the manner of Schlichting (A-32) who was the first to give this
type of flow an analytical treatment and also observed this flow experi-

mentally., The steady-state Equation (3-39) was solved completely., The

solution is in- the form

~Viz 7

Y8 BT

UZS—RF/—?’—[\//3+1//

NN

Vie€ F( Vg #he1#vg 7 2) @R VAE0 T

(Voo tVor 1 o2 02 Vs 72)‘@:-//%1/2}‘7)7%%4%57
(3-40)

- Ki |
P47 )E N 4 e 15 724 Vi3
i t)e

-ZK;



where the Va quantities are complex quantities with real and imaginary
parts. Figures. 3-12 through %-14 show how the streaming velocity varies
with frequency, position and Prandtl number. Figure 3-12 shows the
relationship of wuugs for two different Prandtl numbers., Figures 3-13

and 3-14 show how wu

os varies for different values of X and frequency

for two different Prandtl numbers. wuugs was plotted since this repre-
sents completely the frequency dependency. The larger the Prandtl numbe
the smaller the streaming velocity as Figure 3-12 represents. Large
values of X result in small values of velocity.

Performing the same operations on the energy Equation {3-15B)
as were done on the momentum equation the following equations result
__QJZ%jW Rmﬁpah+y&h+
P O0Y* /@)/ (3-414)

o7 C>/o
RUzs Gy T4 Vas 53

,L@jz;s.. o’ 0415 QJ@/?ML —JT, y—_@jj

dyz R TRy T X T gy

(3-418)

The terms left out were the terms containing To. in theconvective terms,
Since Tpy < Vog < Upg the two terms left out will be negligible compared
to the first two terms on the right hand side. As in the case of the
momentum equation only the steady equation was considered. The steady

equation becomes, after the change of variable from Y to 7

s ~,.9%, r<§E+%W[M6A;“aT

y?x’@?‘ o "oy | U
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This equation was solved to the first derivative at n = 0. It was not
carried further due to the excessive amount of computation that would

be necessary,

Effect of Oscillation on Heat Transfer and Shear Stress

For free convection alone the shear stress by definition

7;_;/&/00 (C%—- (3-43)
) SO

By utilizing the dimensionless parameters and the tabulated results in

Ostrach (C-8) this relationship of shear stress is
/\_

)// \,z o Moy )

7NX' 5& /

With oscillations and the perturbation type of solution the local shear

= S0, | (5-14)

stress (time-dependent) derived by taking the derivative of Equation

(3-9A) and meking the terms dimensional is

%

T _ Ny ]
VI - | +¢ 193/ 0} Cos(wt 1)
(F10)(46.) (Bt 0y (400
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The time-averaged local shear stress from Equation (§-h5> is

/ =/ +¢" (= Foo (3-46)

Fiofisy) (%) i

The values of (Eg%é%% M)Z and ¢ are shown in Figures 3-15 and 3-16 for

different values of frequency, position, and Prandtl number.

The vplots of ( QLQ’//) WA in Figures %-15 and 3-16 show that

‘ XY

the local; oscillating shear stress increases with frequency more than
linearly but not as fast asiwggg The oscillating shear stress will
increase linearly with amplitude if frequency is held constant. If the
oscillating ?ressurec distribution is held constant corresponding to a
particular value of € then the amplitude of the oscillating shear stressg
will decrease with increasing frequency° Since ¢ is a function of both
vibration amplitude and frequency, increasing the latterrrequires a
corresponding decrease in the former in order to maintain constant ¢,
The local oscillating shear stress is largest near the leading edge.
The analysis 1s gtill valid in regions close to fhe leading edge, The
smaller the Prandtl number the greater the magnitude of the oscillating
(time-dependent) shear stress, The phase lag for increasing freguency
for both Prandtl numbers approﬁches Lk5e  The phase lag is greater <“cr
smaller Prandtlwnumbersc

The time-independent contributions tolthe shear stress to bhe
used in Equations (3-45) and (3-46) are shown in Figures 3-17 and 3-18,
The values given in these figures are found by the computer evaluation

method described in Appendix I,



-132-

500

450
Pr=72 / /
400 /// :

45m—\ e

10 20 30 40 50

Figure 3-15. Magnitude and Phase of First Order Velocity
Derivatives Divided by the Zeroth Derivative
of Velocity.



-133-

300

280

260

240——Pr=10

220

200

I 80

blUuI)

(

(L’Z

F'()'d 7
o

120

80

60

40

2 0¥

0]

=30

© | ==

-40

25 0-X=1.07]

I ————

90 £ 75

-50
10

Figure 3-16.

20 30 40 50
w

Magnitude and Phase of First Order
Velocity Derivatives Divided by the
Zeroth Derivative of Velocity.



)O

dUzs

w

.,

Floy2 7

-134-

NANAN

10
10 20 30 40 50

w
Figure 3-17. Magnitude of the Second Order, Time-Independent,

Velocity Derivatives Divided by the Zeroth
Derivative of Velocity.



-155-

10 20 30 40 50
w
Figure 3-18. Magnitude of the Second Order, Time-Independent,

Velocity Derivatives Divided by the Zeroth
Derivative of Velocity.



_136_

1o A
The values of (5??' qu in Figures 3-17 and 3-18 show that
0
the local time-independent contribution to the shear stress increases
with increasing frequency. The multiplicative factor wu comes from €2,

L s -
The derivative (E?ﬁ) 0 decreases approximately the same as w 2, As
[

the Prandtl number decreases (%%%%;)D increases, The local steady
shear stress also 1s greater the closer one is to the leading edge.
Consideration of the fact that € contains amplitude asserts that the
local steady contribution increases with the square of the amplitude.
It should be kept in mind that the a)lL was included in the plot to show
the effect of frequency and comes from €2 which is restricted to small
values,

For free convection alone the local Nusselt number is

defined as

/VL = ‘2123:_,« — X C§7Z

K (o) 0T/

By utilizing the dimensionless parameters and the tabulated results in

(3-47)

Ostrach (C-8) the relationship is

N
@;/4y%:—4ﬂ%) (3-48)

The solution for the temperature distribution is

T=Tot+ €T #7271
— HH+ET + €T +00

(3-49)

where H is the zeroth order solution due to Ostrach (C-8), Tl is the

solution to Equation (3-26B) and T, is the solutions to Equations (3-L1).
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Therefore with oscillations and the perturbation-type of solution

the local Nusselt number, time-dependent and time-independent, is

Mu QIT
1€ 9. OCoS(wtrp) +
’///QD(Zi€¥744:) 4 (:79”/59

(dﬂ (M)o cos(zwi +¢]

(=F'(o) ‘/o)) (~H0)

The time-independent local Nusselt number is

| AT
N[/f ) p— / 7L 62 5—;7— )_0_ -7L 14
-H1)(6rz /g) (~H'10) (3-51)

(3-50)

The plots of the derivative of Tl and its phase angle are
shown in Figures 3-19 and 3-20 for two different Prandtl numbers. It
is seen that the magnitude of the oscillating Nusselt number multiplied
by wE, taken from €, increases with increasing frequency for small values
of X and remains essentially constant for larger values of X. This holds
true for both Prandtl numbers. Without the multiplicative factor of w
then the derivative decreases with increasing frequency., In Figures
3-19 and 3-20 it can be seen that the smaller the Prandtl.number or X
the greater is the ﬁagnitude of the Nusselt number, The phase lag
approachés 180° asymptotically for larger values of frequency.

The time-independent contributions to the Nusselt number as a
function of X, Prandtl number and frequency are shown in Figures 3-21
and 3-22 for bo6th Prandtl numbers., The steady-state confribution to the

Nusselt number is seen to decrease as compared to the non-oscillating
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free convection case, From these results it is at once evident that
Reynold's analogy does not hold for oscillating flows with heat transfer,
The physical reason for the decrease, is believed to be a result of the
phase lag of the boundary layer, If conditions were such that the
temperature were oscillating as a primary effect then temperature would
be similar to the streaming velocity which creates an increase in the
shear stress, Then it seems probable an increase in the Nusselt number
would be found, Also the order of magnitude of the decrease in the
Nusselt number is small because of the multiplicative factor 62, The
67;5 n . . .
fact that <§77 P f¢V/QD decreases less with increasing frequency
can be seen in Figures 3-20 and 3-21. For smaller Prandtl numbers the
magnitude of a"‘? b (-}—/ Yp)) 1is greater, This would correspond to

a greater decrease in the Nusselt number,

Discussion of Results

Schoenhals and Clark, (A-33) with a physical system approximat-
ing the mathematical model of this present investion could find no effect
on the time-averaged Nusselt numbers.. The analysis of this chapter supports
these experimental findings in that the decrease of the time-independent
Nusselt number is so small that it would seem to be practically impossible
to measure., As an example, for Gr = 108, Pr = 0.72, AT = 100°F and
(a /L) = 0,01, the percentage decrease in the non-oscillating Nusselt
number for @ = 20, 50 and 100 are less than 0,01, 0,03 and 0.1 percent,

respectively.
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CHAPTER IV

EXPERIMENTAL WORK

Introduction

This chapter describes additional experimental work on the
subject of vibrational effects in heat transfer and extends research
completed recently by Schoenhals (A-34). The experimental apparatus
constructed by Schoenhals (A-3L4) was adapted to these particular exper-
iments. His results included date obtained from velocity measurements
made with a hot wire anemometer under adiabatic condiﬁions and some
heat transfer data taken to determine the effect of wall vibration on
the time averaged heat transfer rate,

Air was the fluid used for all experimental work. In the
latter part of this chapter the combined results obtained by Schoenhals
(A-34) and those obtained here will be compared to other experimental
work which have appeared in the literature, These measurements also
will be compared to the theoretical work of the first two chapters,

The results of this chapter involve heat transfer data in the
form of nusselt numbe; as a function of a vibrational Reynolds number
and Grashof-Prandtl humber product. The Nusselt number was found to be
essentially uninfluenced by vibration for laminar conditions, A maxi-
mum decrease of 2% was found for smaller value of vibration Reynolds
number. For large values of Reynolds number a sharp increase in the
Nusselt number was obtained experimentally. The experimental results

confirm the theoretical results of an almost negligible decrease in

-143-
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time-independent heat transfer. The sharp increase in Nusselt number

was concluded to be a result of a flow transition from a laminar to a
turbulent flow. Smoke studies were made to investigate this possibility
more thoroughly. These clearly showed that this phenomena exists. Some
photographs are presented of different flow conditions. A correlation

in terms of a vibrational Reynolds number, amplitude ratio and Grashof

number was also made,

Experimental Apparatus

The experiment is designed to produce a two dimensional
boundary layer on a vértical, finite, flat plate undergoing transverse
vibrations,

General views of the test apparatus are shown in Figures by
and 4-2,

The test section is a 10 inch square plate 5/& of an inch thick
with a 6 inch square heated section in the center. During test conditions
this heated section is maintained at a constant temperature in a manner
which will be described later. The heated section consists of two highly
polished aluminum platgs on the outside with a heater contained between
them., The heater is made up of a heating element which is chromel
ribbon 1/8 of an inch wide by 0.002 inches thick wound on a thin mica
sheet, A mica sheet was placed on each side of the heating element to
protect it from the aluminum plates, These plates are clamped together
by four hex nuts at the corners which thread onto four support rods
which hold the plate in a vertical position. Construction of the test

plate is shown in Figure 4.3, As can be seen in this figure, the
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with a 6 inch square heated section in the center. During test conditions
this heated section is maintained at a constant temperature in a manner
which will be described later. The heated section consists of two highly
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protect it from the aluminum plates, These plates are clamped together
by four hex nuts at the corners which thread onto four support rods
which hold the plate in a vertical position. Construction of the test

plate is shown in Figure 4.3, As can be seen in this figure, the
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Figure 4.2 Rear View of the Experimental Apparatus.
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center section is supported independently of the rest of the apparatus
except for very small transite spacers which maintain an air gap of
approximately 1 inch,

Surrounding this air strip are thin magnesium strips which
have been glued to transite strips. A thin mica ' sheet insulates the
magnésium strips from the guard heater elements directly behind them,
There are four guard heaters and they are made of thin chromal ribbon
wound on transite strips. There also are air gaps behind these guard
heaters, The purpose of the guard heaters is to prevent heat loss
from the edge of the plate by maintaining the temperature of the
magnesium strips equal to that of‘the edées of the plate. Each
magnesium strip, since it has lbw thermal resistance, achieves
essentially an isothermal cohdition and is controlled by the power
input to the guard heaters. The electrical circult for measurement
of energy input and control of the heater element is shown in Figure
L-4, This has been achieved'by‘utilizing differential thermocouples
between the plate and the strips and the details of the circuit for
doing this will be diécussed later in this chapter. These air gaps,
on both sides of the heater, provide a‘high thermal resistance, The
housing or remaining portion df the test plate consists of two sections,
The top section is U—éhaped while the bottom section is straight. To
reduce the weight of these pértS'they were made out of magnesium., The
U=-shaped section is supported by 4 rods and the bottom section is
supported by 2, thus making the whole test section have 10 support
rods, The top section is conneeted to all 4 of the transite strips,

thereby causing its temperature to increase slightly during operation.
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time-independent heat transfer. The sharp increase in Nusselt number

was concluded to be a result of a flow transition from a laminar to a
turbulent flow. Smoke studies were made to investigate this possibility
more thoroughly. These clearly showed that this phenomena exists., Some
photographs are presented of different flow conditions. A correlation

in terms of a vibrational Reynolds number, amplitude ratio and Grashof

number was also made,

Experimental Apparatus

The experiment is designed to produce a two dimensional
boundary layer on a vertical, finite, flat plate undergoing transverse
vibrations.

General views of the test apparatus are shown in Figures h-1
and 4-2,

The test section is a 10 inch square plate 5/4 of an inch thick
with a 6 inch square heated section in the center. During test conditions
this heated section is maintained at a constant temperature in a manner
which will be described later. The heated section consists of two highly
polished aluminum plates on the outside with a heater contained between
them., The heater is made up of a heating element which is chromel
ribbon 1/8 of an inch wide by 0.002 inches thick wound on a thin mica
sheet, A mica sheet was placed on each side of the heating element to
protect it from the aluminum plates, These plates are clamped together
by four hex nuts at the corners which thread onto four support rods
which hold the plate in a vertical position. Construction of the test

plate is shown in Figure 4.3, As can be seen in this figure, the
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Figure 4-5. View of the Test Plate,
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section is contained in a celotex enclosure as shown in Figure L-2,
This enclosure was necessary to prevent stray currents of air from
disturbing ‘the experiment,

To vibrate the test section a MB Vibration Exciter was used.
It is an electromagnetic force generator., The vibration exciter is a
model C5B and its control unit is a model T51~D, This system consists
of an oscillatory power amplifier and oscillator to supply the variable-
frequency power to the driver coil of the vibration exciter. The DC
field supply furnishes the power for the vibration exciter's field
coil, The control cabinet is operated from a 480 volt, three-phase,
sixty-cycle line, Control circuits are operated from a 115 volt,
single-phase, sixty-cycle line, In this system the frequency is set
on the control unit and the amplitude is raised to the desired amount,

The arrangement of the components of the apparatus are shown
in Figure L-6, The rod support system which is carried in the bearing
wall by the teflon bushings are bolted together to one piece, This
piece is then connected to the vibration exciter by means of small
threaded rod, The test plate was adjusted until it was perpendicular
to the floor and its top was level, The bearing wall fits into the
wall of the celotex enclosure, The large overhang of the rod support
system into the enclosure is necessary so that symmetry can be obtained.
On the side of the rod support system there are 8 support rods inside
the 2 side plates, Ideally the plate should oscillate in an infinite
space without any supports. Experimentally this is almost achieved,

Seven thermocouples were used in each aluminum plate. They

were imbedded to within 5/52 inch of the polished surface by drilling
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holes in the back of the plate and gluing the thermocouples with
epoxy thermosetting resin, Slots were drilled on the back of the
plates to provide space for the wires to be taken out of the bottom
of the test section. These wires were connected to a system of
rotating switches so that a single therﬁocouple could be read at
one time, ‘The thérmocouples were made from number 24 gauge copper-
constantan wire, A Leeds aﬁd Northrup Model 8662 Portable Precision
Potentiometer was used to read the indicated output voltage., Distilled
ice water was used for fhe reference junction. The thermocouple wire
has been calibrated inéfhe‘laboratory at the steam and tin pointéa

AyHoneywell Visicerder Model 1012 was used to monitor
'iﬁstantaneous temperature excursions. In the range of experimental
values of amplitude and frequency it was found that the surface temper-
ature oscillated only very sligﬁtly, This corroborates what R, J,
Schoenhals (A-Bh) assumed in constructing the apparatus. This is due
to .the large thermal inertis and 16w thermal resistance of the aluminum
plates and the relatively low heat transfer coefficient at the surface,

The power input to the heater between the two aluminum plates
is controlled by a variac, The current and voltage drop are measured.
to<obtain the power supplied, as shown in Figure 4-41 The four guard
heaters are also controlled by variacs, Calibration of the ammeter
and voltmeter was done in the calibration laboratory of’thé Electrical
Engineering Department to an accuracy of O,l%a

The galvanometer circuit for monitoring the guard heater

elements is shown in Figure 4-7, A thermocouple was imbedded in each
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magnesium strip, - These four thermocouples and four thermocouples
from the aluminum plates were used to form four differential thermo-
couples, By closing one knife switch at a time the deflection of a
sensitive galvanometer indicates whether the strip or the plate is at
the higher temperature, If a null is indicated both have equal
temperature, With this monitoring system and the ten guard heaters
heat loss at the edges was largely eliminated. Two thermocouples
were imbedded in each of two stainless steel support rods, as shown
in Figure 4-7, These thermocouples were used to determine the
magnitude of the energy lost by conduction down the rods.

In Figures 4-8 and 4-9 are shown some of the instruments
used during operation,

Frequency of oscillation is controlled by setting the desired
value on the dial, and was calibrated by using a General Ratio Type
631-B strobotac, The oscillation amplitude was measured in two ways,
One means made use of a Schaevitz Linear Differential Transformer
Model 100-AS-IL. The transformer was placed on a platform which has a
stationary mounting and a fine adjustment which allows a sliding member
to be controlled by a threaded shaft. The movable core of the trans-
former system was attached to the plate by means of a brass rod, This
can be seen in Figure 4-10, The differential transformer is composed
of a primary coil and two secondary coils spaced on a hollow ceramic
cylinder. The movable core moves axially within the cylinder in response
to a mechanical input. When the moveble core is in the center or null

position, the voltage induced in the secondary coils will be equal.



Figure 4-8. View of Some of the Instruments.

Figure 4-9. View of Some of the Instruments.
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If the core is moved away from null position a net AC output voltage
will be produced with the amplitude proportional to the displacement
from null, For the differential transformer it is known that the
output voltage is a highly linear function of core displacement. This
was experimentally verified, A Hewlett-Packard Model 200 CD Audio
Oscillator provided 10 Kilocycles carrier frequency for input to the
transformer. The output was displayed on a Dumont Type 304-H
Oscilloscope. The linearity of this oscilloscope was determined by
using a General Radio type 1800-A electron-tube voltmeter and variac,

To measure amplitude it is necessary to find the null position
by adjusting the position of the transformer, This would be seen as a
thin line on the oscilloscope. For a specific amplitude a feeler gage
of this thickness is used with the fine adjustment to displace the
transformer and thereby cuase a blurred signal in the form of a rectangle
on the oscilloscope screen, as shown in Figure 4-11, 1In this way a specific
amplitude corresponds to apredetermined displacement on the oscilloscope.
During vibration the output voltage from the transformer is varied so
that the modulation envelope accurately portrays the waveform frequency
and amplitude of the applied vibration., The carrier frequency in all
cases was maintained at least 50 times the highest freguency measured.
When motion of the core occurs equally on both sides of null position
of the transformer the modulated output voltage appears as the envelope
of a sine. This can be seen in Figure 4-12, The amplitude of vibration
is the calibrated distance on the oscilloscope screen, The other method

for determining amplitude was to accurately measure two converging lines
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Figure 4-12, Output Signal of the Linear Differential Transformer Under
Vibratory Conditions as Displayed on an Oscilloscope.

Figure 4-11. Output Signal of the Linear Differential Transformer with the
Core Displaced from the Null Position as Displayed on an
Oscilloscope,
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shown in Figure ¥-5 on the side plate and during vibration the image
of where the lines crossed indicated amplitude,

One of the heat losses in this experimental apparatus is
that of radiation., To evaluate the emissivity of the polished aluminum
plate in order to find the heat loss by radiation a type 810C69 Cenco
Thermopile was used. A black body constructed from 1/8 inch thick
copper plate formed into a cone of square cross-sections, was used
to calibrate the thermopile, Soldered onto this were additional
copper plates 1/4 of an inch thick. The open end of the black body
was 6 inches square and the included angle was approximately 12 degrees.
The inside of this cone was blackened with carbon deposit from an
acetylene torch., This type of geometry at the opening simulates a
black body at the inside temperature, The cone was insulated with
a layer of asbestos paper, High resistance wire was wound around
the cone on this paper and was connected to a 110 VAC variac for
heater control. Heavy fiberglas surrounded the cone and its heating
element, A Leeds and Northrup Model 8662 portable Precision Potentio-
meter was used to read the indicated output voltage of the thermopile,
A Honeywell Visicorder Model 1012 was used to find the minimum response
time of the thermopile to steady-state values. The black body can be
seen in Figure k4-1,

By experimentation the maximum distance was found where the
thermopile could be placed away from the black body and the aluminum
plate., This distance occurred when the solid angle viewed by the

thermopile was entirely subtended by the radiating surface of the plate.
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A maximum distance was determined so that the possibility of convection
currents entering the thermopile was elminated. To determine emissivity
the indicated output voltages of the thermopile for that of the plate
divided by that of wne piack body at the same temperatures were
evaluated. The emissivity was found to be essentially constant, 0.065
for a range of temperatures from 80°. to 210°F.

The following procedure was used during the course of the
experiments. A specified voltage and amperes were supplied to the
£est section by adjusting the variac. A period of usually three or
four hours was required to establish steady-state, non-oscillating
conditions. After steady-state conditions were attained the desired
frequency was set on the control unit. Next, the differential trans-
former was calibrated and the test section was vibrated at the desired
amplitude. During a period of from one to two hours the variacs were
adjusted periodically until a steady-state escillatory condition was
obtained. This condition was determined to be steady-state when the
temperature of the thermocouples in the plates were constant and equal
and the differential thermocouples of the guard heaters and the plates
were null. At that.time voltage, ampere, four temperatures of the
support rods, temperatures of the-plate and ambient temperature were
recorded. Periodically during operation a Model 11-A TeleviSo Vibration
Meter with a manual vibration pickup was used to check the uniformity of
vibration of the test plate.

The smoke studies made use of a smoke generator. A schematic

diagram of the smoke generator is shown in Figure 4-~13., The smoke from



-16e-

LOW PRESSURE

COMPRESSED AIR
REGULATING
VALVE
m
1 OlL SOAKED CIGARS
\./
[S<}—=— T0 INJECTORS
STEEL WOOL
FILTER ><}—= 10 ExHausT

———ICE BATH

WATER—
FILTER

SMOKE GENERATOR
PAASAA PP s ettt s

Figure 14-13. Sketch of the Smoke Generator.



-163-

cigars impregnated with oil was used as the indicating medium. The
smoke was generated by blowing compressed air down over two cigars

in a steel tube. Each cigar was loaded with approximately 6 cc of

light lubrication oil. The smoke from the cigars was then bubbled
through about 2 inches of water in the bottom of a 1000 cc Erleyemeyer
Flask. This flask was in an ice bath in order to settle out some. of

the unburned oil and tar from the cigars. The'smoke then filtered

out through a steel wool filter to go to the injecting nozzles

located on the test section, as shown in Figure L-1L4. The injectors
consisted of ten small nozzles of approximately 0.(B2inches dismeter,
attached to the plate by clamps. The edges of the nozzles were adjusted
to coincide with the beginning of the fhermal boundary layer. The smoke
was adjusted so that its velocity was as low as possible and yet great
enough so that the smoke filaments could be visualized.

The experimental procedure consisted of permitting the plate
to achieve different temperatures for different power inputs. Once the
plate temperature had stabilized the smoke generator was started. An
optimum smoke velocity was found after ignition of the cigars by adjust~
ing the compressed éir and the various valves, to make the smoke visual
to an observer looking transversely at the injectors through a sight
glass which was inserted into one of the side plates. An observer,
by sitting next to the test section and looking through the sight glass,
observed changes in the flow as frequency and amplitude were varied.
This was done to observe the transitional phenomena. Visualization

was made possible by employing a General Radio Type 631-B Strobotac.
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Figure 4-1L4, View of the Smoke Injections.
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The strobotac, when its frequency matched that of the plate, froze
the transverse motion. When the strobotac was not employed only a

fuzzy image was observed due to double images.

Discussion of Resultsu

As mentioned previously the undesired. losses in the system
are by conduction and radiation. The method used for correlating the
data is by accounting for four heat transfer quantities, natural
convection, radiation, conduction, and the heat transferred due to
the vibration. For steady-state conditions and no vibrations this

would be

%To - %Co 7 %Lo (k-1)

and for steady-state conditions under the effect of vibration this would

be

b7= FtF % e

Non-vibrational conditions have a temperature difference which is called
A@O and the temperature difference under vibratory condition is A9. The
emissivity of the aluminum plates was 0.065 for the range of experimental

temperatures used. The heat lost by the plates due to radiation is
Q.= E€TATPI-Ta7) (43)

For purposes of ‘convenience in reducing -the data a coefficient of- heat

transfer is defined as
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Br = hg LG (51

and therefore

}’)R _ ET(Tp%-Ta%)
(T/@ ’“‘7;9)

For conduction losses of the support rods attention is focused on Figure

(4-5)

L4-15. Points 1 and 2 are where thermocouples are located on the support
rods. This can be considered to be a: fin problem with known boundary

conditions at two ends. The first law of thermodynamics yields

A2 A6k _ 2 pl, =0 (1-6)
X o2 R R
R

where

_ 4hs i
Mr= Sk, (4-7)

The heat lost at the base of one of the support rods is found by the

first derivative of the temperature distribution as

= - E_ ;
(%/c),m,:g s (0/ XR /Yz=0 (M)

For convenience in reducing experimental data a heat transfer coefficient

is defined as

Gi = hx ALE i

where for all rods

) = 27D Visknp ! f (26,), cosh maL - (264), |
AV DN [ simhmpL

(4-10)
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An assumption maede here is that hy is the same under vibratory and non-
vibratory conditions. There is no potential flow along the length of
the rod and therefore there would be: no appreciable change in the time-
averaged heat transfer coefficient. A cylinder vibrating along. its
axis will not have a pressure distribution due to potential flow.
This type of problem would be similar to that in Chapter IIT where
no significant change in heat transfer was found.
Therefore,

hy = hethi (4-11)

and, for éteady-state

)’)c -~ Z%é - }’71_ (4-12)

A steady-state correlation was experimentally determined, as
he = 0.365(26) % (113)
Schoenhals (A-3h) found for this case and experimental apparatus a value
of 0.4 instead of 0.385. The value of 0.385 is slightly higher than
Equation (7-4B) of McAdams, (C-5). A plot of this correlation and the
experimental points are shown in Figure L-16.

The power input is the same for vibratory and non-vibratory

conditions, therefore

(%607”')1.0>A50 = (hc 7"}')/_%)_)\/>A6 (L-1L4)

realizing

6 v
11;___ (A 2 )% (k-15)
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~—~—

(4-16)

_b_\{_:ﬂéﬁ,e:)%__/ .}._&é hio [Abe)_
)k. he L 4O

The ratio hL/hc was found to have a value approximately constant at O.11.
The ratio hLo/hc was approximately equal to 1. The advantage of reducing
the data in this way is that it is dependent primarily on temperature
differences only. Temperature can be measured accurately and temperature
difference is a very convenient way of determining the heat transfer
coefficient quickly and accurately.

Schoenhels, (A-3L4) made hot wire measurements of transverse
vibration of the test section used in this experiment for adiabatic con-
ditions. His potential flow measurements are reproduced in Figures L-17
and 4-18. TFor the potential flow measurementé fair agreement was found
between theory and experiment, as can be seen. The discrepancies may be,
due to four possible causes. First, theory assumes an infinitely thin
plate which is the degenerate case of an ellipse while the plate is
actually 3/L4 of an inch thick. Second, viscous effects are ignored
at the edges. Third, the assumption of two dimensional flow may not
hold at the edges, and fourth, the probe and mounting structure have
some effect on the flow. It is believed that in a vibrating plate
such as this there probably exists small vortices which may influence
hot wire readings. The experimental values tend to be lower than that
of theory for higher values of X/C. But if vortices were large it would
seem impossible to get the results that Schoenhals (A-34) obtained.

Standing vortices may exist at the edge of the plate but apparently
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are insignificant. The agreement of theory and experiment can be
described as good for most values of X/C. The potential flow and
its agreement with theory of Schoenhal (A-3L) were carefully con-
sidered since this potential flow is identical to that used in
Chapter II.

Oscillating velocities in the boundary layer were also
obtained by Schoenhals using a hot wire anemometer for adiabatic
conditions. The experimental values agree very well with that of
his theory, as shown in Figures 4-19 and 4-20. The Ny in these
figures is dimensionless, nl =>/y-77-7\; The Iu[/vo, the ordinate of
Figures 4-19 and L-20 is the absolute magnitude of the periodic
velocity for an adiabatic finite plate. The significance is that
the oscillating potential flow and the oscillating boundary-layer
flow of Schoenhals experiments agree with his theory for an ogcillatm
ing adiabatic finite plate. Also of significance is that this potential
flow is identical to the potential flow ofbthe case tréated here, Chapter
II, of an oscillating finite plate with heat transfer.

It is well known that one of the reasons for the neglect of
experimental free convection boundary layer transitional data is that it
is virtually impossible to probe and measure the flow for various
quantities of interest. Schoenhals (A-34) was able to probe the oscillat-
ing velocity and oscillating potential flow as related previously, but
this was without heat flow. The analysis of Chapter II is directed to
a problem in which the main consideration is free convection heat transfer

with first and second order perturbations of velocity and temperature
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having been determined. Neglecting the free convection velocities

and temperatures for the moment, the problem of trying to measure an

oscillating temperature and an oscillating velocity with a hot wire

anemometer will ‘be examined. A hot-wire depends upon the heat loss

between itself and the environment. The rate of heat loss depends

upon geometry, flow conditions and physical properties. Schoenhals

(A-3L4) was able to make measurements because he was dealing with an

isothermal system which allowed calibrations to be made. In this

case there are both varying and steady velocities and temperatures.

The presence of a hot-wire vibrating back and forth in its own path

in the boundary layer may very well affect the results. For these

reasons a hot-wire measurement was not attempted. Two possible methods

left to investigate the boundary layer are smoke and an interferometer.
The heat transfer results are plotted as Nusselt number versus

a vibrational Reynolds nﬁmber with the Grashof-Prandtl number product

as a parameter. These results are given in Figure M-El.' A critical

vibration Reynolds number was observed. Up to a certain critical

value of this Reynolds number the data follow the theoretical results

of Chapter II, i.e., an almost negligible influence but a definite

decrease in the heat transfer rate with vibration. With the limits

of the perturbation theory used, the theory is confirmed by these

results. The conclusion, therefore, from analytical and éxperimental

results is that the effect. of oscillations on laminar free convection

boundary layer heat transfer is negligible if the boundary layer remains

laminar.
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However, -from an inspection of the heat transfer data in
Figure 4-21 it is apparent that vibrations and flow oscillations do
cause a significant ihcrease in the steady rate of heat transfer,
Since the theory assuming laminar flow conditions does not'disclose
this behavior and, in fact, even predicts a decrease in the heat trans-
fer rate, it is evident that a completely new influence is being intro-
duced by the oscillating flow, It seems probable that this new influence
is in the form of a disturbance in the flow which causes a
transition from a laminar to a turbulent condition in the boundary layer.
That such is likely the case i1s reasonable from the standpoint of the
stability of boundary layer flow where it is known that disturbances
can be amplified in an existing.laminar boundary causing it to become
turbulent, Furthermore, it can be expected that such a condition of
transition would depend on the mechanics of the laminar force convec-
tion boundary layer; namely, its state of stability as indicated by
the Grashof»number or Grashof-Prandtl number product in a manner similar
to that describing the stability of a forced convection laminar boundary
layer in terms of - its Reynolds number,

This threshold condition was found for the transition of
the free convection laminar boundary layer to a turbulent boundary
layer and is described in terms of a critical vibratory Reynolds
number dependent on the Grashof-Prandtl number of the laminar boundary
layer., The eXperimehtal résults of this transition phenomenon are
given in Figures 4-22, 423 and 4-24, The transition region is very

difficult to ascertain from heat transfer data alone, At this point in
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Figure 4-22. Experimental Smoke Study Data for Determining the Condition
of Transition.
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Figure 4-23. Experimental Smoke Study Data for Determining the Condition
of Transition.
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the investigation another experimental method of attack was taken.

Smoke studies were used to determine the transition region
of laminar flow to turbulence. The smoke filaments were observed.and
when under different values of amplitude and frequency the pattgrn
in the boundary lajyer changed, the pertinent data were taken. The
velocity of the smoke was attempted to be excluded as a factor in
this experiment by taking each set of readings'at a low smoke
velocity. The condition of change in the smoke pattern seems to
be the onset of turbulence. This condition occurred for different
values of amplitude, frequency and AT (Grashof number).

The data correlate with GrPr product versus aa? not as aw
as appears to be indicated .from the heat transfer data. bThis can be
interpreted to mean that the instability of a laminar free convection
boundary layer is dependent upon, for mechanically induced vibrations,
an acceleration of the boundary layer or a disturbing force per pound-
mass of boundary layer fluid. Considering again the governing differ-
ential Equation (2-27) for x-momentum of Chepter II and again dis-
regarding thermal Qariations of density as being negligible we see

that
Lawrpsmut +(4%)%p 9P costuz
L L oX
are the terms due to the effects of oseillation. The first term of
the above has the proper terms to cause the transition and most likely
causes the transition to occur. The data also show that for higher

GrPr products the flow is less stable to the diSturbances. This ties

in with the well-known experimental fact that the higher the GrPr
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product the free convection flow is less stable and less disturbance
would be required to cause transitibna ‘This experimental fact also
suggests that if the non-oscillatory free convection flow were iditially
turbulent due to large GrPr product then oscillation would. show an
immediate effect. Unfortunately the test apparatus could not create
turbulence, without burning out the test section, to experimentally
prove this one point. It should be noted here that air was the only
fluid used and the Prandtl number in the GrPr product is not -data.
The equality of the Grashof number establishes dynamic similarity for _
different flows. Equality of Grashof and Prandtl numbers establish
similarity for velocity and temperature distfibutions of "free convec~
tion flow for geometrically similar bodies and therefore the Nusselt
number., On this basis it was found desirable to use GrPr product in
reporting the data.

Figures 4-25 through 4-32 are photographs of the smoke studies.
These photographs are representative of what was seen without a camera
but with the aid ot a strobatac to freeze the motion. . These pictures
were taken through the sight window in the side plate, shown in Figure
(hm§} . Two spotlights wére focused on the smoke. One lignt was
focused at a small angle from the line of sight of the camera. The
cther light was placed above the smoke at a slight angle to a line
parailei to the smoke injectors pointing toward the camera. This
lighting arrangement was found to yield the best pictures. A L x 5
Crown Graphic Graflex QOptor camera was used with a setting of l/MQQ

second at f/4.7. The film was Polaroid Polapan 200 type 52.
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These photographs for different values of the pertinent
parameters, listed on the figures, have also beenvreiated to Figures
b-p1, L4-22, and 4-24. The conditions corresponding to the photographs
are shown on these‘figures, The photographs, correlation:data and’
this discussion attempt to disclose the source and mechanics of
propagation of the vibratory disturbance. The Significance of
these results is that they definitely show the gross effect of
a transitional phenomenon.

The method for obtaining data for Figures 4-22, L-23 and
L4-2L was to vary both amplitude and frequency for a given heater
input to the plate. The inner smoke filaments were observed Closelya
When the inner filaments, approximately in the boundary layer, began
to mix with each other. This was considered to be the start of trans-
ition. It was observed from the photographs that a disturbance originated
outside the boundary layer in the potential flow region and propagated in
toward the plate causing transition in the boundary léyer° Also it was
observed that this transition process depended on the Grashof-Prandtl
number which is a product measure of the stability of the free convection
flow. The criticél condition was always found to occur.at the top of the
plate where the flow stability may be expected to be less.

Figures L4-26 through 4-31 are not to be interpreted as stream-
lines, pathlines or streak lines. What is seen in these photographs is
a rather complicated phenomenon. In these photographs the smoke has an
upward velocity which is superimposed on the velocity of the fluid.

Ouﬁéide'the boundaryFléyer the effects of the poténtial flow can be seen.



_189_

The potential flow is oscillating with time at different angles,
depending on location, with respect to the velocity of the flow.
A smoke particle outside the boundary layer moving upward, due to
its initial velocity is subjected to accelerations and decelerations
from the potential flow thereby causing the smoke patterns. The flow
in the boundary layer is predominately oscillating up and down and
causes patterns in the boundary-layer to be different from those
outside of the boundary-layer in the potential flow. This differencé
can be seen in the photographs. The flow was considered to be laminar
as long as the smoke pattern in the boundary-layer was regular. When
the pattern in the boundary-layer became irregular and smoke filaments
mixed with each other, this condition was considered to be the critical
condition. As the photographs indicate the disturbance
originated outside the bounary-layer and propagated inwards causing
a transional phenomenon to occur..:.

| The laminar boundary layer can be distinguished in Figures
4-25, 4-26, L4-27, L4-28 and L4-32 because the patterns are still visible.
Figure 4-29 represents what‘can be described as the beginning of this
critical condition.’ The finer filaments of smoke are seen to start
mixing with each other and the smoke outside the boundary-layer is
irregular. Figures L4-30 and 4-31 are definitely in the turbulent
region. Figure 4-30 indicates a large degree of turbulence outside
the boundary-layer. The inner smoke‘filaments appear very turbulent.
Figure L-31 represents a high degree of turbulence and indicates

apparently a churning action.
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In the experimental work performed in this study a critical condi-
tion of transition was found. A correlation was experimentally found to
determine the transition region from a laminar flow to what appears to be a
turbulent flow. This condition was determinedin two ways, first, by being
indicated in the heat transfer experimental results and secondly, by the -
smoke studies. The transition region was found to be a function of the
stability of the free convection boundary layer and a disturbance which
propagates inward from the potential flow.

It is of value at this point in this study to investigate some

other experimental results from the literature.

Discussion of Other Experimental Results

Kestin, Maeder and Sogin, reference (A-4k4) discussed the influence
of turbulence on the heat transfer to cylinders near the stagnation point.
They observed from experiment that when the boundary layer is laminar near
the forward stagnation point there are large increases in heat transfer rate
when the free stream velocity is large and when there exists a large down-
stream gradient in the amplitude of oscillation. A net decrease in the heat
transfer rate for this type of oscillating system was predict by Kestin, Maeder
and Wang, reference (A-17). 1In view of these conflicting results it is appar-
ent that their theoretical model imperfectly represents the physical system,
Two possibilities are suggested. First, the system of equations solved (A-17)
does not properly represent the physical phenomena in the stagnation region
in that normal-direction momentum effects are ignored. Second, turbulence
may be encountered in the boundary layer which is not accounted for in the

theoretical description.
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Shine (A-35) used an Zehnder-Mach interferometer to study
the boundary layer on a vertical, heated plate as it vibrates, His
results showed that as the product of amplitude times frequency
called, intensity of vibration, is increased, the heat transfer
coefficient remains unchanged until a critical intensity of 0,52 ft/sec
is reached, He found that coincident with the occurrence of a change
in heat transfer coefficient there was an inception of waviness in the
boundary layer. Also he found that this waviness was intensified by
increases in vibration intensity. He pointed out that this waviness
signifies a flow trensition away from the laminar flow and presented
this as a mechanism to explain the change in heat transfer rate. He
- presented sbme of his data as the ratio of the-temperature differences
between the plate and the ambient air for the vibrating conditions and
a stationary plate condition, This is shown in Figure 4-33, In
Figure 4-34 taken from Shine (A-35), are shown some typical photographs
of waves in the fringes, The waviness was found to be increased regard-
less whether frequency or amplitude was increased as long as the
intensity of vibration exceeded the critical point. The top two
photographs‘have an intensity of 0 and .88 respectively, The remaining
four interferograms have an intensity greater than critical and a wavi-
ness can easily be seen, Also the degree of waviness can be seen as
the intensity is increased. In this way Shine predicted the critical
intensity value, Shine did not take into account the conduction and
radiation losses of thé system, Also the test sections used were flat
plates without restrictions to prevent three dimensional effects, This

is different, of course, from the two dimensional case considered in the
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Figure 4-3L4, Photographs Showing Waves in the Fringes
Taken from Shine (A-35).
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experiment. Another difference is that his plate was completely
heated while the test apparatus of this study was heated only in
the middle, Despite the differences these results support the
findings of the previous section in that a critical condition
occurs.

Some other pertinent experimental cases are those of
round cylinders undergoing both mechanical and acoustical vibration.
Both Westervelt (B-25) and Lighthill (A-20) pointed out that the
physical mechanism of interaction between free-convection from a
heated horizontal cylinder and horizontal vibration is essentially
the same, whether the vibrations are acoustically or mechanically
induced, This was demonstrated by Fand and Peebles (A-9). They
compared their findings, which treated horizontal vibration, to that
of Fand and Kaye (B-4) which treated the influence of sound. Their
results can be seen in Figure L4-35, They found a critical intensity
to be approximately 0.36 ft/sec, ascertained from the heat transfer
data. They tried smoke and photographic procedures, but found the
photographs not to be of publishable quality. As can be seen in
their results, Figure 4-35, at 0.7 ft/sec the data makes a bend.
Above this value Fand and Kaye have made the following empirical

correlation equation.

Vz
}')V:O.7ZZ,[A7—(Q W)z/:j 5 (k-17)

The factor F is a geometrical weighing factor defined in reference (B-k4),
They found that a flow visualization study indicated the observed increases

in the heat transfer coefficient to be that of vibrationally induced
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— . == HORIZONTAL CYLINDER SUBJECTED —
| TO HORIZONTAL ACOUSTICAL _
VIBRATIONS: Dg = 3/4",£=1496cps

[ (Ref, B-k) T
L -— ]
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Figure 4-35, Comparison of Heat Transfer Data at Constant Difference

in Temperature, For a Horizontal Heated Cylinder Sub-
Jected to Mechanical and Acoustical Vibrations in Air
Taken from Fand and Peebles (A-9).
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turbulence. They pointed out that this turbulent type of boundary-
layer flow differed radically from the vortex type of flow which
develops near a horizontal cylinder in the presence of acoustically
induced transverse vibrations. This vortex type of flow has been
called thermoacoustic streaming, Two photographs of the acoustic
streaming, from Fand and Kaye (B-U4), are shown in Figures 4-36.

These photographs were taken by employing smoke as the indicatiﬁé
medium. The smoke studies in this present work appeér not to be that
of a vortex type of flow.

The results of Martinelli and Boelter (A-22) are shown in
Figure 4-37 for vertical vibrations of a horizontal cylinder in water,
As can be seen in their results, the heat transfer coefficient experi-
enced a critical condition., It should be noted however, that Boelter
reported that later measurements did not agree with the original
measurements,

It is appropriate at this point in the discussion to mention
briefly some work concerning boundary layer oscillations because of
their relevance to the problem of transition from laminar to turbulent
flow.,

 Eckert and Soehngen (A-7) conducted an experimental study of
the stabilityréf laminar flow in free convection by using interference
photographs, They found: thet the instability region, the region where
small oscillations do(notfdampsout,,began at a Grashof number of 4 x 108.
Also they found that the velocity of the disturbance was approximately

T3 per cent of the maximum flow velocity in the boundary layer at the
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Free Convection: At = 200 °F

Thermoacoustic Streaming: o
£ = 1100 cps, SPL = 148 db, At = 200 °F

Figure 436, Photogrepsh Representing Acoustic Streeming Teken
from Fend and Kaye (B-k4),
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point of observation which was in the range of the value of the
velocity at the point of inflection which is 0,683 Umax“ They
concluded that the boundary layer filtered out fluctuations of
certain critical frequencies and émplified these until turbulent
waves were produced, |

Birch (A-2) studied critical boundary layer frequency in
more detail by introducing controlled disturbances into the flow with
an electrically pulsed wire. Byuilizing an interferometer he deter-
mined wave lengths and amplitudes at the outer edges of the thermal
boundary layer, He found that for certain disturbance frequencies
higher amplitude oscillations were produced than for other disturbance
frequencies, Because of this the conclusion was that the boundary
layer absorbed energy more readily at these frequencies, Birch (A-2)

made the following correlations

E-F: / ) (GRX Pl’()o. °8 (k-18)

and
e)\ = /BZ(GVR)(PR)OOQ/ (k-19)

where f is the disturbance frequency expressed in cycles per second and
A is the wave length expressed in inches., Since these frequencies and
wave lengths represented some sort of resonance phenomena they were
called "natural"values. It should be noted that f is not the frequency
of the boundary layer oscillation but rather the pulse frequency. The
boundary layer may vary well and does oscillate at a frequency different

from that of the pulse frequency.
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Holman, J. P., Gartrell, H. E., and Soehngen (B-7) investi-
gated the physical processes involved in the propagation of oscilla-
tions in free convection boundary layers. A Zehnder Mach interferome-
ter and motion picture camera were used to witness various boundary
layer phenomena on a vertical flat isothermal plate; Disturbances were
created in the boundary layer by introducing a fine wire into the bound-
ary layer at various distances from the heated surface. The wire was
pulsed with a square-wave electrical signal which heated it periodi-
cally and created pulses in the boundary layer. The pulse energy was,
in general, of the order of one percent of the boundary layer energy.

The pulse energy which is dissipated from the small heated wire creates

a decrease in the air density of a small cylindrical volume around the
wire so that through buoyancy forces an additional local velocity compo=
nent is sﬁperimposed on the free convection profile. As this energy
pulse moves up its energy is diffused throughout the boundary layer until
it has finally imposed a velocity pulse on the whole field due to the
transient heating process. This pulsing process 1is repeated periodically
and waves advance up the plate in a complicated fashion. These waves be=
come unstable and break up into more waves at higher frequencies. This
instability occurs in a region of +the plate which is characterized by

a certain local Grashof number.

These authors also measured wave length, wave speed, and
wave amplitude in plane free convection as functions of the distances
from the leading edge and plate surface. Use was made of a wave energy

parameter. The wave energy flux was written as

3
Boundary layer wave energy ~_ :%: /4 L¢4 572 (4-20)
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where a 1s the amplitude of the wave and w; is the boundary layer
frequency. They chose a wave energy parameter which

represents the wave energy flux to be

A3 2 (4-21)

since the absolute temperature varied only by eight percent. It was
found that wave energy was zero at the wall and increased towards the
outer layers of the boundary as the boundary layer became progressively
thicker. It was postulated that when the wave energy in the outer por=
tion of the boundary layer is large compared to that of the region near
‘the wall then transition turbulence begins. Experiments furnished some
confirmation of this postulate. It was also found that there is disturb-
ance frequency which will produce a maximum wave amplitude.

The above papers were investigated because of the existence of
a critical condition for laminar free convection flow. Since the Grashof
number is a type of Reynolds number and since the Prandtl number affects
the temperature field and thereby the Grashof number it was logical to
suspect that the critical condition was dependent in some way on both of
these numbers. Physically, the stability of a laminar free convection
flow decreases for increasing Grashof number. If the Grashof number is
large enough, of course, the flow i1s turbulent and small oscillations or
disturbances would immediately cause an increase in the heat transfer co-
efficient. Therefore it was postulated that for a constant Gr Pr product
the critical intensity is constant and for increasing values of Gr Pr

the critical intensity decreases and approaches zero when Gr Pr is
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large enough for the flow to be turbulent to begin with without disturb--
ance or oscillations. The data of Peebles and Fand (A-9) and Fand and

Kaye (A-8), in Figure L-35, seem to show this effect.



CHAPTER V

SUMMARY OF RESULTS

In Chapter II the system of partial differential equations
governing fluid motion and heat transfer were solved by a perturbation
technique for the case of a finite vertical flat plate in free convec-
tion oscillating normal to its own plane. The behavior of the boundary
layer due to oscillations of the finite plate were investigated. Two
influences were found which alter the boundary layer flow. These
influences are first, the potential flow outside the boundary layer
and second, the existence of an inertial force within the boundary layer.
The influence of the potential flow was found to predominate over the
influence of the inertial force. The problem treated is for large Grashof
numbers (boundary layer type of flow) subjected to the perturbing effect
of potential flow for low vibrational amplitude and high frequency. The
perturbation technique was used up to the second order solution in order
to show time-independent effects. First order, periodic, and second order,
time-independent, solutions were found for velocity, temperature, shear
stress and Nusselt number. Calculated results are given for Prandtl
numbers of 0.72 and 10." The Nusselt number was found to be decreased
slightly for both Prandtl numbers. This theoretical result was confirmed
in the experimental findings of Chapter IV.

The work of Reference (A-33) was extended in Chapter III
to show time-independent effects resulting from transverse oscilla-
tions of an infinite, vertical plate in free convection. The‘alteration

of the boundary layer is due to an oscillating pressure gradient which

-20%-
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arises from a coupling of the thermal variations of density with the
acceleration (inertial force) of the oscillatory motion. A perturbation
technique due to Reference (A-33) was used and extended by finding the
second order solutions. A different method from that of Reference (A-33)
was used in solving the first order solution in order to facilitate the
second order solutions. Both first order solutions were found to agree
within their range of applicability. First order and second order solu=-
tion were found for velocity, temperature, shear stress and Nusselt num-
ber. Calculated results are given for Prandtl numbers of 0.72 and 10.
The time-independent Nusselt number was found to decrease while the shear
stress was found to increase under the influence of oscillation.

In both Chapters II and III it was shown that vibrations and
flow oscillations are capable of causing permanent (time-independent) al-
terations in both the velocity and temperature profiles in the laminar
boundary layer of systems having pressure gradients in the flow direction.
This provides a secondary, time-independent flow, and permanently alters
the wall shear stress and heat transfer rate. These changes are small
and are detected from the analysis only when solutions are obtained to
at least the second order approximation beyond the solution for the steady
free convection problem. Furthermore, while the alteration in the wall
shear stress is such as to increase its value, the opposite effect is
both predicted and observed for the heat transfer rate under laminar
flow conditions. This emphasizes an important character of this new
cléss of phenomena, namely, that the traditional heat transfer - momentum
transfer analogy is no longer a useful guide, at least for oscillating

systems in laminar flow over flat surfaces. Similar phenomena associated
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with curved surfaces, especially at stagnation points, may be quite
different owing the necessity to consider a simultaneous influence of
momentum effects in a direction normal to the surface., This is
suggested by the experiments of Kestin, et al. (A-kLkL),

Experimental findings are reported in Chapter IV. The heat
transfer rate from a finite plate was found to decrease a small but
definite amount due to being oscillated normal to its own plane for
small values of a vibrational Reynolds number. This confirms the
theoretical results of Chapter II. However, as the Reynolds number
increased, sharp increases in the heat transfer rate were found. It
would appear that a critical condition such as this represents transi-
tion from a laminar to a turbulent flow. Smoke studies indicate this
transition is occurring. This critical condition was found for the
transition of the free convection laminar boundary layer to a turbulent
boundary layer and is described in terms of a critical vibratory
Reynolds number dependent on the Grashof-Prandtl number of the laminar

boundary layer,
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APPENDIX I

 COMPUTFR EVALUATION METHOD

The method of two of the programs are presented herein by
which solutions to the two analytical cases of Chapters II and III were
numerically evslusted. This method was found to be lengthy due to the
algebra involved but very advantageous from an accuracy of results
standpoint. It should be noted that the similarity of this method for
the analytical cases lies in the general flow of the programming and
not in the detailed algebra of each specific case. The programs were
written in MAD lLanguage, Michigan Algorithm Developmenﬁ; for the IBM
709 digital computer at the Univefsity of Michigan Cgmputing Center.

Each analytical case was divided into apﬁroximately five
programs which were dependent, except for the first program, on the
preceeding program. The punched output and printed results from each
program were checked for errors and discrepancies. The punched output
were then entered as data in the subsequent progfams. To make these
points clear two of the smaller programs are included in this section.
They come from Chapter III. The following symbols were used.

A(0) = ¢(0)

A(l) = K

A(2) = K,

A(3) =

A(l)

1
b
—
O
~

i

A(5) -

5!
£

~21lh-
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A(6) = X
B(I) = 7
X(l) = RealVVi

S
—
(M)
S~—
u
g
&
<
o

U&l) = Real (?—l-)

U(2) = Real (_2.__)
. 2

5 2V,
V(1) = Imag. (éi—)
V(2) = Tnag (?.z_%

For example the first order velocity is

— K -/ "ﬁﬁ
U= V,fz ‘ W{— Vi e V§7?1)7‘+ V&,17 - q]

where

) _ 20k * == S0k
v “@Akaw 2] @RI 0812 T oy imtp]’
The program called part 1 on page 217 is evaluated by the computer

first. The punched output of part 1 is then entered as data into prog-
ram ANA 1A, The printed results of ANA 1A are first order velocity
and temperature versus n for each specific value of Prandtl number, X
and frequency.

For higher values of Vn the derivative with respect to X became

very difficult because of the large amount of algebra involved. These
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Vn were evaluated by taking finite difference derivatives in the program

* Llcﬂﬁ))ﬁjug&"'ZAQ9W4>)r0

AX

To make certain that 4X was small enough for each case, different values

Utm) =

of XX were evaluated and compared to the exact derivative. Four place

accuracy was the criteria.
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VICTOR D¢ BLANKENSHIP S141F 003 015 200
VICTOR Do BLANKENSHIP S141F 003 015 200
$ PRINT OBJECT» PUNCH OBJE CT PART1000

$ COMPILE MADs EXECUTEs DUMP

START

DIMENSION A{100),X({100)9Y(100)+2(100)

READ DATA

Y{0)=4e*A(6)

Y(1)=SQRT«(Y(0)}

Y{2)=SQRTe(Y{1}))

Y{3)=A(1)*A(1)}

Y(4)=Y(3)%Y(3)

Y{5)=Y(3)*Y(4)

Y(6)=Y(4)+A(5)®A(5)*Y{0)

Y{T)=Y(6)%Y(6)
X{1)=(=3e%A(0)*Y(5)+ALO0) XY (3)*A(S)¥A(SI¥Y{O)) /(Y2 1Y (6) %Y (4}
1}

Z{1)= (=5, %A(0)RA(S)¥Y(2)*Y(4)~A(0)*Y(2) %Y (1) *Y{]1)*A(5)
1#A{5)#A(5))/LY(6)*Y(6))
X{2)==A(0)®A(1)%Y(3)/(Y(2)%Y(6))
Z(2)==A(0)*A(1)*Y[2)*A(5)/Y(6)
Y{8)=Y(5)=3s%Y{3)%A(5)*A(5)%Y(0)

Y(O)==3 %Y (4)XA(5)*¥Y(L)+A(5)*A(S)I¥A(5)*¥Y(1)*¥Y(1)*Y (1)
YU10)=A{O0)*(3e%*Y(4) /LY (2)aPe5)=34%A(5)*A(5)/Y(2))
Y(11)==14¢*A{0)*¥Y(3)*A(5)/(Y(2)ePs30s)
Y(12)=Y(6)®RY{6)%Y(6)
XtO)=(Y(10)*Y(8)+Y(11)*Y(9))/Y(12)}
ZE0)=(Y{11)%Y(8)=Y(10)*Y(9))/Y(12)
Y{13)=Y(4)-A(5)%A(5)*Y(0)
Y{14)==2%Y(3)RA(5)%Y(1)
Y(15)=A(0)%A(1)*Y(3)/(Y(2)ePe5)
Y(16)==A(0) %3, *¥A(5)*%A(1)/(Y(2)ePe3)
X(24)=(Y{15)%Y{13)+Y(16)%Y(14))/Y(T)
Z{24)=(Y(16)%Y(13)=Y(15)%Y(14))/Y(T) .
Y{17)==A(3)%Y(2)*%A(4)/{SQRTe(2%A(5)))
X{5)=Y{(17)*(X(0)+Z(0))

Z(5)=Y(17)%(Z2(0)=X(0))

Y{18)==A(2)*A(4)/Y(1)

X(7)=Y{18)*X(1)

2(7)=Y(18)*2(1)

Y{19)==A(3)/A(2)

X{6)=Y(19)%X{T)+X(5)/Y(19)
Z{6)=Y(19)*Z(T)+Z(5)/Y(19)

Y{20)=Y(19)/A(1)

Y(21)=A(3)%Y(1)*A(4)/A(1)
Y{22)=A(3)*A(4) /(Y (3)%Y(1))
X{3Y==X(5)=Y(20)%X{T)=Y(21)%(X(0)+X (24} 7A(1))=Y{-22)%*X(2)
Z(3)==Z(5)=Y(20)%Z2(T7)=Y{(21)*(Z(0)+Z(24) /A1) )=Y(22)%2Z(2)
X{4)=X(3)/Y(19)

214)=2(3)/Y(19)

Y(23)=2e%A(2)*%A(4)/Y(1)

X{13)=0,

Z(13)=0,

Y{24)=0e5+Y(19)

Y(25)=A(2)*Al4) %Y (1) /A(1)
X(12)==Y(25)%X{24)~Y{23)%X(2)/(2e%A(1)})
Z(12)==Y{25)%2(24)=Y(23)%2(2)/(2e%Al1))
X(8)==X{3)=X(5)

Z(8)==2(3)-2(5)

Y{26)==24%Y(19)

PART IA
PART IA

001

*07
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022

024
025
026
027
028

031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049

052
053

056
057
058
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Y{27)=0e5%Y(20)

X(111=X(8)/Y(19)+Y(19)%X{12)

Z411i=248)/Y{19)+Y(19)%*2(12)

X(9)=SARTe {A{5)%Y(1)/2s)

2{9)=X(9)

X(10)=A(1}+X{9)

Z(10)=2(9}

Y(28)=X(10)%¥X{10)-2(10)*2(10)

Y129)=A(5)*A(4)*Y(]1)

Y{30)=2%X(10)*2(10)~Y(29)

YU31)=Y{4)+Y(29)#Y(29)

X{16)=(Y{3)%X(4)=Y{29)%2(4))/Y(31)
Z(16)={Y(3)%Z2{4)+Y{29)#X(4))/Y(31)

XC15)=tY {31 %X(3)+2e%A( 1} EY(3) %X (16)=Y(29)%¥(Z(3)+2*A(1)*Z(16)
1))/Y131)
Z{15)=(Y{3)%Z(3)+2s%A(1)I*Y(3)XZ(16)+Y(29)%#(X(3)+24*A(1)%X(16)
1)) /¥131)

Y(32)=Y(28)%Y{28)+Y(30)#Y(30)

X(19)=(X{ 7)*Y{28)+Z(T)%Y(30))/Y{32)
ZU19)=CELTIRY(28)=X{T7)#Y(30))/Y(32)
X018)=0X{6)%Y(28)+2(6)%Y(30)+4o#Y(28)%(X{10)*#X(19)=Z{10)#Z(19
1) )4be®Y{30)*(X(19) %2 (10)+X(10)*2(19)))/Y(32)
2018)=(Z{6)*Y(28)=X(6)*Y(30)+44*Y(28)%(X(19)*2(10)+2(19)*X{10
1))=be®Y(30)*¥(X(10)%X{19)-2(10)%2(19)))/Y{32)
X(17)=(X{5)%Y(28)42(5)*Y(30)=24%X(19)%Y(28)=2,%#Z(19)*Y(30)
1420%Y(2B) #{X(10)%#X(18)~Z{10)*#Z(18))+24%Y(30)%(2(10)
2#X{18)+X(10)*Z{18)))/¥(32) .
2(17)=(ZI5)*Y(28)=X(5)*Y(30)=2.%2(19)%Y(28)+2,%X(19)

1#Y (3014267108 £ (10)~AL18)+X{10)*#Z(18) ) =2%Y(30)*(X(10)
2%X(18)=Z(10)*Z2(18¥31/Y(32)

Y{33)=16e#Y{4)+Y(29)%Y(29)

YU3h)=44%Y(3)

X(23)=(Y(34)%#X(13)~Y{29)%Z(13))/Y(33)
Z(23)=0Y{34)%Z(13)4Y(29)%X(13))/Y¥(33)

X(22)=0Y(36) #X{12)+48e¥A( 1) *Y(3)%#X(23)-Y(29)*(2(12)+12,
1#A(1)%2(23)))/Y(33)
Z2022)=(Y(34)%Z{12)+4Be%AL1)*Y(3)%#2(23)+Y(29)
IHIX(12)+12e%A(1)%X(23}))/Y(33)

X(21)=(Y{34) ¥ (X(11)=6e%X(23)+8*A(1)%X122))~Y(29)*(Z(11)
1=6e%#Z(23)+Be*A(1)%2(22))1/Y(33)

2021)=0Y(34) % (2(11)=6e%Z (23148 ¥A(1)%Z(22))+Y(29)
1#(X(11)=60%X(23)+84%A(1)%X(22)))/Y(33)
Y135)=X(8)=2e%X{22)

Y(36)=Z(8)<24%2(22) %%,
X(20)=(Y(34)%(Y(35)+4e %A (1) #X(21))=Y{29) ¥ LY (36)+4o*A(1)
1%Z2(21))3/v(33)
2420)=2(Y{34)%(Y(36)+4e¥A(1)XZ(21))+Y(29) % (Y (35)+4¢%*A(1)
1%X(21)¥)/7(33)

X(14)==X{15)=X(17)=X(20)

2(14)==2(15)=2{17)~Z(20)

PRINT FORMAT DATAsA(0)eeesAl6)

VECTOR. VALUES DATA=$6E1244%%

WHENEVER CHECKoNE«Os sPRINT RESULTS Y{0)eeoY(34)

PRINT COMMENT $ X(0)eooX(24)8

PRINT FORMAT RESULTsX{(0)eesX(24)

PUNCH FORMAT INPUTsX(0)oeeX(24)

PRINT COMMENT $ Z({0)eeeZ{24)8

PRINT FORMAT RESULT#2{0)oeeZ(24)

059

062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100

102

104
105
106
004
005



$ DATA
VICTOR De
VICTOR De
$ COMPILE

START
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"PUNCH FORMAT INPUT»Z(0)eseZ(24)
VECTOR VALUES INPUT=$6K12%$

VECTOR VALUES RESULT= $1H0p5E15.5*$
TRANSFER TO START

VECTOR VALUES CHECK=04

END OF PROGRAM

BLANKENSHIP S141F 005 010 090

BLANKENSHIP S141F 005 010 090
MADs EXECUTEs PUNCH OBJECTs PRINT OBJECTs DUMP

DIMENSION A(100)¢B(100)sX(100)s2¢100)s
1YC(70)sYD(TO)sYE(TO) sYF(70) sYG(70) s
2YH(T0)sYH(T0) sUR(T0) sUT(70) sUT(70) s
3UA(T0)»¥I(T70)sYJ(T0) sYK(70) sYL(T0)9YM(T0) s
4YN(TO)sYO(70)sYP(70)sYQ(T0) »YR(TO) sVR(TO) sV1 (70}
5VT{70)sVA(T0)

INTEGER I

PRINT COMMENT S1ANALYSISS

READ DATA

READ FORMAT INPUTsX{0)eseX(26)

READ FORMAT INPUT»Z(0)eseZ(24)

VECTOR VALUES INPUT=$6K12%$:

PRINT FORMAT DATAsA(O)eesA(6)sB(1)saeB(45)sX(0)eseX(24))
12(0) eeeZl 24)

THROUGH BETAs FOR I=1pls14Ge39

BI=B(1) _

YC(1)=EXPa(=A(1)#8 I )

YD(F)=X(9)#B I

YE(1)=2(9)*B1

YF(1}=EXP4(=YD(1})

YG(I)=SINs( YE(I))

YH(I)=COSe( YE(I))

URCI)=EX(1)4X(2)%B I )*YC(I)=X(1)%YFIT)*YH(T)

1 =Z(1)*YFUII#YG(I)

UI(I)=(Z(1)142Z(2)%B 1 )¥YC(I)=Z(1)*YF(I)*YH(1)
1 +X(1)*YF(1)*YG(D)

UT(11=SQRTe {UR(13aPe2+UI(1)ePs2)#A(5)*A(5)

UA{T)=ATANe (UI(1)/UR(I))

YI(I)2EXPe (=24%A(1)%B 1 )

YJ(I)=X{9)*B 1 *SQRTe(A(4))

YK(I)=Z(9)*B I *SQRTe(A{4])

YLOT)=EXPo (=YJ{1))

YM(I)=SINs (YK(I})

YN(I)=COSe(YK(1))

YO(T)=EXPs (=X{10)%B I )

YP(1)=2(10)*B I

YQUI)=SINe (YP(I))

YR{1)=COSe (YP(I})

VRII)=tX(15)4X(16)%B I )*¥YC(I)+(X(20)+X(21)%B I
1 +X(22)%*B 1 #B 1 +X(23)%8 1 *B 1 *B I )*YI(I)
2 +X(14)®YLOI)¥YN(E)+Z(14)%YL(T) *#YM(I)

3 +(X(1T)+X{18)%B I +X(19)%B 1 #B I )*YO(I)
4  ¥YR(IV+(Z(17)+Z(18)%B I +Z(19)%8 1 *B I )
5 *Yo(I*va(l)

VICI)=(Z(15)4Z(16)%B I J#YC(I)+(Z(20)+2(21)%B 1
1 +2(22)%B 1 #B 1 +2(23)%B 1 *B 1 #B I )*YI(1)
2 +ZO16)EYLUIYVEYN{DI=XC14)%YLCT)*YM(T)

3 +(ZU1T)+Z(18)%8 I +2(19)%8 I *B I )*YO(I)
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4 FYR{II={X(17)+X(18)%B 1 +X(19)%8 I *B I )

5 *YO{I)#YQ(I)

VT(I)1=SQRTe {VR({I)aPe2+VI(I)ePe2)*A(5)*A({5)

YALTI=ATAN(VI(I)/VR(I))
BETA PRINT FQRMAT RESULTSUR(I)sUI(T)sUT(I)sWACT)sVRII}VI(I) VT

1I)eVA(T)

VECTOR VALUES DATA=$6E12+4%%

VECTOR VALUES RESULT=31HO»8E14+4%$

TRANSFER TO START

END OF PROGRAM
$ DATA



APPENDIX IT

EXPERIMENTAL DATA

Heat Transfer Data

oloBoBoNoNeoRoNeoNoNoNoNoNoNeoRoNoNoNeoNoNoNoNoNe)

a W aw Tf Iémb h GrLPr ReV Nu
in. cycle F F BTU  10-6 10-3

' sec hrftF
.011 20.8 0.228 216.1 81.5 1.306 14.85 0.28  40.31
.0105 L41.5 0.4%35 216.1 80.9 1.298 14.9 0.536 L40.06
.025 20.8 0.52 216.3 80.6 1.292 14.9 0.662  39.87
.0065 20.8 0.135 216.3 8l.1 1.298 14.9 0.172 Lk0.06
.025 31,2 0.775 216.5 80.5 1.287 15 0.99 39.72
.05 26 1.300 20k.6 77.2  1.336 1k.7 1.685 41.2
.025 52 1.30 212 83.6 1.336 1k.2. 1.655 L40.8
.025 78 1.95 198.8 Tk} 1.432  13.4° 2,55 Ll 3
025 26 0.65 209.6 77.6 1.29  14.9  0.8375 39.
.05 52 2.6 187.6 76.6 1.554% 13.6 3.47 418.6
.025 104 2.6 187.%  78.7 1.57 13.2 3.45 48,9
.03 78 3.7+ 210.k  89.2 2.02  13.43 k.775 61.8
.05 1 26 1.3 204%.6 77.2  1.33 k.62 1.69 41,05
.01 20.8 0.208 187.6 79.4 1.228 11.9 0.275 38.38
.0095 41.5  0.39% 188.0 79.k 1.224 11.9 0.501 38.25
.005  20.8  0.104 187.6 79.L 1.23  11.9  0.132 38.43
.0275 20.8 0.57 188.4  79.2 1.215 12.0 0.726  37.97
025 31.2 0.779 187.8 179.0 1.223 12.0 1.029 38.22
.058 41 .6 2,42 176.7 81.6 1.415. 11.45 3.27 Yo
.055 52 2.75 108.7 81.5 1.05 4,53  L4.,06 34,3
.055 72.8 3.85 105.2  83.2 1.32 3.67 5.7 43.3
.075 52 3.9 189.2 91.4 1.808 11.8 5.08 55.8
.08 78 3.75 187.7 91.6 1.812 11.2 4,89 54.9
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APPENDIX ITA

Smoke Stﬁdies Data

a W aw awa aw2 AT QR PR Tp_ Re¥
g 8
in. cycles in-cycle ft °F 10“6 GRL(TT
sec. sec. ‘ Sece
0.012 50 0.6 98.75 3.06 133.8 14.45 217.6 56
0.01 50 0.5 82.25 2.55 133.8 14.45 2.7.6 11.6
0.02 50 1.0 164.5 5,11 8.4 11,15 163.8 140.8
0.023 50 1.15 189.5  5.875 844 11.15 163.8 162
0.018 50 0.9 148.5 4.59 110.4  13.2 190.6  99.2
0.018 50 0.9 48,5 L.59 108.4 12,95 188.6 101.2
0.008 70 0.56 129 L 110.4  13.2 190.6 86.4
0.009 70 0.63 145 4.5 110.4  13.2 190.6 97.2
0.017 50 0.85 140 4,34 11%.6  13.7 193.2  90.4
0.016 50 0.8 132 4,083 114.6° 13.7 193.2 84.8
0.008 70 0.56 129 L 118.2 13.95 196.8 81.6
0.007 T0 0.49 113 3.5 118.2 13.95 196.8 T1.hk
0.05k4 25 1.35 111.5  3.45  118.2 13.95 196.8 70
0.0194 50 0.97 160 k.96 51.6 7.8 131.6 236
0.009 70 0.63 145 k.5 51 1.7 131.4 215.6
0.01 70 0.7 161.5 5.0 50.8 7.69 130.8 240
0.027 50 1.35 222 6.9 0 0 80 @ —emme
0.03 50 1.5 247 7.65 0 0 [0 S —
0.09% 25 2.2 182 6.06 0 0 <[ J——



APPENDIY, TIT
TABULATED RESULTS
APPENDIX ITI

The tabulated results of Ostrach Reference C are found on the

following pages,
APPENDIX ITIA

This section was taken from Schoenhals Reference A-34%. The

forcing function is defined as

f(7)=foj?7f/’("7)a/“7.

Schoenhals_obtained tabulated results by integrating

f01) = [Hed 1 AC)~f g ol

The results are found on the following pages,
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DD O CIND 4 D O 00~ > Ur R 0O DD = O & 00 =T O O i GO R =t € <O 00 =~ T T s TO D

&

oo

06 00 ~¥ ~y
o

2 B 4 8 £0.60 1 60 £0 60 £ €0 09 60 09 60,09 00 09 00 1O IO RO IO N 1O DO O B0 10 1 1t 1 o 1 i 1
o

=1
ARS&8&”

Prandtl number, 0.01
H' n F F F" H H'
0 —0. 0812 416 | 1.9319 | 0.4037 | —0.0615 | 0.6741 | —0.0723
—, 0812 4,18 1. 9400 . 4024 —. 0814 . 6726 —. 0722
-—, 0812 4.20 | 1.9480 .4012 | —. 0612 6712 | —.0721
—. 0812 4.24 1,9640 .3088 | —.0809 | .6683 | - 0720
—. 0811 4.28 1,9799 L3064 | —. 0805 | ,086564 | — 0718
—. 0811 4.32 | 1.9957 .3039 | —.0802 | .6626 | -—. 0716
—. 0811 4.36 2.0114
—. 0811 4.40 | 2.0270
. —. 0810 4,50 | 2.0657
. —. 0809 4,60 | 2.1037
—. 0809 4.70 | 2.1411
—. 0808 4.80 | 2.1780
—. 0807 4,00 | 2.2143
—. 0806 5.00 2.2501
—. 0804 510 | 2.2853
—. 0803 5.20 | 2.3200
—. 0801 5.40 | 2.3877
—. 0800 5.60 | 2.4534
—. 0798 5.80 .1 2.5170

—.0796 6.00 | 2.5787

(=]

et ot et et

€900 19 00 1 19 © 00 O s DO © 00 O 1 GO D =t © €0 00 ~T 1 TV i €9 10 14 © 6 00 ~I O O i U0 1D 1 © € 00 =T b T s 05 10 -4

NODOTEOn R 29096009 0900 0O N RN NI RO RO RO 1=

1 F F F" H H
—0. 5046 0 0. 0000 0. 0000 0. 6741 1.0000 (—0. 5080
5045 .1 . 0625 8767 .0402 | —.5079
—.5037 .2 0122 11556 4849 .8084 | —.5071
—.5016 .3 . 0260 L1597 . 3990 8478 | —. 5050
—. 4079 .4 0438 . 1955 .3104 7975 | —.5012

. 4921 .5 . 0649 .2238 . 2465 7477 | —.4953
—.4840 .6 .0884 . 2451 . 1804 .6085 | —.4870
—. 4735 T L1137 . 2601 L1212 6503 | —.4763
—.4607 .8 . 1402 2605 . 0691 6033 | —.4632
—. 4456 .9 1674 2741 .0237 5578 | —

—. 4284 1.0 1049 . 2745 | —.0149 6139 | —.4303
—. 4005 11 2222 L2713 | —.0473 1 —.4110
—.3801 L2 24 .2652 | —.0737 4317 | —.3002
—. 3676 1.3 2752 .2568 | —.0046 3038 | —.3

—. 3453 1.4 .2465 | —.1106 .3581 | —.3458
—-.3227 L5 . —-.1222 .346 | —.3228

. 3000 L6 . 3473 . —.1209 .2035 | —.2008
—.2775 L7 —.1342 L2047 | —.2771
—. 2556 1.8 3891 1954 | —.1358 L2381 | —.2549
—.2344 1.9 4079 1819 | —.1350 2136 | —.2335
-.2141 2.0 4254 1685 | —.1324 1913 | —.2130

949 2.1 . 4416 1564 | —.1283 1710 | —.1937
68 2.2 . 4565 1429 | —.1230 L1626 | —.1754
—.1608 2.3 4702 L1309 | —.1170 1359 | —
—.1441 2.4 . 4827 1195 | —.1104 . —. 1427
—.1206 2.5 L4941 1088 | —.1035 1073 | —.1281
-.1163 2.6 5 0 —. 0965 L0052 | —.1148
—.1041 2.7 5139 .0895 | —.0895 .0843 | —.1026
—.0030 2.8 5224 . —.0826 .0746 | —.0016
—. 0830 2.9 § 0729 | —.0759 —.0816
—.0739 3.0 . 5370 0857 | —.0695 0583 | —.0725
—. 0857 3.1 . 5433 0590 | —.0635 0514 | —
—. 0584 3.2 . 5489 0530 | —.0578 0454 | —, 0571
-.0518 3.3 . 55639 0475 | —.0524 0400 | —.0506
-, 0459 3.4 . 5584 0425 | —.0474 0352 | —
-.0359 3.6 5660 0339 | --.033% 0273 | —.0350
281 3.8 5720 0269 | —.0312 0211 | —.0272
—.0219 4.0 5769 0213 | -~.0250 .0163 | -—-.0211
-.0170 4,2 5807 0169 | —.0200 L0126 | —.0164
—.0132 4.4 . 5837 0133 | —.0159 L0097 | —.0127
-.0102 4.6 5860 L0105 | —.0125 L0074 | —.

. 0080 4.8 . 5879 -. 0099 .0057 | —.0076
—.0061 5.0 . 6893 0085 | ~—.0077 L0044 | —.0058
—.0048 5.2 5805 L0051 | —. 0081 0033 | —.0045
~-.0037 5.4 5014 L0040 | —, 0047 .0025 | —.0035
—.0022 5.6 . 5921 0032 | —.0036 0019 | —.0027
-.0013 5.8 5927 L0025 1 —.0028 0015 | —.0021
~-. 0006 6.0 . 5932 0021 | —.0022 0011 | —.0016

. 0003 6.4 5038 0014 | —.0013 .0006 | —.0009

6.8 . 5043 0010 | —.0008 0003 | —.0006
7.2 . 5946 0007 | --.0004 0001 | —.0003
7.8 . 5049 .0008 | ~.0002 .0000 | —.0002
8.0 . 5951 0005 | —.0001 0000 | —.0001
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Prandtl number, 1 Prandt! number, 2
F' B H H' 7 F F’ F" H H
0. 6421 1.0000 | -0, 5671 0

1 5450 . 9433 —. 5669 .1
.2 4540 . 8867 —. 56567 .2
2 3694 . 8302 -, 5627 .3
= 2916 L7742 —. 5572 .4
.5 2208 . 7189 —. 5488 .o
b 1572 . 6645 —. 5371 .6
W7 1008 L6116 —. 6221 W7
.8 0516 . 5602 —. 5038 .8
.9 . 0093 . 5109 --. 4826 .9
1.0 —. 0263 4638 | —.4589 1.0
1.1 —. 0557 4192 —. 4330 1.1
1.2 --. 0793 L3772 —. 4056 1.2
1.3 -, 0975 . 3381 -, 3772 1.3
1.4 -, 1110 . 3018 —. 3484 1.4
1.5 —. 1203 . 2684 —.3197 1.6
1.6 —. 1260 L2379 T —.2015 1.6
17 —.1287 .2101 —. 2642 1.7
1.8 ~. 1288 . 1850 —. 2382 1.8
1.9 —. 1268 . 1624 -, 2136 1.9
2.0 —.1233 . 1422 -. 1907 2.0
2.1 —.1185 L1242 —. 1695 2.1
2.2 - 1127 . 1082 —. 1501 2.2
2.3 —. 1064 . 0941 —.1324 2.3
2.4 —. 0997 . 0817 —.1164 2.4
2.5 —. 0928 . 0708 —. 1020 2.5
2.6 —. 0859 L0613 —. 0892 2.6
2.7 —. 0791 . 0529 -. 0777 2.7
2.8 -, 0725 L0457 -, 0676 2.8
2.9 —. 0662 . 0392 —. 0587 2.9
3.0 —. 0602 . 0339 ~. 0509 3.0
3.1 —. 0546 . 0291 —. 0441 3.1
3.2 . 0403 . 0250 —. 0381 3.2
3.3 —. 0444 L0215 ~. 0329 33
3.4 —. 0399 .0185 -, (283 3.4
3.6 -.0321 L0136 -—. 0210 3.6
3.8 —. 0255 . 0009 —. 0155 3.8
4.0 —. 0202 L0072 —.0115 4.0
4.2 —. 0158 . 0053 —. 0084 4.2
4.4 —. 0124 . 0038 —. 0062 4.4
4.6 —. 0096 . 0027 —. 0045 4.6
4.8 —.0075 . 0020 —. 0034 4.8
5.0 —. 0057 . 0014 —. 0024 5.0
5.2 —. 0044 . 0010 —. 0018 5.4
5.5 —. 0029 . 0006 —. 0011 5.8
6.0 —. 0014 . 0002 —. 0005 6.4
6,25 —. 0010 0000 ~—, 0004 7.0
8.0

9.0

10.0

11.0

Prandtl number, 10

¥ ¥ H H n F F F" H H
0. 0000 0.4192 1.0000 | —1.1694 0.000 0.2517 1.0000
N L0371 . 3251 L8832 | —1.1671 .0256 2274 . 9452
.2 . 0654 . 2428 L7670 | —1.1521 . 050 2044 . 89056
.3 .0861 L1728 L6634 | —1,1155 .075 1828 . 8359
.4 . 1003 L1134 L5448 | —1.05626 .100 1626 . 7815
) . 1091 0655 . 4437 —. 9640 126 1438 . 7276
.6 L1137 0279 3627 —. 8545 .150 1263 . 6744
.7 L1150 | —.0011 . 2733 —. 7322 175 1101 . 6221
.8 137 | —.0221 . 2064 —. 6061 . 200 0952 . 5709
.9 L1107 | —. 0367 . 1519 —. 4840 .225 0816 . 56213
1.0 L1066 | —.0462 . 1090 —.3753 . 250 0692 . 4733
11 L1016 | —. 0518 .0763 —. 2813 .25 0580 . 4278
L2 .0963 | —.05645 . 0522 —. 2045 .300 0479 . 383!
1.3 .0908 | —.0552 . 0349 —. 1445 325 0389 3422
1.4 .0853 | —-.0544 .0228 --. 0993 .350 0309 . 3034
L5 0799 | --.0527 .0146 -. 0665 .375 0238 . 2674
L6 .0748 | ~.0605 .0092 -. 0435 .400 0176 . 2341 .
L7 L0699 | —.0480 . 0056 —.0278 .425 0128 . 2036 .
L8 L0852 | —.0453 0034 —. 0174 . 450 0076 L1759 .
1LY L0608 | —.0427 0020 —. 0107 475 0036 . 1510 .
2.0 L0567 | —.0400 . 0012 ~. 0085 . 500 0002 . 1287 —. 8393
2.1 L0528 | —.0375 . 0007 . 0038 . 525 —. 0026 . 1089 —. 7404
2.2 L0491 | —.0351 .0004 —. 0022 . 550 —. 0050 . 0916 —. 6478
2.3 L0458 | —. 0328 . 0002 —.0013 . 675 —.0070 . 0765 —. 5621
2.4 .0426 | —.0306 .0001 —. 0007 . 600 —. 0087 .0634 —. 4837
2.5 0396 | —.0286 . 0001 —. 0004 .65 -.0111 L0427 —. 3496
2.6 L0369 | —.0267 . 0000 —. 0002 .70 —. 0126 . 0280 ~. 2440
2.7 L0343 | —.0249 . 0000 ~—. 0001 .75 —. 0135 .0178 —. 1657
2.8 L0319 | —.0232 0000 —. 0001 .80 —. 0140 L0111 —. 1088
2.9 L0297 | —.0216 0000 0000 .85 —.0142 . 0067 -. 0693
3.0 L0276 | —.0201 0000 0000 .90 —. 0142 . 0039 —. 0428
3.1 .0256 | —.0187 . 0000 0000 .96 —.0141 . 0022 —. 0256
3.2 L0238 | —.0174 . 0000 0000 1.00 —. 0140 .0012 —. 0149
3.3 L0221 | —.0162 . 0000 0000 1.10 —. 0136 . 0004 —. 0046
3.4 0206 | —.0151 . 6000 0000 120 —. 0132 . 0001 —. 0013
3.6 0178 | —.0131 0000 0000 1.30 - 128 . 0000 —. 0003
4.8 0153 | —.0113 . 00006 0000 1.40 0124 . 0000 --.000
4.0 L0132 | —.0098 L0000 0000 1. 50 = UiES 0000 000"
4.2 L0114 | —. 0084 . 6v00 0000 1.60 - 0116 0000 0000
4.4 L0098 | —.0073 . 6000 0000 1.70 -. 0112 0000 0000
4.6 L0085 | —.0063 . 0000 0000 1.80 0108 0000 0000
4.8 L0073 | —.0054 . 0000 0000 1.90 —. 0104 0000 0000
6.0 L0063 | —.0047 . 0600 0000 2.0 ~. 0101 0000 0000
5.4 .0047 | —.0035 . 0000 0000 2.1 --. 0097 .0000 0000
5.8 L0035 | —.0026 . 0000 0000 2.2 ~. 0094 . 0000 0000
6.2 0026 | —.0019 . 0000 0000 2.3 —. 0091 . 0000 0000
7.0 0014 | —.0011 . 0000 0000 2.4 —. 0088 . 0000 0000
8.0 0007 | —.0005 . 0000 0000 2.6 —.0082 . 0000 0000
9.0 0003 | —.0002 . 0000 0000 2.8 —. 0076 0000 0000
10.0 0002 | —. 0001 . 0000 0000 3.0 —.0071 0000 0000




Prandt]l number, 100—Concluded

-226-

Prandt] number, 1000

7 F F F H H L] F F P H H
3.2 0. 0847 0.0166 | —0.0066 | 0.0000 0. 0000 0. 0. 0000 0. 0000 0.1450 | 1.0000 | —3.966
3.4 0979 . 0154 —. 0061 . . 0000 025 . 0000 .0033 1212 .9009 | ~3.962
3.6 . 1008 . 0142 —. 0056 . 0000 . 0000 . 050 . 0002 . 0061 . .8021 | —3.933
3.8 1035 . 0131 ~. 0052 . 0000 . 0000 075 . 0003 . 0083 . 0811 L7046 | —3. 861
4.0 1061 0121 ~. 0046 . 0000 . 0000 .100 . 0006 . 0102 . 064 .6006 | —3.731
4.4 1105 L0103 —. 0042 . 0000 . 0000 126 . 0008 0118 . 0508 L6188 | —3.538
4.8 1143 . 0038 —. 0036 . 0000 . 0000 .150 . 0012 .0127 . 0387 .4332 | —3.283
5.2 1176 - 007 . 0031 . 0060 . 0000 176 0015 0135 . 0289 L8549 | —2.975
5.6 1203 . 0063 —. 0026 . 0000 . 0000 .200 . 0018 0142 . 0209 2847 | —2.628
6.0 1226 . 0053 -. 0022 . 0000 . 0000 . 225 . 0022 0148 . 0146 2236 | —2.261
6.6 1254 . 0041 —.0018 . 0000 . 0000 . 260 . 0026 0148 . (096 L1717 | —1.803
7.2 1276 . 0032 —. 0014 . 0000 . 0000 275 . 0029 . 0151 . 0059 .1288 | —1.541
8.0 1297 . 0022 —. 0010 . 0000 . 0000 . 300 . 0033 0152 . 0032 .0044 | —1,220
9.0 1315 . 0014 -. 0007 . 0000 . 0000 . 325 . 0037 . 0153 L0012 . 0675 —. 9381

10.0 1326 . 0008 —. 0005 . 0000 . 0000 . 350 . 0041 . 0153 —. 0003 . 0471 -. 7012
11.0 1332 . 0004 —. 0003 . 6000 . 0000 . 375 . 0045 —. 0012 . 0321 —. 5003
12.0 1335 . 0002 —. 0002 . 0000 . 0000 . 400 . 0048 . 0152 —. 0019 .0213 —. 3696
13.0 1336 . 0000 —. 0001 . 0000 . 0000 . 425 . 0052 1 —.0023 . 0138 —. 2467
. 450 . 0056 0151 —. 0026 . 0087 —. 1645

475 . 0080 0150 —. 0027 . 0053 ~—. 1066

. 500 . 0063 0150 —. 0028 . 0032 —. 0672

. 526 . 0067 . 0149 —. 0029 .0019 -, 0412

550 . 0071 0148 —. 0029 . 0011 —. 0245

.B75 . 0075 0147 —. 0029 . 0006 ~. 0142

. 600 . 007 0147 —. 0029 . 0003 -. 0080

. 625 . 0082 0148 ~. 0029 . 0002 -. 0044

. 800 . 0107 0141 -. 0028 . 0000 . 0000

1. 000 0135 0136 -~. 0027 . 0000 . 0000

1.40 . 0187 0125 —. 0025 . 0000 . 0000

1.80 . 0235 0115 —. 0023 . 0000 . 0000

2.20 0279 0106 . 0022 . 0000 . 0000

2.60 . 0320 0098 —. 0020 . 0000 . 0000

3.0 . 0358 0090 —-.0019 . 0000 . 0000

3.6 0409 0080 -.0017 . 0000 . 0000

4.2 0454 0070 —.0015 . 0000 . 0000

5.0 . 0505 0060 —-. 0012 . 0000 . 0000

58 . 0549 0050 —.0011 . 0000 . 0000

7.0 . 0603 0039 —. 0008 . 0000 . 0000

8.0 . 0638 0032 —. 0007 . 0000 . 0000

10.0 . 0691 . 0022 —. 0004 . 0000 . 0000

12.0 . 0727 . 0015 ~. 0003 . 0000 . 0000

14.0 . 0752 . 0011 —. 0002 . 0000 . 0000

16.0 L0771 0008 —. 0001 . 0000 . 0000

18.0 0786 0007 . 0000 . 0000 . 0000

20.0 0798 0006 . 0000 . 0000 . 0000

22.0 . 0809 0005 . 0000 . 0000 . 0000

23.6 . 0816 . 0005 . 0000 . 0000 . 0000
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Prandtl Number = .01

t) [T 1ot Ml

0 8.25 0 k.2 7.57 ©33.68
2 8.25 1.65 L.y 7.51  35.18
b 8.2k 3.30 4.6 7.45 36.68
.6 8.23 4,95 L.8- 7.38 38.16
.8 8.22 6.59 5.0 7.31 39.63
1.0 8.21 8.24 5.8 7.03 45,37
1.2 8.19 9.88 6.6 6.71 50.87
1.k 8.17 11.51 7.4 6.39 56.11
1.6 8.15 13.1k4 8.2 6.04 . 61.08
1.8 8.12 14,77 9.0 5.70  65.77
2.0 8.09 16.39 9.8 5.3k 70.19
2.2 8.06" 18.00 10.6 4. 98 74,32
2.4 8.02 19.61 11.4 b, 64 78.17
2.6 7.98 21.21 12.2 4.30 81.74
2.8 7.94 22.80 13.0 3.96 85.0k
3.0  7.89 24,39 ~1k.2 3.48 89.51
3.2 7.85 25.96 15.4 3.02 93.40
3.4 7.80 27.53 16.0 2.80 95.15
3.6 7.7 29,08 18.0 2.13 100.1
3.8 7.69 30.62 20.0 1.55 103.7
4.0 7.63 32.15 22.0 1.03 100.3
2k.0 107.5
Prandtl Number = .72
t(n) [Y(n)an  n ¢(n) g“c(n>dn
0 1.252 0 2.4 .396 2,144
1 1.250 .125 2.5 .363 2.181
.2 1.242 .250 2.6 .332 2.216
.3 1.230 .373 2.7 302 2.248
i 1.212 496 2.8 275 2.277
5 1.190 616 2.9 .250 2.303
6 1.163 .733 3.0 227 2.327
T 1.132 .848 “3.1 .206 2.349
.8 1.097 .960 3:2 .187 2.368
.9 1.059 1.067 3.3 L167 2.386
1.0 1.017 1.171 3.4 .152 2,402
1.1 .973 1.271 3.6 .12k 2.430
1.2 .927 1.366 3.8 .100 2.452
1.3 .880 1.456 L.o 081 2.470
1.4 .832 1.542 TR 065 2,484
1.5 783 1.622 Lok .052 2496
1.6 735 1.698 L4.6 Lok2 2.50%
1.7 687 - 1.769. .8 . 5033 2,513
1.8 641 1.836 5.0 .025 2.519
1.9 .596 1.898 5.2 .021 2.523
2.0 .552 1.955 5.4 .016 2.527
2.1 .510 2.008 5.8 L0310 2.532
2.2 k70 2.057 6.2 .06 2.535
2.3 U432 2.102 6.8 .002 2.538
7.3 .00 2.538




L ——
3 9015 02229 2083
Prandtl Number = 10

t(n) g“C(n>dn 0 t(n) g"Q(n)dn

o

0 .510 0 1.2 .075 .378
1 . 50k .051 1.3 .053 .384
.2 487 .100 1.4 .037 .388
.3 458 148 1.5 .025 .391
A 420 .192 1.6 .017 .39k
5 375 232 1.7 .011 .395
.6 .325 267 1.8 .007 .396
T 273 .296 1.9 .00k .396
.8 .223 .321 2.0 .003 .397
.9 AT77 341 2.1 .002 .397
.0 .137 357 2.2 .001 .397
1 102 .369

Prandtl Number = 1000

0 t()  [Te(n)an

0 148 0

.025 b7 .0037
.050 143 .0073
075 .137 .0108
.100 .129 L0141
.125 .118 L0172
.150 .107 .0201
175 Nolo N .0226
.200 .081 L0247
.225 .068 .0266
.250 .056 .0281
275 . Olih .0294
.300 .034 L0304
.325 .026 .0311
.350 .019 .0317
375 .014 .0321
400 .010 .0324
425 .007 .0326
450 .00k .0327
AT75 .003 .0328
.500 .002 .0329

525 .001 .0329




