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NOMENCLATURE

activity of component i

coefficients in Equation (2.97)

Redlich-Kister binary coefficients

equation coefficients or parameters. When the Redlich-
Kister equations are referred to, ¢,, ¢,, --- ¢, 1is

6
Be 5 Bogs By s i s C.ea s Gy respectively

number of components or first Redlich-Kister ternary
interaction coefficients

constant volume heat capacity

critical phase determinants defined in Equations (2.88a),

(2.95)

second Redlich-Kister ternary interaction coefficients
meterized steepest descent correction factor
coefficients in Equation (4.23)

the ternary Redlich-Kister expressions for logKQ
retaining only 3# and QU

the function defined in Equation (3.10)
fugacity of component i

(L=1, 2, -- 6), terms in (Eqtn.(3.10)), (eqtn.(3.11)),
(eqtn.(3.12)) multiplying ¢, ... c,

Gibbs' free energy equal H - TS

the function defined in Equation (3.11)
free energy, enthalpy of mixing

excess free energy of mixing

ideal free energy of mixing

enthalpy
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NOMENCIATURE (CONT'D)

the function defined in Equation (3.12)

/ / .
logiié%y R log«z%ééf respectively
number of moles
number of phases or total pressure
vapor pressure of the pure component i

partial pressure of component 1

<
& 303 RT

coefficients in Wohl's equations, see Equation (2.50)

the Q function equal

any extensive property or the gas constant
entropy

any arbritary function or system of functions
absolute temperature, °K

temperature, °C

internal energ&

variance or volume

coefficients appearing in Scatchard's equations (see
Table I)

a weight factor, wee Equation (4.13)

mol fraction of component i in liquid phase one, two, etc,
terms in Equations (3.8) and (3.9)

mol fraction of component i in the vapor phase
experimentally determined values for the dependent vari-

ables y; , Y» ---, and the independent variables
7, 5 %z =---, ith data point; see Equation (4.12)
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NOMENCIATURE (CONE'D)

the effective volumetric fractions in Wohl's equations
defined in Equation (2.51)

megnitude of the steepest descent correction in the
direction given by D, .

population parameters in equations to be fitted by least
squares

activity coefficient of component i in solution

operators indicating the first, second, third, etc.
order terms in Taylor series expansion

used alone: represents the sum of the squares of deviations
to be minimized by least squares; used with another vari-
able: means change from state one to state two

arbitrary values to determine the degree of accuracy of
iterative processes (see Appendix B)
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equal F, - F see Equations (3.10a), (3.11b), (3.12c)

the angle between the meterized steepest descent directions
at the (n-1)th and nth trials
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component A, B, C
component 1, 2, 3

* Subscripts having other meanings will be obvious from
context.
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property R per mole of solution
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Suger8cripts:

* refers to mathetically predicted values of dependent
variables, no ¥ refers to actual experimentally
measured value of variables

c means critical value pertaining to a critical phase
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! means ideal, as ideal free energy of mixing

] refers to the Nth iteration, in a trial and error
solution

o refers to the standard state, here taken to be the pure
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I. INTRODUCTION

The prediction of equilibria in liquid phases is of greatest
importance in the chemical and metallurgical industries. Although there
has been a long continued éffort in this fileld, accurate prediction of
the phase equilibria in liquid phases is impossible, except in cases
of mixtures which follow or deviate only slightly from Raoult's Law.

This problem will ultimately be solved only through a thorough
understanding of the interactions of molecules and molecular forces in
solutions. Such understanding unfortunately may be many years away,
and the demand of the process industries for accurate prediction methods
continues to grow as more complex separation problems are undertaken and
higher product purities are desired°

Because of the increased importance of solvent extraction pro-
cesses, this thesis is devoted to the prediction of equilibrium in two
phase liquid systems. No attempt has been made to solve the long range
problem of understanding solution behavior from a molecular view point.
Rather, a means of extending our existing experimental data on liquid
systems is investigated in this thesis which has the possibility of pro-
viding an immediste answer to the demand for accurate phase equilibrium

prediction.

A, Purpose of the Investigation

This research is an attempt to develope a correlation which
will permit the prediction of parameters in equations sultable for the

representation of phase eguilibria. Attention is focused on the case

-1-



2.

of two phase liquld equilibria in three component systems, but the ideas
evolved hopefully may be extrapolated to systems having any number of

components .

B. Formulation of the Problem

Assume that a function or system of functions exist

/ / / /" 4 "o\
//(CIJC‘AE " Cop s K s R Ems X Xy ""Zm)"‘O

where the c's are parameters, the ¥'s are the compositions of phase one,
the x"t's ére the compositions of phase two, and n is the number of pairs
of components. The questions that may be raised are:

1. Do Equations (s) (l.l) satisfactorily represent the desired
equilibrium? or are more coefficients or better equations required?

2. Can the parameters in (l.l) be determined from systemscon-
taining fewer components than the case for which (1.1) is written?

3« Congider a serles of systems containing components A, B,
Gy Dowwes Ay B, Gy D vues Ay By Gy Dees etc. where C,, C,, Cs ‘o
‘are homologs. Are the parameters in (l‘l) simple functions of some
monotonic property of component C/ s Cgy 03 «e» Such as molecular weifght?

Question two suggests a correlation in the form of tabulated
parameters determined from simple systems which can be used in Eguation
(l.l),to predict the equilibria for more complex systems. Question
three suggests a correlation in the form of graphs of the parameters

in (1.1) plotted agailnst some property of the variable component, C, .
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Such a carrelation has been delonstrated by White(53) who used the
Redlich-Kister equations to represent the binary vapor-liquid equilibria
of hydrocarbon-mercaptan systems and found for mercaptan homologs, that
equation parameters were neariy straight line functions of the number
of carbon atoms in the mercaptan‘

The system of functions (l,l) which have been proposed for

(33) which have been

the present work are the Redlich-Kister equations
successfully used to represent vapor-liguid equilibkium data. The
questions stated above will be restated more specifically for the case of
the Redlich-Kister equations to represent ternary liquid-liquid equilibria.
Many equations of the Redlich-Kister type such as Wohl's,
(54,20,47,39)

Mafgules‘, and Van Laar's‘equations and others have been used
to represent phase equilibria. However because of theilr complexity they
have not been used extensively to represent ternary liquid-liquid equilibria.
Scheibel has recently discussed the use of the Redlich-Kister equations in

(40)

representing ternary liquid-liquid equilibria. Other authors have

(18)

used the Van-ILaar equations and modified versions of the Van-Laar(u)

to represent ternary liquid-liquid equilibria. Because of the complexity
of the equations the methofs used were approximate and usually graphical.
By using high-speed digital computers in the present research more rigorous
solution of the equations and more exact determination of the equation
parameters from experimental data was possible.

The subject of the effect of temperature on equilibria was mot

studied in this research.
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Cy Summary

Section II of this dissertation is a review of liquid-liquid
equilibmia from a thermodynamic viewpoint. In part A is a review of
equilibrium diagrams. Part B glves the thermodynamic foundations of
the equations for representing phase equilibria, and gives examples of
the equations. The interrelation of the molar free energy of mixing and
equilibrium diagrams 1s discussed in Section C. Those interested in
the prediction of critical mixing points (i.e.,plait points) will find
Section II., D. especially useful. Part E. is a brief review of methods
to predict the variation of activity coefficients with temperature.

The application of the Redlich-Kister equations to the cases
of binary and ternary two phase liquid equilibria is taken up in Section
ITII. The equations are presented and their ability to represent ternary
liquid equilibria is demonstrated. Part C. presents relations enabling
one to tell if a given set of Redlich-Kister equation parameters will
represent a system having one or more than one liquid-phaseq. Equations
‘enabling prediction of criticél points from equation parameters are given.

Bection IV deals with the problems of determining equation
parameters from experimental data. Methods of determination of the para-
meters for the cases of binary liquid-liquid and vapor-liguid equilibria
are discussed in Section A, The ternary liquid-liquid case is taken up
in Section B. Methods of visual curve fitting are discussed. The problems
of the use of least squares in the case of the Redlich-Kister equations
are surveyed; approximate and exact methods of least squares curve fitting
are applied. Those interested in fitting equations that are non-linear

in equation parameters will find this section useful.
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The feasibility of the Redlich-Kister equations to represent
and correlate ternary liquid-liguid eguilibris is determined in Section V.
The questions of the preceeding section have been set down as research
hypotheses for the specific case of the Redlich;Kister equations. Part A
tests the hypothesis that,gquation parameters determined from binary data
can be used to predict ternary liquid-liquid equilibria, Parts B and C
attempt to answer question 3 of the preceeding section pertaining to
the usefulness of homologous series’ of systems in predicting liquid-
liquid equilibria. The conclusions as to the feasibility of the Redlich-
Kister equations in representing phase equilibria are presented in

Section VI as well as recommendations for future work.



ITI. REVIEW OF THE LITERATURE RELATED TO LIQUID-LIQUID EQUILIBRIA

A. Review of Binary and Ternary Liquid-Liquid Phase Diagrams:(7’l3’22)

Figure 1 is a plot of composition versus temperature for a two
component system in which there is limited liquild phase miscibility. Be-
low the temperature T,, components A and B are only partially miscible in
the range shown. Specification of a temperature T;, requires for this
’system that when there are two phases they must have a composition of

XBl and xB2 respectively. Thils fact 1s given by the phase rule:

V=C+2-P=2+2-2=2

Ll -

L

I
|
I
I
|
I
|
h , \
I
I
A x§

Figure 1. Partially Miscible Binary System.

Specification of pressure and temperature, P; and T, therefore defines

the system as seen from the diagram. Actually T-x dlagrams for systems

-6-
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consisting only of condensed phases are little affected by pressure and
little error is introduced by not counting pressure as a phase rule‘vari-
able for such systems.

Addition of a third component, C, to the binary AB now causes
the temperature composition diagram to become three dimensional. For the
case where there are two condensed phases in equilibrium in a ternary the

variance becomes?
vc=3+l—2=2

This means that in addition to specifiying the temperature we must specify
one composition variable, say x,, the mole fraction of A in phase one, to
specify the system.

Figures 2 and 3 are two possibilities of the temperature-
compositioﬁ diagram for a system ABC where A and B are partially miscible
and C 1s completely miscible with both A and B. The familiar trangular

composition diagram has been used.

A \\\\\;ii,—’//xv//// B A

C C
Figure 2. T-x,-xpg Diagram Type I. Figure 3. T-x,-Xp Diagram Type II.



In Figure 2 there is no ternary critical point. The point K lies in
the T-A-B plane and is the point (Tc, a) in Figure 1, the critical point
of the binary solution. Figure 3 shows the case where there is a ternary
critical point K, in addition to the binary critical point k.

Isothermal cuts of the solid figures shown in Figure 2 and 3

are shown below:

Figure 4. Isothermal Cuts of Figure 2,

Figure 5. Isothermal Cuts of Figure 3.
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Bach of these isothermal cuts has at least one critical point
or plait point, P where the two liquid phases become identical., At To
in Figure 5 the two phase region lies entirely within the ternary region
and there are two plait points P and P!, The curves in Figures 4 and 5
are known as binodal curves and the straight lines connecting points on
the binodal curves are known as tie lines. The tie lines connect the
compositions .of liquid phase one (Ll) in equilibrium with liquid phase
two (IQ)Q In Figures 2 and 3 the lines XK and k'Kk" are the loci of the
plait points shown in the isothermal cuts. Since the tie lines in the
ternary case are usuplly not parallel to the AB edge of trangular diagram
P does not have to occur at the maximum point of the binodal curve. In
the binary case the tie lines in the T-x figure parallel to the AB edge
and the critical point does occur at the maximum of the temperature com-
position curve.

The line Pg in Figure 4 (Tl),is known as & convolute line
and is useful in correlating the tie lines. It is simply the locus
of points which are the intersections of the dashed lines drawn from the
end points of the tie lines parallel to the A-C and A-B edges of the
triangular diagram,

Figure 6 shows isothermal cuts of some of the cases of systems
conslsting of liquid phases where there is more than one pair of partially

miscible constituents,
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N

c D

Figure 6. Examples of Ternary Isotherms - Two or More Partially Miseit
Binaries.

In case A there are two regions of limited miscibility. In
case B these two regions have fused together, case C shows three two
phase regions. In D the two phase reglons of C have fused together to
give a three phase region. Glven T, the compositions of the three
phases in equilibrium are fixed by nature since the phase rule states
thats

Vo = C+1-P=3+1-3=1
Therefore specification of only one phase rule variable (i.e. T)
speclfies the system.

Note that in Figure 1, 2, and 3 the temperature range has
been limited to that range where only liquid phases exist. At lower

temperatures for most systems solld phases appear and the resulting



-11-

phase diagrams become more complex. .Figure T 1s an example of a ternary
system of the type shown in Figure 4. The binary T-x diagrams are shown at
the edges of the ternary diagram. The solid phases consist only of the pure
components A, B, and C., The systems AC and BC are of the simple eutectic
type. The system AB has two eutectics and 'a region of immiscibility in the
liquid state similar to Figure 1. The triangular diagram shows the pro-

Jjection of lines of three phase equilibrium,

Figure 7. T-xp-xp, Extended Temperature Range.
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At T; the isothermal section would look similar to Figure 4L, Figure 8
shows the isothermal section at Tp., In addition to the two phase region
Ly-Ip there now appears a second two phase region Ip~A., The dotted curve
is the locus of points glving liguid composition in the three phase equili-

brium Iy-A-L, shown in Figure T.

C )
Figure 8. Isothermal Cuts of ure 9. Isothermal Cuts of
Figure 7. Figure 7.

The cut at T3 is gilven in Figure 9. Since this temperature is below
vthe ALy eutectlc the dotted line is now intersected by the saturation.
curves and a three phase reglon occurs in which A-I, and I, are in
equilibrium. Note also the appearance of the two phase region I,B at
~ this temperature. The L1-Ip region is now entirely within the ternary re-
glon. At the temperature corresponding to point a in Figure 7 the liquid-
liguid region will disappear,

If one makes a vertical slice in the ternary temperature-com-
position figure perpendicular to the plane ABC at' the line pq, Figure 10

is obtained.
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T 1 LiEl,

LR

v Be)
aecs)

A
p B

Figure 10. Vertical Section Taken Along the Line pg in Figure 7.

The notation of IQA(G) means a mixture of I, and A ip equilibrium with C.
Numerous graphical tie line correlations have been used in the

pasta(ln’hl) A

‘good summary of these may be found in Reference (46).
These have utility in cases where systems have been partially determdned
experimentally in predicting those portions of the eguilibrium curve
where there are no data. They have little value in predicting systems
for which there are no data at all.

The work this paper discusses deals with the prediction of
the cases of two phase liquid equilibria shown in Figures 4 and 6B as
these cases are the important ones‘industriallyu However the methods of

representation to be discussed in the next section are generally applicable

to solutions of non-electrolytes.
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B. The Representation of Equilibrium Data With Equations

There are two general classes of equations which have been
used to correlate phase equilibria. One class consists of empirical
equations relating phase rule variables directly such as the relation

y = ax + bx° + cx3 (2.1)
which has been used to correlate binary vapor-liquid equilibrium data,
y being vapor phase composition, x being liquid phase composition.(l3)
The second and more important class are those equationé which express
the dependence of the thermodynamic function, the activity coefficient,
on liquid phase composition. ' Because of the marked success of this latter
type of fepresentation.of equilibrium data it has been chosen as the basis

for the correlation of ternary liquid-liguid equilibria being developed.

1. Thermodynamic Foundations.(l3)

In the case of a multicomponent system consisting of ny, no -—=Iy
moles of components 1, 2, ---k respectively the following is true of the
free energy of the system:

G' = G’(T) P, nl, ].’12 ""—nk)

16 = (%?_-)JT + (%%)G(P +i (%%)a(mé (2.2)

where it is understood that in the partial differentiation all variables
are constant except that appearing in the denominator of the partial de-

rivative.
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If we consider an infinitesipal reversible process in which

neither the amount nor the composition of the system changes, i.e.:

dny=dn, = v zdn=o0

Then Equation {2.2) becomess

Jo < (3T + ()

For this case from the first and second laws of thermodynemics:

Jo = ~SdT+ VdP . @.))

Comparison of (2,3) and (2.4) gives

()5 L ()

wue partial derivative %gé is called the chemical potential of the
n

ith component and is denoted by,Afu It is also frequently denoted as Ei?
free

the partial molal from energy of the ith constituent. This notation is

used interchangeably.

On combination of (2.2) and (2.5) there results:

k
PRI YN o
c=l

For the case of a system at constant temperature and pressure:

k
46 Zéa( [T,P] - (2.7)

¢=

Integrating (2,7) at constant composition:
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If we make infinitesimal changes in P, T and the number of

moles, we obtain:

k
GrdG = Z(mgdw)(@m@) (2.9)
=/
Subtracting (2.8) fiom (2.9) and neglecting higher order
differentials:
k —
A6 = Z(Gﬁmﬁ hdo(@) (2.10)
J=]
On comparison of (2.10) with (2.6) there follows:
k —
SJT-\/JP-!-ZWMG; =0 (2.11)

v

g=1
which is the Gibbs-Duhem equations

At constant temperature and pressure, and dividing (2.11) by

the total number of moles one obtains:

k
Zz‘.af , =0 [T,P] (2.12)
Ay
The fugacity fy, is‘defined by

AG = RTJ%G (2.13)

Combining (2.12) and (2.13)

k ,
Zz"a/jmf =0 [T, P] (2.14)
¢=1

The activity, a; is defined:

O =

y z//'o (2.15)

L
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where f; 1s the fugacity of component 1 at the same temperature as fy,

but in some standard state. In the casevbeing considered the standard

state would normally be the pure liquid i; at some specified temperature.

Teking the logarithm of both sides of (2.15) and differentiating

we obtain since fg-is constant:

dbpa; = dbnt

Thus Equation (2.14) may be written

b
Zzb'ﬁ{ré’ld\(: =0
u /=/

Defining the activity coefficient as:

we obtain upon Substitution into (2.17)

(\Y
~

k
=l Z’b‘ﬁo

é=)

Since

[\
]
~

T

Then since xid 1n X4 =,dxi:

k N
g(’zc'”(’ﬂ”zz * ZMMM/L> = O

[T,P]

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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It follows from (2.21) and (2.19) that:
k
Z/ZMWM\Q =0 [T,P] (2.22)
o Smddn¥, =0 [T,P]-

Z=l
This may also be arranged to the form:

k
Z B%\K [T,F] (2.228)

lel n;

(13)

Mixing and the Excess Free Energy: Consider the change in

free energy, AGM, in mixing the pure liquid components B, C, --- to

form a solution consisting of b moles of By c moles of C ----s

NG, = b +cGe <o e —bly =B
=b(3-Go)+ c(B-G))+ -+ (2.23)
where a; s @: denote the partial molal free energles of the pure
liquids B, C ---, taken to be the standard staﬁes of B, C --- respectively.

Note that combination of (2.16) with (2,13) and subsequent

vintegration gives:
G -G = RT Moy . (2.24)

Substitution of (2.24) into (2.23) gives:

3
&=l
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From (2.18) and (2.25):

AG, n/?T/mz + ;mﬁTﬂq (2.26)

\r\V1F

For an ideal solution the activity coefficients are equal to

unity and (2.26) becomes?

k
Z n RT o 2 (2.27)
Z=l

For real systems the activity coeffidients are usually not
equal to unity. The difference ZXGM - [Bq; is called the excess

£
free energy, AG :

AGT= ) nRT Y, (2.28)

¢=/
The partial molal excess free energy is obtained by differen-

tiating partially with respect to nj:

k
Z. 286" . RTHX+RT Y n, 3,
AG = 5= = RIAMUTRT nood [7,Fe29)
¢ = n

____E'_o

[
Since by Equation (2,22a) ZE:W S
Z=l N

A—G'f= RT tn ¥, (2.30)

The Q function is defined as:

AGT LG
Q= aoshren, = ZoaRT (2.31)

where 4gf€-represents the molar excess free energy.
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The partial molar value of Q with respect to component i is:

éij' - éZéifﬂééz _ | ZXZE%!

on,  AJOBRT

(2,32)

From (2.32) and (2.30) it follows:

C_>¢’, = /é{ﬂ/o\(é (2.33)

If either,AﬁF or @ are known as a function of composition, by
partial differentiation with respect to n; it is possible td obtain a
relation glving the dependence of the activity coefficient of this con-
stituent on the composition of the solution. Since the mole fractions of
the various components are not all independent Zﬂif 1s not equal to
£

iéé and ﬁ- is not equal to @
Y3 ¢ LS NOT eq 32@

A formula may be derived which gives any partial molal quantity as a

(5)

function of partial derivatives with respect to composition. For
any extensive property, R, as was shown in the case of Equation (2.2):

k=l

AR = A R.dn, (2.34)

Integrating (2.34) at constant compositiong

e

R =/ Rn (2.35)

g
A

~

Differentiating (2.35):

k I3 —
AR = ) Reln + ) nidR; (2.%)

Comparing (2.34) and (2.36) it follows that:
k

Znéo(/.?:» =0 (2.37)

¢=1



01~

Considering one mole of solution it follows from (2.34), (2.35) and

(2.37) that:

k

AR =Z'——ad)‘é

Ie J—

Ii =Z/ LAY
k —

Z_sz’\’c =0

(2.38)

(2.39)

' (2.40)

R means R per mole of solution in (2.38), (2.39) and (2.40).

k
From the fact that ;7‘; =/  we obtain:

k-l
a(%k_ = _éfj?ﬁ; (2.41)
Eliminating x, from (2.38) by means of (2.41);
k-1 _
dR = Z( J'R/euzé (2.42)
Since x, =-= X, are independent variables:
aR) = 5
— |= R,-R (2.43)
( o, .
k
Noting that 2:2&=/ R (2.39) becomes (2.44)
izl ¢
k“, — — —
E=Z(Fi."/?,e>7c; + R (2.45)
Substituting (2.43) into (2.45) and rearranging:
_ -1
Re=FR- JuR (2.46)
¢=| az"
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This equation gives the partial molal value of R for the com-
ponent k whose composition varisble was eliminated. Ffom (2.46) and (2.43)

it follows that:

r»
1B

R =R+38

A — z‘:

k-1
2!

Y (2.47)

Qs

o~

Z
Equation (2.&7) gives ﬁ; for all components exckpt the kth component.
Note that for the case of the Q function, Q is an intensive

property. Therefore replacing R with Q

Lo Y, - ) uid (2.48)

/43/9 &e

Similar expressions may be obtained forﬁgzi. Expressions for the activity

Q - ) . (2.49)

coefficients derived using Equations (2.48) and (2.49) are automatically

' 1
consistent with the Gibbs-Duhem equation at constant [T,P].( 3)
2. Representations of the Molar Excess Free Energy:
i
The Wohl Representation of AQ; Wohl<5 ) expressed the depen-

dence of égf, the molar excess free energy, on the composition of the

liquid phase by the expansion:

£
A..e_ ‘ Z Zé. ZJ a"J- + Z 2‘. Zd‘ Z/e' aéﬂe +
2,503 RT ¥ 4.7, - L
¢

I

+ Z c
A 2,2,2,2 0, t (2.50)
¢J'
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where q;, Qy Q, q, --- are constants Wohl called the effective molar
volumes of the constituents i, j, k, 1, --- and 2, , %, 2, 3 =--- are

< Y

the effective volumetric fractions of these constituents. 2z 1s defined

(A

bys

;ZJ
z = ydea (2.51)
2 %4
J
Equation (2.50) is written as an equation of the fourth order.
In practice equations of order higher than this are rarely used. Using
Wohl's equation of the thind order it can be shown that by making certain
simplifying assumptions the third order equations of Van Laar(u7)

(20)

Margules and Scatchard and Hamer(39) are .obtained.

After introducing the new constants A and B:

A =% (26{,7_ * 30'/17-) ’ B = %2 (Za/z +3a,,2>

the third order equation for the binary case becomes:

AQ[ 42 | R + 2z A]
2203 RT = (7/ + 3 Zz)zlzz[zl %’_{ 2 (2.52)
! 2

It may then be shown that:
dn = 2 |AY 22(B g - A>J (2.53)
72

which is the Scatchard-Hamer representation of‘log\xla
Table I gives the simplifications necessary to convert (2.53)

to the forms derived by earlier suthors,
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TABLE I

COMPARISON OF THIRD ORDER EXPRESSIONS FOR LG}B; FOR A BINARY

Type Simplification | log ¥, Ref'.
Scatchard a0 /ql = V2/Vl (L - 2)2[A+2z(BV1/Vp-8)] 39
A ;
Van Laar qglql = B/A — % AP b7
BT
%> BJ
Margules qe/ q; =1 (1 - xl)g[A-l-Ex,(B-A)] 20

Much more complete tables similar to Table I may be found in
Reference (13) for the binary and ternary cases.

The Redlich-Kister Equations: In 1948 Redlich and Kister in-

troduced a simple, highly successful empirical representation of the Q

(33,34)

function. This representation can also be derived by sultable

rearrangement of the Wohl equations.(l?’) For the binary case:

. 2
Q=22[Bat Co(r2)+ Dy (2-2)+ <+ - (2.54)

Retaining only the BL;. and. C"J terms, application of Equations (2.48) and

(2.49) gives:

j”jmb? = Z: [B/z * Cp (" Zyt 51/)] (2.55)
/&a,oxz = Z/Z[ B/a *Cp ( y/ 5Zz)j (2.56)

For the case of a ternary Q is represented:
2
Q= Z'ZZ[B/a * C/a(z/'z?-)’LD/z(%'zz): - J *
* ZZZ}[BQs * C2$(ZZ_Z3> +D25 (ZZ— 2/5)4' ‘o 'J -+
2
¥ ZgZ,[ Byt Cy (zs_/zl/) +Da (2’3‘2’,)"' e ‘j+
w2740 [CH D%+ Data v ] (2.57)
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where C, , D, D, are ternary coefficients and EU ) qy are binary co-

efficiéntsi Againrehérenonly :thé binary Baand C coefficients. are:.retained

applying (2¢49) gives for & 'ternaryf

’%3/0 \07 = 3/9. % (/—z)—ng‘Zzzb * 3/’2’5 (/—'Z’>
+C, (2 (22, C 1t 2am />- zz_)>+ Cea (2t (2 Zs>>

+C3,(23(274,(,2,-7!3‘/%%5)) ‘ (2.58)

A cyclic permutation of the subscripts gives the expressipns for log X; 3
and log?& . Hence forth in this dissertationthe right hand sides of
(2.58) and the expressions for iog ¥, and log‘g\é:5 will be denoted as F , F,
and F3 respectively.

The success of the Redlich-Kister equations in correlating
vapor-liquid equilibria led to theilr selection as a‘basis for the cor-
relation of ternary liquid-liquid equilibria. In practice it has been
found thaﬁ retaining only the b;nary Bﬁ and qﬁ coefficients is suf-
ficient to correlate most cases of ternary vapor liquid equilibriag53)
and only these coefficients have been retained in the equations to be

used as the basis for the liquid-liquid correlation.

C. Composition-Free Enefgz,Diagrams(5’7)

It can be seen from Equation (2.26) that at constant temperature,

G the molar free energy of mixing is a function only of composition:
M 0

k k
AG ‘
GM:. LA zJRT/ZMZg"" ,Z‘./?T/%VX[ .
AG > ;:/ >/ (2.59)

e
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For the binary liquid case [XQM may be plottedagainst x,,

the mole fraction of component 1 in the liquid. If the activity coeffi-

cients of 1 and 2 are unity then a curve of the function

AQ; = RT[z, I, + (J-2,) A (/—z)]

will be obtained as is shown in Figure 11,

26,

© * !
Figure 11. Ideal Binary at T, .

In real systems the function for the molar excess free energy
zng is superimposed on the curve shown in Figure 11l. Depending on the
‘nature of the function z&gf ,bonly one or more than one liquid ghase will
be encountered as x; increases from O to 1. Figure 12 shows a case where

the system is homogeneous throughout the liquid range.

AG,
A%,
T
06, |86,
|
¥
A Zg B

Figure 12. Real Homogeneous Binary.
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It may now be seen graphically that for a solution or compo-
sition x5, the partial molar free energy of mixing of component A is given
by the intercept with the A axis of the tangent to the AG, curve at %, .

This follows from Equation (2.46). (See Appendix A).

Aé- = ——-—BAG"‘ = AQM—ZBBAQM
"4 YN 578

AG, eppearing in (2.61) is the value of the AG, versus composition
curve at the point xz shown.
- Figure 13 shows the case of a binary system having limited

miscibility in liquid phase.

A

MG,

|

| I
| I
| |
] |

A %y %, % B
Figure 13. Binary Having Two Liquid Phases.,
In this case there are two inflection points in the curve. Mixtures
having a total compositidn‘between,xé and xg will break into phases
of composition xé and xgv which are the abscissl of the points of common

tangency to the curve. Note that there is only one set of these points
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at a glven temperature, a consequence of the phase rule which states that

when there are two phases, given pressure and temperature a binary system

is completely specified.

In the general case equations similar to (2.6) may be written

for any number of phases of which the total system may be composed:

d6= =SdT + VP *ZG oln;
AG"s - SAT + VelP+ zfe”dm (2.62)

L]

Since G represents the total free enérgy of the system:

G = G/"‘G”*Gw"' Ve s

(2.63)
Note also
/ ' )
AG. = G-MG~nGy + - (2.64)
) PN .
AGp = G- G =G+ (2.65)
At equilibrium aibbs (9) proved that dG = 0; therefore
NG = '+ J6"+ 6" -+ =0 (2.66)
From (2.66) and (2.62):
ko k
Zéz/”{ z/ Z '/”{"" o0 =0 (2.67)
izl d=/
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Since the total mass of each component remains constants:

dnd + vl +dnf/+ v =0
Ave +dnd +dnl+ -+ =0 (2.68)

In order to satisfy (2.67) and (2.68) it is necessary that:

Y
AT MA T G%
-/"_//— ] ° . =—Z
s = Cp = . &

(2.69)

From (2,65) it follows by partial differentiation with respect

tO 1’1&' o
-/ _ "'/_ 2]
AG,, =G G (2.70)
Tt follows from (2.69) and (2.70) that:
=/ _ AFN _ =u _ . .
AG, = AG, = AG,, = - (2.71)
The result given in (2.71) together with that of (2.61) is the
mathematical statement of what 1s illustrated graphically in Figure 13.
The common tangent at points b and c¢ satisfies Equation (2,7l)a
Another way of looking at this is that at equilibrium a system
is in a state of minimum free energy. Rather than remaining a single
phase of composition x, having a free energy corrgqsponding to point a
in Figure 13, the system can minimize its free energy by breaking into

two phases each having a molar free energy given at b and c, the fangent

points.
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Addition of a third component to the hypothetical system of
Figure 13 results in a three dimensional representation of the dependence
of AG, on liquid composition shown in Figure 1k.

The case shown is one in which component C is miscible with both
A and B, A and B being partially miscible. The locus of points of common
tangency of planes to the free energy surface projects in the plane ABC
as the familiar binodal curve for a ternary liquid-liquid system. The
lines connecting common points of tangency of a given tangent plane project
in the ABC plane as the tie lines. As the plait point is approached the
reverse cleavage in the free energy surface becomes less and less finally
damping out; the surface becomes convex downward, and the solution is

homogeneous.

G o AG, T

,\,\

ci

Figure 1k. AG, =%, ~ %, , Partially Miscible Ternary Isotherm.
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(34)

The Redlich-Kister representation for the ternary AgM surface,

employing only the first two binary coefficients is:

AG
2,?03;7/3\- = %A h T 2, /Z”j/p Zz T X3 /Zij/a/""a

+ X2 (5/2_'*' C/g_@,"}’z))'/' Z’zzﬁ( /323+ Cza (752' 7‘/3>>
2y (Bs/’LCa/(zs‘%D (2.72)

Figure 15 gives the contours of hypothetical surface calculated by

assuming B, = 1.3, By = 0.5, B, =C, =0Cp =C; =0, The numbers
on the graph are values of AGnw
Z303RT

MIN

=\ - 0),24
\

~0R0—

| // T ~— \-on
/ VTN,

Figure 15. Hypothetical AG, Surface as Represented by Equation (2.72).
B12 = 1.3, B3l = 0,5, B23 = le = Clg = 023 = C3l = 0.
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D. Phase Stability and Critical Phases

Of considerable importance in this research are those relations
which enable one to predict phase stability and critical mixing points. A
knowledge of the location of a plait point in a partially miscible ternary
is especially desirable in engineering considerations. The relations
which follow were origlnally derived by Gibbs. 7 The development given

(

by Haase 12) has been abstracted and presented here,
Consider a closed ilsolated system having a total entropy S.
The second law of thermodynamics states that for any infinitesimal change:

as> o (isolated system) - (2.73)

For an adiabatic change from state I to state II there are three situations:

AS=8 -8 =0 (reversible change) (2.7ka)
A =8 -8 >0 (irreversible change) (2.74)
=5 -5 <0 (impossible change) (2.7ke)

If we propose a reaction "old system —»> new system" then it follows

from (2.74)s

As> 0 (old system unstable) (2.75a)
AS = 0 (neutral equilibrium-a critical state) (2.750)
AS< 0 (old system stable) (2.75¢)

Since the system under consideration is isolated (that is there is no
energy transfer between system and surroundings, Q = 0, W = 0) the following
additional relations holds

AU=0, AV=0, An =0 (i=1,2, 0o N), (2.76)

where N is the number of components.
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The simplest case of stability is thermal and mechanical stabllity.
Consider an isolated system consisting of a single phase of unchanging
composition (g,\_f), It is possible to form from n moles of the original
phase n' moles of one phase (_[_I + AU, V +AX) as well as n" moles of a

¥
second phase (U +AU , V+ AV').

T(UNY) = T(U+AU, ¥+ 0V)+ TT(u+au, v+ AY')

(isolated system)

In order that phase I be stable according to (2.750):

AS=nAS + H”Aéi <O (2.77)

AU=n'AU+n"AU = O (2.78)
¥*

AV=n AV +n'AV = O (2.79)

n=n'+n’ . (2.80)

Expanding AS as a function of U and V by Taylor series expansion:

09
AS = Au+ Y Av

8S 0 AUM+BS (aV)
au2< >+£auav T }

Similarly for AS* after utilizing (2.79), (2.80):
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Combining these last two equations with (2.77) and (2.80):

AS = an 238 auny 98 (av )]s <o
Zm”[ (M WY +avz( I}

It follows from a property of the Taylor series that

FSWY)< 0 o SS(UY) e
negative definite (2.81) where Szé (Q}}_/) represents the entity in the
brackets of the preceéding equation. Similar consideration of additional
terms in the series does not give additional independent relations.

It follows from a rule of algebra (see Appendix A) that the

2
quadratic form §S(U,V) will be negative - definite if:

2 2 2 2 2
oS 3 55 _5_.\; > 0 - (2.81a)

Phase I will have thermal and mechanical stability if the requirements
of (2.81) are met.

By reasoning analogous to the above, other relations for phase
stability may be derived. In the case of the Gibbs free energy function,
G, it is easily shown that for the reaction "old system to new system" at
constant T and P:

AG < 0 (old phase unstable) (2.82)
AG = 0 (neutral equilibrium-a critical state) (2.83)

AG > 0 (old phase stable) (2.84)
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For the case of a binary where C, is positive, by introduction
of suitable definitions it can be shown from (2.81) that for a stable
phase

2 .

§¢ (T,2) > 0 (2.85)
By an analogous procedure (see Appendix A) to that used in deriving
(2.81) it may be shown that in the case of a binary for a stable phase

R
(%—% >0 or [ézg (7‘>]m=>0 ~ (2.86)

TP .
2
(Note: the notation.g, S seees refers to first order, second order terms,
etc. in the Taylor series expansion).

Generalization of the development used to obtain (2.86) yields

for the case of N components the following stability criterion:

52_@ (2’, yRay .v/z/v-/ >7-,p >0 [T; P c""sé']' (2.87)

In words this states that é@fx,, X, 5 === Xy, %7P must be positive

definite 1f the phase under consideration is stable. An algebraic rule
stateé that a guadratic form is positive definite if the determigant of
its coefficients with all principal minors is positive. .From (2,87) it

follows then that for stable phasess

D>0 ) (2.88)
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where
\2 2 2
& & . 6
575,2 32157‘2 574 az/y-/
B % L
D = 5752_37:/ 57522 3%2 azn-l
2
bzﬂ-lbxl é/ZN—/B% 2 9%5‘.,
Note that if 6?3@9, X, 5 === Xy l;p or D is negative the phase

under consideration is unstable. Therefore the space curve

D=0 (2.8¢
2
separates the region in which Sg(x, 3 Xy === X )TP is negative
, , 2
(unstable phases) from the region in which Sg(xl ) Xy == Xy ) is

positive (stabﬂe‘qr metastable phases). Equation (2.89) is then the
equation of the stability boundary. Graphically (2.89) is the curve b'Ke'
in Figure 14 for a ternary system and i1s sometimes referred to as the
spinodal curve. It is the loci of inflection points in the Z&gh\ curve
found in planes perpendicular to the x , X, plane and situated so that
the tie lines lie in these planes. That region on the g(xl, xz) surface
between bKe and b'Ke' is known as the metastable region.

At a dritical point, an infinitesimal variation in state proper-
ties causes appearance'of disappearance of a phase. It must lie therefore
on the stability boundary and Equation (2.89) is known as the first critical

relation.



-37-

The second .critical relation may be‘derived as follows. Con-
sider a two phase system such as the ternary system in Figure 1k. Let us
formulate a path in the g(x,, Xz) surface (at constant T and P) which
passes through the unstable and metastable reglon, connecting two co-
existing phases and which has zero length in the case of a critical phase.
The equilibrium between two phases with N components at constant T and P

is described by the N relations which follow from (2.69) together with

D R IR A R

—— ._._,————:_ V0 0 sme—

ST D VAV 2 YA

(2.90)

N=
/I 2 J / “ % AN
Sgi 2& zﬁ;é- = .gé ' }? 2%%%

If of the N .guantities:

=l

38 36 oG G - NG

°= , 9= e =, O X 02 .,
5%/ Xz a%/‘/-/ ; 5% (2 91)

oo

N-2 are held constant, then a path is determined which behaves as that
described above. Since a two phase equilibrium with N components has a
variance of N, the constancy of N intensive variables (T, P, and N-2 of
the quantities in (2.91) which have the same value for the two coexisting

phases) corresponds to a traversing of G surface between the two phases.



-38-

Consider now a point on the stability boundary (D = 0). For an

arbitrarily small variation of the state of a phase, considering only

5.6. (G, ... 28

variations on the prescribed path where — , <=

A s

are constant:

cn . oD 20 oD
= 2= S =l §2y + oot
sD g 2 T 37, 3 QZN-ngN /I (2.9)

6 ). 2L 06 g ....0¢ g0
S<SZV- B/Z,v 26 £ZI 5/2//\/ zb 9— aZNa /V- " /

Proceeding in the direction prescribed by (2.93) one passes from meta-
stable phases on one side of the boundary curve (D = 0) to unstable phases
on the other side. Only in the limiting case of a critical phase (which
must lie on the stability curve) does one succeed in the direction pre-
scrived by (2.93) in going continuously from stable to stable phases. At
the arbitrary location on the boundary curve the expression §D can be

positive as well as negative. If the point on the boundary curve coincides
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with a critical point SD must vanish. If §D were negative one would

succeed in arriving at unstable phases (D< 0) on the path described by
(2u93) which 1s impossible at the critical point. If 5D were positive
then it could be made negative by a sign change of the variations le B

5X?_, - éxN_, . Therefore for a critical phase under the constraints

(2.93):
§D =0 (2.94)
Equations (2.92), (2.93), and (2.94) form a system of N-1

homogeneous linear equations consisting of N-1 variables, In order that

these equations can be satisfied, the determinant of the coefficients

must vanish. Therefore

/

D=0 (2.95)

where 2
ye o 98 G

P

- e
3
o
R
o/

™=

%

]

/ ' :
OF e % e e

aXM 2675/ 5)(»267‘/ ' 5—%/-—2874/-/

2 O ... .. D
%, A ey

For a two component system at a critical solution point, there-

. . . - .

fore, it follows from (2.89) and (2.95):

2 , 3
D‘BA%:O , D-'-‘-%—%g =0 [T, P] « (2.9a,b)
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Similarily for a three component system at a critical or plait

point:
2 2 2
Y6 96 _ (.é_fz B_o
D= zE ot M) 0% [Ta Pl (2.97a)
/¥ D _ ¥e D,
=525, T S oy ° T, P(2.97)
D —‘é—;(—/z p2% Z/bzg_ Z/ [ ) ]
For a guartenary, the locus of plait points will be given by the
relations:

D=5§<5—2-@5—2§- -(5-2@-} . e (5__6._ % _ Y b_.é>
52/ 5%2 5%3 BZQ_B?% 5%25)’-/ 57456,%2 57457‘3 5%\;‘ a% 52/2.

2, [ Y 52@ 52_6_ 52_@__ _
*;&( C & _ & =0 [T,P] g0
Rl

3% W, 91, 0%s OF, OO

- BG 56 D Y6 BD
TN\ Y ot 5742

+BD<B_Q_ Yo _ Yo &>:o T Ple.sin
AN AT RA YA T RIA [T Pl
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The critical relations are of considerable utility in using
algebralc representations of ZXQN\° A further discussion of the critical

relations as applied to Redlich-Kister equations will be found in Part III.

E. Temperature Corrections to Activity(l3’3h)

Expressions for Q or ZMEE involve a set of coefficients which
are functions of temperature but not of composition. A given set of
values for the coefficients pertain only to a single temperature. In order
to predict equilibria at higher and lower temperatures a knowledge of BQ
and q& as functions of temperature is required.

Tt follows from (2,74) and the definition of activity thats

I = 0
Ana; = = (5 —G) (2.99)
Differentiating partially with respect to temperature we obtain:
. g _& H, —H;
odnag _ | 5_(%‘ -75>: - _/4_'1 (2.100)
oT R oT RT*

,where‘ﬁ; is the partial molal free enthalpy of i in solution,ﬁ?is that
of pure i,

Since ay =rxiﬁz it follows that

% - H
Mﬁ_ﬁ = - E___/-_/e_ (2.101)
oT RT?
1r (8, - H? ) is known as a function of T, In¥ as a function of T may
/A ¢ Sl

be found by integration of (2,93).
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From the definitions of AGM , 1ts enthalpy analog AN:|

and AT given in (2.23), (2.26) and (2.38) it follows:

(%)

= A/‘/M (2.102)

and

- ) &)

On a basis of one mole of solution from (2.102), (2,103), and

(2.103)

B(%&> _ 5[;” /?,an;+A_TQ‘—]_ 5(4\'@{)
e -

(2,31) we obtain:

N
B(Z.SOSRT> _ 5__@_ A./__./M

S@) 7)) 2o

(2.104)

A representation of AEM has been proposed by Redlich and

(31)

Kister similar to that for Q, For the binary case:

A__/-_/.M = %% [b'z+ (Xl—%?->c/z J (z/'%_}zdlzﬁ- o ] (2.105)

Partiasl differentiation of (2,54%) gives:

o, - 2 2on .Y - z-é—gllﬁ#*""zlo
3<_1_,_> %, [B('-:’-B‘*‘(Z; 7525 3(__H+(Z, Z,_> 5(% ](, 6)

From (2.104), (2,105) and (2.106) it follows that

BB’Z = bL"—- amd{- -é;c-:—m-‘- = S
OL)  2o0eR 3(.1-5 2,303 R
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If b, and c, are known as fuhctions of temperature, B, and Cj,

can be found as functions of T by integration of (2,107). In the absence
of additional data, if B, and C, are known at two temperatures, b,

and ¢, can be assumed to be constant, and B, versus 1/T, and C,p versus
l/T plotted as straight lines. Hala(l3) found that B, 5 Cp wse Versus
1n P°plot as straight lines, where P° 1s the vapor pressure of some ref-
erence substance at the same temperature as B, and C, .« Additional

work in this area 1s needed.



III. APPLICATION OF THE REDLICH-KISTER EQWATIONS

A, Derivation of Equations for the Liquid-Liquid Case

For the case of two phases in equilibrium it was seen in

Equation (2.69) that

- -/ -/ - —4 -1

G =G , G =G ,...G =G (T,P]

Integration of (2.13) gives for either phase:

G =G =RT . rf/[o (3.1)

If the standard states are chosen to be the same for component i in

—o’ ___o//
each of the phases then G =G

’
&

o

o

Since &, 1s a definition f; /f; it follows from (2.69) and

(3.1) that:

/ — /" / /
) Ry g )y 1 Oy T Oy (3-2)
From the definition of the activity coefficient (2.18) it

follows:

/ " /7, ", / "o
Y'Z//-; 2{I Z/”J {Z./ZZ. = {Lzz_/ rre KNZN = K /2;//' (3"3)

N

The Redlich-Kister equations for log%>X2 retaining only the

binary 35 y qﬁ coefficients may be written:

’Zﬂ‘{; = E/(Bo'J; C;)' *r, 7—/,/, /Zz/ . /z;v/-/> (3.4)

/" "y " y /”
’égﬁ 32 /Z. (/ZEQJ ) C:J' A R WZ;-C) (3.5)

Lo
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From (3.3), (3.4), (3.5) it follows:

/ , .,
/14»3/’;__:7/): /2—/—/3 (4'-7/) 2, “‘N)'(3°6)

‘Tt is understood that these relations hold rigorously only
at constant T and P (althoﬁgh small variations in P have negligible in-
fluence because we are dealing with condensed phases).

‘Equations (3.6) and N equations in 2(N-1) unknowns it values
for the parameters 3@ B qﬁ seaso are given, . This means it is necessary
to specify N-2 variables in addition to T and P to solve the system of

of Equations (3.6). This result is obtained from the phase rule for ih

a system of N components and 2 phases at [T,P]:

Ve =C - P = N-Z (3.7)

1. Binary Case:
For a two component System the Redlich-Kister-representation
of two phase equilibria retaining only the'binaryi@y and QU- coeffi-

cients follows from (2.55), (3.5), and (3,6):

; ’ - //2' / //2'- 7 ’/ / /
’Z@Z%” - B/z (2; A 2)+Crz (Zfz L3,2’, /‘2’_,2 _] "/%_/2[5/2// —/Zz_]) (3.8)
/ 2 2 y 2 /
/% ZZZZ” :B/z (/Z/” - /Z//Z)+C/z (,Z,”[,z@”—&,z’z] - A [Z,/' 512 J>(3o9)

/” /

/- %

where 2£/= /- ;5/ and 2
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Given wvalues for B& and QQ Equations (3.8) and (3,9) may be solved

for xf , x7 . DNothing in addition to the coefficients must be specified

[
(specification of the coefficients corresponds to specification of T and
P) since N = 2 and from Equation (3.7), Vor = 0. Likewise specification
of x/ , g” (binary solubility data) determines B, , C, in (3.8) and
(3.9).
2+ Ternary Case:
By a procedure analogous to that used in the binary case,
Equations (3.10), (3.11), and (3.12) may be written which represent
ternary liquid-liquid equilbria and retain only binary coefficients,
Bé; R Cg » Because of the length of these equationé, they will be
written henceforth as (3.10a), (3.1la), and (3.12a).

sz Loy P - 7(54[74’(/-74’7-%;(/-74’)]*“ L B A )]
*CulnCa Carvals =20 ) = 1 (o Coliio)-5 )]
tCal 2B () - B 8 (o)
HCo L5n (" 2-1)+) -2 (o (-2~ )+z_,,’)]j= O (3.10)

WG = L, A5 -[( N A A N LA A A a)_]% [2%-2%'
+C,z (2 Cent Catvl=1)+ 27 )= 2/ (2 2l (-2 + 2 - )+ %)
tCoul# (28 Cole s 1 )- 1)~ (22, (242 1)- 1 )]
tC (G (4"~ 2)~ /% (2/- 2 )]j) = O (3.11)
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e z@ A - ABLam 2 A B[R0 )4 B (3105 ()]

+ C/2 [2 (Z/ /:2'2// (2/2//' 2’,//) = /Z//Zz, ( 22 /'/Z/ /))]
+C,, [ (21, Colrs - )+ z{') =2 (2n) Cofrns - 1)+ z{)]

o [ er e+ *0)2")- 7 a2+ 1) -4 )]j Os.12)

_ Where ,2/3 = / /z/ ,2/2 s ’ZJ// / - /2////_ zz” .

/@z&’l” -4 =0 (3.108)

I
O

(3.11a)

lo By, — B,

Aoy B =Py =0 (3.222)
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Equations (3.10 - 12) are three equations in four independent
variables (having specified the coefficients). Therefore by specifying
one mole fraction we can solve the equations for the other three mole

fractions. This coincides with the result from (3.7) for a ternary.

B. Utilization and Flexibility of the Equations

l. Solution of the Equations

Certainly if Equations (3.10), (3.11), and (3.12) can be
used as a basis for a correlation, it must be possible to solve them,
given numerical values for the coefficients. Because of the non-
linearity of the equations it is apparent that successive approxi-
mation or iterative solution methods must be used. It was at once ree-
ognized that finding an iterative technique that would converge to
‘solutions having physical meaning would be a major problem in this re-
search.,

37)

Newton's iterations was the first method tried. It was
found to be unsuccessful because it converges to the trivial solution
/
where »log_’_z_a,, =0, %: o (1 =1, 2, 3). Another method based on
i
half interval convergence(8) also failed.
The method that was found to be successful was far simpler,

computationally than the Newton's or Half Interval methods. Having
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specified the coefficients in Equations (3.10), (3.11), (3.12) and
one composition, say x, , the steps in the procedure are as follows:
1. Guess Z,/, ,Z’,” , /Z’,_”‘
2. Compute % ) ¢2 B ¢3 .

/i /1

3. Print /7‘///) zz' sz3’ ;/’Z/” s Za o X

if [ Z/ ]4 £ where & is specified depending

on the accuracy of the desired solution.

2 )
ho. Compute a = /O , b= /0

5. Compute / okt (/ZS//D¢3+/Z$ MJ)/Z.

where n denotes the number of the trial being performed.

y ,,[n+l_7
6. Compute C =/=%3 , A = /~ .
g , )
T. Compute Z; z=ad=-¢c . (Note that X, - X, = ¢,
o= c
/ d-c
XI” - xz” = d, Since x,/ = a.x,” and Xz/ = bx;_ then 7(,_’--0;L o '>

£n+U Cutl] , Ln+i]
8. Compute /Z/” A "Zz’, ne ’ ;"/LnHJ: al,/ |

P EH+’7 N b w1l

9. Using the N + 1 values of the mole fractions, go
to step 2 and repeat the procedure until the condition of step 3 is

satisfied,
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+

By =-2.0

By, = 0.87

Plots of Equations (3.10), (3.11) and (3.12)
B12 = 1.5, 325 = Clz = C23 = C}l = 0.
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For a detailed description of the computer program based on
this procedure, the reader is referred to Appendix B., Program 6. The
procedure converges rapidly near a partialiy miscible binary, more
slowly near a plait point. The initial guess must be quite accurate
near a plalt point, to insure convergence,

2. Demonstration of the Flexibility of the Equations

One of the first questions that can be raised is: do Hquations
(3.,10), (3.11), and (3.12) represent ternary liquid-liquid systems and
if so can they represent a wide varlety of cases? In order to answer
this a number of fictitious curves were calculated.

It was soon learned what the range of values of coefficients
was that gave curves which looked like ternary liquid-liquid phase
diagrams., Figures 16 - 21 were computed for one of the simplest of
cases, that where B, =C, =04 =0, =0in (3.10), (3.11), and (3.12).

B, was set equal to 1.3 which is a value great enough to cause partial

‘was varied from -2,0 to 1.0, It is

miscibility in the 1-2 binary. B,

noted that the slope of the tie lines is negative for negative values of
3M s Z€ro where 33/ = 0 and positive for positive values of B, . For
By = 0.87 the solubility curve becomes tangent to the 3-1 edge at the
plait point, and x, = 0.5. For E&I?>,Oc87 the 3-1 binary is partially
miscible,

Equations (3.10), (3.11), and (3.12) are capable of more com-
plicated representations by setting more than two coefficients not equal

to zero. In Figure 22 st = 0,87, so that partial miscibility is Jjust on



2
Bip=1.3 Bys* 0.87 By " 1.0 Biz®1.3  ByyvBy® 1.0
Cig® Caz Cyy* O Cz® Ca5* C3y* O
3 3
2 164
Bjp* 1.3 By By <0.5 Bi2*l.3  Byy" By *0.5

Cj2%0.2 Cp3=C3=0.3 Ci2°0.2 Cp3= C3*0.5
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the verge of appearing at the 2-3 edge. In Figure 23 9 Bias Bigs and'Pﬁl
are all greater than 0.87 therefore partial misaibility occurs for all
three binary pairs. It must be realized that in the three phase region
of Figure 23 Equations (3.10), (3.11), and (3,12) are not valid in the
physical sempe although they may be solved mathematically. One might
imagine the system of Figure 23 to be the result of two superimposed
systems of the type shown in Figure 22, one with partially miscible
binaries 1-2 and 3-1, the other having partially miscible binaries 1-2
and 2-3. The calculation of Figure 23 was achieved by starting near the
three binary regions and working in toward the center of the ternary
region. Starting from the 1-2 binary and successively increasing X3
a system identiﬁal to that in Figure 18 was computed. In general it

has been found that systems of the Figure 18 type are obtained when
EW = By; , and computation of theeguilibrium curve starts at the ij
binary, 35 beilng great enough to glve partial miscibillty. In computing
those portions of the equilibrium curve of Figure 23 which terminate in
the 3-1 and 2-3 edges of the dlagram, convergence is very slow near the
points where contact is made with the portion of the curve terminating
in the 1-2 edge.

Figures24 and 25 show that setting the Qﬁ coefficients not
equal to zero produces more complicated systems than those illustrated
in Figures 16-23. Setting QQ:# 0 produces asymmetry in the 1-2 partially
miscible binary. Setting C,, = Qs,.produces solutropic systems, that is
systems in which the slope of the tle lines changes sign. Note that in
Figures 24 and 25 the systems are solutropic and have asymmetric par-

tially miscible binaries.
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It was concluded from the sbove study that Equations (3.10),
(3‘11), and (3.12) are satisfactory representations of ternary liquid-

liquid equilibria and that they can represent a wide variety of systems.

C., Critical Relations

Equations which enable prediction of critical points given
numerical values for Redlich-Kister doefficients are of considerable
importance. From these relations one can determine whether a set of
Redlich-Kister coefficients will yield a ternary system hafing one, two,
three or no partially miscible binaries, whether or not there will be a
plait point, andvif there i1s a plalt point, what its location will be.

It was shown in Section II-D that at a critical mixing point
the determinants D and D' vanish (Equations (2.89), (2.95)). These
determinants involve the total free energy per mole of the system, G,
Since the Redlich-Kister equations are representations of the molar
free energy of mixing z&gmit is necessary to rewrite D and D' in terms
of[&gM « The free energy of mixing is related to G, the total free energy

6f the system by

- o [»] o
AGy= G =-nG -nGC, " nG - (3.13)

NN
N
Dividing bqufVV one obtains
l=l

o

AG, =G - %G, '767__: e 2,6 (3.1%)

where the x's are mole fractions of the total system. Taking the second

partial derivative of AG, with respect to x;:

YAG, 26

YA (3.25)
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Noting that the determinants D and D' contain only derivatives of order

two or higher, Equations (2.89) and (2.95) become:

YAG,  YAG. e
M o, Y
AG 2 2
5;;—;;« : ?7%\ -------- agf ?z
204 2 - —
D = : * ~‘ "= O (3.16)
YAG, YA, b,
Hn-1 0% &%ﬁbzz DY AN
¥A6, G, . 4G
BZ," BZI Bza. 82’, 52/”-/
D’ | | O-(3.17)
= ! X = -(3.17
dag, 46 386,
Oy g %, o 2h,.
2D o ... .. &
37 o O

1. Binary Critical Polnts

From Equations (3.16) and (3.17), Equations (3.18a,b) may be

written for the binary case:

2 3
S0% _ o . SAG _ 4

(3.18a,b
bzf' Y4 =)
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Note that it follows from (2.26), (2.28) and (2.31):

AG - 2t + St + 2,303Q (3.19)

Substituting Q as given by Equation (2.54) and retaining terms

multiplied by B, and C, it follows from (3.18a,b) that

€ = —I :3—_412 4Z/c"/
2.3038, p [(/*Zf)z + T (3.20)
| /
2. 3036 [(/ 7‘/> (/,Z/c>2 (3.21)

where xf is the composition of the system at a critical solution point

(the point (T,,x; )in Figure 1),
Equations (3.20) and (3.21) mey be obtained by a different

route without consideration ofzﬁgﬂ\. For simplicity let us write (3.8)

and (3.9) as

I

L/ B/z X, * C,z_ X;_ (3.82)

R+ C. A, (3.98)

L,

Solving (3.8a) and (3.9a) for B, and C, one obtains:

B, = L1X4‘12X2_ , C,z= zX/ L s
X,X; = XZX% / 4 X;Xé

(3.22)




_57_

-10

-12

0 0.20 0.40 0.60 0.80 1.0
X

Figure 26. Critical Values of B, C vs X
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| ? ’ I
PARTIALLY MISCIBLE BINARY
1.0 +m,m_m e = ]
| 3
o
-1.0 ]
i |
20 ____HOMOGENEOUS B
/ | BINARY
-3.0 // .
-4.0
-5.0
-3.0 -2.0 1.0 0 10 2.0 3.0
CC

Figure 27. BC vs. CC .
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The critical values of the coefficients, B; 3 C/:’_ corresponding to the

critical point (Tc, xg ) in Figure 1 may be expressed as

c , c
B/p_ = /me B,z ’ C ,me C. (3.23)
2=t b
7 7 /
2;//__)2;0 ;Z///__>2//C

where By and C, are given by (3;20). The limits in (3.23) may be
evaluated by postulating that
) ’

2zf T A A4
Z//,—>'Z/

and then showing for the case in question

,éw = o Mo By

->z, A5 Zort 2

Teking the limits in (3,23) and applying 1*Hospitalts rule(56) one
obtaine Equations (3.20) and (3,21),‘ The details of the two derivations
of Equations (3.20) and (3.21) are given in Appendix A.

Equations (3.20) and (3.21) are presented graphically in
Figure 26, as a plot of ‘B,cz and C,i yersus xf, and in Figure 27, as a
plot of ]3,°z versus C/; « Note that when C,;_ = 0, B/: goés through a
maximum of 0,87 (2,0 if the Redlich-Kister equations are written with
the logarithm to the base e rather than the base 10). Thus for the case

of Cp = 0, values of B, > 0.87 give a partially miscible binary, 1-2,

and values of B/2.< 0.87 give a homogeneous binary 1-2. This result



-60-

explains what was observed in Figures 16-21, that partial miscibili_ty is
on the verge of occurring in the i-j edge of a ternary when B g = 0.87,
Q% = 0. In general, points in Figure 27, that lie above the curve,

B° versus ¢ have as their coordinates values of By and Cj that give

partially miscible binaries, those below the curve, homogeneous binaries.

2« Ternary Critical Point or Plait Polnt :

As in the case of a binary mixture, the two constraints D = 0
and D' = 0 also hold for a ternary at a critical mixing point; thus it

follows from (3.16) and (3.17):

2.
N} AG, é AG,, YAG, \ _
- —_ (922~ 1= ,
D= S Vi 23 (3.23) .

506, 2D _ a6, D -0 . (3.28)
YA X %

D=

For the special case where C,, = Cpp = Cay =0 substituting
Equation (2.72) into Equations (3.23) and (3.24), carrying out the in-

dicated differentiation and simplifying:

(—- + é'é 2/33,)( 2 25> (gf + Bo= By By )= 03239
3

[5(5+5 285 <———@>}<——zﬁ>

— L 2. 3 2 3 2.3 2'% 2,75 - _ _
[zsz(/z/ /zz 25) #E (/Zz 2’5 2623)](73 +8n Ba Bs>—' O(32ha)
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Inclusion of terms multiplied by Cp , Cpo, and Cz; lead to
considerably more complicated equations than (3.23a) and (3.2%a). Given
numerical values for the coefficients, Equations (3,23) and 6.24) can be
solved for x, and X,, the composition at a plait point. A plait point
cannot be determined by direct experimental methods but must be estimated
graphically from neighboring experimental tie lines. This graphical
estimation is open to error, however. If one determines values for the
Redlich-Kister coefficients which ensble Eguations (3,10), (3‘11) and
(3°l2),to represent accurately a given set of experimental equilibrium
data for a ternary liquid-liquid system, one may use these values of the
coefficients in Equations (3.12) and (3.13) to solve for the plait point
composgition directly.

Equations;(3al6) and (3,17) are especlally valuable in deter-
mining the locus of critical mixing points in systems of more than three
componenfs where it 1s not possible to locate the critical graphically
as in the case of a ternary system., A knowledge of the experimentally
detefﬁined coefficients in the coefficlents in the Redlich-Kister equations,
or ln any other representation of Ag[, 1s 81l that is needed w—ith.E‘quati‘ons
(3,16) and (3,17) to solve for a critical locus, regardless of the number

of componentss



IV. DETERMINATION OF COEFFICIENTS FROM EXPERIMENTAL DATA

The determination of coefficients in the Redlich-Kister equations
from experimental data is of prime importance. In the case of ternary
iiquid-liquid equilibria determination of the coefficients which enables
the equations to best fit a given set of experimental data was by far
the most difficult problem encountered during this research.

In fitting a set of data to a mathematical function, or system
of functions such as the Redlich-Kister equations one attempts to determine
those values of a set of parameters that enable the function(s) to
minimize the deviations of the experimental data from the mathematical
curve, One SE}ﬁCtS a dependent variable or variables and minimizes the
error in this variable, that is the difference of the experimental value
from the mathematically predicted value for all of the deta points. This
presents the first major problem: what variable(s) should be chosen as-
the dependent variable(s)? The choice is arbitrary.

There will be two kinds of deviations: first, those which are
due to random scatter of the data, i.e. experimental error, and second,
those which are due to the fact that the mathematical functions are not
capable of perfect representation of the data. In this research, the
number of parameters in the equations has been limited to twice the
number of pairs of components. The number of data points for a given system
is far more than twice the number of pairs of components. Where this is

so, deviations of the second type must be expected.

~62-
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The second major problem occurs becsuse of the nature of the
Redlich-Kister equations, or for that matter any algebraic representation
of the logarithm of the activity coefficient. These equations are‘long,
complicated expressions which are implicit in the experimentélly measured
variables such as composition. If one designates a directly measured
quantity to be the dependent variable(s) the computational problem be-
comes quite considerable,

Let us consider first the simple case of an algebraic expression

which relates the dependent variable, y, to independent variables

Z' 3 Zz;n«;zmd

g=F(2,2 2 @1, @y oor @) ()

where /<3/, ﬁf& e oo KE& are parameters.

The experimental data polnts are denoted

X's Z/Z )2 ”“Zm' ) (4'= /) & ”””')(42)

¢

Statistical technlques are based upon the concept of a particular set

of data called the sample, which is drawn from an infinitely large
population of values. From the sample one obtains estimates (g ,ca,...éﬁ)
of the population parameters (/3';K31 vee By )« Under quite general
conditions, the appropriate statistical criterion for adjusting the

values of the parameters in order to best fit the data is the least

squares criterion,(gl) The assumption in chS%ing this criterion is that

the deviations of the experimental data from the predicted values for the
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(38)

*
data should follow a Gaussian distribution. Let Y, denote the pre-
dicted value for y when, for the ith data point, the values of the in-

dependent variables are substituted into Equation (4¢l):

*
}é =7[\(Z/4' :Z&” “"Z’"/: C s Ca “”CK> | (4:3)

The least squares criterion states that the sample estimates of the

population parameters shall have values such that
n X -2
A=§} [Yé‘YJ (b.L)
¢ =1

be a minimum. A is a minimum when the partial derivatives of A

with respect to each of the parameters vanish:

ié.__b_é r.';:-BA = O '

= (k.5)
¢, 3¢, OCk

Equations (h.S) are k simultaneous equations in k unknown parameters.

‘ If Equations (4«5) are linear in the parameters, they may be solved
directly for C 3 Cp oso Cpe If the equations are non-linear, problems
in methodology present themselves as 1t is practically impossible to
solve a system of non-linear equations of the type (4.5). Methods of
obtaining estimates of ¢, , ¢, «..cy for non-linear cases are discussed

in detaill in Section III, B, 1.

A. Binary Case
There is considerable interest in the possibility of using

binary Redlich-Kister coefficients determined from binary vapor-liquid,
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or liquid-liquid (solubility) data to predict equilibrium in multi-
component systems,

The determination of the binary 3@ and Q# coefficients from
binary solubility data is trivial. ©Substitution  of X/ and x// into
Equations (3.8) and (3.9) give two simultaneous linear equations, which
may be easlly solved for Eﬁz and qz « A computer program (Program 5)
was written for this purpose.

The determination of EU and QJ from binary wvapor-liquid
equilibrium data is less straight forward. A number of different vari-
ables may be chosen as the dependent variable, for example:

X, ¥ 5 Py £, 4G, 1og¥, , Q coses €tca
Suppose it were decided to minimize the deviation of the expérimental
value of Q from that value predicted by the Redlich-Kister equations.

Then?
n . \2
A :Z/ (@, - CDz) (4.6)

where 4 1s to be minimized.

For the binary vapor liquid cases

CPL' = z’g’ ’éﬂ/o (//O:;lil >‘ + /ZZZ ’@/0 %z> (l"7)
! /e 2

2
¢

b

Q= %47 (B,z * (Z/'ZJCM.) (+.8)



66~

(Equation (lL.'T) agsumes that the total pressure, P, is low enough that

fugacity corrections need not be included.) Equations (4.5) then become

m

Z %;Zz;(@g = é¢> = 0

ezl

g ,Z,‘, ZZZ ('Z’é - ZZZ)(@;’ - é&) =0 (4.9)

Note that the choice of Q as the dependent variable is advantageous
bécaus,e Equations (4.9) are linear in B, and C,, and solution is
straightforward. Another choice of dependent varlable that leads to
linear Equations (4,5) is log\(, , Or logK « Olnce it is normally
desirable to minimize the error in log\(, and log\fz simultaneously

we may define 4 es:

n * \2 * \2
A= 2 [(ln=Aeg) + (Lg%~ o )] (1.20)
‘where /Zog\g" =/&3(_/Dié /&3 g/:' = %2[@J+C:b’@'zz'—%'>.]

/4.’3 ~

(It is important to note here that B‘y = ]%,,_r but Gy = - Cg o The
reader is referred to Fquations (2,55), and (2.56).) Two computer
programs have been written to solve for the values of B,, and C,

which minimize the & defined in Equation (%.10) , and these are described
in Appendix Bs Program 1 handles data at constant temperature. Program
3 handles data at constant pressure. In the constant pressure (variable
temperature) case Bjp » C, rigorously cannot be assumed constant since

B " and 0/2 are functions of temperature, If the temperature variation
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is small, say 10°C, the error in assumlng the coefficients to be constant
is small, Figure 29 in Section V, A, give‘s x-y plots of four systems for
which B/z and C/2 were determined by minimization of A defined in (4.10).
In each case the fit is excellent.

Although the selection of Q or -log/ox as the dependent vari-
able leads to linear Equations (4,5), these variables may not be of
direct engineering importance, In addition they are not quantities that
are determined by direct physical measurement such as total pressure,
but require introduction of the independent variable x ) Or X, in their
determination which under certain conditions may be undesirable. In a
sltuation in which the total pressure, P, is especially important, one

mié;ht wish to minimize A defined as

a=5 (7 o0
where /éi*) =2 EO(Z: (8/2'1' (31/' Zz>C,,_>+ AEO(ZIZ(B/Q —(\31[2//)@7.) ’

(P& 1s assumed low enough here that fugacity correctionsare not needed),
For this case however Equations (%5) are not linear in B, and C, and

it 1s somevhat more difficult to obtain the values of B, and C/, that
minimize A (ha11), I.\@,rquardt(gl) describes procedures for minimization
of (lhll) for the case where ')Pi» 1s represented by the Van I&ar Equations.

(See Table I),

B« Ternary Case
The ternary liquid-liquid case has curve fitting problems which

differ somewhat from those of the case of binary vapor-liquid equilibria,



-68-

Use of the molar free energy of mixing or the Q function as the dependent
variable is usually impossible because the partigl pressures of the in-
dividual components are usually not measured in determining two phase
liquid equilibria. Without a knowledge of the partial pressures of the
individual components, the values of the activity coefficlents, and thus
of Q and ZXQM are not known. If the Equations (4.5) are to be linear in
the Redlech-Kister coefficients for the ternary liquid-liquid case, some
linearizing approximations must be introduced. Linearizing approximations
as it will be seen often do not give good fits of the experimental data.
The fallure of linearizing approximations led to the development of "hand
methods" for guessing successively better estimates of the coefficients.

Scheibel(uo> has described an approximate mdthod of determining
Redlich-Kister coefficients. The basi® of the method is that, theoretically,
equilibrium data for two tie lines spould determine the six coefficients
in Equations(3,10), (3.11) and (3.12). This amounts to determining
values of eguation parameters that force the mathematical functions to
pass through two specific poiﬂts“ This method was tried in the present
work wilthout success. It was found that although the equations are
forced to pass through two selected points there is ro assurance that
they will pass through or near the remaining points.

1, Hand Methods:

In many cases, good estimates of the coefficients in Equations

(3.10), (3.,11), and (3.12) can be obtained by visual curve fitting. Good

initial estimates of the coefficients are desirable to insure convergence
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of the iterative non-linear methods described in a later section for
determination of highly accurate least squares estimates.ofrthe coefficients,
A hand fitting procedure which usually gives good curve fits in a few

trials is outlined below.

For cases of ternary systems having one partially miscible binary,
components 1 and 2:

1) Determine Bm_‘ami(bz from binary solubility data for the
1-2 binary by solving Egquations (3,8) and (3.9) after substitution of
x/ and xf « Extrapolation of the ternary data to the 1-2 binary may be
necessary 1f the binary data are not available,

2) Note whether the experimental tie lines tend to parallel
the 2-3 binary or the 3-1 binary on a triangular diagram as the plait point
is approached, Assume that the coefficients corresponding to the binary
edge which the tie lines do not tend to parallel are zero. If the tie
lines tend to parallel the 3-1 binaryj then set By, = Cpq = O.

3) Determine the values of B,  , G,; which cause the calculated
plait'point to .colncide with the experimentally estimated plait point by
solving Eguations (3.23) and (3.24) after substitution of the values of
:%z and qz determined in part one and the composition of the plait point

as established graphically from the experimental data. Alternatively,

B

s and C, may be adjusted by trial and error to glve an approximate fit

of the experimental equilibrium binodal and convolute curves. In order
that the tie lines tend to parallel the 3-1 binary Be/ must be greater

than By, if Cpy = Cyy = O
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L) If after B,, and C,, have been determined in part 3,
additional accuracy of the fit is desired, B,, and Cpa may be adjusted
by trial and error., In case it was found to be impossible to solve
Equations (3gé§) and (3.é¢§ for real values of By and Cy with B, =
C&s =0, st andCz6 might be set not equal to zero and solution of!(3.2§)
and (3124) for B3! and Qsl tried again. Often the flt of points in the
ternary reglon may be improved by modifying the values of B, and C/, i.e.
tolerating some error at the 1-2 binary. Increasing the values of the
coefficlents especially B, , increases the area under the binodal curve.

In guessing values of coefficients corresponding to binary
systems that are homogeneous throughout 1t is advisable to use Figure 27,
the plot of B versus Cc, to make sure the assumed coefficients lie in
the homogeneous region.

If partial miscibility occurs in two binaries, say the 1-2
and the 3-1 binary:

1) Determine B, , C,, By, 5 and Cy by solution of Equations
(3.8) and (3.9) after substitution of the solubility data for the 1-2 and
the 3-1 binarles respectively.

2) Calculate the‘ternary equilibgium curve by solution of
Equations (3.10), (3.11) and (3.12) with B,,, By, C,o» and Cy equal to
the values determined in step 1, and By, = C,q = 0. If greater accuracy
of fit 1s desired one may adjust the values of B,, and Cy by trial and
error, using Figure 27 to insure that assumed values of By, and C, do

not make the 2-3 binary heterogeneous .
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It 1s often helpful to make use of any avallable binary wvapor-

liquid equilibrium data to get initial estimates of 35 s C;r for

i
homogeneous binaries. Also it is advisable to study previcusly calculated
ternary equilbrium curves before guessing coefficients. .Note that the
fictitious curves Figures 2L and 25 illustrate that setting Bza = Bay
and 023 = Gy gives equilibrium curves that are solutropic (iae. the
slope of the tie lines changes sign.)

Usually after a little experience 1s attalned, less than four
trials are needed to glve a satisfactory curve fit 1f the above pro-
cedures are followed. Visual curve fitting however suffers from the
disadvantages that it is a trial and error process, and does not necessarily

minimize some specific deviation defined in a least squares sense.

2. least Squares Using Approximate Linearizationss

When one i1s concerned with a system of n eguations in m+n
variables and k parameters for estimation by least squares, n of the m+n
varlables mey be deslgnated as dependent variables and the remaining m,
the dependent varisbles. Using the notation of Equation (4.2) where %'s
are dependent variables predicted by the eguations and Z*s are the in-

dependent variables, the system of equations*f,may be writtens

3 +* *
/J(YI" "YZZ L Ym,, Z/" ;Zzé' "'ZM"’CI,CZ "'C/a):Q(lt.lg)

The least squares criterion states that the parameters will have such

values that

a=2[2 (-5 s
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be a minimum where'%; is the experimental value for the jth dependent
variable, ith data point, and'wa is the corresponding weight factor., If
all data points and dependent variables can be determined with equal pre-
cision and are of equal importance Wi 1s set equal to unity.

It 1s not necessary that the equations,xf be explicit in the
dependent variables. All that is necessary is that given values for the
parameters and the independent variables the equations)g/may be solved
for the dependent.variables'%; . In the case under consideration in
this research the Equations (3.10), (3.11), and (3.12) which comprise

the system,x/ are implicit functions of four of the mole fractions xf,

/" " Y,

x{, ;é, X, » X, 5 X5 , selected such that there are no more than two

/ / " 7 / / / 4
per phase (eg. X/, X,, X, , X, y 0ot X/, X/, X4, X )e

If one arbitrarily selects x/, x;, x: ’ x: as the variables in

Hquations (3.10), (3.11), and (3.12) and designates x, as the independent
variable then A becomes:

A:

M
=l

2 2 2
/ */) ( / *//> (//_*// :}
(e300 + (= 2L Jeo + (H- B s g iy
Unfortunately the Equatfons (4,5) for A(4.14) are not linear in the Redlich-
Kister coefficients, and their solutlon is difficult. In order that the
Equations (4.5) be made linear in the coefficients we modify A(4.14) by

minimizing the deviations of the logarithms of the dependent variables.

Assuming w, =W, =W, =1, (4414) then becomes:

0 (gl i o (it K], 09
ezl
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From Equations (3.10), (3.11), and (3.,12) it follows
R TN N R S
Bl - don ) = B o -
U B = -denty = B mdegds™ P (4.16)

Substitution of the approximations (4.16), A (4.15) becomes:

M

PO G ARG A

és

or

Mo 3 , 2
A= ‘Z/; (%, 7?‘4,,"@ : (27
J ¢

For the purposes of simplification let us write Equations (3Q10),

(3.11), and (3.12) as

g =l
2 -5
/4;3 ,%é;"'éz; ¢9y =0
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where C) was qz

Cpa s Cy « The Equations (4.5) for A(4.17) may then be written:

are the Redlich-Kister coefficients B, , B, , By » Cpp s

Z[f S8+ gia v hih)] - f[ﬁ%@ﬁabfﬁ%%%”iﬂz

=l J=l Z=

(k=1,2..6) «  (4.18)
The six linear Equations (4.18) are linear in the coefficients«Q and may
be solved directly for C, wes Cp A computer program (Program'7, Appendix
B) has been written which computes the values of ¢, ess Cy that minimize
A (4.,17) by solution of Equations (4,18).

The success of the linearlzed approximation of Z&(M.IS) depends
on the accuracy of the approximation in Equations (h.16). This approxi-
mation 1s good when the experimentally determined compositions, the x's,
are nearly equal to the é’s, the mole fractions obtalned by solution of
Equations (3.10), (3.11), and (3.12) using the parameters C «vr C,
~Which minimize [3(4.15). If the preclsion of the experimental data is
not very good, or if Equations (3.10), (3.11), and (3.12) are not capable
of highly accurate representation of the experimental data, i.e, a fair
amount of non-random error must be tolerated, then the approximations (L.16)
wlll not be good and minimization onS(M.lY) will not yileld an estimate of
the coefficlents that will give an accurate fit of the experimental data.
In particular it has been found that for systems where the tie lines are
nearly parallel the data must be extremely precise if minimization of

A (4.17) is to give satisfactory resulks.
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Figure 28. Examples of Fits Obtained Using Approximate
Linearization.
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Figure 28 shows that the estimate of the coefficients by minimi-
zation of A (4.17) was excellent in the case of i-propanbl-water-ethyl
acetate 20°C(2) where the equations were capable of highly accurate repre-
sentation of Athe data, and the precision of the data is good. In the
case of the system ethyl acetate-water-acetone 3O°C(49) where the pre-
cision of the data 1s only falr and the tie lines are nearly parallel,
the curve calculated using the coefficlents obtalned by solutlon of the
Equations (4.18) is completely unsatisfactory. Although the solution of
Equatilons (4.18) frequently does not glve satisfactory values for the
coefficients it is advisable to use the linearized approximation to see
if it does glve satisfactory values as 1t is much faster to solve
Equations (h«l6) than it is to use the hand methods described in section
one or the non-linear methods described in the next section. If using
the original experimental data in Equationg (4,18) fails, and it is only
desired to obtain an initial estimate of the coefficients for use in the
non-lineagr least squares'method described in the next sectlon then data
“obtained from a smoothed curve through the original data should be used.

3« Least Sguares Without Approximate Linearizatlons:

It was seen in the Jast section that the appropriate A that
should be minimized to obtaln best estimates of the coefficients is.of

the typet

M 2
Z[(za 7‘J>W * (z/a. ’zﬂ w, * (2’1 -21/)40\3] (4.19)

(k#4)
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where Jj, k, and 1 can have any values from one to three. Solution of
the Equations (4.5) for A(l&.l9).is practically impossible. However,
determination of the least squares estimates of the coefficients is
possible by direct, iterative, minimizafion of A (4.19). Two methods
are available and these have been described in Reference (21).

The Method of Steepest Descent: This method seeks at each

trial to calculate corrections to the coefficients such that the value
of A will decrease "most rapidly". The steepest descent direction is
defined by the partial derivatives
(-2 ) _3A >
oC; 0C, OC,

calculated at the nth trial values of the parameters C, «ue C, o Experi-
ence has shown that the minimum A is reached in fewer trials if the
corrections to the parameters are not made exactly proportional to the
partial derivatives of A but proportional rather to the normalized

value of -%%1 after multiplication by (1 + ] ) e
2_Yy
D, = "(/+C2)5_A_ & 2\ SA :{’- (4.20)
2 vy [;<(I+%>—é—éﬁ :

The n + 1 trial values of the coefficlent ¢ 1is calculated}

Lna1] [nl L) ~NLnd
¢ = (h.21)

wl
where is the step size which determines the absolute magnlitude of

the corrections.
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The calculation procedure that was found to be best suited to the
Redlich-Kister equations may now be described. Assume that the calculation
has proceeded to the nth iteration and it .is desired to advance to the

n + 1 iteration.
n] Lnl

a. A, D, (£ =1, 2....6) are calculated.
Lnl Ln=11 cn=i]
b, It AL AM procefd to step c., 1f not, divide @

used in calculating c ;“J by 4 and repeat step a.
c. Calculate the cosine of the angle € , between the meterized

steepest~-descent directions at the (n - 1)th and nth trials

6
Ll [n-1]
cos & = /2 0, b, . (4.22)
=]

d. Calculate a tentatlive value for OCM] based upon cos® .
Note that if cos® is negative (i.e. © > 90°), it is desirable to reduce
o(m to prevent undesirable oscillation between successive trial values
of ¢ wee . If cos® 1is near one the angle between successive trial
directions is too small and it 1s desirable to increase the value of OCEMJ
to speed the convergence. To achleve this ehd the following formule has

been devised:

i 3
O(W - O(Ch 1 e, + & cos 9/ (4.23)

where e, and e, are always positive. The combination ¢, = 0.5 and

/

e

, = 1.0 has been found to be satisfactory.
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e, Calculate the new trial values of the coefficients using (4.21)
.and return to step a.

This procedure converges from any reasonable initial guess of
the parameters and it adjusts the step size automatically to the local
topography of the Ak-c,-cz—-~c@ surface. Convergence is slow in the
neighborhood of the minimum A however and it is generally desirable to
supplement the steepest descent method with a second method described
below which converges only when the initial guesses are quite good but
does converge rapidly.

(21,37)

The Truncated Taylor Series Method: If values of the

»
predicted mole fractions x; , ;k’ %l are expanded about current trial
Valﬁes of the coefficients C, wes Gy and the series 1s truncated after

terms that are linear in Ac, ... Ac%:
* *
%JI <GI+ACI ] P C@"‘ Ac6> :\\: ZJ (Cu c?-) ’ +ZAC¢Q<5Z (ll-.gll-)
¢,

) |
and similarly for x, and%, . Substitution of (4.24) intoA (4.19)

gives:
6
A= [7@»’-(%’»‘2% 4 )+ (n - B! ZA&M) )+ (2 (*” Acb »J (k.25)

The minimum A is reached, when for the nth trial

n "
A N _ (2N (28 o (1.26)

) ) (e,
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which are six simultaneous equations linear in Ac, . Acé « The

Equations (4.26) may be written after substitution of (4.25) and dif-

ferentiation:
. M
*, /" *u\Xu
f[;fﬁ HE S R m)} Zm +Azé_&+zméﬂ
0 8% 0g, ac, éc o, &y o,

(r= 12, 6) (&.27)

where Ax; =X - % (¢, ;5 ¢, «va c,) and similarly for Ax, and Ax .
The six Equations (h.27) may be easlly solved for Ac: woe Ac, and

the n + 1lth trial of the coefficients calculated:

iju - m + Ac jﬂ (4= [y, 2«2 6) (4.28)

If the approximation made by truncating the Taylor series after linear

terms 1s good enough then the method converges and

,A ..mmf ‘A Ll

A computer program \(Program 8 - Appendix B) for the IBM TOL
has been written which uses both methods described here to obtain the

estimates of the parameters which minimize

“ 2 2 / / 2,
A = Z [(Zz/' P, + (- ), + (2 7?5’)%] (4.29)
ezl ¢
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The steepest descent method is used initially, then, when in the
proximity of the minimum A(4.29), the truncated Taylor series method is
used, If the equations are not capable of fitting the experimental -data
with high precision the latter method diverges and the estimates of the
coefficients obtained by the steepest descent must be used.

The most difficult part of the two procedures is the computation
of the A and the partial derivatives of A with respect to the coef-
ficients. Note that solution of Equationé (3.10), (3.11), and (3.12)
is required for every experimental tie line where xé»z %é (the chosen
independent variable in the case of Program 8). Thus the solution pro-
cedure for Equations (3.10), (3.11) and (3.12) described in part IIT is
reqLiredu Uhﬁortunately this solution procedure will not converge unless
the initial guesses of the compositions are quite good and frequently,
especilally in the neighborhood of a plait point, use of the experimental
datav(the x*s) as an initial guess is not good enough that convergence
to the values of the predictedﬁﬁolfréations (the §’s),is obtained., This
problem was solved by a procedure of sblving/Equations (3.10), (3.11),
and (3,12) in very small steps of increasing xé from experimental tie
line to experimental tle line, using as the initial guesses of the x's
for each step those values obtalned by linear extrapolation from the last
two steps. Thls method has been found to be highly satisfactory.

One must be especially‘careful that the initial guesses of

the parameters give an equilibrium curve for which at every §é = xg a
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non-trivial solution of Equations (3.10), (3.11), and (3.12) exists. An
equilibrium curve should always be calculated with the initial guess of

the coefficients at the outset to make sure this is so before proceeding.
24
ac,e

Appendix A, and follows the procedures outlined in text books on advanced

. (59)

calculus pertaining to the differentiation of implicit functions.

The development of the partial derivatives is given in

A1l of the calculated curves for specific systems given in
part V were determined using coefficients which minimize A (4.29),
w, =W, =W, =1, Initial guesses of the coefficlents were determined
by the hand methods described in Section 1, except for the systems ethyl-
acetate-water with ethanol, iso-propanol, n-propanol and t-butanol, where

the initial estimates were obtalned using the linearized approximation,

A (417),



V. TESTING OF THE RESEARCH HYPOTHESES

The problem now remains to determine the feasibility of using the
Redlich-Kister Equations (3.10), (3.11), and (3.12) to correlate and pre-
diet equilibris for liquid-liquid systems. Restating the questions raised
earlier in the affirmative we may write the following research hypotheses
for the specific case of the R§dlich-Kister equations applied to ternary
liquid-liquid equilibria: | |

(l) The vast majorify of ternary liquid-liquid equilibria
can be represented by Equations (3.10), (3.11), and (3.12) which retain
only the binary BQ' and Qg coefficients.,

(2) Bg and G, are independent of component k. That is By and
qy have the same wvalues in the binary system i-J as in the ternary system
i-j-k. If this is true then coefficients determined from binary data can
be used to predict ternary data.

(3) Bg andnqg are simple functions of some property of k., If
this is true then coefficients for a homologous series of ternary systems
1-3-k;» 1-J-k;5 wees 1-J-k,, Where k , k,; osss k, are homologs could be
used to prediet the coefficients for a system i-j-k;, for which no data
are avallable,

Hypothesis (1) has already been supported by the computation of
the several fietitious equilibrium curves (Figures 16-25). Over twenty
actual systems have been fitted by Equations (3.10), (3.11) and (3.12)

during the course of this investigation as & further test of Hypothesis (1).

These systems are 1llustreted later in this section.

_83_‘
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A, Binary Coefficients from Binary Versus Ternary Data

The possibility of prediction of multicomponent data from binary
data has long interested workers in the field of phase equilibrium. Prob-
(18)

ably the most recent effort in this area was that of Kenny who .deter-
mined coefficients in the two suffix Van-Iaar equations (see Table I)
from total pressure measurement of binary systems to predict equilibria in
the ternary system iso-octane-furfural-benzene, 20°C. The predicted
binodal curve deviated considerably from the experimental curve near the
plait point and agreed fairly well near the partially miscible binary
iso-octane-furfural. The predicted tie lines did not agree well at all
with the experimental tie lines. It was found that including some ternary
data in the determination of equation coefficients, improved the fit some-
what.

Two ternary systems were found for which binary data are avall-
able at or near the same temperature as the ternary data. These systems
are ethyl acetate-water-ethanol (70°C)(ll) with binary data: ethyl acetate-

11)

“ethanol (1 atmu)( , ethyl acetate-water (70°C),(ll) ethanol-water

(56)

(Th.79°C), and benzene-water-1,4 dioxane (25°C)(3) with binary datat
benzene-water (2500)’(h3) benzene-dioxane (25°C),(45) and dioxane-water
(250¢). (49)

The binary B and C .coefficlents were determined in the cases of
the partially miscible binary systems using Program 5, Appendix B. Program
1 determined least squares values for 3% and QJ for binary vapor-liquid

systems at constant temperature. Program 3 was used for systems at con-

stant pressure,



TABLE IT

COMPARISON OF COEFFICIENTS DETERMINED FROM BINARY

VERSUS TERNARY DATA

H,0(1) - Ethyl Acetate(2) - Ethénol(3) 70°C

B2 Bog
From Binary Data 1.130 0.3630
-5.339

From Ternary Data 1,172

H>0(1) - Bgnzene(E) - 1.4k Dioxane(3) 25°C

B2 Bos
From Binary Data 3.060 0.1080
From Ternary Data 2.704

0.1135

0.5400

-T7.733

0.7900

0.7659

0.6910

0., 6450

Cio
-0.2400

-0.2407

023
-0.0092

1.517

023
-0.0320

-0.03483

-0.1730

-3.338

0.05730
-0.1283

_gg_
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A1l of the binary systems of ternary H,O-benzene-dioxane and the
ternary itself were determined at 25°C. In the case of the ethyl acetate-
H,0-ethanol ternary althoughvonly the binary solubility data are at exactly
the same temperature as the ternary, the correction of the coefficients
for the ethyl acetate-ethanol system (1 atm., 77.2-78.4°C) and the ethanol-
water system (Th.79°C) to‘70°C is negligible.

Figure 29Mgives the Redlich-Kister B, , C; least squares fits
of the x-y data for the four vapor-liquid binary systems. In all cases
the fits are good indicating that the coefficients have been accurately
determined and that the data are thermodynamically consistent (otherwise
the Redlich-Kister equations would have been unable to fit the data).

The binary B and C coefficients were redetermined using only
ternagy data by minimization of A (4.29), utilizing Program 8. Table II
compa;es the values for the coefficients determined from the binary and
ternary data. Note that for the system ethyl acetate-water-ethanol at
70°C, except in the case of the coefficients that correspond to the partially
miscible binary, the coefficients from binary data do not agree with those
from ternary data.

Figure 30 compares the fits of the experimental data using
binary data to determine the coefficlents (solid curve). The convolute
lines have been drawn to enable location of the tie lines. Note that ali
equilibrium curves reach the partially miscible binary regions at about
the same location and that the accuracy of the curve predicted from binary

data is best near the partially miscible binary, poorest near the plalt

point which agrees with Kenny's observation.
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It must be concluded that for partially miscible systems there
is enough ternary interaction that ternary equilibria cannot be accurately
predicted from binary equilibrium data, except near a partially miscible
binary. Hypothesis(E) must be rejected.

Ternary interaction coefficients need not be introduced in
Equations (3.10), (3.11), and (3.12) to enable correlation of the ternary
liquid-liquid equilibria of the ethyl acetate-water-ethanol system at 70°C,
where a nearly perfect fit was obtained using values of BQ' and Cy deter-
mined from ternary data. (dashed curve). The binary coefficients take on
new values for the ternary liquid-liquid case reflecting the ternary
interaction which could not be predicted from data on the individual
binaries.

The fit of the data using coefficients determined from ternary
data for the system benzene-water-dioxane (25°C), though not perfect, is
an improvement over the fit predicted from the binary data. Apparently more

coefficients are required to correlate this system accurately.

B. Homologous Series of Systems

It remains to test Hypothesis (3) to determine whether the Redlich-
Kister equations have utility as a basis for a correlation of ternary
liquid-liquid equilibria. If Hypothesis (3) is valid then experimental
data for systems i-j-k,, i-j-kgqy «+.. 1-J-k, where kjy kyy ovoes ky are
homologs can be used to predict the equilibrium in the system i-j-k; which
has not been determined experimentally. A fairly large number of homologous
series of systems have been determined experimentally. Table III gives

some of these having at least three members per series.
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One question that might be raised is: for the purpose of the
correlation must one consider a homologous series to be that defined in
its strictest sense (e.g. methanol, ethanol, n-propanol, n-butanol) or may
isomers be included (e.g. methanol, ethanol, i- and n-propanol, t-, s-, i-,
and n-butanol)? In compilation of Table III isomers have been included.

In order to test Hypothesis(3), four homologous series of systems
taken from Table III have been used, Three situations have been studied:

(a) Xk, the variable component in the series, is miscible with
both components i and j. Two series of systems having this characteristic
were studied: water-ethyl acetate-alcohols (20°C) and water-benzene-alco-
nols (25°C).

(b) k is partially miscible with Jj, completely miscible with 1.
The series studied having this characteristic is n-paraffins-sulfur dioxide-
benzene (-20°F).

(¢) k is partially miscible with both i and j. The series studied
was n- paraffins-water-methanol (15°C).

1. Water-Ethyl Acetate-Alcohols:

Counting both normal alcohols and iso-alcohols the data of Beech
and GlasStone(g) provide the longest homologous series of experimentally
determined systems found in the literature. Figures 31-38 illustrate the
least squares fits of the data obtained using Program 8 which minimizes
A (4.29). Convolute lines have been used to permit location of the tie
lines. Calculated points (+) appearing in figures are calculated at

/ */
X

X =

3 3 for each experimentally determined tie line, (') referring to

the water phase, (") the ester phase.
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TABLE IV¥*

REDLICH-KISTER COEFFICIENTS

Ho0(1) - ETHYL ACETATE(2) - ROH(3), 20°C

0.4317

ROH B;tij:%gg Bis Bp3 B3y C1o Co3 C31 A/:\/ #/o> Vethod
Methanol 6h.7 1.426 -2.612 -2.838 0.4677 1.005 -1.074 0.395 S.D.
Ethanol 78.h 1.403  -k.329  -L.602  0.4345  1.6k2 -1.758  1.605  S.D.
i-Propanol 82.5  1.k27  -3.677  -5.24h  0.k017  0.8167 -2.79%  0.0916  Trunc.
t-Butanol  82.9  1.460  -k.121  -5.925  0.4610  0.8599 -3.282  0.179  Trunc.
n-Propanol  97.8  1.4.88  -3.666  -4.910  0.2967  0.8540 -2.782  0.1005 Trunc.
s-Butanol  99.5  1.k52  -2.912  -3.503  0.360L  0.9161 -2.527  1.685  S.D.

«i-Butanol  107.5 - 1.248  -1.458  -1.72h  0.433¢  1.201  -2.175 T7.161  S.D.
n-Butanol 117 1.265  -1.k11 -1.73%  0.4296  1.219  -2.050  1.621  S.D.
TABLE V*
REDLICH-KISTER COEFFICIENTS
(k00)g(1) - BENZENE(2) - ROH(3), 25°C

ROH Bgi%%gg By, Bys Ba) 1o Cos Ca1 L¥Zf/05 Method
Ethanol 8.4k 2,78 0.8246  -0.9976 -0.5004 0.0150 0.0008  6.35 8.D.
i-Propanol 8.5  2.823 0.2890 -0.2538 -0.5035 0.3741 0.2460  0.72k  S.D.
t-Butanol  82.9  2.773 0.0814  0.1848 -0.4747  0.5981 0.5246  8.60 8.D.
n-Propanol  97.8  2.802 0.0000  0.095% -0.4870 0.4553 0.3562  0.585  S.D.
i-Butanol  107.5 2.778 0.4717 1.14%0 -0.5096 0.2163 0.3165 15.21 S.D.
n-Butanol 117 2.754 1.148  -0.5113 0.1438 0.2297 15.48 S.D.

*A(4.29) divided by N, the number of experimental tie lines.
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In those systems where there is only one partially miscible binary
the fit of the data is excellent. The fits obtained for the systems having
two partially miscible binary systems is good near the HZO- ethyl acetate
binary but rather poor near the alcohol-water binary. This suggest the
possibility that more than the B and C binary coefficients are required
to correlate an entire ternary having two partially miscible binaries.

Table VI gives the least-squares coefficients used to determine
the calculated curves in Figures 31-38. It also gives the alcohol boiling
point, A divided by N, N being the number of experimental tie lines, and
the method by which A vwas minimized (steepest descent or truncated Taylor
series). Note that in those cases where A was minimized by the truncated
Taylor series method,‘one is fairly sure that A is a minimum. Where con-
vergence using the truncated Taylor series was not obtained and results
using the method of steepest descent must be relied upon, it is difficult
to be sure that the minimum has been reached or if a region of exceptionally
slow convergence is being traversed, such as a trough or saddle point. It
is possible that this could explain the fact that the deviations from the
experimental data are greater in the cases of the systems having two
immiscible pairs as what appears to be [XMN was reached by steepest de-
scent for these cases.

2. Water-Benzene-Alcohols:

The water-benzene-alcohol series constitutes the second longest
series of experimentally determined systems, six systems in all.' With the

exception of water-benzene-n-propanol (38°C) all were determined at 25°C.



~98-

(LN
AYAYAVA
[

A\




-99-

t - BUTANOL

——O— EXPERIMENTAL
/7

——————— CALCULATED /\/\N \){\
S TAVE e VAV
/W% N\é /\

M
Vv“*

Vi
Y VAV
AVAY
VAV
VAVAVAN

/\

(H,0)g 25 °C BENZENE

Figure 41. (H20)g (1) - Benzene (2) - t- Butanol (3).

n - PROPANOL

(H,0)g 38 °C ' BENZENE



-100-

VAVAVAVAY
JaNAVAVAVAYY

Y Navas i Y
" N/ AAA
SIOO00000K AVAVAVAVAVASY

(H,0)g 25°c BENZENE
Figure 43, (H20)8(l) ~ Benzene (2) i-Butanol (3).




-101-

Because of the extent of the miscibility gap in the benzene-water binary
these systems may be considered to be a severe test of the ability of
Equations (3.10), (3.11), and (3.12) to fit ternary liquid-liquid equilibrium
data.

It was found that using 18 as the molecular weight of water (i.e.
assuming a monomolecular specie) gave equilibrium curves for the benzene-
water systems that could not be fitted accurately by the equations. As-
suming water to exist as an octa-molecular specie, equilibrium curves were
obtained that were readily fitted (see Figures 39-L4k4).

Excellent fits of the experimental data were obtained in the
cases of i-propanol (Figure 40) and n-propanol (Figure 41). The fits
were not as good for the other systems in the series, but certainly good
eﬂbugh for engineering purposes. In the cases of ethanol and t-butanol
(Figures 39 and 41) the error of the calculated curve is greatest near
the plait point.

Note that in the cases of i-butanol (Figure 43) and n-butanol
(Figure 4k4), the error in predicted values of x: and xg (the points
denoted +) is fairly large, A (4.29) having been minimized and (") de-
noting the benzene phase. If (") is taken to denote the water phase and
A (4.29) minimized the error in xg is less than four mole per cent.
Thus, although the quotient %} given in Tables IV-VII is a measure of
the relative goodness of fit, it is often misleading due to the arbitrari-
ness of the definition of A . Either way it must be concluded that the
error of fit is greater for the systems having two partially binaries than

for the systems having only one partially miscible binary.
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Table V gives the values of the least squares coefficients deter-
mined by minimization of A (4.29), the method used, and the alcohol boil-
ing point.

3. N-Paraffins-Sulfur Dioxide-Benzene:

The data of Satterfield EE;_QL'(35) on hydrocarbon-sulfur dioxide
(1iquid) systems proVide a series of systems in which the variable component,
an n-paraffin, is partially miscible with liquid sulfur dioxide and com-
pletely miscible with benzene.

It was found that assuming sulfur dioxide to exist as a poly-

molecular specie, (SQE) , gave equilibrium curves upon conversion to mole

8
fraction that were readily fitted by Equations (3.10), (3.11), and (3.12).
Equilibrium curves based on the molecular weight of monomolecular SO,
could not be fitted by the equations. Multiplying the molecular weight
of a specie by some factor has the effect of increasing the area under
the binodal curve which appears to be helpful from a curve fitting stand-
point as very flat binodal curves which subtend a small area have not been
found to be well fitted by Equations (3.10), (3.11), and (3.12). Often
as in the cases of (HZO% and (SOI% there is some theoretical justi-
fication of the use of polymolecular weights. Because of the polarity
of these molecules, the existance of associated species 1s more plausible
than the existence of monomolecular H,0 and 50, in the liquid state.

The fit of the data for the system: n-Butane-(SOZ )e -Benzene‘
(Figure 4k4) is particularly good. As the molecular weight of the paraffin
and the immiscibility in the paraffin-(SOz% binary increase, the error

of the calculated curve in the neighborhood of the plait point increases,

although not seriously.
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Table VI gives the least squares values of the coefficients used
in computing the calculated curves found in Figures L45-48.

L, N-Paraffins-Hy0-Methanol:

In this series the variable component, an n-paraffin, is partially
miscible with both of the other two components. These systems, provide
probably the most severe test of the ability of Equations (3.10), (3.11),
and (3.12) retaining only the binary B and C coefficients to represent
equilibrium data, first because of the very high degree of immiscibility
of n-paraffins with water, and second because there are two binaries with
miscibility gaps. Table VIT gives the values of the coefficients calculated
by Program 8 and used to compute the calculated curves in Figures L49-52.

The fit of the data is considerably better than one would con-
clude on the basis of A/N given in Table VII . The calculated binodal
curves for these systems are in close agreement with those determined
‘experimentally. There is some error in the predicted tie lines. The
Situation is that encountered in the cases of i-butanol-(Hzo% -benzene
and n-butanol-(HZO)a -benzene where if one minimized A (4.29), calling

(') the hydrocarbon phase, as was actually done, the predicted values of
J ’

i
XI

5 and g; indicated as + in Figures 49-52 are in considerable error

for every x; = §; except near the binary regions. However, if (') desig-
nates the water phase the error in x! and gg (now mole fractions of Hao,
methanol in the hydrocarbon phase) is very much less. The cause of this
error is the fact that the tie lines are pinched low in the hydrocarbon
corner, a situation that apparently Equations (3.10), (3.11) and (3.12)
cannot handle. It is recommended that the use of additional coefficients

in the representation of systems having two partially miscible binary

systems be studied.
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Figure 52. N-Nonane (1) - H,0 (2) - Methanol (3).
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C. Correlation of Coefficients

It now remains to be shown whether or not for a homologous
series of systems the coefficients in Equations (3.10), (3.11), and (3.12)
can be correlated with some property of the variable component, k. If
molecular weight or number of carbon atoms is chosen as the correlating
property, then isomers must be excluded from our definition of a homologous
series. In order that isomers be included, the boiling point (at 1 atm.)
has been chosen as the correlating property;

Figures 53-56 are plots of %] and QJ versus variable component
boiling point for the four homologous series of systems discussed in the
preceeding section. The least squares values of the coefficients given in
Tables IV-VII have been plotted. For the series of systems HZO (1)-Ethyl
Acetate(2)-Alcohols(3) at 20°C (Figure 53) B, and C, are nearly constant,
as might be expected. The coefficients for the ethyl acetate-alcohol binary

(B C,. ) and the alcohol-water binary (B C

Yy 1 Coa ) 2 ) show some scatter. In

3\
the case of I%s ’ BSl and Cs, lines were drawn only through the points
for normal alcohols. It appears that some property other than boiling
point as the correlating property is required if iso-alcohols are included
in the homologous series. It is recommended that additional work be
carried out on this subject.

The scatter of the points may be attributed in part to in-
accuracies of the data for it is true that equilibrium data are difficult

to obtain. Since the vapor phase is usually not analyzed in liquid-liquid

equilibrium determinations, it is generally not possible to check the data
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H;0 (1) - Ethyl Acetate (2) - Alcohols (3) 20°C.
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Figure 54, Binary B and C Coefficients Versus Alcohol Boiling
Point for the Homologous Series of Systems
(H;0)g(1) - Benzene (2) - Alcohols (3) 25°C



-112-

20
1.0 |

..O- /,,\ )
/

n‘C|o

-1.0 l il ] l | I ] | | | L

-20 0 20 40 60 80 100 120 140 160 180 200
PARAFFIN BOILING POINT, °C

Bp OR Cp O
Bps OR Cpz @
Bsyy OR C3 X

-05 X | | | | | | | | | |

-20 0 20 40 60 80 100 120 140 160 180 200
PARAFFIN BOILING POINT,°C

Figure 55. Binary B and C Coefficients Versus Paraffin
Boiling Point for the Homologous Series of
Systems N-Paraffins (1) - (802)8 (2) -
Benzene (3).



-113-

6|
Bij B, OR C, O
a | Bos OR Coz @
Bs; OR C3 X
2F n-Cq n-C, n-Cg n-Cq
—X X: X X
0 L—@—— i — |
60 80 100 120 140 160

PARAFFIN BOILING POINT, °C

Xx— X

0.2} "

C.: /
T —e ® o .-
0 ¥ot

i

0= 203

/

-02 | | | | |

60 80 100 120 140 160
PARAFFIN BOILING POINT ,°C

Figure 56. Binary B and C Coefficients Versus Paraffin
Boiling Point for the Homologous Series of
Systems N-Paraffins (1) - Hy0 (2) - Methanol (3).
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for thermodynamic consistency as it is in vapor-liquid equilibria deter-
minations. However, liquid-liquid determinations appear to be less prone

to experimental error than vapor-liquid determinations. In the only case
found where two independent workers determined the same liquid-liquid
systems at exactly the same temperature (benzene-water-ethanol at 25°C§&8’5l)
the data were found to be in close agreement.

Another factor which may have contributed to the scatter of the
points is that for some systems as few as six experimental tie lines are
available for determination of sample estimates of the coefficients. The
raw experimental data were used in all cases, and no points were read
from smoothed curves. In all four series of systems discussed here the
precision of the data is good, and the tie lines are located so as to satis-
factorily describe the equilibrium curves through out their entire ranges.
In view of this it is doubtful that additional experimental data would
render the sample estimates of the coefficients to be significantly differ-
ent from the values already obtained.

Figure 54 for the series (Héo% (1)-Benzene (2)-Alcohols(3) shows
that, as in the case of HZO-Ethyl Acetate-Alcohols, the coefficients for
the (Hzo%-i%nzene pair (B, and Ca ) are virtually constant and have
values close to those predicted from binary solubility data. The points
for the 2-3 pair (benzene-alcohol) and the 3-1 pair (alcohol-(HQOL ) are
scattered but have a definite trend. The shortcoming of the use of boiling
point as the correlating variable is noted in the cases of two alcohols,

iso-propanol and t-butanol with benzene-(Hao% . Their boiling points being
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t-BUTANOL

—O—— EXPERIMENTAL

— —— — CALCULATED

AVATYATN
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(HZO)G -20°F BENZENE
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n-HEPTANE (502)g

Figure 57. Comparison of Predicted and Experimental Equilibrium
Curves for Two Systems Using Coefficients Taken From
Homologous Series Correlation.
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close together (82.5°C and 82.9°C) would cause one to predict that they
have nearly identical equilibrium curves which is not the case. Their
equilibrium curves are similar but by no means identical.

Far less scatter of the points is observed in Figure 55 for n-para-
ffins(l)-(SOa)B (2)-benzene(3) and in Figure 56 for n-paraffins(l)-H£O(2)-

methanol(3). 1In the case of the (S0

2)8 -benzene systems coefficients for

the (Soa)a-benzene pair (st and Cas) are not constant as might be ex-
pected. On the other hand, for the methanol-water systems the coefficients
for the. water-methanol pair (BZ.S and C& ) are very nearly constant. No
reason for the fact that B,, and C;y are not constant in the (SOaL -benzene
case can be given.

The use of Figures 53-56 to predict equilibrium is illustrated
in Figure 57. The coefficients for the two systems given were taken from

the smooth curves in Figure 54 and Figure 55. For (Hzo)8 (1)-Benzene(2)-

t-Butanol(3) the predicted coefficients are:

B, =2.80, B, =0.130, B, = -0.180
C, =-0.50 C,, =0.38, G, = 0.250

Except near the benzene-(HaO)s

is not in good agreement with the experimental curve as can be seen by

binary the calculated equilibrium curve

comparison of the convolute lines. This is further evidence of the in-
adequacy of boiling point as the correlating property where isomers are
involved.

The coefficients read from the smoothed curves through the points

in Figure 55 and used to calculate the equilibria for n-heptane(l)-(SOz)e
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(2)-benzene(3) are:

By, =1.500, B,, =0.000, B = 0.690
Cp = 0.17, Gy =0.000, C, = 0.000

The fit of the experimental data is good.

It may be concluded that where homologous series of systems
include only homologs defined in their strictest sense, boliling point
is a satisfactory correlatiﬁg variable to enable prediction of liquid-

liquid equilibria.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions
The Redlich-Kister Equations (3.10), (3.11), and (3.12) which retain
only the B and C binary coefficients are capable of representing a
large majority of cases of ternary liquid-liquid equilibria. Systems
having one binary with a miscibility gap can be fitted more accurately
than systems having two partially miscible binary systems. Systems
having small miscibility gaps are better fitted than systems having

large regions of immiscibility.

Equations of the Redlich-Kister type which are based on representation.
of the molar excess free energy are especially useful in predicting

the location of critical solution points.

Binary coefficients which have been determined from binary date can-
not be used to predict accurately ternary liquid-liquid equilibris
except near partially miscible binary regions. If the binary B and
C coefficients are determined from ternary data, Equations'(3.10),
(3.11), and (3.12) are capsble of highly accurate representation of
the data for systems where the miscibility gap is not extremely

large.

Experimental data for a homologous series of systems i-j-k‘, 1-J-k, ...
i-j-ky, vhere k, kL ... ky are homologs (not including isomers) can be

used to predict the equilibria for a system i-j-k, which has not been
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determined exper;mentally. Redlich-Kister coefficients obtained for
an homologous sefies of systems sre simple functions of the boiling
point or some other property of the varisble component k. Boiling
point is not a sultable correlating property to use when it is desired

to predict the equilibrium of serles of systems including lsomers.

B. Recommendations

Research directed toward the prediction of solution behavior from

theoretical considerstions should be empheslzed, Particular attention
should be glven to the predictlion of the varlation of activity coeffi-
clents with temperature.

The effect of additional coefficients in Equations (3.10), (3,11),
and (3412) should be studled.

The use of the Redlich-Kister equations to prediet equilibria for
systems having more than three components should be studied.

A study of correlating properties other than boiling polnt should
bevundertaken.to,permit predietion of equilibria for homologous series
of systems where isomers are included.

A study should be underteken to compare the effectiveness of several
different representations of the molar excess free energy in repre-

senting liquid-liquid equilibria.
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APPENDIX A

SUPPORTING DERIVATIONS AND MATHEMATICAL DETATILS

1. Expressions forZ§C5‘:(see 2.61)

Consider a system composed of N,y Ny, === N, moles of the
various'components 1, 2, --- k having molar free energles in the pure

liquid states gf s g: ) wew g; . The total free energy of mixing AG, is:

AG, = G- Z”z (A1)

PO

where G is the total free energy of the system after mixing. Teking the

partial derivative: of AG,, with respect to n; s
- - -]
AGM‘, = Q -G, ‘ (A.2)
From (2,47) it followss
k-1
= G G
, = .;::_ —4==L A,
G =G+ Z/ S (.3)
From (A.l):
o [~
G= AG, + Z_zzf_:; + %6, (a.1)

Thus

Q: —- (A.5)
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Substituting (A.4) and (A.5) into (A.3) and simplifying:

_ k| -
G =A_M+Z7Q'Q; + 23, "LBA'M +§z'-@: 'Z%(‘SAQ’“ +§j’ —;>
n O I\
0 G
=ANG, + Gt 248, Z:@BL\QM (2.6)
Y2 ! O

From (A.2) and (A.6):

_AG-{-

, Z Q (a.7)

% |

I\

Similarly for the kth component from (2.46):

AG, = NG, =~ ) # ¢hCn (.8)

(4.9)

5. Stebility Criteris for the Binary Case: (12)

The following derivation is analogous to that found in Sectlon
II, D., where S was the quantity involved.

The following phase reactlon at constant Ty, P is proposed:

[(n,2,6)= 100, w+ 2, 6082 )+ [T (n' o0ty 8 06") TR
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It follows from (2.82), (2.83), (2.8L4) that for I to be stable:

AG=n'AG+n'AG" >0 (A.10)
n=n+n" (A.11)
nar + n'Axt = 0 (a.12)

By Taylor-series expansion and introduction of (A.lO), (_A.ll),

(A,12):

= % 374
Therefore:
in 36, .
AG=7,,7A7C+"">O- (2.13)

Since if AG>O0 each term of a Taylor-series expansion must be

2
(%%>m >0 - (2.86)

(12)

greater than zero:

3s The Mathematic of Quadrdtic Forms:

Consider a quadratic form

i = al’\z-f- 2bhk + Ckz

[(he s (225
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The table gives the correspondence of the sign of quantities in

g to the sign of q.

QUADRATIC FCRMS

o} ac-b° a ¥
positive-definite + + +
Negative-definite + - -
positive-semidefinite 0 + +
negative-semidefinite 0 - -
indefinite | -

4. Supporting Details of the Derivation of the Binary Redlich-
Kister Critical Relations: (3.20), (3.21).

a. Taking the second partial derivative with respect to X,

of A@M given in Equation (3419) and applying (3518) one obtains:
RT

1 ¥AG, . &%wx%zz ¢ 2,303Q]
RT o Y

B, s 6(F28)C =0

I TA

* ¢ is dependent on a and ac-b°
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of Ay

Taking the third partial derivative with respect to x, =

and applying (3.18)

BSAQN\ - B [2'%3—74-,%. —2B, * & (- 274,)C/2_:|

Y

IR
T 2,003 [:Z, 75:' 7‘,17[1] /2 C/z =0 (A.15)

From (A.15) it follows after rearrangings

¢ l | )
R, 303 C,,_ -'-"/"2- [m) - Zzz.] ’ (3.21)

Substituting G from Eguation (3.21) into Equation (A.14) it

follows after rearrangement thats

AN

(€]

O

(&)
A5
»

1
JA|§
—
-y [N

|
l\k
NG Y
p

+
N

—%‘}/-J ’ (3.20)

b.- The alternate derivation of Equations (3«20) and (3.21)

consists of determining the following limits (see Equations (3,22)):

. LiXy = Lo X X =LK
BC= 4~ Loy [ s 7
2 ?f,t’:’zf [ X, Xq _szs ] z-vz“ I A ] (A.16)
it 4t

A study of Equations (3.8) and (3.9) will show that the limits in (A.16)

lead to the 0/0 case which must be evaluated by 1'Hospital's ruleu(56)
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To evaluate these limits, x!"

,  vwas first allowed to equal ,7.’," the

composition at the critical point, then:

NARA
By = Mo ——2E
ane 3 (k=KX
ox!”

(75 4”= 4 C‘>

(A.17)

an(szf - L X'5>
Qz ] ;%'Z- n B%{ (zru= 75,¢>
P é <Xqu —XQ‘XD
3"

After taking the derivative with respect to xf four times of both the

numerator and denominator in (A,16), that is n = 4 in (A,17), vhen

x,’ -» x° both numerator and denominator are finite and Iiign-zero s and
Equations (3.20) and (3.21) are obtained, This result is also obtained
by allowing x,’—» x{ , then solving for the limit as x,”—> xf' by

1'Hospital's rule which indicates that the limits in (A,16) are inde-

pendent of path.

5« Determination Of%AE where /\ is gilven by (4,,29)(55):
4

The partial derivatives of A with respect to the Redlich-

Kister coefficients in Equations (3.10), (3.11) and (3.12) denoted here
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as ¢, , are of special importance in the determination of the coefficients

that minimize A . Differentiating A (4.29) with respect to ey

BA . */ 7 | .
_é-c; =‘Z;[(Zé-?¢a>gz (7‘ 7‘2>B§i+(zs %i " (A.18)

é B* / * 4
The problem now is determination of and 5

aC,g BC,Q égg
Let us write Equations (3.10), (3.11) and (3.12) as

@)

= 4.,

[
5
" [N

NS
=D

I

l\/ls\
&

i

O

&= L, P -

2 = Loy i -7_ h

x»rherex"=l-—:><,,_/.—x3 andx l-xz - x7

(A.19)

1
O

By total differentiation of

/ / /W /"
E(Zz >Z3 ) 71& ’ 7’/3 y Sy G2y '“Ca>=o

! / /" / _
)g(zz >Z3 )%z 9%3 y C oy Gy "'c@>_o

' / " I -
ﬁ-/(zzozs ) K y Zn 4 Sy Gy "'ce>"o
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we obtaing

% W i+ o MJHHAE *’ZW
o

a /"
4z (ADEO)

and similar expressions for % and which form three equations from
2

which the differentials of le » xz” » and;(! may be eliminated. Noting

that now
I ot ot
ZZ-Z,_CZE,,C,,CZ"-CQ
//- /) /
% = Zz(25,6,a Cp v C@>
"= >
o = Zo (Zg 5C 0 S Gy (A.21)
and thus:

, .
ﬂ(z,g’ = éz?‘-ﬁ(?‘é + Z ;_’?3.-_ 0{%
éx:; A= éc,o_

Vi )
0(76"- >_7i_0{ /4 5_75_2_ Jde
2 as/ Zs - écl 2

i ¢ "
0174;/'; %7-(-:-5/4?75; + y %&JC,Q (a.22)
s Tar 9%
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/ « N il
The partial derivativesif& y EZ& and bxs are then obtained by
Bsz L:) Ce
comparison of the terms in (A,Egi with thése in the expressions obtained by

solving the system of Equations (A.20) for dxé, d%! s dg{ « These partial

derivatives may be obtained from the matrix equation

¥ P\ [ Y

oo 0% 2

AR Y. | _ -

YA YA A e - 8¢ (.23)
oY Y O%y _¥

YR A VA 3% 9

The partial derivatives E—E ’ é)é P ﬁ are simply -f, , -g,, and -hy

Xy oy o¢,
in Eguation (Avl9). The partial derivatives ofj? %gé, and 5V with
respect to x;, X: s and x! are somewhat lengthy algebraically. They are

written out in Fortran compiler notation in the program listing of Pror

gram 8. See the Correspondence of Variables section for the compiler

statements.

X/ * 4 *
It is understood that to obtain égg , 0%, BZJ/

u—

*, K *y 0% oCs 9%
the values of X, , X, , and X, (predicted from the equations, not

experimental data) are used in the algebraic expression obtained from

(A.23).



APPENDIX B

DESCRIPTION OF COMPUTER PROGRAMS

In the course of this research a number of computer programs
have beén written for the IBM 650 and the IBM 704. Programs for the 650
were written ih the Generalized Algebraic Translator language(lo) by
B. Arden and R. Graham of the University of Michigan computer research
staff, The language adheres to the rules of algebra in arithmetic state-
ments. The reader is referred to Reference (lO) for details of the
language and of inmput-output format.

Programs for the TO4 were written in the Fortran language which
is described in detail in References (15) and (16). Subroutines used
were those available at the University of Michigan Computer Center,
Septeﬁber 1959, Input and output format is controlled by the FORMAT
statements found in the Fortran program listings. These statements are
described in detall in-References (15) and (16).

The eight programs described here were not the only ones
ﬁritten-during this research. A number of other programs were written but

were found to be less satisfactory than those presented here.

-130-



-131-

PROGRAM 1:
Title: Binary Vapor-Liguld Least Squares Program, Constant Temperature.

Language and Computer: GAT - IBM 650

Function: Accepts x, y, P data and determines B, and C, in Equations

(2.53), (2.59) vy minimization ofd where A is:

N 2 2
P‘ | / /131 _ /
8=) [ B oMo -5 [0

2

0

/
where log/o\( is the binary Redlich-Kister expression for log,b’
using the B, and G, binary coefficients.

Flow Sheet:

g@on P B ‘ READ 7, ,, P, k|—|compuTs 2,2, —>®
2 ) 2

®

<
@——Compur:‘/é's,@%, —> & =2 (4, ;/z~’-‘=>
A omge AT ers e a)

NO .
IS
e k= COMPUTE FPRINT ZERO
YES 3 R ym
‘—@'—”B= ° =g c=mi=en 7 ,o @
. mo —n? " Tmo- w C, n
P

¥
b, ¢, D, A

! /
c, are the multiplyers of B, & C, in logx, s log;\é2 respectively.
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Correspondence of Variabless

X, =Yl 1, =118
X, = 12 1, =7Y19
v =13 m = Y13
Y = Yh n = Yl4
b, = Yll o =716
b, = Y12 p =7Y15
c, =19 a =117
c, = Y10 k =10

P =Y8 B, =0l

P’ = Y5 G, =C2

P = Y6

Inputs Y5, Y63 then Y1, Y3, Y8 with IO = 1 on last data point.

Subroutiness READ, PUNCH, FIX, FLOAT, LOGIO.
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GAT Compiler Statements:

2 IS HIGHEST STATEMENT NUMBER
300 USED IN SUBROUTINES
DIMENSION Y(20) C(2)

1 READ
Y2=1e-Y1
Y4=1e-Y3
Y11=Y2%*Y2
Y12=Y1%Y1
YO=Y11#(=Y2+3e%Y1)
Y10=Y12%(Y1~-3e%Y2)
Y18=LOG1l0a((Y8%Y3)/(Y5%Y1))
Y19=LOG1l0«((YB*Y4)/(YEXY2))
Y13=Y13+(Y11%*Y11)+Y12%Y12
Y14=Y14+(YO9#Y11)+Y10*%Y12
Y15=Y15+(Y11%Y18)+Y12%*Y19
Y16=Y16+(Y9*Y9)+Y10*Y10
Y17=Y17+(Y9%Y18)-Y10%Y19
GO 70 1 IF I0OUO
Y20=(Y13%Y16)-Y14%Y1l4
Cl=((Y15%Y16)=-Y14%Y17)/Y20
C2=((Y13%Y17)=-Y15%Y14) /Y20

2 TCl TC2
Y13=0,
Y1l4=Y13
Y15=Y13
Y16=Y13
Y17=Y13
10=0
GO 70 1
END



PROGRAM 2:
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Title: Binary Vapor-Liguid Back Calculation Program, Constant Temperature.

Language and Computer:

GAT - IBM 650

Function: Given B C,sP P, , this program computes x, , ¥y, » P in
functiop 1. ? Ve 2 ! | |

steps of any specified Z.\X, by solving the Redlich-Kister equations for

the binary vapor - liquld case.

Flow Sheet:

R
/ . Otxf( B,*(~%,#3%)Cp)]
READ <=
°y FHxeo e
B/zaczazi/,: 2 [0 [%’2(8124_(,5/—312)@2)] '
! \62: /0
3

PRINT

@—»F,W\(;Ffo%/) k= X’az’P peR 9= f Z”g"la‘@
»)

- %= %+ O,

)

x> |

NOC

YES C
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Correspondence of Variables:

(same as previous program except as follows)

g = 19
%= Y10
B =YL
P, =7Y12
Ax, = Y0

{
Input: Cl, C2, Y5, Y6, YO

Subroutines: READ, PUNCH, FIX, FLOAT, GENERAL EXPONENTATION

GAT Compiler Statements:

3 IS HIGHEST STATEMENT NUMBER
400 USED IN SUBROUTINES
DIMENSION Y(12) C(2)

1 READ
39Y190e9Y091e00

2 Y2=1e=-Y1
YO=10eP(Y2%Y2%(C1l+C2%(-Y2 N
+34%Y1)))
Y10=104P(Y1%#Y1*(C1l4+C2%(Y1- N
3e%Y2)))
Y11=Y9#Y5%*Y]1
Y12=Y10%Y6%*Y2
Y8=Y11+Y12
Y3=Y11/Y8
Y4=Y12/Y8

3 TY1 TY3 TY8
GO TO 1
END
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PROGRAM 3
Titley Binary Vapor-Iiquid Least Squares Program, Constant Pressure.

language and Computer: GAT - IBM 650

Function: Accepts x, , y, , T data end determines B, and C, in Equations
(2.55), (2.56) by minimization of A given in Equation (4.10).

Flow Sheet:
/

READ - TR * COMPUTE

a
READ o P)
. HFEO
@ Azy bzs Ca ‘ %,Y ¢ Hom’ Ant:?ne_
i ®
/8

<::>_9 COMPUTE  m, h, 0, P, o ( see PROG, /) k=]

PRINT | ZERO
COMPUTE By s Cp A ' R, m @
yCas P
@ ( see PROG. |) 2, ] »;; Z

Correspondence of Variabless

(same 8, program 1 except as follows)

a, = Dl aa = Dll-

b| = DQ bz = D5

¢, =D3 ¢, =D6
t = X1

Input: DL - D63 Y1, ¥3, X13 I0 = 1 (last data card)

Subroutinesy READ, PUNGH, FIX, FLOAT, GEN. EXPONENTIATION, LOGIO.

¥a, , Db ,c are the coefficlents in the Antoine equation.
0 b,
/2'3/0'40' = X T Ty
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GAT Compiler Statements:

2 IS HIGHEST STATEMENT NUMBER
645 USED IN SUBROUTINES
DIMENSION C(2)X(1)Y(20)D(6) N
I(1)

1 READ
Y2=1e-Y1
Y4=1e-Y3
Y5=104P(D1-D2/(X1+D3))
Y6=104P(D4~-D5/(X1+D6))
Y11=Y2%YZ2
Y12=Y1%Y1
YO=YLl1l%(-Y2+3e%Y1)
Y10=Y12%(Y1-3e%Y2)
Y18=LOG10«(YB8*Y3/(Y5%Y1))
Y19=LOGl0«(YB*Y4/(YOEH*Y2))
Y13=Y13+Y11%¥Y11+Y12%Y12
Y14=Y14+Y9#Y11+Y10%Y12
Y15=Y15+Y11#Y18+Y12%Y19
Y16=Y16+Y9#Y9+Y10%*Y10
Y17=Y17+Y9%Y18+Y10*Y19
GO TO 1 IF 10UO
Y20=Y13%Y16-Y14%Y14
Cl=(Y15%Y16=-Y14%Y1T7)/Y2
C2=(Y13%Y17-Y15%Y14)/Y2

2 TC1TC2TYS8
Y13=0.
Y14=Y13
Y15=Y13
Y16=Y13
Y17=Y13
[0=0
GO TO 1
END
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PROGRAM L4

Title: Binary Vapor-Liquid Back Calculation Program, Constant Pressure.

Function: Given B, , C, , P, X, and vapor pressure data in the form of
Antoine equation coefficilents, Program I solves the Redlich-Kister equations
in B & C binary coefficients for y, and t in steps of any specified

Ax , fromx =0 to 1.

Flow Sheet:
READ a,,b, 5¢, s B, C COMPUTE Y , Y
A O
Op v bp s Sy s D), T (;aa PROG, 2)

COMP;JTA'_ 5,:,449(; Y= h ED
B R

P é From Antoine Z=Ytd%
X

Y A O

Frem Antoine

YES PRINT
BN IR < j

Correspondence of Variables:

x, =Xl B, = X4 Z = Y9

Ax, = X0 a, =D3 t = Y5
x, =X b, =-DL P = Y10
Y, =713 e, =1Ie

¥ Solving the Antoine equations for each component for t and taking the
average
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B, =Cl a, =13
Co =02 b, = -Z1
Y, =71k c, =122
m =Y ¢ =70
n = Y7 W =Yl
P =X3 Y, =1Y2

Input: D1, D2, D3, 71, Z2, Z3, Cl, C2, X0, Y5
Subroutines: READ, PUNCH, FIX, FLOAT, 10EXP., LOGIO.

GAT Compiler Statements:

349 USED IN SUBROUTINES
3 1S HIGHEST STATEMENT NUMBER
DIMENSION Y(10)X(4)D(3)Z(3) N
c(2)

1 READ
39X190e9X09160
X2=1e-X1
Y3=10EXPe (X2¥X2¥(C1+C2%(~-X2+ N
34%X1)))
Y4=10EXPe (X1¥X1%¥(C1+C2%(X1=-36N
*X2)))
Y6=Y3%X1/Y1
Y7=Y4%X2/Y1

2 X3=10EXP«(D1/(Y5+D2)+D3)
X4=10EXPe{Z21/(Y5+22)+23)
Y1=Y63#X3
Y2=YT#X4
Y9=Y1+Y2
GO TO 3 IF YOV(A(Y9-14))
X3=X3/Y9
X4=X4/Y9
Y5=(D1/(L0OG10.(X3)~D3)=-D2+ N
21/(LOG10e(X4)=23)=-22)/2
GO 70 2

3 TX1TY1TYS
GO TO 1
END
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PROGRAM 5:

Title: Program for Computing B, and C, from Binary Solubility Data.

"

\ /
Function: Given x, , X,

Program 5 computes B, and C,, in the Redlich-
Kister equations for a partially miscible binary by solving Equations

(3.8), (3.9), written as

L= XB, *hChr
Lo= KyBin * X Cp
Flow Sheet:
READ COMPUTE
@ | %, 2 ] X|9X29X39XA/9[-M-/-2
0 ;
B= LiXy = La¥a '
IR 7 PREAD 9 PRINT
@_’ C,= Ab = Xsb 1 B.iCa —’®
XXy = XXy

Correspondence of Variables:

x| =Yl L, = Y10
x, =71e L, =Yl
x! =15 B, =C2l
x| = Y6 c, =Ce2
X, =713 X = Y4

X, =18 X =7Y9
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Xg =Yk

1

Y

2 =1
Input: Y1, ¥5
Subroutines: READ, PUNCH, FIX, FLOAT, LOGLO.

GAT Compiler Statements:

2 IS HIGHEST STATEMENT NUMBER
645 USED IN SUBROUTINES
DIMENSION Y(14)C(22)

1 READ
Y2=1e-Y1
Y6=1e-YD
Y3=(YO%YE)=Y2%Y2
Y8=(Y5%#Y5)-Y1#Y1
Y4=(YO*YOH*(—1e+b4e*Y5) )=Y2¥Y2%N
("10+40*Y1)
YO=(Y5#Y5%(=3¢+4e%Y5))=Y1*Y1*N
(=3et+4a%Y1)
Y10=LOG1l0«(Y1/Y5)
Y11=LOG1l0«(Y2/Y6)
Y12=(Y3%Y9)=-Y4xY8
Y13=(Y10%Y9)-Y4%Y11
Y14=(Y3%Y11)-Y10%*Y8
C21=Y13/Y12
C22=Y14/Y12

2 TC21TC22
GO TO 1
END
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PROGRAM 6
Title: Solution Program for the Three Component Redlich-Kister Liquid-
Liquid Equations.

Language and Computer: GAT - IBM 650 or Fortran II - IBM TOk4.

Function: Program 6 solves Equations (3.10), (3.11), (3.12) for values
of x:; in steps of any specified Axé up to a specified final value of X_; .

Program 6 begins by solving a point low on the binodal curve where X,

/Y 4

is very small. An initial guess of x,/, X, 5 X, 1s read in initially for

this first point. The iteration then begins and solution is assumed when

3
/
& >Z l ,@93,0 x@/” - Q } 0 & being arbitrarily chosen to
ez

give the desired accuracy. For the second point:
%3/ [ajz ng+ A;C; , '%/mz %lm o
Z, = Fu
21;52_7: /_%//EIJ_ 753/&/] , %’,,LZL %,,,UJ
(where [n] refers to the point number) are taken as initial guesses
and the iteration starts again. In order to insure convergence Ax‘;
should be 0.0l or smaller in almost all cases. For the third point and

all successive points, initial guesses are made by linear extrapolation

from the last two points:

Ln+i] [w 7 Ln-1]

s " 2 (¢=1,2)

2 ¢

Program 6 converges rapidly near a partially miscible binary

reglon, more slowly near a plalt point. For a given € the accuracy of



solution is lowest near a plait point.
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minute 1s required to compute a complete binodal curve on the IBM 704,

If divergence occurs or if the logarithm of a negative number is taken

during computation, a new set of Redlich-Kister coefficients is read in

and computation proceeds.

Flow Sheet:

2

/"

For an average case less than one

/y
READ Biys By s By s Cu| |COMPUTE PRINT
(4] (] P
Caos Coy 13 s 5 B 2y [ /Q'/Eji 'Z:; Reo B, thru Cy
Z;EIJ, zll/[lﬂ, zgﬂ/]’ A
2 I8
PRINT COoLUMN v compuTE B, By, B
HEADINGS = (see eqtn. 3,/0,8./1, a.12)
—— o P R c— v— — ——— D — — C— a— — — — _1
COMPUTE
/
/ (%3, ¢z>+ 4
L. = z&' /Z” = /O 3
¢ %)D z‘{/ 3 2
(é=1,2,3)
z/’/ = /_Z;/_Zsl/
i =)= (=20 ® I iy !
7‘2 = ( 7{3) *'(—I 2‘32‘{0 = Z =%l/ (/O¢> *CC/'_‘EI é”‘_@I
/O ¢2 - /0% ( , y =l %
ZZ: ]Cl /0 2)

Note:

Dashed lines enclose solution routine used in Program 8



1565<i>

PRINT

N VI AL N /)
YES oty Ty 2y %y 3
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/C£1 /

[n-3 )
74 =Z4'/ (5= /92)

2l =2 + A%
752’ = /'%/-Zg,’

K Dy

keo

¥

Lh] tn=i1
Ai' = /Z/"_/'i:Lf

‘ J

sLn=11

Ll

/
Zp = Qe =04 +4

i

/Z3/= Aﬁé-ﬁ-/(é
= 1-2-2

“ G 2l
2 ="+ YAV 4

74}___ xz// +A74£H7

Zg = / ",Z,” '%;.l
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Correspondence of Variabless

B, =Cl < =18 7= Fr3
v g
By, = C2 4 =717 Ax = xe1
By =03 4 =718 A = w22
)
Cp = Ch @ =119 Ax"" = x23
Gy =05 L, = D8 Ax!'™ = xeh
Q, =C6 L, = D9 A o
/ /LV"IJ )
x =Yl L, = D10 x, = X18
X, =12 g =F(J) = 19
u-=1]
x/ = Y3 g =c(J) /" = %20
XI// = Y5 h{j = H(J) = A
XZ// = Y6 é = g Cc/ = Y8
"o_ /o
x, = YT kaa =X

Input: See READ INPUT TAPE Statement in program below, Format is in
accordance with FORMAT statement 2. A is a divergence test constant
normally set greater than one.

Subroutines Useds LOG (natural log), general exponentation plus the

usual Fortran system routines.
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Fortran Compiler Statements:

DIMENSION C(6)sF(6)9G(6)sH(6)
READ INPUT TAPE 7e2s(C(I)el=196)9YsY3sXsFY3sY1loY5sY6,A
2 FORMAT (6E12+4/4E10e2/4E1244)
E=0443429448
Y2=1e=Y1-Y3
Y7=1e=Y5-Y6
K=1
WRITE OUTPUT TAPE 6911s(C(I)sI=1+6)
11 FORMAT (4H1C1=E12¢494H C2=E12e494H C3=FE12e49s4H C4=E12.494H C5=E12
X eholtH CH=E12e4)
WRITE OUTPUT TAPE 6+12
12 FORMAT (68H Y1 Y2 Y3 Y5
X6 YT7)
19 Y8=1.
C26=1.-Y3
C27=1e=-Y7
3 Glé6=1.-Y1
Cl7=1e-Y2
Cl18=1e~Y5
Cl9=1.-Y6
C20=2.%Y1
C21=2e%Y2
C22=2.%Y3
C23=2.%Y5
C24=2%Y6
C25=24%Y7
Y10=Y2-Y1
X10=Y6-Y5
210=Y5-Y7
F(1)=Y6%¥C18-Y2%C1l6
F(2)=Y2%Y3=-Y6*YT
F(3)=Y7#C18-Y3#(C16
FI4)=Y6*(C23%(X10+1e)=Y6)=Y2%(C20%(Y2+C16)-Y2)
F(5)=C24%YT*(YT-Y6)=-C21%Y3%*(Y3=-Y2)
FI6)=YT#(C23%#(210=1e)+YT)=Y3%¥(C20%(~-Y3-C16)+Y3)
G(1)=Y5%C19-Y1*C17
G(2)=YT*C19-Y3%C17
G(3)=Y1*Y3-Y5%Y7
G(4)=Y5%(C24%(X10=1e)+Y5)=Y1%#(C21%(Y10-14)+Y1)
G(B)=YT*(C24%(C19+YT)=YT)=Y3%#(C21*(C17+Y3)-Y3)
G(6)=C23#YT#210-C20U%*Y3%(Y1-Y3)
H(1)=Y1*Y2=-Y5%Y6
H(2)=Y6*C2T7-Y2%C26
H(3)=Y5%C2T7-Y1%C26
H(4)=C23%#Y6¥*¥X10-C20%Y2%Y10
H(5)=Y6X*(C25%(=C2T7-Y6)+Y6)+Y2#((C22%(C26+Y2)-Y2)
H(6)=Y5%*(C25%(Z210+1e)=Y5)=Y1*#(C22%(C26+Y1)-Y1)
31 Z17=C(1)#F(1)+C(2)#*F(2)+C(3)#F(3)+C(4)%¥F(4)+C(5)*F(5)+C(6)*F(6)
218=C(1)#G(1)+C(2)*G(2)+C(3)*G(3)+C{4)#G(4)+C(5)%G(5)+C(6)*G(6)
219=C(1)Y%¥H(1)+C(2)¥H(2)+C(3)#H(3)+CI4)*¥H(4)+C(5)*¥H(5)+C(6)*H(6)
D8=E*LOGF(Y1l/Y5)
D9=E*#LOGF(Y2/Y6)
D10=E*LOGF(Y3/YT)
Y7=((Y3/(10e%%7219))+YT7)/2
X8=10.%%217
X9=10.%%218
C26=1.-Y3
C27=1e~YT
Y6=(C26=C27%X8)/(X9-X8)
Y5=1e=-Y6-Y7
Y1=X8*Y5

—
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Fortran Compiler Statements:

32
10
14

13
33

25

Y2=X9%Y6
Y8=ABSF(D8-217)+ABSF(D9-218)+ABSF(D10-719)
IF(Y8=Y)4s4s32
IF(Y8-~ A )104151
IF(Y1/Y5) 191514

IF (Y2/Y6)191+3
WRITE OQUTPUT TAPE6s8sY1sY29Y39Y54Y64Y7
FORMAT (1H 6E12.4)
IF (FY3-Y3)1+13513
IF (K-1)33+25433
X21=Y1-X17
X22=Y2-X18
X23=Y5-X19
X24=Y6-X20

X17=Y1

X18=Y2

X19=Y5

X20=Yé

Y1=X17+X21

Y3=X+Y3
Y2=1e=-Y1=Y3
Y5=X19+X23
Y6=X20+X24
Y7=1e=Y5-Y6

GO TO 19

X17=Y1

X18=Y2

X19=Y5

X20=Y6

Y3=X+Y3
Y2=1e=-Y1-Y3

K=0

GO T0O 19



-148-

PROGRAM T:

Title: Linearized Ternary Liquid-Liquid Least Squares Program,

Language and Computer: GAT - IBM 650

Function: Program 7 determines the coefficients in Equations (3.10),
(3. 11), (3 12) from ternary liquid-liquid equilibrium tie line data for
three cases:
1. Where Equations (3.10), (3.11), (3.12) retain all six
coefficients. ’
2, Where Equations (3.10), (3.11), (3.12) retain only
B/a, Byns Byyy and Cp -
3. Where Equations (3.10), (3.11), (3.12) retain only B, ,
Cp s Czg, 2nd Cgj o
In order that Egquations (h°5) be linear in the coefficlents

the following A is minimizeds

. =ZM_— (G et (s M '

The method used in solving the linear simultaneous equations
is that of Jordan Elimination and the routine used here was written by
Professor B A. Galler and is described in Reference (8).

For reasons discussed earller, Program T does not always glve
satisfactory estimates of the coefficlents. Because of 1ts speed however
it is always advisable to try Program 7 and see if it gives good estimates

of the coefflcients for a given set of data.
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In comparing the flow sheet to the compilei statements it will
be reeognized that GAT stores:
¢l =c¢(1,1), c2 =c(1,2) ---- ¢n = ¢(1,n)
¢(n+l) = ¢(2,1), c(n+2) = ¢(2,2) ---- ¢(2n) = ¢(2,n) etec.
when in the DIMENSION statement C(n, , n,, na), n, = 1.

Flow Sheet:
READ z/, 2 | |COMPUTE COMPUTE
2
@ il wlon | | B8 bk g B ‘
(Y 29 see fgfn, (A‘/Q) L M?Z YY)
! YES ‘I'

/S'Y_ES—)@
NO :::

« by, = o R + 3095 + My

YES | ARINT IE
CHECKING

i bhﬂ = by +€a Lt GLat hela k=0 3

No
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—
l
|
I
|

S

~
=l

NO

| |
N
| |
S — |
|
| . NO l
/18 |
N ! j
‘ <y blj=b ‘b_/hb/ej @ N l
| YES
l
|
|
|

&
O

'>n ,_).NO
‘ vE . <k’5 9
' >

- —_

PRINT ,
@—1 c theu Co @ R? ‘°'J’ = clo"

Note: The dashed lines enclosed the Jordan Elimination Routine 5 on exit the

Zgifficnents Bﬂ_ ) B% ) Bst 3 C/2 P C‘ea ) %/ are in location b/'7 s By b3,7
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@_9 bir =din (L= Iy 2,,4)

- . 9 . é’n = G{H
= bz (i=42,04) | PRINT bur = cly . \
@ T cithuc, [ By ses = 9l (245 éﬂf’@
=0, ¢,=0 by:J;/
by=dy)

b&“ﬁ) J.‘AC') = 0(‘:).

c = b,f /0

Ca= O PRINT

% =0 . _ Seld
cl LL/)PMCb z Rl O(d‘:lué

Co=byg,s ((24,5 é)
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Correspondence of Variables:

(same as Program 6 except as follows)

f, tof, =X to X6 by =c(1, J1)
g, to g, =Yll to Y16 &y = y(11, J1)
h, toh, =21 toZ6
L, to Ly =Dl to D3

n =10

Input: Y1, Y2, Y5, Y6 with I0 = 1 on last data point.

Subroutines: READ, PUNCH, FIX, FLOAT, L0GIO., MATRIX SUBSCRIFTION
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GAT Compiler Statements:

11

12

15 IS HIGHEST STATEMENTNUMBER
645 USED IN SUBROUTINES
DIMENSION C(4291291)Y(42)I1(4)N
JI1)K(1)Z(6)X(6)D(3)

READ

Y3=le=-Y1-Y2

YT=1le=Y5-Y6

Y8=10“Y5

Y9=1e=Y1

X1=Y6%¥Y8-Y2#%Y9

X2=Y2%Y3=-Y6*Y7

X3=zYT#Y8-Y3%Y9
X4=Y6*(2e*YS*(Y6E+YB)-Y6)~ N
Y2#(24#Y1¥(Y2+Y9)-Y2)

X5=2e % (YOXYTH(YT=Y6)-Y2%Y3 N
*¥(Y3-Y2))
X6=YTH*(YT-2.%Y5*¥(YT7+Y8) )~ N
Y3%(Y3=24%Y1% (Y3+Y9))
Y8=1le=Y6

Y9=1e=-Y2

Y11=Y5#Y8-Y1%*Y9
Y12=YT7%Y8-Y3%Y9
Y13=Y1#Y3-Y5%Y7
Y14=Y5%#(Y5-2.%Y6*¥(Y5+Y8))- N
Y1#(Y1=2¢*Y2¥(Y1+Y9))
Y15=YT#(2e%#Y6X(YT+YB8)=YT7)= N
Y3%(24#Y2%¥(Y34+Y9)-Y3)
Y16=24#(YS*YTH#(Y5-Y7)- N
Y1#Y3%(Y1=-Y3) )

Y8=1le=Y7

Y9=1e-Y3

Z1=Y1%Y2~-Y5%Y6

22=Y6%YB-Y2*%*Y9

23=zY5%Y8-Y1%*Y9
24=2#(YHXYE*(Y6-Y5)- N
Y1¥*Y2%(Y2-Y1))
25=Y6*(Y6=24%YT*(Y6+Y8))-Y2 N
H(Y2-2e%Y3%(Y2+Y%))
26=Y5%(2+%¥YT%(Y5+Y8)-Y5)-Y1 N
¥(24%#Y3¥(Y1+Y9)~-Y1)
D1=L0G10e(Y1/Y5)
D2=L0G10s(Y2/Y6)
D3=L0G10e(Y3/YT)

I1=1

14=2

129K1s19196s

12=K1

I3=K1
CI1=CI1+XI2#XI3+Y(I2+10)*Y(I3N
+10)+212%213

13=13+1

I1=11+1

GO TO 11IF 6WI3

I1=11+14

14=14+1

I11=7

13912919156
CI1=CI1+XI2%¥D1+Y(I12+10)*D2+ZIN
2#D3
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GAT Compiler Statements:(Cont'd)

TCleeoCl2

GO TO 1 IF I0OUO

C8=C2

C15=C3

C22=C4

C29=C5

C36=C6

C16=C10

C23=Cl1

C30=C12

C24=C18

C37=C13

C38=C20

C39=C27

C40=C34

C31=C19

C32=C26

149119191942
14 YIl=CI1

10=6
7 12=10+1

49K191919100

29J19129=19K1>
2 C(K19J1)=C(K1lsJ1)/C(K1sK1)

49119191910

GO 10 4IF T1UK1

39J19129-19K1>

3 C(I1,J1)=C(I1sJ1)~C(I1sK1)* N
C(K1sJ1)
4 10=10

GO TO 8 IF KOU1L
GO TO 5 IF 10U4
C1=C7
C2=Cl4
C3=C21
C4=C28
C5=C35
C6=C42

6 TC1TC2TC3TC4TC5TCE
cl=v1
c2=y2
C3=Y3
Ch=Y4
C5=Y7
C6=Y8
C7=Y9
C8=Y10
C9=Y11
C10=Y14
C11=Y15
Cl2=Y16
C13=Y17
Cl4=Y18
C15=Y21
Cl6=Y22
C17=Y23
C18=Y24
C19=Y25
C20=Y28
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GAT Compiler Statements (Cont'd)

[0=4
GO TO 7

5 C1=C5
C2=C10
C3=C15
C4=C20
C5=0.
C6=0.

9 TCLTC2TC3TC4TCS5TCH
Cl=Yl1
C2=Y4
C3=Y5
C4=Y6
C5=Y7
Cé6=Y22
C7=Y25
C8=Y26
Co9=Y27
C10=Y28
Cll=Y29
Cl12=Y32
C13=Y33
Cl4=Y34
C15=Y35
Cl6=Y36
Cl17=Y39
C18=Y40
C19=Y41
C20=Y42
KO=4
GO TO 7

8 C1=C5
C2=0.
C3=0.
C4=C10
C5=C15
C6=C20

10 TCITC2TC3TC4TCHTCE
159119191942

15 CI1=0.
10=0
KO0=0
GO TO 1
END
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PROGRAM 8:
Titles: Non-Linear Ternary ILiquid-Liquid Least Squares Program

Language and Computer: Fortran II - IBM TOL

Function: Program 8 determines the six coefficients in Equations (3.10),
(3.11), (3.12) from ternary liquid-liquid equilibrium tie line data by

minimization of A\ defined as:

M 2 2. px
A=) [C-2)w, + (-2 + (22300,

=1
The method of steepest descent described by Marquardt(21)

is
used to approach the minimum until a good approximation is obtained
after which the truncated Taylor series method is used which near the
minimum Zﬁzcbnverges more rapidly than the steepest descent method.

Very generally the following steps take place:

1. The experimental data and the 1lnitial guess of the coeffi-
clents are read in.

2. Equations (3.10), (3.11), (3.12) are solved for Qé equal
to the xg of each experimental point starting with the lowest value of
xé by the method of Program 6.

3a 13 and the partlal derivatives Eééf, 522 s égé? and ééé

o T de X 3¢,
are computed. |

L, Corrections to the coefficlents are computed either by

steepest descent or by the truncated Taylor series method.

5« The process is repeated starting with step 2 until

G
[nl cn-11\*
<> 2 (Cg -< ) S ¢ being arbitrarily small.
¢=!



Flow Sheet:
£8,47,27
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READ and PRINT <) cas

61 € 16 s 8yt Aas 0 ming Ly

I

ReL)= 2] R(L43)= 2L
N RG+I) = % WT(L) = w
RUr)= % WT (L) = con,
WT(L+2) =t
D=0 )
A=0
Bo= 13- H

READ and FRINT
AT

Wlﬂw’)_)ws

/_ 4
=R, % =R

() Wel-p-H

£= 0.43429448

@ J=o Sldl= )

L=L+4

/ p
2 =Rl 3 2o = Rurd

iy WY W = WT,
r= 1

> ,l * N wo = WTLy
)

%y = ! % zq. dady B WTH'Z

COMPUTE
é“ > g ho'

Etn (A9)

/8

>

| NO C

CoM FUTE
YE

N

3| ¢/7¢£’¢3

<5




P
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Q)

@)
/S
YES Vel
/6. STl ve YES
SOLUTION /8 _N_,@ /5 _’@
ROUTINE N
(see PROG, 6) > K=/ A&: — 52,/_ %;EN-IJ
o ro| s B
—3—,.@ a5 A§II/= zi’//_. X*//DV-G
2 ~ ~ | 1
A= 8- 2
YES
! 22
XEN=ID %1 $yIN-LT % 9
L =K =2 /8
W 1 %/ X/,
Kirnen %7 oDl 1 Ka = DRFE, L2
/'ZzENL-Z:%z/’%z//-= A Ao o2 7% —
No X $= %s » / >
20 Zl =)= 2] - %
' 1 5 '
« / ) %JCN=Id
Z = A,?I’ + /, ) @ A?é:; = 3A_ /5/
= % /
*//_ *y ¥ Nel] , Axs v
Chi @_’ ok i T e P @
Za=R +e 02
No ; ’
._)@ 2= 2+ A%I’/

A A

COMPUTE | compure /8 N

Partials of 1z, &, % || JAcog/aN </ 'T
a= 2= %
-[TH J
c=%-#

@ @ Q@ 9

with vespect & 2], 21 AL ¥

COMPUTE

2L, Y, 2
56,’ ACJ ac.J ch Ks

A= At ot Byt &
) htC U

YESS .




=~ =1
n ]

xR
SO,
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eS| PRINT N, NN
XK/ X4 A4

1) z:/{/ ) /12,9

PRINT CHETK

NO

OUTRUT
FITHT %/
= Z s

/

JLN-3_ %/ = AL+
e gy | B8
Xyv-11_ %4 X/ K
e N s
HIN=. s
Z = A

é
cos =2 0,0

Le]

CN=]]
L

cos<o
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IN+] ‘ . ] (N
1c=c, +xD, lezl-l»(cf "le)

No
/8
L=0
ves| AL A
28 2! T,
PRINT A=t || Ba=l-2-R
(P ssbuanm V2T | | B M

*P-IK»? INT " ®l Vi
74/,17/.,2;9&”%'%

D
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A el

| yes

bﬂ:: bl.;' ]

Jovdan  Eltmmation Rovtive

@—7 (enter a{é\sheaf line.

{ yes

S

2

Cntd
& =¢

NO /

YES , Yss’ .

IN~I1 NI

PRINT

¢ e,y Ay




*
Correspondence of Variables:

(same as Program 6 for B, through Cyy s }2’

& =

KO
] il

i

N B
1

ASY

e
[}

>
I

Input:

220
Z17
z18
z19
X21
X22

X23

%, [n-1]
X
* 7 Ln=1]
X2
X gCn=0
%

Xy Ln=1]
%

[}

i

i

!

X17
X18
X19
X20
x28
X1
X2
X3
X5
X6

.

"

i

i

c8

C9

C10

Cll

Cle

= C13

CL(L)

H(J)

* /W * //

"
¥
W,

*
=015
S

2 = Y10
a =727k
b =75
e =176
A = DEL
A o
7

&2 = p(J)
o

ﬁ%.z// = PR2(J)

* 4
& PB3(J)
oc;

:MU: CN(L)

1. ¢(1), c(2), c(3), c(4), c(5), c(6) equal to initial guesses

3 /
2, Y = which is greater than ‘ )y - /}
d g ; %u x‘, g
when Equations (3.10), (3.11), (3.12) are solved.

*Those cases where correspondence is obvious are not included.
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3. 2= §€, which is greater than /er (C;j— cfwu)z when
the program leaves the steepest descent routine to begin the truncated
Taylor series routine,

L. EPS= €, which is greater than Zél (cfj— cﬁ“'lj)%rhen the
minimum Z& has been reached by the truncated ;;ylor series method.

+ e,(cosf’ ‘

5. El, E2 = e, € in the expression j e

2 2

6. X = Ax:a)7 should be less than 0.0l and may be as low as
0.0005 in some cases to Ilnsure convergence,

T+ 220=« ; should always be negative, -0.2 say.

8. M; the number of tie lines for a given system.

9. NSD; if set equal to 1, causes the steepest descent method
to be skipped - uses the truncated Taylor series method only.

10« I2; if set equal to 1, causes printing of Y1, Y2, Y3, Y5, Y6,

*) * X/ * ) X/ X/
Y7 equal X , X, 5 X5 , X, 5 X, 5 X,

, corresponding to every experi-
mental tie line, for every trial of C(1) through C(6).

11, I3 if set equal to 1, causes printing of C7 - CG15; F(J),
a(J3), B(I), P2(J), PR2(J), PB3(J), D(J), (J = 1 through 6); DEL.

12, Ih; if set equal to 1, causes printing of C(1) through C(6),
DEL, 720 for every trial of the coefficients.

13. I5; 1f set equal to 1 causes program to read in new data
immediately after printing information caused by setting I3 = l.

4. Aj; solution routine divergence control constant. Set equal
one or greater.

/ V4

/ o
15 %5, %, % , X;/ 9 W5 W, W, are read in as Y1, Y2, Y5,

Y6, Wi, w2, W3, in order of increasing x. .

Subroutines: LOGF (natural log), SQRIF. (square root), along with the

normal FORTRAN, MICHIGAN EXECUTIVE SYSTEM routines.
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Fortran II Compiler Statements:

DIMENSION CN(6)s C(6)s CLIBE)IF(6)s G(6)s H(6)s DLIE)s R(120)sD(6)
Xs WT(120)s T(120)sP2(6)s PB2(6)s PB3(6)s B(6sT)
28 READ INPUT TAPE 7947s(C(I)sI1=196)9YsZsEPsELsE2sX9Z20sMsNSDs12513>
X T144155A
47 FORMAT (6F1244/7E10e2/6144E1042)
27 FORMAT (1H1 6F12¢4/7E1042/6149E10.2)
WRITE OUTPUT TAPE 6927s(C(I1)sI=196)sYsZsEPsE1sE29Xs220sMsNSDs12513
X ol4slI5 s A
17 L=1
1=0
1 READ INPUT TAPE 7929sY1sY2sY5sY6sW1lsW2sW3
WRITE OUTPUT TAPE 6969sY1sY2sY5sY6sW1sW2sW3
29 FORMAT( 4E124493F64C )
69 FORMAT (1H 4F124¢493F640)
R(L)=Y1
R(L+1)=Y2
R(L+2)=Y5
R(L+3)=Y6
WT( L)=Wl1
WT(L+1)=W2
WT(L+2)=W3
I=1+1
L=L+4
IF(I-M) 1s30,30
30

OR——= 22
o

—_— = I 2Z1h
I [ = I TR

DO 66 JI=1s7
DO 65 KI=1s6
65 B(KIsJI)=0.
66 CONTINUE
Y1=R(1)
Y2=R(2)
Y5=R(3)
Y6=R(4)
Y3=1le=Y2-Y1
Y7=1e-Y6-Y5
23 X1=R(L)
X2=R(L+1)
X5=R(L+2)
X6=R(L+3)
X7=1e=X5=-X6
X3=1e=-X1-X2
WIl=WT(L)
W2=WT(L+1)
W3=WT(L+2)
J=0
E=0.43429448
L=L+4
19 Y8=1.
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Fortran II Compiler Statements: (Cont'd)

C27=1e=Y7
3 Cl6=1.-Y1
Cl7=1le=Y2
Cl8=1e4-Y5
C19=10‘Y6
C20=24%Y1
C21=2e%Y2
C22=24%#Y3
C23=2.%Y5
C24=24%Y6
C25=24%Y7
Y10=Y2-Y1
X10=Y6-Y5
210=Y5-Y7
F(1)=Y6%C18-Y2%C16
F(2)=Y2%Y3=Y6%YT
F(3)=YT7#C18-Y3%Cl6
F(4)=Y6%(C23%(X10+1e)=Y6)=Y2%(C20%(Y2+C16)=Y2)
F(5)=C24%YT*(YT=Y6)—=C21%Y3¥%(Y3-Y2)
F6)=YT*(C23%(Z10~14)+YT7)=Y3%¥(C20%(=Y3=C16)+Y3)
G(1)=Y5%C19~-Y1%C17
G(2)=YT#C19-Y3%C17
G(3)=Y1#Y3~-Y5%Y7
G(4)=Y5%(C24%(X10~1e)+Y5)=Y1%(C21%(Y10=1a)+Y1)
G(5)=YT*(C24%(CLO9+YT)=YT7)=Y3*(C21%*(C17+Y3)=-Y3)
“GL6)=C23%YT*#Z210~-C20%Y3%(Y1~-Y3)
H(1)=Y1%Y2=Y5%Y6 ‘
H(2)=Y6%C27-Y2%C26
H(3)=Y5%C27-Y1%C26
H(4)=C23%Y6%X10~C20%Y2%Y10
H(5)=Y6%(C25%(=C2T~Y6)+Y6)+Y2%(C22%(C26+Y2)-Y2)
H(6)=Y5%(C25%(Z10+1e)=Y5)=Y1#(C22%(C26+Y1)=Y1)
IF(Y8=Y)4sts31
31 Z217=Cl1)%F(1)+C(2)%F(2)+C(3)%F(3)+C(4)%F(4)+C(5)*F(5)+C(6)*F(6)
Z18=Cl1)*G(1)+C(2)%G(2)+C(3)%*G(3)+C(4)*G(L4)+C(5)*G(5)+C(6)*G(6)
Z19=Cl1)*¥H(L)+C(2)*H(2)+C(3)#H(3)+C(4)*¥H(4)+C(5)%H(5)+C(6)*H(6)
D8=FE+#LOGF(Y1/Y5)
D9=E#LOGF (Y2/Y6)
D10=E*LOGF(Y3/YT7)
Y7=((Y3/(10e%#%Z19))+YT7) /2
X8=10e%%217
X9=10¢%%Z218
C26=1e-Y3
C27=1e=Y7
Y6=(C26-C27%X8)/(X9-X8)
Y5=1e=Y6-Y7
Y1=X8%Y5
Y2=X9%Y6
Y8=ABSF(D8=217)+ABSF(D9-218)+ABSF(D10-219)
IF (Y8=A ) 3216516
16 IF (N-1) 28528511
32 GO TO 3
4 IF (K=1)33921433
33 X21=Y1-X17
X22=Y2-X18
X23=Y5-X19
X24=Y6=X20
X17=Y1
X18=Y2



26

22

21

72
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Fortran IT Compiler Statements: (Cont'd)

X19=Y5

X20=Y6

X28=X+Y3

IF(X28=X3)26422422

Y1=X17+X21

Y3=X28

Y2=1e=Y1-Y3

Y5=X19+X23

Y6=X20+X24

Y7=1e=Y5-Y6

IF ( J ) 23919423

X26=X3-Y3

X27=X26/X

Y1=Y14X27%X21

Y2=Y2+X2T7%*X22

Y5=Y5+X27%X23

Y6=Y6+X2T%X24

Y3=X3

Y7=1e=Y5-Y6

K=1

GO TO 19

Cl16=C(1)=C(2)

C18=C(3)=C(2)

X9=0443429448

Y4=X9/Y5
CT=(=X9/Y1)+C(1)*(Y10+1a)+Y3*¥CL8+2e%(C(4)*((=Y10)*¥(Y10+1ls)
X+(C20=1e)#*Y2)+Y3%(C(5)*(=C21+Y3)+C(6)%(=C20+Y3+1s)))
C8=Y4=C(1)*(X10+1e)=YTH*C18-2e*(C(4)*((=X10)*(X10+1e)+(C23=14)%*Y6)
X+YT#(C(5)*¥(=C24+YT)+C(6)*(YT=-C23+1s)))
CO=Y4=YO*CLl6=C(2)*(1e=210)=24%¥(YOX(C(4)*(C23=Y6=1a)+C(5)%(C25
X=Y6))+C(6)%(210%(210=-14)+Y7%(1e=C23)) )
Cl0=X9/Y2+C(1)*¥(Y1U=14)+Y3%#C18+24*(C(4)%((=Y10)%(Y10=-1a)+Y1
X#(C21=1e) ) +Y3¥(C(5)*(Y3=C21+14)+C(6)%(Y3-C20)))
Cll=(=XS/Y6)=C(1)*(X10=1a)=YT7#C18=24%(C(4)*((=X10)%*(X10=14)+Y5%(
XC24=1e ) )+YT*(C(B)*(YT-C24+1e)+C(61*(YT=C23)))
Cl2=Cl6#%C19+C(3)*Z210=24%(C4)*(Y5%(=C19)=Y6¥(X10~1e))+C(5)*(Y7T
X#(=C19)+Yo*(YT+CL9))+C(6)*(Z210%¥210-C23%YT))
C13=C(1)*Y10~C18%C26+2*(C(4 )% (C20*Y2-Y10%*Y1O0)+C(5)*(Y2
X#C26+Y3#(=Y2=C26))+C(6)*(Y1*C26=Y3%(Y1+C26)))
Cl4=C(1)*(=X10)+C18*C27=2e* (C(4)*(C23%¥YH=-X10%X10)+C(5)*(Y6%C27T
X=YT*(C27+Y6) ) +C(6)*(YB*C2T-YT*(Y5+C27)))
C15=(~X9/YT7)=Y6*#C16+C(3)*(Z10+1e)=2e*(Y6*(C(4)*(C23-Y6)+C(5)*
X(C25=Y6=1e))+C(6)*(Z210%(Z10U+1e)+Y5%(14=-C25)))
C16=C9%C11-C12%*C8

C17=C12%C14~-C11%C15

C18=C15*C8~C14%*C9

C19=C12*C7-C10%C9

C20=C10%C15-C13*%C12

C21=C9*%C13-C7*%C15

C22=C10*%C8~-C7%*C11

C23=C13%C11-C10%*Cl4

C24=C14%CT7-C13%C8

Y10=(C15%C22)+C9%C23+C12%C24

IF (ABSF(Y10)=-04000001) 39439472

Z4=Y2-X2

.5=Y6-X6

26=YT7-XT

DEL=DEL+Z4*Z4%¥W1+Z5%Z5%W2+Z6%26%W3

DO 5 J=1s6
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Fortran II Compiler Statements: (Cont'd)

P2(J)=(H(J)*C16+F (J)*C1T7+G(J)*C18)/Y10
PB2(J)=(H(J)*C19+F(J)*C2U+G(J)*C21)/Y10
PB3(J)=(H(J)*C22+F(J)*C23+G(J)*C24) /Y10
5 D{J)=D(J)+2e % (Z24%P2(J)*¥W1+Z5%PB2(J)*W2+26%PB3(J)*W3)
T(Il)=Y1
T(I1+1)=Y2
T(I1+2)=Y5
T(I1+3)=Y6
[1=11+4
IF(I2=-1) 41939941
39 WRITE QUTPUT TAPE 6940sY19Y2sY3sY5+Y65sY7TsNsNNsY10
40 FORMAT (4H Y1=Elle4o4H Y2=EllelbsdH Y3=Fllebs4H Y5=Ella44
X 4H Y6=Elle&4ol4H Y7=Ellebst4H N=I344H NN=I29s5H Y10=E1lle4 )
41 IF (I3=1) 5794257
42 WRITE OQUTPUT TAPE 69434C7sC89CI9sC1UsC119C129C139C1l4s
X Cl5s(F(IA)sIA=196)s(GIIA)sIA=1s6)s(H(IA)sIA=146)
X o(P2(IA)sIA=196)s(PB2(TA)sIA=196)s (PB3(IA)sIA=16)
X  o(D(IA)sIA=1+6)sDEL
43 FORMAT (1H 9E12.5)
IF (I5=1) 5742857
57 IF (NSD-1)18+48+18
18 IF (I-M)46+24446
46 K=0
J=1
« IF (I-1) 34425434
34 I=1+1
GO TO 26
25 X17=Y1
X18=Y2
X19=Y5
X20=Y6
Y3=X+Y3
Y2=1e=Y1=-Y3
=2
GO TO 23
24°7213=0.
DO 6 L=1s6
Z14=(1e+C(L)*C(L))*D(L)
213=7213+214%7214

6 D(L)=Z14
Z13=SQRTF(Z13)
DO 7 L=1s6

7 D(L)=D(LY/Z13
IF (N-1) 3598435
35 IF (DEL-DELL) 36911s11
11 220=220/4.,
DO 10 L=1+6
10 C(L)=CL(L) +Z220%DL(L)
GO TO 9
36 COS=D(1)*DL(1)+D(2)*¥DL(2)+D(3)*DL(3)+D(4)*¥DL(4)+D(5)%DL(5)+D(6)
X #DL(6)
12 220=7220%ABSF(E2+E1#COS*CUS*COS)
8 Z11=0.
DO 13 L=1s6
CN(L)=C(L)+Z220%*D(L)
Z210=CN(L)=-C(L)
13 7211=2114210%210
IF (Z-211) 37514514
37 IF(I4-1) 80+68,+80
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Fortran II Compiler Statements: (Cont'd)

80 DO 15L=146

cLiLy=C(L)

C{L)=CNI(L)
15 DL(L)=D(L)

DELL=DEL

N=N+1

GO TO 9

14 WRITE OUTPUT TAPE 6938, (C(IA)sIA=156)sDELsNsNN
38 FORMAT (4H Cl=Elle494H C2=Elleb4stH C3=FllebosH C4=Ellelbs
X 4H C5=E1lle494H C6=E1le495H DEL=E1le4s3H N=I394H NN=I3)
IB=4%(M=-1)+1
DO 70 I1=1+1Bs4
Y1=T(I1)
Y2=T(I1+1)
Y5=T(11+2)
Y6=T(I11+3)
Y3=1e=Y1-Y2
Y7=1e~Y5-Y6
45 FORMAT(4H Y1=E12e494H Y2=E12e494H Y3=E12e494H Y5=E1244»
X 4H Y6=El2e494H YT=E1244)
70 WRITE OUTPUT TAPE 6345sY1sY25Y35Y5:Y64Y7
IF (NSD-1) 5642828
56 NSD=1
GO TO 9
48 DO 61 KI=146
J=K1I
60 B(KIsJ)=B(KIsJ)+P2(KI)*¥P2(J)*¥W1+PB2(KI)*PB2(J)*W2+PB3(KI)*PB3(J)*
X W3
J=J+1
IF (J=-6) 60s60461
61 CONTINUE
DO 62 KI=146
62 B(KIs7)=B(KIs7)=24%P2(KI)*W1-25%PB2(KI)*W2-26%PB3(KI)*W3
IF (I-M) 46949546
49 DO 63 KI=145
J=KI1+1
44 B(JsKI)=B(KIsJ)
J=J+1
IF (J~6) 44444463
63 CONTINUE
DO 50 KI=1s6
JI1=7
51 B(KIoJI)=B(KIsJI)/BIKIKI)
JI=JI-1
IF (JI=KI) 64451951
64 DO 50 II=146
IF (II-KI) 53450453
53 JI=7
52 B{ITsJI)=B(IIsJI)=B(II4KI)*¥B(KIsJI)
JI=JI-1
IF (JI-KI) 50452952
50 CONTINUE
Z11=0,
DO 54 L=1+6
CN(L)=C(L)+B(Ls7)
210=CN(L)=C(L)
54 7211=7211+210%210
NN=NN+1
IF (EP=Z11) 55s14414
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Fortran II Compiler Statements: (Cont'd)

55
81
71

76
78

68
75

X

[F(I4-1) 81+68+81

DO 71 L=1s6

ClL)=CN(L)

IF (NN=1) 765976

IF (DEL-DELL) 784528428
DELL=DEL

GO TO 9

WRITE OUTPUT TAPE 69 755(C(I1Z)s 12=1+6)sDEL»220

FORMAT (4H C1=Elleds4H C2=E1le4s4H C3=F11ebobH C4=F1llebs
4H C5=E11le494H CO=E114495H DEL=E1le4s5H Z20=F9.2)

[F(NSD=1)8Cs81s8V



APPENDIX C

TABLES OF CALCULATED VALUES APPEARING IN FIGURES

For readers desiring to reproduce calculated plots appearing
in this thesis with high accurracy, the following tables of calculated

values follow. Concentrations (x's) are in mol fraction.
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TABLE IX*

FICTITIOUS SYSTEMS Byp = 1.3 , Bps = Cjp = Cp3 = Cx = 0

BBl = =2 BBl = -1
Xl 1 X2 ] Xl” X2|I Xl 1 X2 1 Xl” X2"
0.920 0.069 0.070 0.929 0.873 0.076 0.069 0.922
0.779 0.059 0.049 0.941 0.806 0.083 0.067 0.909
0.595 0.071 0.033 0.907 0.712 0.09% 0.066 0.876
0.4k22 0.107 0.033 0.787 0.553 0.135 0.076 0.783
0.290 0.167 0.049 0.626 0.491 0.157 0.082 0.731
0.218 0.223 0.070 0.515 0.416 0.19% 0.097 0.657
0.150 0.309 0.100 0.410
BBJ- = O B31 - 0'5
Xl 1 X2 1 Xlu X2” Xl 1 X21 Xl" X2"
0.865 0.083 0.083 0.865 0.871 0.078 0,096 0.781
0.761 0.107 0.107 0.761 0.777 0.092 0.146 0.5(0
0.676 0.13% 0.13% 0.676 0.703 0.106 0.192 0.473
0.579 0.170 0.170 0.579 0.624 0.125 0,250 0.373
0.449 0.239 0.239 0.k4k49 0.535 0.15% 0.329 0.282
0.378 0.290 0.290 0.378 0.487 0.171 0.403 0.221
Bz = 0.87 331 = 1.0

Xl 1 X2 1 XlH X2” Xl 1 X2 1 Xlll X2H
0.885 0.063 0.101 0.656 0.925 0.075 0.075 0.925
0.777 0.0%1 0.202 0.229 0.895 0.054 0.099 0.584
0.728 0.031 0.257 0.126 0.862 0.037 0.1%0 0.326
0.679 0.020 0.318 0.059 0.83%6 0.022 0.158 0.170
0,628 0.011 0.382 0.022 0.817 0.011 0.180 0.077
0.60k 0.005 0.421 0.009 0.805 0.00k 0.195 0.025

*Reference Figures 16-21.
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TABLE X*
FICTITIOUS SYSTEMS By, = 1.3, 351 =1.0 , Cyp= 025 =Cg =0
325 = 0.87 325 = 1.0

Xl 1 x2| Xl” X2” Xl 1 X2' Xl” X2"
0.905 0.075 0.075 0.895 0.905 0.075 0.075 0.905
0.776 0.102 0.121 0.700 0.775 0.105 0.105 0.775
0.686 0.120 0.310 0.295 0.5% 0.160 0.160 0.5%
0.666 0.104 0.320 0.204 0.5% 0.160 0.325 0.3%25
0.689 0.076 0.285 0.140 0.585 0.14%0 0.415 0.190
0.7%2 0.045 0.250 0.080 0.640 0.09% 0.340 0.152
0.780 0.010 0.214 0.018 0.73k4 0.040 0.2k42 0.062

0.780 0.010 0.210 0.016
*Reference Figures 22-23.

TABLE XI*
FICTITIOUS SYSTEMS By = 1.5 325 = By = 0.5 , Cyp=0.2
xl' Xp' Xl" x2" 7! X' xl" XQ”

0.9%5 0.04k2 0.110 0.882 0.935 0.045 0.110 0.885
0.816 0.061 0.120 0.815 0.815 0.060 0.105 0.858
0.725 0.085 0.145 0.710 0.655 0.110 0.183 0.599
0.634 0.116 0.224 0.49k 0.550 0.133  0.285 0.3L4
0.543 0.145 0.325 0.301 0.494 0.1%0 0.257 0.258
0.492 0.165 0.406 0.229 0.480 0.085 0.180 0.191

0.470 0.035 0.1% 0.092

0.420 0.000 0.132 0.000

*Reference Figures 24-25
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TABLE XIIT*

EXAMPLES OF FITS OBTAINED USING APPROXIMATE LINEARIZATIONS¥**

HyO (1) - ETHYL ACETATE (2) - i-Propamnol (3) 20°C

1 T 1

1 X2 X1 X2
0.9829 0.0161 0.1147 0.8807
0.9639 0.0191 0.1958 0.7335
0.9342 0.0248 0.3639 0.4880
0.9027 0.0323 0.5412 0.2785
0.8683 0.ok27 0.6850 0.1470
0.8502 0.0487 0.7594 0.0948

Hy0 (1) - ETHYL ACETATE (2) - Acetone (3) 31°C

X' %' X" X'
0.8083 0.10Lk 0.0638 0.8727
0.6669 0.1557 0.0591 0.8955
0.5792 0.1835 0.0591 0.9055
0.5052 0.1975 0.0620 0.9059
0.L4541 0.1886 0.0647 0.9043
0.3%630 0.1697 0.0677 0.9018

* Reference Figure 28.
* Calculated points only, mole fraction.
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TABLE XV*

COMPARISON OF FITS OBTAINED USING COEFFICIENTS DETERMINED
FROM BINARY VERSUS TERNARY DATA

HpO (1) - Ethyl Acetate (2) - Ethanol (3) 70°C

Experimental Calc. from Binary Calc. from Ternary
x! x} X X} x} x} X x} x! x} X x}
0.9760 0.0150 0.2520 0.7330 0.973% 0.0146 0.2296  0.74h7 0.9644 0.0186 0.2805 0.6793
0.96%0 0.0170 0.2980 0.6580 0.923%  0.0186 0.2409  0.6369 0.9448 0.0232 0.3559 0.5667
0.9%00 0.0220 0.39%0  0.5070 0.8701  0.0239 0.2612  0.5232 0.9169 0.0311 0.4501  0.4365
0.9170  0.0%00 0.4650 0.4150 0.8151 0.0309 0.2928 0.4118 0.8861 0.0419 0.5241 0.34%1
0.8990 0.0380 0.5230 0.34ko 0.770L  0.0379 0.3278 0.3289 0.8600 0.0530 0.5715 0.2880
0.884%0 0.0460  0.5550  0.3100 0.7282  0.0458 0.3674  0.2615 0.8301 0.0679 0.6168 0.2391
0.6788 0.0572 0.k212  0.1961 0.8070 0.0810 0.6502  0.2056
0.6199 0.0741 0.4999 0.1315 0.7797 0.0983 0.6903 0.1685
Benzene (1) - Water (2) - Dioxane (3) 25°C
Experimental Cale. from Binary Calc. from Ternary
x x5 ) 3 x} x4 X 3 ] x} ) x3
0.9500  0.0043  0.0002  0.9900 0.9602  0.00065 0.0016 0.988k4 0.9386  0.00161 0.00358 0.9867
0.7890 0.0088 0.0003 0.9550 0.7235  0.00280 0.0019 0.9281 0.7568  0.00445 0.00374% 0.9515
0.6860 0.0265 0.0003  0.9360 0.5179 0.00922 0.0023 0.8677 0.6747  0.00703 0.00385 0.932k
0.6170  0.0%312  0.0006  0.9200 0.358%  0.02287 0.0026 0.8074 0.6137  0.00989 0.00397 0.9166
0.4600  0.0658 0.0010 0.8750 0.2380  0.04655 0.0030 0.7470 0.4660  0.0227% 0.00437 0.8717
0.3690 0.0990 0.0022  0.8450 0.1491  0.08312 0.0035 0.6865 0.3857  0.03605 0.00472 0.8425
0.3220 0.1190 0.0027  0.8270 0.0865 0.1348 0.0041  0.6259 0.3409  0.04682 0.00496 0.8247
0.2900  0.1420 0.0031  0.8220 0.0640  0.1663 0.0045  0.5955 0.3298  0.04999 0.00503 0.8201
0.2382 0.1821  0.006k  0.7820 0.0468 0.2007 0.0049  0.5651 0.2433  0.08422 0.00565 0.7828
0.1388  0.308+ 0.0130 0.7190 0.0340 0.2371  0.0053  0.5347 0.1059 0.2102 0.00681 0.7252
0.1054  0.3930 0.0209 0.6720 0.0209 0.2946  0.0062 0.4888 0.0439  0.3701 0.00752 0.6854%
¥Reference Figure 30.
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TABLE XVI¥
Hy0 (1) - ETHYL ACETATE (2) - ALCOHOLS (3)
Experimental Calculated
Methanol
1" n - * * *H *Il

Xi xé Xl x2 xi Xé xl x2
0.9564 0.0178 0.1446 0.8315 0.9569 0.0174 0.1433 0.8225
0.9268 0.0192 0.1721 0.7581 0.9232 0.0228 0.1759 0.7491
0.9030 0.0217 0.2151 0.674k 0.8968 0.0279 0.2045 0.6899
0.876% 0.0252 0.2273 0.6449 0.8667 0.0348 0.2380 0.6254
0.8192 0.0373 0.3173 0.5077 0.8028 0.0537 0.3069 0.5065
0.7579 0.0602 0.4o022 0.3911 0.73%86 0.0795 0.373%0 0.4076

0.6538 0.1262 0.4581 0.2997
0.5795 0.1785 0.5492 0.2049
Ethanol
. . " " *, *, *1, 1

il ) X %2 X %5 X )
0.9652 0.0177 0.1520 0.8150 0.9635 0.019% 0.1585 0.8081
0.9471 0.0194 0.2062 0.7100 0.9428 0.0237 0.2164 0.7075
0.9311 0.0218 0.2547 0.6342 0.9252 0.0277 0.2728 0.6168
0.9092 0.0263 0.2945 0.5688 0.9019 0.0%%6 0.3341 0.5248
0.8855 0.0334 0.3962 0.4360 0.8785 0.04ok 0.3823 0.4572
0.84k72 0.0496 0.5219 0.3027 0.8448 0.0520 0.4386 0.3839

0.8131 0.0649 0.4827 0.33%08
0.6988 0.1292 0.6317 0.1814
i-Propanol
1 1 " " *' *, *u *n

il *2 X *2 X - =l *5
0.9711 0.0177 0.17%6 0.7755 0.9705 0.018% 0.1672 0.7828
0.9577 0.0196 0.2249 0.6867 0.9566 0.0207 0.2365 0.6708
0.9477 0.0218 0.2972 0.5775 0.9468 0.0227 0.2927 0.588%
0.9333 0.024k4 0.3867 0.4586 0.9319 0.0258 0.3921 0.4555
0.9168 0.0289 0.5015 0.3241 0.9162 0.0295 0.5050 0.3219
0.8986 0.0%62 0.60k4k 0.2245 0.9016 0.0332 0.5969 0.2267

0.8820 0.0371 0.6791 0.1502
0.8500 0.0495 0.7741 0.0872
i-Butanol
" n * *I *" *"

X x5 X %5 X % X %5
0.97%6 0.0170 0.2027 0.7372 0.9770 0.0137 0.1988 0.7295
0.9674 0.0171 0.2844 0.5998 0.9702 0.0144 0.2748 0.6117
0.9598 0.0172 0.3760 0.4587 0.9619 0.0151 0.3881 0.4546
0.9510 0.0184 0.4916 0.3132 0.9535 0.0158 0.5078 0.3077
0.945k4 0.0189 0.5698 0.2346 0.9481 0.0162 0.5765 0.2326
0.9307 0.0222 0.7117 0.124k 0.9360 0.0168 0.6882 0.1279

0.9299 0.0171 0.728k4 0.0966
0.9195 0.0175 0.7790 0.063k
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TABLE XVI* (CONT'D)

HpO (1) - ETHYL ACETATE (2) - ALCOHOLS (3)
Experimental Calculated
n-Propanol
1 ] n " *| *| *u *n
X %2 " % 1 %5 X %5
0.9710 0.0175 0.1728 0.7606 0.9679 0.0205 0.1620 0.76%0
0.9612 0.0183 0.2749 0.5949 0.957k 0.0221 0.27%6 0.5966
0.9545 0.0193 0.3635 0.4705 0.9508 0.0230 0.3743 0.4635
0.9448 0.0214 0.4844 0.3232 0.9423 0.0239 0.4893 0.3267
0.9363 0.0235 0.5662 0.242h 0.9353 0.0246 0.5598 0.2510
0.911k% 0.0313 0.6830 “0.1469 0.9164 0.0263 0.6882 0.1336
0.9030 0.0280 0.7395 0.0958
0.8912 0.0298 0.7748 0.0738
s-Butanol

1 t " 1 *' *| X *y

% %2 * *2 X %5 X %
0.984%0  0.0150 0.1350 0.8600 0.9819 0.0171 0.109% 0.8749
0.9761 0.0160 0.2075 0.6750 0.9760 0.0161 0.2466 0.6150
0.9733 0.0152 0.3163 0.4974 0.9733 0.0153 0.3319 0.4803
0.9720 0.0146 0.4085 0.3572 0.9718 0.0148 0.3728 0.4205
0.9656 0.0121 0.4911 0.2457 0.9655 0.0122 0.5190 0.2310
0.9618 0.0097 0.5746 0.143k 0.9611 0.010% 0.5956 0.1486
0.9559 0.0061 0.650% 0.0571 0.9545 0.0075 0.6830 0.0707
0.9500 0.0001 0.7800 0.0020 0.9468 0.00k2 0.749h 0.0252

i-Butanol

xg X’ x" XH }.)g' }.X(.' }-)é“ ;"

1 2 1 2 1 2 1 2
0.9840 0.0150 0.1350 0.8600 0.9761 0.0229 0.1770 0.8143
0.9789 0.0161 0.2484 0.6206 0.9724 0.0226 0.2624 0.6443
0.9782 0.0152 0.3279 0.4631 0.9720 0.0214 0.3343 0.4903
0.9760 0.0140 0.3708 0.3792 0.9736 0.016k 0.4173 0.3062
0.9756 0.0106 0.424k9 0.261k4 0.9756 0.0107 0.48%0 0.1845
0.9760 0.0080 0.457k4 0.1738 0.9764 0.0076 0.5230 0.1262
0.9776 0.004%4 0.4766 0.0826 0.9768 0.0052 0.5566 0.0823
0.9780 0.0001 0.4500 0.0010 0.9772 0.0018 0.606k 0.0262

n-Butanol

t 1 X" X" }'X{-' §, }')Eu ;u

X *5 1 2 1 2 1 2
0.98%0 0.0150 0.1350 0.8600 0.9768 0.0222 0.1719 0.8181
0.9818 0.0138 0.2634 0.6049 0.9740 0.0216 0.2813 0.5987
0.9816 0.0127 0.3570 0.4327 0.9745 0.0198 0.3535 0.4358
0.9817 0.0116 0.4118 0.3420 0.9755 0.0177 0.3855 0.3601
0.9815 0.0091L 0.4632 0.24k27 0.9787 0.0119 0.4501 0.2230
0.9817 0.00T4 0.4937 0.1578 0.980k4 0.0087 0.4857 0.1602
0.9827 0.0039 0.5077 0.0758 0.9824 0.0042 0.5435 0.0748
0.9830 0.0005 0.5100 0.0010 0.9840 0.0000 0.6147 0.0000

*Reference Figures 31-38.
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TABLE XVII*

Experimental

x{ x5 xi x%
0.6311 0.0026 0.0007 0.9681
0.k21k 0.0073 0.0017 0.9346
0.3259 0.0172 0.002k 0.896k4
0.2708 0.0271 0.0043 0.8681
0.1934 0.07T7k 0.0060 0.8198
0.1450 0.1252 0.0090 0.7634
0.111k 0.1829 0.0128 0.7101
0.0906 0.2%26 0.0176 0.6502
0.0835 0.2545 0.0190 0.6320
0.0598 0.3461 0.0327 0.5247

xi xé xi xé
0.9294 0.0040 0.000k 0.9892
0.866k 0.0051 0.000k4 0.9802
0.806k4 0.0061 0.000k 0.9699
0.7649 0.0070 0.000k 0.9571
0.7106 0.0078 0.000k 0.9368
0.6491 0.0089 0.0003 0.8870
0.6040 0.0097 0.0018 0.8112
0.5770 0.0102 0.0046 0.7515
0.5498 0.0105 0.0101 0.6725
0.5391 0.0108 0.0151 0.621k
0.5241 0.0120 0.0200 0.5635
0.5082 0.01%2 0.0253 0.515k4
0.4999 0.01kk 0.0321 0.4708
0.4836 0.0168 0.0406 0.4337
0.4738 0.0218 0.0445 0.4175

xi xé xl x2
0.9659 0.0031 0.0007 0.992k
0.9052 0.0039 0.0016 0.9758
0.8278 0.00k46 0.0019 0.9276
0.7673 0.0054 0.0066 0.8046
0.7378 0.0061 0.0180 - 0.6605
0.7187 0.0064 0.033%3 0.5345
0.7028 0.0068 0.053%6 0.4245
0.6862 0.0074 0.08%6 0.%138
0.6482 0.0092 0.1352 0.2050
0.5902 0.0160 0.2028 0.1333
0.5423 0.0236 0.251k 0.1048

Ethanol

i-Propanol

t-Butanol

Calculated

* * *H *n

xi xé xq X5
0.5737 0.0097 0.0003 0.9685
0.43h45 0.0155 0.0003 0.9361
0.3329 0.0239 0.0002 0.8986
0.279% 0.0311 0.0003 0.8722
0.2062 0.0471 0.0003 0.8255
0.1437 0.071k 0.0003 0.7721
0.0995 0.1011 0.000k4 0.7225
0.061k4 0.1457 0.0006 0.6672
0.0518 0.1625 0.0007 0.6503
0.0144 0.2941 0.0013 0.5562

* * *n *u

xi x4 xi x5
0.9277 0.0057 0.0005 0.9933
0.8646 0.0068 0.0005 0.98%6
0.8041 0.008% 0.0005 0.9696
0.7620 0.0099 0.0005 0.9560
0.7059 0.0125 0.0007 0.9%08
0.6412 0.0168 0.0009 0.8835
0.592k 0.0213 0.0016 0.816k4
0.5626 0.0246 0.0031 0.7419
0.5%20 0.0283 0.0067 0.6399
0.5201 0.0298 0.0089 0.6020
0.5042 0.0320 0.0120 0.5581
0.4870 0.0344 0.0159 0.5165
0.4787 0.0%56 0.0178 0.4983
0.462k4 0.0381 0.0222 0.4645
0.4567 0.0390 0.0237 0.4539
0.4012 0.0488 0.0413 0.3628
0.2783 0.0817 0.1001 0.2175
0.2159 0.1091 0.1500 0.1569

*, *, ¥4 *n

Xl X2 Xl X2
0.963k 0.0056 0.00057 0.9958
0.902k 0.0067 0.00060 0.9832
0.8233 0.0091 0.00078 0.9458
0.7607 0.0120 0.00233 0.8089
0.7309 0.0131 0.00980 0.5762
0.7117 0.013k 0.01%68 0.5046
0.6960 0.01%6 0.01664 0.4590
0.6798 0.0137 0.01956 0.4191
0.6437 0.0137 0.02610 0.3453
0.5928 0.0134 0.03579 0.2643
0.5529 0.0130 0.04433 0.2127
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TABLE XVII*(CONT'D)

(H20)8 (1) - BENZENE (2) - ALCOHOLS (3)

Experimental Calculated
n-Propanol
t 1 " " *, 1 Xy *u
il %2 X ) l %5 .l %5
0.862k 0.0051 0.0016 0.9482 0.859% 0.0079 0.0008 0.9440
0.8201 0.0099 0.0048 0.879% 0.8208 0.0092 0.0010 0.9048
0.7978 0.0114 0.0042 0.8938 0.7992 0.0101 0.001k 0.8706
0.7720 0.0112 0.0073 0.8049 0.7720 0.0112 0.0023 0.8040
0.7057 0.0153 0.0273 0.5822 0.7071 0.0139 0.0096 0.58%5
0.6656 0.0149 0.0439 0.4521 0.6650 0.0155 0.0168 0.4809
0.5192 0.0208 0.0506 0.2620
0.3528 0.0%22 0.1174 0.12%2
0.2707 0.04k43 0.1798 0.0756
i-Butanol
X' x' X" x" }-)g| }.x(" §II )')gu
1 2 1 2 1 2 1 2
0.9784 0.00365 0.000%8 0.9899 0.9762 0.00585 0.00063 0.9724
0.9507 0.00505 0.0010% 0.9610 0.9495 0.00629 0.00095 0.9152
0.9272 0.00481 0.00173 0.9054 0.9254 0.00663 0.00181 0.8175
0.9152 0.00460 0.00571 0.7861 0.9131 0.00672 0.00%330 0.7134
0.9069 0.00353% 0.01109 0.6792 0.9037 0.00668 0.00586 0.5976
0.9000 0.00316 0.01798 0.5674 0.8966 0.00654 0.0084k4 0.5132
0.8919 0.00245 0.026k41 0. 4445 0.8881 0.00628 0.01158 0.4307
0.8867 0.00227 0.03535 0.3391 0.8829 0.00606 0.01346 0.3880
0.8802 0.00191 0.04819 0.2355 0.8764 0.00575 0.01581 0.3401
0.8661 0.00069 0.06590 0.1155 0.8619 0.00488 0.02091 0.2505
0.8600 0.00010 0.10000 0.0020 0.8565 0.00450 0.02283 0.2212
n-Butang£
X‘ X' X" X” ;){e‘ X’ ;{6" ;'n
1 2 1 2 1 2 1 2
0.9601 0.0036 0.0003 0.9687 0.9573 0.0064 0.0011 0.8948
0.9490 0.0036 0.000k 0.9489 0.9461 0.0065 0.0016 0.8438
0.9416 0.00%6 0.0005 0.9332 0.9386 0.0066 0.0021 0.8000
0.9289 0.0053 0.0032 0.8478 0.9276 0.0066 0.0033 0.7148
0.9235 0.0053 0.0086 0.7295 0.9222 0.0066 0.004%4 0.6624
0.9181 0.0053 0.0135 0.6471 0.9169 0.0065 0.0058 0.6056
0.9092 0.0071 0.0183 0.5657 0.9099 0.006k4 0.0083 0.5292
0.9038 0.0053 0.0237 0.5029 0.9029 0.0062 0.0112 0.4590
0.900k 0.0070 0.0281 0.4466 0.9013 0.0061 0.0120 0.4429
0.8968 0.0053 0.0330 0.3822 0.8961 0.0059 0.01k44 0.3976
0.8933 0.0053% 0.0%85 0.%311 0.8928 0.0058 0.0160 0.3695
0.8880 0.0052 0.04k40 0.2899 0.8877 0.0055 0.0185 0.33%03
0.8846 0.0052 0.0485 0.2553 0.8845 0.0053 0.0202 0.3067
0.8782 0.0052 0.0747 0.1155 0.8784 0.0050 0.0233 0.2657
0.8741 0.0035 0.0913 0.0599 0.8730 0.0046 0.0262 0.3215
0.8670 0.0001 0.1100 0.0020 0.86k41 0.0039 0.0%12 0.1807

*Reference Figures 39-LlL.
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TABLE XVIIT*

n-PARAFFINS (1) - (S0p)g (2) - BENZENE (3)

Experimental Calculated
n-Butane
1 1 " " *1 *1 *u *u
Xl X2 Xl X2 Xl X2 Xl X2
0.9496 0.0245 0.3084 0.5452 0.9394 0.0356 0.2905 0.5735
0.933%2 0.0267 0.3089 0.5226 0.9246 0.0354 0.3021 0.51h49
0.8958 0.0%21 0.3400 0.40k0 0.8928 0.0372 0.3370 0.4185
0.8571 0.0410 0.3719 0.3%296 0.8590 0.0409 0.3809 0.3388
0.8267 0.0479 0.4178 0.2691 0.8294 0.0456 0.4227 0.2808
0.8011 0.0555 0.46k42 0.2318 0.8046 0.0504 0.4595 0.2389
0.7415 0.0747 0.589% 0.1480 0.7587 0.0613 0.5%06 0.1745
0.7071 0.0891 0.6248 0.1274 0.723k 0.0716 0.5873 0.1349
n-Hexane
x! %1 X" ¥ )-)§l )')gl )-)§" *1,

1 2 1 2 1 2 1 2
0.9567 0.0203 0.1418 0.754%0 0.9408 0.0362 0.13%66 0.7701
0.9120 0.0260 0.1463 0.6009 0.8998 0.0382 0.1603 0.6211
0.8675 0.03%23 0.1670 0.5068 0.8589 0.0408 0.1891 0.5025
0.8590 0.03%29 0.1650 0.4712 0.8505 0.0414 0.1957 0.4811
0.79%0 0.0433 0.1.966 0.3731 0.7906 0.0467 0.2474 0.3537
0.7418 0.0520 0.2469 0.2907 0.7415 0.0523% 0.2953 0.2755
0.7052 0.0600 0.2892 0.2458 0.708% 0.0569 0.3308 0.2324
0.6647 0.0715 0.3737 0.1931 0.6735 0.0627 0.%693 0.1951
0.6250 0.0840 0.4416 0.1580 0.6400 0.0690 0.%079 0.1645
0.57k%0 0.1014 0.5090 0.1261 0.5971 0.078% 0.4825 0.121k

n-Heptane
X| X' Xn XH )—)gt §Y ;g" ggﬂ

1 2 1 2 1 2 1 2
0.9150 0.0249 0.1062 0.6589 0.9069 0.0330 0.1149 0.6807
0.8314 0.0%36 0.1262 0.4602 0.8274 0.0376 0.1561 0.4720
0.7741 0.0k26 0.160k 0.3401 0.7754 0.0413 0.1888 0.371%
0.6040 0.0737 0.2880 0.1938 0.6193 0.0584 0.310k 0.18%0
0.5176 0.0952 0.3775 0.1463 0.5397 0.0731 0.3837 0.1301
0.4659 0.112k4 0.4173 0.128k4 0.4880 0.0903 0.3825 0.1313

n-Decane

1 1 " " *, *, *u Xy

Xl X2 Xl X2 Xl X2 Xl X2
0.9144 0.0235 0.0267 0.6910 0.9249 0.0130 0.0159 0.7388
0.8378 0.0278 0.029 0.5082 0.8513% 0.0143 0.0%58 0.5202
0.7859 0.0307 0.0386 0.3891 0.8012 0.0154 0.055k4 0.%068
0.7230 0.0%6k4 0.0639 0.2973 0.7425 0.0169 0.0852 0.3011
0.6454 0.04k41 0.090k4 0.2418 0.6701 0.019% 0.1320 0.2043
0.5581 0.0545 0.1298 0.1872 0.5892 0.0233 0.1969 0.1300
0.4455 0.07k2 0.2287 0.1364 0.4888 0.0309 0.2984 0.0716

*Reference Figures 45-48.
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TABLE XIX¥
n~PARAFFINS (1) - Hp0 (2) - METHANOL (3)
Experimental*¥ Calculated
n-Hexane
n " * * *n *n
X x5 X X5 X x5 X %5
0.9998  0.00003 0.0000% 0.9998 0.9996 0.000029 0.00003  0.9989
0.9813  (0.0001k) (0.00061) 0.4164 0.9815 0.000033 0.00009  0.8710
0.9683  (0.0001k) 0.00%2 0.3487 0.968% 0.000035 0.00020  0.7711
0.9530  (0.00009) 0.0080 0.26k9 0.9531 0.000037 0.00053  0.6510
0.9480  (0.00007) 0.0278 0.154k 0.9480 0.0000%7 0.00072  0.6128
0.8189  0.00000 0.184%0 0.0000 0.8189 0.000000 0.1837 0.0000
0.8300 0.000020 0.08100  0.0600
n-Heptane
X' X' xn XH §' }'X{.g gg" }.)g"

1 2 1 2 1 2 1 2
0.9999  0.000009 0.000009  0.9999 0.9991 0.000009 0.000009  0.9995
0.9664%  (0.000027) 0.009640  0.1808 0.9663 0.000011 0.000073  0.7701
0.9661  (0.000049) 0.000137  0.3%328 0.9661 0.000011 0.00007k  0.7679
0.9400  (0.000016) 0.0%2200 0.0785 0.9400 0.000012 0.000442  0.5615
0.8189  0.000000 0.069000  0.0000 0.8189 0.000000 0.085230  0.0000

0.8999 0.000010 0.0172%30  0.1399
n-Octane
n " * * *H *ll

1 % *1 %2 X x5 *1 *2
0.9999  0.000003 0.000003  0.9999 0.9997 0.000003 0.000003  0.9994
0.982%  (0.000016) 0.00217 0.3%%2 0.9816 0.000003 0.000008  0.8881
0.9789  (0.000015) 0.00276 0.2604 0.9789 0.000003 0.000011 0.86%2
0.9859  (0.000013) 0.00203 0.2271 0.9850 0.000003 0.000006  0.9122
0.9859- (0.000012) 0.00792 0.1823 0.9851 0.000003 0.000006  0.9123
0.9754  (0.000009) 0.011k2 0.1284% 0.9755 0.000003 0.000014  0.8375
0.9069  (0.000006) 0.02755 0.0527 0.9069 0.00000k 0.002130  0.3179
0.8ko2 0.000000 0.05800 0.0000 0.8422 0.000000 0.066k47 0.0000

0.8701 0.000003 0.01982  0.1012
n-Nonane
x| X' X" X" }'X(‘, ;1 ;l! )-X(_”

1 2 1 2 1 2 1 2
0.9999  0.0000009  0.0000009  0.9999 0.9979 0.0000009  0.0000008 0.9991
0.984%2  (0.0000070)  0.00090k  0.2265 0.9829 0.0000008  0.0000050 0.8310
0.9619  (0.0000055)  0.013790 0.0624 0.9619 0.0000009  0.000121  0.5%09
0.9139  (0.0000013)  0.022010 0.0410 0.9139 0.0000002 0.025470  0.3786
0.8967 0.0000000 0.045000 0.0010 0.8967 0.0000000 0.054230  0.0000

¥Reference Figures 49-52.

**¥Parenthesised concentrations are estimated.
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TABLE XX*

COMPARISON OF PREDICTED AND EXPERIMENTAL
EQUILIBRIUM CURVES

(Ho0)g (1) - BENZENE (2) - £-BUTANOL (3)

x! x! x"
1 2

1 2
0.9848 0.0052 0.00050 0.998k
0.9332 0.0058 0.00051 0.9905
0.8230 0.0080 0.00063 0.9527
0.7297 0.0113 0.00108 0.879%6
0.6536 0.0154 0.00258 0.7638
0.5%66 0.02kk 0.01407 0.5128
0.4357 0.0353 0.03851 0.3426
0.3280 0.0530 0.08301 0.21k2
0.2542 0.0728 0.1302 0.1479
0.1149 0.1821 0.1118 0.1850
n-HEPTANE (1) - (S02)g (2) - BENZENE (3)

xi x! xz x;
0.9376 0.0274 0.0725 0.7883
0.8kko 0.0310 0.1188 0.4968
0.7490 0.0360 0.1822 0.3082
0.6515 0.0435 0.2626 0.1889
0.5839 0.0511 0.3277 0.1345
0.5315 0.0585 0.4023 0.0960

*Reference Fingure 57 - calculated curves only.
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