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ABSTRACT

The general theory of a Langmuir probe is reviewed and extended
with emphasis on spherical geometry. Numerical and graphical methods
are provided for calculating the volt-ampere characteristic of a bi-
polar probe. The volt-ampere characteristics of three electrode com-
binations are illustrated. A brief discussion of the practical and
theoretical considerations which led to the choice of a particular
configuration is included.
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I. INTRODUCTION

For the past twelve years the Department of Electrical Engineering of The
University of Michigan has been engaged in measuring various properties -of the
upper atmosphere through the use of several sounding rockets.* Four of these
rockets have carried as a secondary experiment an elementary adaptation of the
Langmuir probe for study of the ionosphere. The information obtained from the
probe experiment on these flights indicated that this should become a useful
upper-atmosphere measuring device. The design, however, was seriously compro=-
mised in each case by the primary experiment carried by the rocket and by the
unknown surface condition of the rocket. A re-study of the practical aspects
of the problems encountered indicates that advances in rocket instrumentation
techniques and vehicles now make designs practical which would have been con-
sidered impractical previously. For example, the complete ejection of the in-
strumentation can now be done with confidence. In addition, advances in cir=-
cuit components allow remarkable reduction in instrumentation size, thereby
easing the ejection problem and allowing greater freedom in choice of geometry
and size, This, in turn, reduces the problems encountered in the transition
from theory to practice.

The experience gained from the previous firings, combined with a review of
basic probe theory and its extension in some areas, has led to the design of a
specific probe instrumentation. One was carried aloft by a Nike-Cajun rocket
October 20, 1958, followed by a second instrumentation on a Spaerobee, November

30, 1958.

IT. HISTORICAL OUTLINE

In 1901, when Marconi proved that radio waves could be received across the
Atlantic Ocean, he thereby demonstrated that the earth was not, as had been pre-
viously thought, surrounded by free space. In the following year, the existence
of an ionized region was independently postulated by Heaviside and Kennelly.

*The earlier work in conjunction with V-2 rockets was supported by Air Materiel
Command, Air Force Cambridge Research Iaboratories (AFCRL), Contract No. AF
19(122)-55. Probe study was resumed with the support of the Geophysics Research
Directorate, Air Force Cambridge Research Center (AFCRC), Contract No. AF 19(60k4)-
1843, This latter contract supports the present probe investigations jointly
with Ballistic Research laboratory, Aberdeen Proving Ground, Contract No. DA-20-
018-509-0RD-10%, Project No. DA 5B03-06-011 ORD (TB 3-0538).



This hypothesis was confirmed experimentally in 1925 by Appleton and Barnett,
who measured arrival angles of waves transmitted from a distant transmitter.
It was demonstrated that the waves came from an elevated angle and thus were
"sky" waves. By 1926, the "radar" technique of short vertical pulse soundings
had been devised by Bret and Tuve, and thus man's study of the ionosphere was
initiated.

As study of the ionosphere has progressed through the years, many refine-
ments in sounding equipment have been made. With each refinement it has be-
come possible to learn more of the complex nature of the ionosphere, thereby
drawing attention to the need for a more direct type of measurement (preferably
point-by-point), capable of determining fine detail rather than grosser aspects.

It became possible to conduct direct measurements when V-2 rockets were
available shortly after World War II. It was quite natural that probe tech-
niques, used in the study of gaseous discharge tubes, should be considered in
connection with measuring properties of the ionosphere. It was at this time
that a probe experiment was included in the instrumentation being prepared for
V-2 flights in connection with a contract between The University of Michigan
and the Air Materiel Command of the U. S. Air Force. (A quite different method,
based on the relative delay of two rf signals, was also carried out on early
rocket flights by The University of Michigan and AFCRC, and also by the Naval
Research Laboratory.l'u)

Probes were placed on three successful V-2 flights in 1946 and 1947. The
results of these flights were reported in detail in several articles and re-
ports.5‘8 Unfortunately, since the location and shape of the probes were dic=-
tated to a great extent by the other instruments being flown, they were awkward
in design. This resulted in a great deal of uncertainty in the data because

(a) the probes did not approximate any ideal geometry, such as a cylinder
or spherej

(b) the sheaths of the electrodes overlapped; and

(¢) thermal equilibrium was disturbed in an unknown manner due to the ve-
locity of the rocket fhrough the ionosphere.

But results, however ambiguous, did indicate that the experiment could become a
valuable tool for measuring properties of the ionosphere.

At this time, however, interest was greater in carrying out studies of the
lower rather than the upper regions of the upper atmosphere and support for the
probe experiment faltered. Consequently, no further investigations were carried
out for several years.

The University of Michigan remained interested in the probe experiment and,
following the development of the Aerobee-Hi rocket, which is capable of 1ifting
an instrument load well into the ionosphere, study was resumed.* This involved

*Sponsored by the Geophysics Research Directorate of the Air Force Cambridge Re-

search Center, AF 19(604)-1843. >



a review of the earlier work in the light of then present knowledge of the iono-
sphere and additional theoretical considerations.

Following this study, additional support allowed the development and launch-
ing of an elementary probe as a secondary experiment on a rocket instrumented
primarily to measure pressure, temperature, and density (separate contract with
AFCRC). This experiment utilized a sphere (extended from the rocket) as one
electrode and the main rocket body as a second electrode. But partially due to
failure of the spherical electrode to become extended adequately, the experiment
suffered from many of the problems noted previously. Thus the ideas previously
held, that the probe geometry must be carefully controlled, and that ejection
of the probe instrument is essential to permit a nearly ideal experiment, were
largely confirmed.

In the laboratory, thin cylindrical electrodes or small planar surfaces are
usually preferred for their geometrical convenience. In the ionosphere, however,
a sphere has several advantages due to its symmetry. It is therefore desirable
to reconsider the theoretical basis for the experiment in the light of the pos-
8ibility of achieving isolation of an instrument in the ionosphere, with par-
ticular emphasis upon spherical geometries. The following sections of this re-
port are thus devoted primarily to development of theoretical aspects of the
experiment.

III. THEORETICAL DEVELOPMENT

When a small exploring electrode is placed in an ionized gas, it is sur-
rounded by a space-charge region which is commonly referred to as the sheath.
This electrode may be either a conductor or a nonconductor, but for the pur-
poses of this report it is considered to be a conductor. If the electrode is
allowed to assume a potential that is determined only by the properties of
plasma, it must assume a potential with respect to the plasma such that the net
current to the electrode is zero. In general, this potential, which is referred
to as the wall potential, will be negative with respect to the plasma.

If the potential of the electrode is changed in some manner from this wall
potential, a current will result. The current will be determined by the volt-
age across the sheath, the velocity of the ions and electrons arriving at its
edge, and its dimensions. The current, however, is nearly independent of the
potential distribution within the sheath,whose potential distribution and thickness
depends upon space-charge considerations. Neither the potential difference be-
tween the plasma and the electrode nor the initial velocities of the charge
carriers play an important role in this latter regard.

For the purpose of mathematical convenience, it is desirable to define
several boundaries in the region surrounding the electrode (Fig. 1). These are:



(a) electrode radius r,

(b) sheath boundary a,

(c) sphere of influence of radius ry,
and

(d) effective sphere radius rg.

The region between r and a, the sheath,
has a positive-ion space charge and will be
referred to as a positive-ion sheath. In
general, the region is considered to have a
negligible number of electrons.

The sheath thickness can be measured ac-
curately by optical means in the laboratory
when the probe technique is used for gas-dis-
charge tube studies. Other plasma parameters,
such as gas temperature, composition, etc.,
are also measurable in a laboratory applica-
tion, and thus certain aspects of the theory
can be checked.

The region of influence (bounded by r;)
is that region of the plasma altered by the

Fig. 1. Potential distribution, existence of the electrode. 1In the more el-
and boundaries of regions sur- ementary theoretical approach, it is assumed
rounding an electrode. to correspond to the sheath, but may be de-

fined as a region larger than the sheath. In
this instance, Boltzmann's relations are assumed to apply in the region not con-
sidered sheath. The Debye length9 may serve as a convenient unit of measure in
this region.

A spherical electrode collects more positive ions by virtue of its negative
charge than an uncharged sphere of equal size. A larger sphere, uncharged, may
be defined such that the random current collected is equivalent to that collected
by the smaller charged sphere. This hypothetical sphere is referred to herein as
having an effective radius re. It must be less than the radius of influence.

The region between r; and a is a transition region from the undisturbed
plasma to the sheath. The voltage across this region is wusually small and can be
neglected., A sketch of a potential distribution in which the transition region
is exaggerated is also shown in Fig. 1.

A, ELEMENTARY SOLUTION

Consider now a negatively charged spherical electrode and its "spherical
region of influence" of radius ri lying in a region containing positive ions.
When the radius of influence is large compared with the electrode radius, and
the velocity of the ions is appreciable at the boundary of the region of influ-
ence, orbital motion of the ions must be considered in determining the current
to the electrode. Referring to Fig. 2, AB predicts the path of an uninfluenced
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Fig. 2. Positive-ion trajectory about a
negative spherical electrode.

ion and AC depicts the path of an orbiting ion. It is assumed that no colli-
sions occur. One can calculate the behavior of an ion in the "sphere of influ-
ence" using the law of conservation of angular momentum and the law of conserva-

tion of energy.

The kinetic energy gained by the ion in passing from a point on rj to the
point m is given by

1/2 mv2 = e(Vy-V,) , (1)

where Vg is the potential at point o (undisturbed plasma) and Vp, is the poten-
tial at point m. The conservation of angular momentum demands that

mroVe = MryVy (2)

where ry is the distance to point 0, Vo is the uninfluenced velocity, rp is the
distance to point m, and vy is the velocity at point m. By manipulation of Egs.
(1) and (2) and letting V = Vy = Vg, it can be shown that

T - r l+-—- . (5)

If the value of ry = r, the ion will strike the probe or just graze it and,
for the purposes of this report, will be considered collected. In this case,
r, is effectively r, and ry can be interpreted as ry, the effective radius, al-
lowing Eg. (3) to be written as

re = f’l + %% (&)



Equation (5) may be used to determine, for example the current to a sphere
in a region where all the ilons have equal velocities and the same direction with
respect to the electrode. This situation may in effect be encountered in rocket
applications when the electrode velocity is very high with respect to the ion
velocity. When the electrode velocity is sufficiently great, the actual velocity
distribution of the ions is unimportant.

The random ion current density may be written

where Jp is the positive-ion current density, Nﬁ is the number density of the
ions, and vp is the most probable ion velocity. The current, ij, to the elec-
trode then will equal to the random current density times its effective cross=-
sectional area:

ip = Jpﬂrez . (6)

Substituting Eq. (4) into Eq. (6):

ip = Jphe <1+;[Y-> ’ (7)
O

where A = xr®. The corresponding expression for a unit length of a cylinder
whose axis lies perpendicular to the direction of the ions is

ip = JpAc 1 + -_\;'Y— ) (8)

o}

where Ac is the projected area of the cylinder, 2xrl. Figure 3 is a sketeh of
the variation of iy vs. V for (1) a sphere, (2) a cylinder, and (3) a plane.

Fig. 3. Electrode volt-ampere characteristics
for unidirectional energy distribution.



If all ions have the same velocity but are random in direction, then the
entire surface of the electrode is effective. In this case the total area
rather than the cross-sectional area of the electrode applies. Thus Egs. (9)
and (10) are obtained corresponding to (7) and (8), respectively.

v
ip = JpA <1+V-—O> (9)
. _ v
lp = JpA 1+ v'-(-)- (lO)

Figure 3 also represents this situation since only the scale is different.

B. GENERAL SOLUTION

The above elementary solution does not consider the effect of the space-
charge region (sheath) or the energy-distribution function of the particles.
A more general solution is necessary.

As noted previously, if a spherical electrode is immersed in a uniformly
ionized region, it will be surrounded by a concentric spherical positive-ion
sheath of radius a. The region of influence is assumed to correspond to the
sheath edge (ry = a), that is, the potential at the sheath edge is assumed to
be equal to the potential of the undisturbed plasma.

Consider the outer edge of the sheath in terms of a right-hand cartesian
coordinate system with u the radially directed velocity component and tangent
velocity components v and w. The velocity u is considered positive when directed
toward the center of the sphere (see Figure L4).

Fig. 4. Velocity-space coordinate
system at sheath edge.

If the number of ions N, at the sheath edge in an incremental volume, drt, has
.a velocity distribution



f(u,v,w)dudvaw |, (11)
then

Nof (u,v,w)dydvdwdr (12)
1s the number of ions that can be expected to have velocities lying in the ranges
utou+du, vtov+dv, and w to w + dw. The number of ions that can be ex-
pected to cross the spherical sheath boundary per unit time of the ions within
the velocity limits given is

kna2 Npuf (u,v,w)dudvaw (13)

This assumes uniform ionization and veiocity distribution throughout the region
of influence.

The total current crossing the boundary is then obtained by multiplying
Eq. (13) by the ionic charge (e) and integrating between the proper limits.
Thus

©  +Vy +W

{ = 2 f
ip = hma® Nye ol '51 j% uf (u,v,w)dw,dv,du (14)

The lower limit u applies for a retarding potential on the probe, and the
lower limit zero applies for an accelerating potential.

If a Maxwellian distribution is assumed, it may be expressed in cartesian
coordinates as

f(u,v,w) = (;;i;) s/2 exp| - 5%5 (vB+vew2)] (15)

where k is Boltzmann's copstant and T is the absolute temperature in °K. How-
ever, it is convenient to transform Eq. (15) using

u = u, Vv = ps8in o, w = pcos & ,

where u is the velocity component normal to the sheath, p is the corresponding
tangential component and © is the angle between p and an arbitrary reference.
Thus the Maxwellian distribution may be written

1
3/2
f(u,p) = 5%) /% zx exp - EIIE_T' (uwB+p2)dudp . (16)

Equation (14) may be written in terms of the new variables, and upon using Eq.
(16) to express the distribution function, the following results:

8
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T on o Pl 3/2
i, = e N f '(mQ xp[ = <P (u24p2)]dpdu. (1
P ﬁlpeui_%upé‘xk pl- g (eflea (17)

|

The limits u; and p; are dependent upon the orbital motion of the ions
within the sheath. Thus they are determined by the laws of angular momentum
and conservation of energy. The resulting expressions are

y,2 =-2§£v (18)

2 r2 (2., e
P2 = UR2 2V (19)
=G

Using Eqs. (18) and (19) as limits in solving Eq. (17), the following is obtained:

| = 2 J_@_’ s |1 82-r? L&V (X . 2
i Lnra, e Nge [ = exp - == —g (20)

If Vo, represents the voltage equivalent of temperature,

and

e _ X (21)
KT Vo

Substituting Eq. (21) in Eq. (20) and rearranging

) S E a%-r® v r2
Y A T N |

Equation (22) is the current to the electrode, when the potenti&l is accelerating
[lower limit u = uy in Eg. (14)].

In the case of a retarding potential [lower limit u = O in Eq. (1k4)],

¥r.
i A Nge rng exp A (23)

The total current entering the sheath (not all ions are collected) may be calcu=
lated by integrating Eq. (17) over all velocities. Thus

o8
08

up £(uyp)dudp (2k)

J? = Npe



becomes, for the Maxwellian distributiom,

I = Ne [XL | (25)

This is the random ion current crossing a unit area of the sheath. It repre=-
sents an isotropic current density in a region where the veloeity is everywhere
Maxwellian. This is actually not the case at the sheath edge since in general
more ions enter the shegth than leave it. In an extreme case gll the ions en-
ter the sheath and none leave it, as will be demonstrated later in the case of
sheath-area-limited current. The validity of the assumption made here, of a
Maxwellian distribution, has been demonstrated on many occasions.? It is con-
venient to normalize Eqs. (22) and (23), letting

i
Ip = = . (26)

This is & normalized current and is the ratio of the current to the electrode
in the presence of a sheath, to the current in the absence of a sheath. Using
Egs. (25) and (26), Eq. (22) becomes

T, = <aa,.r2> exp (V <a2_r2> (27)

for accelerating potential,

(.Y.
Vo

Vv

and Eq. (23) becomes

for retarding potential,

Vv
_—) <1 .
(Yo

In the latter case, the current is independent of the sheath dimensions, and
its logarithm is a linear function of the collector potential. This is fortu-
nate, as it permits the determination of the temperature of the charge carriers
independent of meny ionospheric parameters.

In the case of an accelerating potential, the current is dependent on the
sheath radius and thus requires gnother independent equation to meke the calcu~
lation possible. This equation can be determined from relationships defining
space-charge-limited flow in a spherical system, which is

10



i = i’gg—ﬂeol\% Vs/z 3 (29)

- 02

where o is a transcendental function of (a/r) that has been plotted in Fig. 5,
and e, 1s the dielectric constant of free space. When normalized according to
Egs. (25) and (26),

P /v\3/2 |
w = (%) (0)
where
8 k T 3 T
P = T EOX 7.5L x 10 oE - (31)

2
9@2 Nr

In developing Eq. (29), no initial random velocity of the ions was assumed.
A correction for a Maxwellian distribution may be made by substituting

ve/2 <1 + 0.0247 ,\Ig> for v3/2

Equations (27) and(31) form, with f(a/r) = - 02, a transcendental system
of equations which in general permit only numerical or graphicsl solutions. If
Eq. (27) is plotted on log-log coordinates as a family of curves with (a/r) as
the parameter (Fig. 6), then a particular solution of Eq. (31) would appear &s
a straight line with a slope of-5/2 in the same coordinates. Thus the inter=
section of & solution of Eq. (32) (straight line) with & solution of Eg. (28)
(curve) for a particular (a/r) is a simultaneous solution of the two equations.
A curve through a series of such intersections for a given temperature, number
density, and electrode size ie the volt-ampere characteristic of the electrode.
In making calculations, Figs. T-13, which are enlarged sections of Fig. 6, were
used.

C. APPROXIMATIONS OF THE GENERAL SOLUTION

Often an approximate solution is all that is required in a preliminary
study of a particular electrode design. Thus one of three appropriate simpler
relations may be used. Two of these are asymptotic solutions of Eq. (27),
while the third approximates the numerical solution of Eq. (27) and Eq. (30)
in the form of one of the asymptotic solutions.

The first asymptotic solution applies in the case of either low ion density,
small collector radius, or high temperature. In this case, the sheath is thick
(a/r + ©), Thus the numerical solutions are asymptotic to the (a/r) = © curve
in Fig. 6. This is determined mathematically by expanding Eq. (27) as a power

11
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series and allowing (a/r) to approach infinity. The result is

Ly = <i+-%> (32)

(%%) > 2

This is called the orbital-motion-limited solution since the current is depend-
ent on the motion of the ions within the sheath. It is interesting to note
that this is the normelized form of Eq. (9) which was obtained in the case of
an equal-velocity randomly directed energy distribution.

for

The second asymptotic solution applies in the case of either low ion tem-
perature, high ion density, or large collector radius. In this case, the sheath
is thin (a/r + 1) and Eq. (27) reduces to

1= @ . (33)

All ions arriving at the sheath are collected and the current is dependent only
on the sheath area. Thus this is termed the sheath-area-limited current.

Equations (32) and (33) are very useful, but occasionally it is necessary
to consider an intermediate case, neither sheath-area-limited nor orbital-motion-
limited., It is thus desirable to obtain an approximate solution for this inter-
mediate case.

When Egs. (27) and (30) are combined with the relation between - G2 and
(a/r), a family of curves may be generated with P [see Eq. (31)] as the param-
eter. Figure 14 compares the solutions of a spherical electrode, when P =
0.666 and P = 0.1, with the orbital-motion-limited solution. It is seen that
the curves have approximately the same curvature but are displaced horizontally
by an amount depending on P. Thus an approximation can be expressed by

o= e (f) (35)

where the correction factor w = 1. If the probe is sheath-area-limited, p is
approximately 1.5 P2/3. If the probe is orbital-motion-limited, p is equal to
1. In intermediate cases the values of u are obtained by equating the right
side of Eq. (34) to a numerically determined solution and solving for p. The
value of U in the intermediate region is given in Fig. 15 ag a function of
T/Nr2 where P = T.51 x 102 T/Nr2.
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In the graphical presentation of p vs. T/er, Fig. 15, the criteria for
the sheath=area-limited and orbital-motion=«limited cases become clear. Thus
the electrode is sheath-area-limited if

T
eSO X 107 (35)
It is orbital-motion-limited if
T -3
—— >
Nra = lO (56)

In summation, while the general solution results in transcendental equa=-
tions requiring either machine or graphical solution, there are several ap-
proximating equations which afford reasonable accuracy. Four methods of cal-
culating the current to an electrode which has an accelerating potential for
the particles, with respect to the plasma, are as follows.

1. General.-The numerical solution, which is the simultaneous solution
of Egs. (27) and (30) with the relations of a/r and - 02, either by machine or
graphical means.

2. General.-—An gpproximate solution which adapts the orbital-motion-
limited solution, Eq. (32), for use in intermediate or sheath-areas-limited
cases.

3, Asymptotic.-=The orbital-motion-limited solution, Eq. (32), when it
applies.

4, Asymptotic.=-The sheath-area-limited solution, Eq. (33), when it ap=-
plies.

The various equations, both general and approximate, for sphere and cylin-
der and plane are tabulated in Table I. The choice between using the general
equations or an approximate solution depends on the accuracy required. The
appropriate choice of approximate solution may be based on consideration of the
factor T/Nr2, presented in Fig. 15 and appearing in Egs..(35) and (36).

To aid in the choice of the most appropriate solution for a particular ap-
plication, the numerical solution is compared in Fig. 16 with the approximate
gsolutiony and in Fig. 17, with the sheath-area-limited solution for 3 values of
P.- The values of (V/VO) generglly encountered in a practical application lie
between 2 and 20.
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IV. APPLICATION OF THEORETICAL DEVELOPMENT TO HYPOTHETICAL PROBES

A. SINGLE-ELECTRODE PROBE

The net current to an electrode in a plasma is composed of positive ions,
negative ions, and electrons. Thus to obtain the net current it is necessary
to add algebraically the individual currents calculated by the above equations.

The current to a single spherical electrode in a plasma containing only
positive ions and electrons is shown in Fig. 18.

<«t—— Electrons retarded —— — Ions retarded —»

400 |~

1) Ine = exp (yv‘o) — 200

]
H—8 , !
Vi
Vo i Vi
Vw

Fig. 18. Single spherical electrode volt-ampere characteristics.
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Curve (1) is a sketch of electron current vs. voltage. Curve (2) shows
orbital-motion-limited ion current Eq. (32) applies in this case. Curve (3) is
the algebraic sum of curves (1) and (2); thus it is the net current to an in-
dividual electrode as a function of its voltage.

Experimentally, curve (3) (Fig. 18) is obtained by measuring the current
resulting from applying a linearly changing voltage between the plasma-immersed
electrode and a fixed reference. If this voltage reference is the cathode, as
it usually is in laboratory applications, the applied voltage will be zero at
some point to the left of V,. The voltage between the reference voltage and the
current axis of Fig. 18 is then called the plasma voltage, Vp,

B. BIPOLAR PROBE OF EQUAL AREA ELECTRODES

In the design of an ionosphere probe, no fixed reference is available.
Even the entire carrier vehicle, in general, does not permit the assumption of
a fixed reference. Thus, one must consider a two-electrode system, referred
to herein as a bipolar probe, and must then recognize that the net current to
the system from the plasma is zero except for transient effects.

Bipolar probes have been used to advantage in gas-discharge-tube studies
as well as in the previously mentioned rocket instrumentations. In the former,
they have proven to yield certain data with less disturbance of the plasma than
a single-electrode probe.lo:ll

If two identical unconnected conducting spherical electrodes are immersed
in a plasma, they will assume voltages with respect to the plasma such that the
current to each is zero. This condition is depicted in Fig. 19, which shows a
sketch of the voltage distribution along a line passing through the center of
the spheres. Here each sphere is considered completely isolated in the plasma,
no attempt being made to show the alterations of the voltage distribution due
to a connecting lead (to be added) or the presence of the second sphere.

In practice, the two probes are connected by a voltage source which provides
a linearly changing voltage as

&V = Vy - Vo (37)

where V, is the voltage between electrode 1 and the plasmg, and Vo is the volt-
age between electrode 2 and the plasma. It is seen that, when 8§V is positive,
probe 1 rises above Vy; (wall potential) and draws an electron current. Simul-
taneously probe 2 will fall below Vi, and draw an equal positive-ion current
(see also Fig. 18). Only &V can be varied; Vi, and Vo are determined by the
properties of space to meet the requirement of zero net current.

In determining the characteristics of a bipolar probe, it is convenient to
plot the current to the individual electrodes as shown in Fig. 20. Thus the

29



ELECTRODE | ELECTRODE 2

8V= VI'VZ

Fig. 19. Potential diagram of a bipolar probe.

Current —=

Fig. 20. Single spherical electrode volt-ampere characteristics.

volt-ampere characteristic of the particular probe pair can be determined by read-
ing the voltage between the two curves. for specific current values.

A typical curve so obtained is shown in Fig. 21. The letters on the curve in-
dicate approximate boundaries of regions of particular interest. In the AB and EF
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Fig. 21. Volt-ampere characteristic of a bipolar-
equal-area probe.

regions, the electrode having a net electron flow (Vv >-Vw) requires a relatively
small change in potential for a large change in current; therefore the shape of
the curve in this interval may be assumed to be determined entirely by the volt-
ampere characteristics of the other electrode which is drawing a net positive-
ion current. In the BC and DE regions the departure of the curve from the near-
ly straight line sections, AB and EF, is due to a change of the electron current
to the electrode drawing a net positive-ion current.

In the CD region, both electrodes are approaching the wall potential. Thus
the change in current to one is almost identical to the inverse of the change to
the other, resulting in a near-linear characteristic in this region. The origin
is the point of inflection of the symmetrical curves and is also the maximum slope
of the bipolar volt-ampere characteristic. Given an experimental curve, the elec-
tron current can be determihed by extending the AB portion of the curve to deter-
mine the difference in current between this extended curve and the curve in the BC
region. This is a good approximation of the electron current drawn by probe 1.
The electron current so determined is, for practical purposes, represented by
Eq. (23). Since this equation is an exponential function of V/Vo alone, it is seen
that a plot of loge ie vs. voltage results in a straight line whose slope is the
reciprocal of the voltage equivalent (VT) of the electron temperature (Fig. 22).

The ion density may be obtained from such an experimental curve by utilizing
the electron temperature as determined above and the AB or EF region of the curve.

A more complete discussion of data reduction and interpretation will be in-
cluded in a report on the data obtained from the previously mentioned firings.
The above are the simplest and most straightforward theoretical methods, but are
not necessarily the most appropriate for the reduction of experimental data.
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Fig. 22. Loge ie vs. V, log electron current vs.
electrode difference voltage.

C. BIPOLAR PROBE OF UNEQUAL AREA EILECTRODES

If the two electrodes of a bipolar probe are unequal in area, or if they
have different geometries, the volt-ampere characteristic will not be symmetri-
cal. If they have the same geometry but are unequal in area, and if the ion cur-
rent to each electrode is limited in the same manner, the current between the
electrodes, signal current, is approximately zero when &V is zero. This condi-
tion is illustrated in Fig. 23 for two orbital-motion-limited electrodes where
Al/Az = 1/2. (A; is the area of the number 1 electrode and A, is the area of
the number 2 electrode.)

The higher current for a given V/VO occurs when the larger electrode is
drawing positive-ion current, the smaller one drawing electron current. Unequal
electrode systems sample a larger percentage of the electrons, thereby permitting
electron energy distribution to be determined. This objective, however, would
require greater area ratios than the 2-to-1 of the preceding example.

If the area ratio were great enough, the bipolar probe current would be
limited by the electron flow to the smaller electrode rather than by the ion

current to the larger. This would allow an independent measurement of ion tem-
perature and electron density as well as energy distribution. However, more

must be known about the physical processes taking place in the surrounding re-

gions before the data from the electron-limited characteristic could be inter-
preted with confidence.
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Fig. 23. Volt-ampere characteristiecs of unequal-area-~bipolar probe.

If the shapes of the electrodes are not alike, or if an ares difference re=-
sults in current-limiting conditions differing for two similar geometry elec-
trodes, the characteristic will not be symmetrical, nor will zero 8V result in
zero signal current. The dV resulting in zero signal current is & function of
the area ratio, number density ratio, square root of temperature ratio, and
square root of ion and electron mass ratio, and the geometry of the electrodes.
For example, take two electrodes with an area ratio of 54 in a reglon of atomic
oxygen ions, square root of mass ratio 171, and lon and electron temperatures- and
number densities equal. The smaller electrode is an "orbital-motion-limited”
cylinder, and the larger electrode is a "sheath-area-limited" sphere. In Fig. 2k
the single-electrode characteristic of the cylinder is shown as curve (1) and the

CYLINDER

Fig. 24. Sphere and cylinder single-electrode
volt-ampere characteristics.
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single-electrode characteristic of the sphere is curve (2). The bipolar charac-
teristic obtained from Fig. 24 is shown in Fig. 25. The AB region of this curve
exhibits the ion current characteristic of the cylinder, and the EF region shows
the ion current characteristic of the sphere. The difference between BC and AB

Fig. 25. Sphere-cylinder bipolar probe characteristic.

extended is the electron current to the cylinder, and the difference between DF
and EF extended is the electron current to the sphere. The CD region is still
a nearly linear section corresponding to the minimum impedance to space seen by
the probe, but is no longer at the origin.

The characteristic of many other possible electrode combinations may be
visualized once familiarity is gained with typical single-electrode solutions.
However, caution must be exercised in anticipating the results of a particular
combination since the equations are functions of V, and the characteristic is a
function of 8V, which is not linearly related to V. Figure 26 illustrates three
typical solutions for a spherical probe, and Fig. 27 illustrates the orbital-
motion-limited solutions fer three commonly used geometries.

In summation, an ionosphere probe must be considered as a two- or more elec-
trode system since, in general, no fixed reference voltage is available. "Orbital-
motion-limited" electrodes are desirable because of their mathematical simplicity,
but they also result in low currents due to their small size. 1In addition, the
electrode system must contain the circuitry (current detectors, &V generators,
telemetering, etc.). Thus at least one of the electrodes will be too large to be
orbital-motion-limited. It is desirable that the electrodes have a simple geom-
etry (sphere, cylinder, plane) and are of such size that the current may be ex-
pressed by one of the asymptotic forms. Thus at least one of the electrodes will
be sheath-area-limited.

The relative size of the electrodes influences the bipolar characteristic.
A large area ratio permits the study of electron energy distribution, which, if
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Fig. 26. Typical ion current characteristics, spherical

electrode.
A\
Orbital limited probes 2))
Cylinder
Plane
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Vo

Fig. 27. Orbital-motion-limited electrode characteristics for sphere,
cylinder, and plane.

high enough, permits an independent measurement of the electron density and ion
temperature.

In addition to the two-electrode systems discussed, multiple-electrode sys-
tems might prove more useful in satellite applications.i2 Screened electrodes
also have been used to advantage when the instrumentation was not ejected.15
Another technique which might be employed is the use of a radiocactive material

35



as a variable current source in lieu of a large-area second electrode. The &V
would then become the measured quantity.

V. CONCLUSION

It has been shown that the current to a conducting electrode immersed in
an ionized region such as the ionosphere depends on several properties of the
region, including (1) electron temperature, (2) electron density, (3) ion den-
sity, (4) ion temperature, and (5) the effective ion mass. If, in some manner,
the potential of the electrode is varied, the resulting volt-ampere curve also
depends on the geometry, and, if bipolar,‘the characteristic depends on the
electrode area ratio. The interdependence of the various factors has been out-
lined so that the volt-ampere characteristic of a sphere, cylinder, or plane,
or combination of these, can be calculated.

The equations, however, are based on assumptions which are, in some cases,
questionable, because many of the ionospheric properties are not adequately
known. The energy-distribution assumption, for example, is one of these. Re=-
lated to this is the nature of particle diffusion between the sheath and the un=-
disturbed plasma, which has been assumed to be governed by the Boltzmann rela-
tion. This may not be an entirely suitable approximation. Significant use of
the probe technique does not, however, require full knowledge of the validity
of these assumptions. For this reason, experimental studies are being carried
out with the objectives of (a) testing the theoretical treatment, and (b) Meas-
uring ionospheric parameters.

Several additional factors, which can only be listed here, arise in the
development of an ionosphere experiment:

(1) +the effect of overlapping sheaths, which has been avoided through use
of guard rings;

(2) gas contamination of the environment, which has been avoided through
separation of the rocket and the sealed probe instrumentation;

(3) disturbance of the ionosphere by the rf field of the telemeter, which
has been investigated by making measurements with and without the
transmitter operating;

(4) relative velocity of probe and ionosphere, whose effect has been
minimized by choice of a symmetrical geometry and minimum horizontal

rocket velocity; and

(5) thermoelectric, photoelectric, and contact potential effects, which
have been minimized through consideration of materials and cleanliness.
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After studying various electrode configurations, one simple configuration
seemed most consistent with the objectives outlined above, construction pos-
sibilities, and the size and weight capabilities of the rockets available and
anticipated. This probe (Fig, 28) was composed of two 6-in.-OD spheres sepa-
rated by a 2-l/h-in.-OD cylindrical section 10 in. long. The outer hemispherical
sections were insulated from the funnel-shaped inner sections. Only the volt-
ampere characteristic of the outer hemispheres was telemetered, the funnel sec-
tions acting as guard electrodes.

This geometry with equal-area electrodes is particularly suited for meas-
uring electron temperature. In addition, measurement of the ion density and
the minimum probe impedance to space is available. The disturbances mentioned
above and certain other performance details pertain more to circuitry than to
the subject of this report, and are discussed in detail in a separate report
on the instrumentation.
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Experimental model of double-sphere probe as employed for

Fig. 28.
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