I/}_@ MAD/; Manual

(174 /mzaqes} pumbered g) 174,

Title pag

CR , /7 whd
/edse }lana[/e Carefa//vv_
He ink will smudge.

THE UNIVERSTITY OF MICHIGAN

Technical Report 32

THE MAD/I MANUAL

Bruce J._gplas
/
Allen L. Springer

Ronald J. Srodawa

CONCOMP: Research in Conversational Use of Computers
F.H. Westervelt, Project Director
ORA Project 07449

supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 O0SA-3050
ARPA Order No. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION, ANN ARBOR

August 1970

P AL r‘

2 Preface

We use the term "MAD/I" to refer to any of four different

e The MAD/I Project -- a research project conducted at the
University of Michigan Computing Center, and Jjointly
sponsored by the Computing Center and the University's
CONCOMP Project. (CONCOMP: Research in Conversational Use
of Computers. Supported by the Advanced Research Projects
Agency, Department of Defense, Washington, D.C.)

e The MAD/I Facility -- a flexible translator-building facility
which runs on the IBM System/360 computer. Created for the
purpose of building the MAD/I Compiler, the MAD/I Facility
provides for:

(a) The definition of a user-specified programning
lanquage, subject to some constraints on lexicon,
syntax, and interpretation sequence.

(b) The specification in detail of a translation process
for the defined language, using the MAD/I Facility as
a "skeleton" for the translator. ‘

(c) The amalgamation of the translation specification with
the skeleton, to produce a complete translator for the
defined lanquage. In general, the resulting
translator runs on the IBM 360, and directly produces
object modules for the 360. The translator (and hence
the 1lanquage) can be modified ("extended") at compile
time, producing an "extensible-language" effect.

e The MAD/I _Lanquage -- a particular procedure-oriented
algebraic 1language, designed for implementation on the
MAD/I Facility. The MAD/I Language 1is intended to be
useful both as a general-purpose language, and also as a
convenient base or "core" 1language for extension into
various dialects.

e The MAD/I Compiler -- a compiler for the MAD/I Language,
implemented in the MAD/I Facility. To date, the only
version of the MAD/I Compiler runs in MTS (Michigan
Terminal System) and produces object modules for MTS.

This manual is the user's manual for the MAD/I Language and
the MAD/I Compiler. It 1is intended as a reference manual
(rather than a teaching manual), and assumes that the reader is
already familiar with lanquages such as PL/I. The MAD/I
Language is described in Part I of this manual, and the Compiler

The MAD/I Manual

Preface 3

is described in Part II. There are also three appendices. The
reader is urged to read Section 1 (Introduction to the Language)
and Appendix A (Syntax Description Notation) first.

For further reference on MAD/I:

D. L. Mills, "The Syntactic Structure of MAD/I", CONCOME
Technical Report 7, June 1968.

(Presents a formal syntactic description of an earlier
version of the MAD/I Language; also describes the
novel precedence-oriented parsing technique built into
the MAD/I Facility.)

Allen L. Springer, "Defaults and Block Structure in the
MAD/I Language", CONCOMP Memorandum 31, July 1970.

Ronald J. Srodawa, "An Example Definitional Facility 1in
MAD/I", CONCOMP Memorandum 32, July 1970.

The work presented here is the result of the combined
efforts of a number of people at the University of Michigan
Computing Center, working at various times over a period of five
years. The principal contributors are acknowledged below.

Professors Bruce W. Arden and Bernard A. Galler were the
project co-ordinators. They participated in the design of the
language, and wrote and edited earlier versions of the manual.

Most of the design work, and all of the programming and
debugging are due to:

Bruce J. Bolas
Charles F. Engle
David L. Mills
Allen 1. Springer
Ronald J. Srodawa
Fred G. Swartz

Finally, we should like to express our appreciation to
Professors Robert C. F. Bartels (Director of the Computing
Center) and Franklin H. Westervelt (Director of the CONCOMP
Project), who have supported, encouraged, and sometimes prodded
the MAD/I effort since its inception.

The MAD/I Manual

y Table of Contents

Table og Contents

INTRODUCTION
PART I -- DESCRIPTION OF THE MAD/I LANGUAGE

1. Introduction to the Language
1.1 General Features
1.2 Introductory Examples

2. Symbols, Comments, and Spaces (Lexical Structure)
2.0 Introduction
2.1 Formation of Symbols (Lexical Classes)

«1.1 Alphanumeric Symbols

.1.2 Primed Symbols

3 Dotted Symbols

4 uoted Symbols

.1 Character Symbols

.2 Hexadecimal Symbols

.3 Pointer-Constant Symbols

.4 Entry-Name-Constant Symbols

2
2.1,
2. 1.
2. 1. Q
2.1.4
2.1.4
2.1.4
2.1.4
5 Unsigned-Integer Symbols

6 Unsigned-Floating-Point Symbols

7 Special Symbols

8 Percent Symbols (Internal Compiler Symbols)
9
1

At-sign Symbols
0 Pound Symbols (Compile-Time Symbols)

2.2 Usage of Symbols (Usage Classes)
2.2.1 1Identifiers
2.2.1.1 Vvariables
2.2.1.2 Labels
+2 Constants
3 Keywords
4 Operators
5 Component Names

2.3 Comments and Spaces

The MAD/I Manual

3.

Table of Contents

Attributes

3.0 Introduction

3.1 Mode Attributes
3.1.1 Primitive Modes

3.1.1.1 'YINTEGER SHORT' Mode
3.1.1.2 'INTEGER LONG' Mode
3.1.1.3 'FLOATING SHORT' Mode
3.1.1.4 'FLOATING LONG' Mode
3.1.1.5 *PACKED' Mode
3.1.1.6 'BIT' Mode
3.1.1.7 YBOOLEAN' Mode
3.1.1.8 'CHARACTER' Mode
3.1.1.9 'VARYING CHARACTER' Mode
3.1.1.10 'FILE NAME' Mode
3.1.1.11 'TRANSFER POINT' Mode
3.1.2 Structured Modes
3.1.2.1 Array Modes
3.1.2.1.1 'FIXED ARRAY' Mode
3.1.2.1.2 'WARYING ARRAY' Mode
3.1.2.2 'COMPONENT STRUCTURE' Mode
3.1.2.3 YALTERNATE' Mode
3.1.2.4 'POINTER' Mode
3.1.2.5 'ENTRY POINT' Mode
3.1.2.6 'ENTRY NAME' Mode
3.2 Storage Layout Attributes
3.2.1 Length Attribute
3.2.2 Alignment Attribute
3.2.3 Dimension Attribute
3.3 Scope Attributes
3.4 Storage Class Attributes
3.4.1 Static Storage Class
3.4.2 Automatic Storage Class
3.4.3 Based Storage Class
3.4.4 TFormal Parameter Storage Class
3.5 Attribute Assignment -- Introduction
3.6 Explicit Declarations
3.6.1 The 'DECLARE' Statement Form
3.6.2 Inverted Declaration Statement Form
3.6.3 O@-Expressions
3.7 1Implicit Declarationms
3.7.1 Contextual Declarations
3.7.2 Default Declarationms
3.8 Attributes of Constants
3.8.1 Unsigned-Integer Symbols
3.8.2 Unsigned-Floating-Point Symbols
3.8.3 Character Symbols
3.8.4 Hexadecimal Symbols
3.9 Attributes of Expressions

The MAD/I Manual

Table of Contents

4. Expressions
4.0 Basic Concepts
4.1 Primitive Expressions
4.2 Operations
1 Arithmetic Operations
2 Relational Operations
3 Boolean Operations
4 Bit-String Operations
S Character-String Operations
6 Selection Operations
7
8
9
1

L
-
L]
[)

Procedure-Call Operations
Conversion Operations
Assignment Operations

.10 Other Operations

perator Precedence and Class

yntax of Expressions

]
L

FEFEEFErErEFEEEEEFE
.

2
2
2
2
2
2
2
2
2
2
0
S

4.3
b.y

5. Statements

0 Introduction

1 Expression Statements
2 'GO TO' Statement

3 'IF' Statement

4 'FOR' Statement
5

6

7

'"FOR VALUES!' Statement
'VALUE' Statement
Procedures

5.7.1 Procedure Definition

5.7.2 Formal Parameters

5.7.3 Procedure Returns

Input/Output Statements

Declaration Statements
'BEGIN' and 'BLOCK' Statements
'PRESET' Statement
'DECLARE CSECT' and 'DECLARE PSECT' Statements
"ALLOCATE' and 'DEALLOCATE' Statements
'REDIMENSION' Statement

(SN RSN, N NG, N RO,
L[]

5.8
5.9
5.1
5.1
5.1
5.1
5.1

T WwWwih-=0

6. Input/Output
6.1 Data Sets, Records, and Files
6.2 Types of Input/Output Activities
6.2.1 Data-directed Transmission
6.2.2 List-directed Transmission
6.2.3 Format-directed Transmission
6.2.4 Unconverted Transmission

6.3 Associating Data Sets with Files
6.3.1 Unit Specification
6.3.2 Data Set Name Specification
6.3.3 Character-string Specification
6.3.4 Entry-name Specification
6.3.5 Default Specification

The MAD/I Manual

Table of Contents

()
.
o~

Attributes
Data Set Associated with the File
End-of-file File Attribute
End-of-volume File Attribute
Error File Attribute
Maximum-length File Attribute
Echo File Attribute
cellaneous Input/Output Specifications
Format Specification
Line Specification
Last-line Specification
Last-length Specification
ut/Output Specification Summary
a-Lists
Block Elements
Array Expressions
Component-structure Expressions
Unsupported Modes
Embedded Statements
tax of the Input/Output Statements
ut/Output Statements
File Specification ('OPEN' and 'CLOSE?')
Data-directed I/0
List-directed I/0
Format-directed I/0
Unconverted I/0

[l

.
U)O\U":UJM-AZ

(o)W 2N« W W Ne)]
L]

L[]
L 4

OOy ON OO
s o o ¢ o
o 0 s e) S e o

S e
NEWNaT B NEWN=GT FEWND -

.
LOVOUVYHOUNNJIdINNNUDHUOCLUULOMIR EEEEFEEFTY

Ao OO
.

7. Program Structure
7.1 Block Structure
7.2 Scope of Names
7.3 Block Structure at Run Time
8. Compile-Time Facilities
8.1 YSUBSTITUTE' Statement
8.2 VYINCLUDE' Form

9. Definitional Facility
10. Example MAD/I Programs

10.1 Procedures CALLSQRT and SQRT
10.2 Procedures HASHTEST and HASH

PART II -- USER'S GUILCE FOR MAD/I IN MTS
11. The Compiler in Public File *MAD1
12. Sample Runs of MAD/I in MTS

12.1 Sample Run of CALLSQRT and SQRT

The MAD/I Manual

8 Table of Contents

12.2 Sample Run of HASHTEST and HASH
12.3 Sample Run of Combined CALLSQRT and SQRT

13. Error Messages
13.1 Compile-Time Error Messages
13.2 Run-Time Error Messages

14, Object Module Cescription
14.1 Representation of Data
14.2 Control Section Usage
14.3 Register Usage
14.4 Program Linkage Conventions
14.5 Support Routines

15. Assembler Coding Feature
15.1 V'YENTER ASSEMBLER CODE' Statement
15.1,1 Declarations
15.1.2 Assembler Code Format
15.2 1Interface Conventions
15.2.1 Entry into the 'ENTER ASSEMBLER CODE' Statement
15.2.2 Exit from the 'ENTER ASSEMBLER CODE' Statement
15.3 Examples
15.3.1 Generating a Standard 0S Type (I) S Call
15.3.2 Generating a Standard 0S Type (I) R Call
15.3.3 Translating Lower-case Characters to Upper Case
15.3.4 Converting an Integer to Hexadecimal Characters
15.3.5 Moving an Arbitrary Number of Characters
15.3.6 Reading into a 'VARYING CHARACTER' Variable

APPENDICES
Appendix A -- Syntax Description Notation
Appendix B -- Summary of Pre-defined Symbols
Appendix C -- Current Restrictions and Possible Extensions

The MAD/I Manual

Introduction 9

INTRODUCTION

MAD/I was originally conceived in 1965 at the University of
Michigan Computing Center as a relatively simple carry-over of
the MAD lanquage from the IBM 7090 computer to the IBM
System/36C, with perhaps a few straightforward extensions. This
goal, however, was later considerably revised. (For information
on the MAD language, refer to: "The Michigan Algorithm Decoder",
Revised Edition, 1966 (out of print); also see: B. W. Arden,
B. A. Galler, and R. M. Graham, "The MAD Definition Facility",
Communications of the ACM 12,8 (August 1969), 432-439.)

The CONCOMP Project was formed in December, 1965, to do
extensive research in the conversational use of computers.
CONCOMP needed a general-purpose language suitable for writing
conversational programs, and also wanted facilities for defining
new data types, operations, and statements into the language.
Therefore, CONCOMP strongly supported the development of an
extended MAD language which would serve these needs, and this
became the new goal of the language project. In these early
days, the language was known variously as '"MADE", "“COMET", or
“"MAD/360".

As work on the 1languagqe and compiler progressed, it
gradually became apparent that it was not feasible to retain
useful compatibility with 7090 MAD. Also, the need for a
flexible definitional facility forced the re-examination of
tasic concepts about the structure of programming 1languages.
Eventually it was agreed that the MAD/I project was actually
developing a new lanquage (and compiler), which would be
independent of MAD.

The goals of the MAD/I project were again re-defined. We
now wanted a language-and-compiler system with the following
features:

(A) It should contain a pre-defined algebraic langquage, suitable
for conventional general-purpose use without any
definitions from the user.

(B) The language should have a rather general syntax, so that a
variety of new statements and operators might be defined
into the same framework as the pre-defined constructs.

(C) It should contain a powerful definitional facility usable by
a moderately sophisticated programmer. This facility
should allow the user to modify the pre-defined language so
as to satisfy his special requirements. In particular, it
should allow the definition (or re-definition) of:

(1) Data structures and data types.

The MAD/I Manual

10 Introduction

(2) Statements (including declarations).

(3) Operators and operations, either in terms of existing
operations, or in terms of an assembler-like langquage
allowing access to the object machine instruction set,
at the user's option.

(D) The compiler should be reasonably fast, especially when the
program contains no new definitions.

(E) The compiled object program should be reasonably efficient,
although perhaps not highly optimized.

The earlier goal of compiling "conversational" programs was seen
as primarily an operating system problen. This was nicely
fulfilled at Michigan by the development of MTS (Michigan
Terminal System), which also was partly supported by CONCOME.

The goals above have largely been fulfilled, with a few
exceptions. We will discuss them in order:

(A) The pre-defined MAD/I language is a useful general-purpose
language. It has a syntactic structure somewhat like ALGOL
60, but it includes many of the important features of MAD
and PL/I. The MAD/I Compiler has been working since late
1968, and is being used for practical system programming
work. Portions of the compiler itself have been written in
MAD/I.

(B) The syntax rules of MAD/I are sufficiently general to allow
a large "space" of possible definitions. A great variety
of symbols, expressions, and statements is syntactically
possible.

(C) The definitional facility exists, but it 1is not complete.
The MAD/I language itself is implemented using this "MAD/I
Facility", and one can 1indeed define new data types,
statements, operators, etc. Unfortunately, this facility
is too "low-level", and cannot be used without consideraklble
study. A user-oriented facility is certainly feasible, but
this requires more research and development.

(D) The compiler is unfortunately not fast. It is 1large and
very slow, because it constantly re-interprets definitions.
With a little more work, the compiler could be speeded up
by a factor of at least four.

(E) The object program now produced 1is reasonably efficient,

although not highly optimized. Even better object code is
possible.

The MAD/I Manual

Section 1: Introduction to the Language 11

PART I -- DESCRIPTION OF THE MAD/I LANGUAGE

Section 1: Introduction to the Lanquage

1.1 _General Features

This section briefly mentions some of the principal
concepts and features of the MAD/I language.

The lanquage 1is defined in terms of a continuous sequence
of characters, independent of card format or line boundaries.
The compiler accepts its input as a sequence of records (lines)
which may vary in 1length. This input is normally treated as
completely free-form, and is broken into a sequence of symbols.
Blanks and comments may be used freely between symbols, but most
symbols cannot contain blanks.

Symkbols

In MAD/I two concepts have been separated: the form of a
symbol (how it is composed of characters), and the usage of the
symbol (how it functions as a language element). Examples of
synbol forms (calied "lexical classes") are:

Alphanumeric symbol (e.g., F A32 BETA)
Primed symbol (e.g., 'IF! '*TRUE* 'END')
Quoted symbol (¢€.g., "CHAR-STRING" “001A4"X)

Unsigned-integer symbol (e.g., 4 003 5140)
Special symbol (e.g., + r) =)

The symbols may be used in any of several ways; example usage
classes are:

Identifier. Usually formed as an alphanumeric symbol, Ftut
the primed symbol 'DEFAULT' is also a pre-defined
identifier.

Keyword. The pre-defined keywords are primed symbols. An
alphanumeric symbol (such as IF or BEGIN) could be
defined as a keyword, but then it could not also be
used as an identifier.

Part I -- Description of the MAD/I Language

12 Section 1: Introduction to the Language

Constant. The symbols 307, 'TRUE', 18.4E3, and "Pp=**" are
all constant symbols.

Operator. The symbols + , =, .ABS. , .OR. , := , and *x
are pre-defined operators.

Attributes and Declarations

Language items such as identifiers, constants, and
expressions have attributes. Example attributes are:

Mode (e.g., 'INTEGER', 'CHARACTER?', ' VARYING ARRAY',
'POINTER!')

Storage layout (e.g., Length, Alignment, Dimension)

Storage class (e.g., Static, Automatic, Based)
Attributes of an item may be explicitly declared either in a
declaration statement or by attaching a declaration to any
occurrence of the item in the program. Declarations may appear
anywhere in the program, and in particular need not precede the
first occurrence of the item. There are also default attritutes
for items which are not completely declared. The defaults to be
applied are themselves declarable.
Example declarations:

'"INTEGER' I, K, N

'"DECLARE' (ALPHA, BETA) 'FIXBED ARRAY' (50,50) 'BOOLEAN'

I (*INTEGER') := N@O('INTEGER') + 3

'"DECLARE' 'DEFAULT' 'FLOATING LONG!'

Expressions

A MAD/I expression is basically similar to an expressicn in
FORTRAN, MAD, ALGOL, or PL/I, but is slightly more general. The
four expressions '

ALPHA , A + B , (X-Y)*Z , -XYZ
all have the usual meanings in the pre-defined language.
However, the conventional concepts of "subscripted variable" and
"assignment statement" are handled as expressions in MAD/I.
For example, if ALPHA is an array name, then ALPHA is

considered a variable, but ALPHA(I) 4is not a variable; both

Part I -- Description of the MAD/I Language

Section 1: Introduction to the Language 13

ALPHA and ALPHA(I) , however, are expressions (called
"designators"). In “ALPHA(I)" the subscription operation is
the left-parenEEEEIE* symbol; it is treated as a convenient way
of writing "ALPHA .TAG. I", where .TAG. is the operator
denoting subscription.

result 1is the same as AA , except that the value of AA has Leen
set to the value of BB. We could compute the maximum value of
AA and BB with the statement:

*IF' (MAX := AA) < BB , MAX := BB

The concepts of ‘"operator" and ‘"operation" have been
separated. For example, the special symbol + is pre-defined
as an infix operator which, in the <contexts of arithmetic
operands, denotes "addition". Addition is a binary (i.e.,
dyadic) operation. The + operator could, however, be defined
to mean something other than addition for other contexts.

MAD/I statements are roughly similar to those of ALGOL 60
and PL/I. There are five general statement classes: simple
statements, compound statements, prefix statements, list
statements, and declaration statements.

(1) Simple statements. A simple statement 1is either an
expression or a "statement keyword" (reserved word)
followed by a fixed number of expressions.

A := BCD
'GO TO' LABEL
"ALLOCATE' STRUCT, K¥*10

(2) Compound statements. A compound statement consists of a
sequence of statements, separated by semicolons, and
bracketed by a statement keyword and an "end keyword".

'BEGIN' B := A; C := D 'END'

(3) Prefix statements. A prefix statement consists of a
"prefix" followed by a "scope". The prefix consists of a
statement keyword followed by a fixed number of
expressions. The scope may consist either of one statement
(separated from the prefix by a comma), or of a sequence of
statements separated by semicolons and terminated by an end
keyword (separated from the prefix by a semicolon).

Part I -- Description of the MAD/I language

14 Section 1: Introduction to the Language

'IF*' A >0, B := A

'IF' A >0 ; B := A ; C := D 'ENDIF!

0

'FOR' I:=1,1,I>N , G(I) :

'FOR' I:=1,1,I>N ;
G(I) == 0 ; H(I) := 1 'ENDFOR'

(4) List statements. A list statement consists of a prefix
followed by a varying number of expressions.

*READ' ('UNIT' O0), A, B, C
'PRESET' D := 1, F := 3.5, CH := "Wkxn

(5) Declaration statements. These have two forms: the 'DECLARE!
statement and the "inverted" declaration statements, as

exemplified below.

'"DECLARE' AA 'INTEGER', BB 'BOOLEAN',
CC 'COMPONENT STRUCTURE' ('BIT® (8), 'BIT' (24))

'DCL' (DD, EE, FF) 'FLOATING', GG 'ENTRY NAME!

'INTEGER' II, JJ, XX

'FIXED ARRAY' A1(5,10), A2(4,4,4)

Statements to be successively executed are written in
sequence, separated by semicolons. Empty statements are

permitted. A statement may be labeled with an identifier,
separated from the statement by a colon.

0;
Z(I) ~= 0, 'RETURN' I ;
I +

I:
LBL: 'IF
I: 1 ; 'GO TO' LBL

Embedded_statements

Any statement (or sequence of statements) can be made to
produce a result, and can therefore be used as an expression
(i.e., "embedded" in an expression). The 'VALUE! prefix
statement is provided for this purpose. The prefix designates a
variable whose value at the end of the statement is used as the
result of the statement. The 'VALUE' statement is enclosed in
parentheses and used as an expression.

SUMSQUARE := ('VALUE' S ; S := 0 3 'FOR' I:=1,1,IDN,
S := S + (X(I) - Y(I))*%*2 'ENDVALUE')

Part I -- Description of the MAD/I Language

Section 1: Introduction to the Language 15

Proqgram structure

MAD/I provides a "block structure" much like ALGOL 60 and
PL/I. Each block is either a "compound-statement block" or a
"procedure block". A compound-statement block has the form

"BLOCK' e ¢ e 'END!

where the e e e represents an arbitrary sequence of statements.
Procedure blocks have several variations; they typically look
either like

'"PROCEDURE' NAME. (PAR1,PAR2Z) ;

'"END PROCEDURE!
or like
'*PROCEDURE' FN. (X,Y) := ‘expression

Both kinds of blocks are statements, and can be used wherever a
statement is valid. Blocks, therefore, may be nested. Block
structure serves to delimit the scopes of declarations and
names. Each block may either have its own default attributes,
or may inherit the defaults of the enclosing block.

A MAC/I program is a block not contained in any other

block. Each source program is separately compiled intc its
object program.

Part I -- Description of the MAD/I Language

16 Section 1: Introduction to the Language

1.2 Introductory Examples

Let us suppose that X and Y are two arbitrary vectors ia a
vector space of 3 dimensions, and that we want a procedure which
computes the Euclidean "distance" function between X and Y. The
following program does this; the line numbers at the left margin
are not part of the program.

01 'PROCEDURE' DIST. (X,Y)

02 'DCLY (X,Y) 'FIXED ARRAY' (3);

03 YINTEGER' I;

o4 DIST: SUM := 0. ;

05 'FOR' I := 1, 1, I > 3,

06 SUM := SUM + (X(I) - Y(I)) ** 2 ;
07 *RETURN' SCRT. (SUM)

08 YEND PROCEDURE!

The program is a procedure block; the procedure statement
begins with the statement keyword 'PROCEDURE' and ends with the
end keyword 'END PROCEDURE' in line 08.

Line 01 consists of the procedure prefix followed by a
semicolon. The procedure prefix specifies that identifier DIST
names an entry point of the procedure, and that identifiers X
and Y are the formal parameters associated with that entry
point. Since the prefix is followed by a semicolon, the rest of
the ‘'PROCEDURE' statement will be a sequence of statements
terminated by the end keyword 'END PROCEDURE'.

Line 02 consists of a 'DECLARE' statement followed by a
semicolon. (*DECLARE' 1is abbreviated as 'DCL' -- many MAD/I
keywords have abbreviations.) The statement specifies that X
and Y are variables of 'FIXED ARRAY' mode, and that their values
are arrays of 3 components, numbered from 1 to 3. ‘'FIXED ARRAY'
means that the arrays have fixed dimensions; they cannot be re-
dimensioned at run time. Since the mode of the array components
is not explicitly declared, it 1is assumed to be the default
mode; since the block contains no declaration for default mode,
the pre-defined default of 'FLOATING SHORT' is used. Thus, the
values of X and Y are arrays of 3 floating-point numbers. The
semicolon at the end of line 02 is not part of the 'DECLARE'
statement, but separates it from the next statement.

Line 03 contains a declaration statement which specifies
that I 1is a variable of ‘'INTEGER' mode. This is called an
"inverted" declaration statement, since it Dbegins with an
attribute keyword instead of 'DECLARE'.

Line 04 contains an "expression statement" labeled by the
identifier DIST; this is the entry point of the procedure. The
statement is an assignment expression, which sets the value of
variable SUM to the floating-point value O. SUM 1is not

Part I -- Description of the MAD/I Language

Section 1: Introduction to the Language 17

‘explicitly declared, so it has the default mode ‘'FLOATING
SHORT!'.

Line 05 ['FOR* I :=1, 1, I > 3 ,] has the beginning of a
'FOR' statement, which specifies an iteration. The iteration
variable is I; it is initialized to 1, and is incremented by 1
until the expression I > 3 is true. Since the 'FOR' statement
prefix is followed by a comma, the scope of the iteration will
be a single statement.

Line 06 [SUM := SUM + (X(I) - Y(I)) ** 2 ;] contains an
expression statement, which is the statement repeatedly
executed. The semicolon separates the 'FOR' statement and the
'RETURN' statement. The assignment expression increments the
value of SUM by the square of the difference of the Ith
components of the two vectors.

Line 07 ['RETURN! SQRT. (SUNM)] contains a 'RETURN"
statement. It evaluates the expression SQRT. (SUM) and returns
the resulting value as the result of the DIST procedure. The
identifier SQRT is implicitly declared to be 'ENTRY POINT' mode
by its appearance as a procedure name in the procedure-call
expression; since SQRT is not a label in this program, it is
implicitly declared 'EXTERNAL' as well. Also, a procedure call
on SQRT 1is assumed to produce a result of default mode. This
program assumes that SQRT is an entry point of a (library)
subroutine that computes the square root of a 'FLOATING SHORT!'
value and returns a result of the same mode. MAD/I itself does
not have pre-defined procedures for the elementary functions.

Line 08 ['END PROCEDURE'] contains the 'END PROCEDURE'
keyword which ends the procedure (and the program). We could
also have used the general-purpose end keyword ‘'END' instead.
Notice that no semicolon is needed between the 'RETURN'
statement and the end keyword. Such a semicolon would do no
harm, however; it would merely introduce an empty statement
between the semicolon and the end keyword.

Part I -- Description of the MAD/I Language

18 Section 1: Introduction to the Language

As a second example, let us generalize the previous protlem
so that X and Y are vectors in a space of N dimensions, and that
N is supplied as an actual parameter (argument) to the
procedure. We could then re-write DIST as follows:

01 *PROC' DIST. (N,X,Y¥);

02 'DCL' (I,N) 'I', (X,Y) 'FA'(#) 'FS';
03 SUM := 0;

04 'FOR' I:=1,1,IDN,

05 SUM := SUM + (X(I)-Y(I))**2;

06 *RETURN' SUM *% 0.5 'END'

Line 01 is the same as before, except that 'PROCEDURE' 1is
abbreviated as 'PROC', and N is added as a formal parameter.

line 02 contains a single 'DECLARE' statement, which uses
abbreviations. It declares that I and N have *INTEGER LCNG'!
mode, and that X and Y have 'FIXED ARRAY' mode with 'FLOATING
SHORT' components. The special symbol # specifies that the
array dimensions are to be obtained at run time from the actual
parameters supplied for X and Y.

Line 03 is similar to line 04 before, except that the label
DIST has been omitted, and the constant 0 has no decimal point.
Since DIST is declared in the procedure prefix as an entry
point, but DIST does not appear as a label, the entry point is
considered to be at the first executable statement, which 1is
“SUM := 0". The constant 0 has 'INTEGER LONG' mode, and will be
converted to 'FLOATING SHORT' mode for assignment to SUMN. The
MAD/I compiler reserves the "right" to perform such a conversion
at compile time.

Line 04 ['FOR' I:=1,1,I>N,] is the same as before, except
that the iteration proceeds until the value of I exceeds the
value of parameter N. If N is less than 1, then the iteration
scope is never executed.

Line 05 [SUM := SUM# (X(I)-Y(I))**2;] is the same as
before.

Line 06 ['RETURN' SUM ** 0.5 P'END'] combines the
functions of 1lines 07 and 08 before. 1Instead of explicitly
calling a procedure SQRT, the MAD/I exponentiation operation is
used. The 'END' keyword ends the progranm.

Part I -- Description of the MAD/I Language

Section 1: Introduction to the Language 19

As a third example, we will re-write the generalized DIST
procedure to use an "embedded statement":

01 'PROC' DIST. (N,X,Y);
02 'DCL' (I,N) 'I', (X,Y) 'FA'(#) °'FS';

03 DIST: 'RETURN' ('VALUE' SUM := 0. , 'FOR' I:=1,1,ID>N,
04 SUM := SUM+ (X(I)-Y(I))**2)%%0.5 'END'

Lines 01 and 02 are as before. Lines 03 and 04 contain a
labeled 'RETURN' statement; the expression for the return value
contains a parenthesized 'VALUE' statement. The 'VALUE"
statement prefix specifies the variable SUM and sets it to zero;
the 'VALUE' statement scope is the 'FOR' statement, which is the
same as before; the result of the statement is the value of SUM
after the scope is executed. The 'VALUE' statement is enclosed
in parentheses and its value raised to the 0.5 power. The 'END!
keyword ends the program as before.

Part I -- Description of the MAD/I Language

20 Section 2: Symbols, Comments, and Spaces

Section_2: Symbols, Comments, and_Spaces (Lexical Structure)

2.0__Introduction

A source program in the MAD/I Language 1is a sequence of
characters -- 1letters, digits, blanks, and special characters.
A language processor must group successive characters together
into symbols, comments, and spaces. The resulting lexical
sequence of symbols constitutes the formal MAD/I program, and is
the only portion of the source program text that is of interest
to a compiler or interpreter. The comments, when included, are
solely for the <convenience of human readers. Spaces serve to

separate symbols and comments; they have no other significance.

Because the MAD/I Facility is intended to be flexible, and
because the MAD/I Language design must allow for "extension" by
the user, the rules for forming and recognizing symbols have
been divorced from the uses (interpretations) of the symbols.
For example, in a typical "fixed" language, an identifier nmust
be formed as an alphanumeric symbol; in MAD/I, however, the user
can cause almost any symbol (e.g., a string of characters
enclosed in quotation marks) to be treated as an identifier.
There are also default interpretations for some symbol forms;
for example, an alphanumeric symbol not otherwise declared is
treated as an identifier.

2.1__Formation of Symbols (Lexical Classes)

The rules for grouping characters together into symbols are
embedded in the 1lexical scanner of the MAD/I Facility; hence,
they are fixed. The 1lexical scanner recognizes ten general
categories (lexical classes) of symbols, which are listed here
and defined in detail below:

Alphanumeric symbols

Primed symbols

Dotted symbols

Quoted symbols

Unsigned-integer symbols
Unsigned-floating-point symbols
Special symbols

Percent symbols

9. At-sign symbols

10. Pound symbols

OO N E WN -
.

Part I -- Description of the MAD/I Language

Section 2: Symbols, Comments, and Spaces 21

2.1.1 Alphapumeric_Symbols

An alphanumeric symbol is a sequence of adjacent letters or
digits, the first of which must be a letter. The "letters" are
the upper-case characters A,B,...,Z, and the lovwer-case
characters a,b,...,Z. (It should be understood that these are
52 different characters.) The "digits" are the characters
0,1,2,...,9. An alphanumeric symbol must have at least one
character, but no more than 256. Adjacent alphanumeric symbols

mnust be separated by spaces or comments.

Usual usage: Identifiers
Default interpretation: Identifier

Examples: MADI
X
B90A2
LongerSymbolThanMost

2.1.2 Primed Symbols

A prinmed symbol is a sequence of 1 to 254 letters, digits,
or blanks, enclosed in ‘"primes" (apostrophes, single-quote
marks). All blanks between the primes are ignored, and are not
considered as spaces.

Usual usage: Keywords, Constants

Examples: 'IF!
'GO TO' , same as 'GOTO!
"INTEGER'
'DEFAULT'
"TRUE!
*NULL PT?

2.1.3 _Dotted_Symbols

A dotted symbol is a sequence of 1 to 254 letters or
digits, the first two of which must be letters, enclosed in dots
(periods) . No blanks are permitted within a dotted symbol.

Usual usage: Operators
Examples: .A.

.LS.
-ASTYPEOF.

.qq3.

Part I -- Description of the MAD/I language

22 Section 2: Symbols, Comments, and Spaces

2.1.4 oQuoted Symbols

A quoted symbol is a sequence of zero or more characters
enclosed in quotation marks (double-quote marks). A quoted
symbol can also include a suffix character (X, P, or E)
immediately after the closing quote (see below). Any
characters, including blanks and special characters, can be
written between the quotes; however, each occurrence of the
quote (") character must be represented by two adjacent quotes
(""). If a quoted symbol is followed by a symbol which begins
with a quote or letter, the two symbols must be separated by a
space (or comment). The four forms of quoted symbols are
described below:

2.1.4.1 Character_Symbols

A character symbol is a quoted symbol which has pgo suffix.

Usual usage: Character-string constants
Default interpretation: Constant of 'CHARACTER' nmode; see
Sec. 3.8.3.

Examples: "An

"¥%x Error: IHC999 @ S51."
muwn (contains one " character)

2.1.4.2 Hexadecimal_ Symbols

A hexadecimal symbol is a quoted symbol with the suffix
character X . The characters between the quotes are restricted
to the "hexadecimal digits": 0,1,...,9,A,B,C,D,E,F.

Usual usage: Constants
Default interpretation: Constant of 'INTEGER LONG' mode; see
Sec. 3.8.4.

Examples: WA9EM"X

"BAD"X
"2001940000"X

Part I -- Description of the MAD/I Language

Section 2: Symbols, Comments, and Spaces 23

2.1.4.3 Pointer-Constant_Symbols

A pointer-constant symbol 1is a quoted symbol with the
suffix character P . The characters between the quotes

constitute another symbol -- the identifier whose storage
assignment will be "pcinted to".

Usual usage: Pointer constants
Examples: "ALPHAM"E
IISI N"P

2.1.4.4 Entry-Name-Constant_ Symbols

An entry-name-constant symbol is a quoted symbol with the
suffix character E . The <characters between the quotes
constitute another symbol -- the identifier (label) of the entry
point to be "pointed to" by the entry-name constant.

Usual usage: Entry-name constants
Examples: "LAB12"E
llSI N“E

2.1.5__Unsigned-Integer Symbols

An unsigned-integer symbol is a sequence of decimal digits,
and 1is considered to be the usual decimal representation of a
non-negative integer. Leading zeros are permitted, but commas
and decimal points are not.

Usual usage: Integer constants
Default interpretation: Constant of 'INTEGER LONG' mode; see
Sec. 3.8.1.

Examples: 38

0
00190

2.1.6 Unsigned-Floating-Point Symbols

An unsigned-floating-point symbol is a sequence of decimal
digits, with either a single decimal point, or an "exponent
part", or both. If the decimal point is written, it may be
placed anywhere in the sequence of digits, and is interpreted
according to the usual rules of decimal notation. The decimal
sequence may be suffixed by an "exponent part", which represents
a multiplier value applied to the decimal number. The exponent
part consists of the character E followed by a decimal

Part I -- Description of the MAD/I language

24 Section 2: Symbols, Comments, and Spaces

integer, and represents a multiplier equal to 10 raised to the
power of the decimal integer. The decimal integer may be
signed.

Usual usage: Floating-Foint constants
Default interpretation: Constant of 'FLOATING SHORT' mode; see

Sec. 3.8.2.

Examples: 1.57
0.
.1
0.005 -
10E3 (=10 x 103 = 10¢)
2.2E-07 (= 2.2 x 10-7)
.04E+LS8 (= .04 x 1048)

2.1.7 special Symbols

The following special symbols are pre-defined in MAD/I;
they all have pre-defined interpretations as punctuation marks
and operators:

left-parenthesis
right-parenthesis

comma

semicolon

colon

ellipsis

pound-sign, number-sign

e s er w

plus

minus

asterisk

slash

at-sign

dot, period

dollar-sign

not-sign

ampersand

vertical bar
equal-sign, "equals"
less than

greater than
double-asterisk, power
colon-equals, assignment, "gets"
not equal

less than or equal
greater than or equal
double-bar, concatenate

DN # |+

¢ VA NL—=OMJ A

4
e L LI (R T

-V A

Part I -- Description of the MAD/I Language

Section 2: Symbols, Comments, and Spaces 25

2.1.8 Percent Symbols

A percent symbol is a percent-sign immediately followed by
a non-empty sequence of letters and digits. Percent symbols are
used extensively in MAD/I as internal compiler symkols.
Compiler-generated identifiers (such as the names of temporary
results) are percent symbols. The programmer should avoid
writing percent symbols unless he is deliberately using the low-
level MAD/I Facility.

Examples: *TMPO0O7

%A
%MACRO

2.1.9__At-sign_Symbols

An at-sign symbol is an at-sign followed by a non-enpty
sequence of letters and digits. At-sign symbols, like percent
symbols, are used in MAD/I for internal compiler symbols. They
are also used as component names (see Sec. 2.2.5). The
programmer should avoid writing at-sign symbols unless he is
writing a component name or deliberately using the low-level
Facility. (Note: the single character @ 1is a special symkol,
and is not classed as an at-sign symbol.)

Examples: aCLS

DEX?2
oMODE

2.1.10 Pound Symbols

A pound symbol is a pound-sign followed by a non-empty
sequence of letters and digits. Pound symbols are intended for
use in the Compile-Time Facility, and are reserved as a class
for that purpose. (Note: the single character # 1is a gpecial
symbol, and is not classed as a pound symbol.)

Examples: #COUNT

#L12
#ROWS

Part I -- Description of the MAD/I Language

26 Section 2: Symbols, Comments, and Spaces

2.2 Usage of Symbols (Usage Classes)

Except for internal compiler symbols and special symtols
vhich are punctuation marks, the MAD/I symbols can be
categorized into five general usage classes, which are 1listed
here and discussed in detail below:

Identifiers
Constants
Keywords
Operators
Component names

NE WN -
e o

2.2.1 Identifiers

An identifier is a symbol used as a name of some data
object such as an integer value, a pointer value, or a portion
of a program. There are two kinds of identifiers: variables and
labels.

There is also a special pre-defined identifier, the primed
symbol 'DEFAULT'. This appears only in declaration statements,
and is used as a controllable "prototype" for the assignment of
default attributes (see Section 3).

2.2.1.1__Variables

A variable is an identifier used to name a data object (its
"value"). The essence of a variable is that the particular data
object named is not fixed, but may vary when the object program
is executed ("run time"). For example, if the symbol K is a
variable, it might (at run time) name first an integer value 15,
and later an integer value -77, and still later an integer value
0 . A variable can also name a structured set of values, such
as an array of floating-point values.

We remind the reader that computing machines do not
manipulate abstract objects, such as numbers, directly. Rather,
machines must manipulate concrete representatjons of such
objects. Thus, when we say that the variable K names the
integer value 15, we always mean that K names a finite
representation of the integer 15, and that this representation
is the value of K. With this distinction understood, we may say
loosely that "K has the value 15", and hope there will te no
confusion.

The computational properties of each variable are
represented by the attributes assigned to the variable. An
example attribute in MAD/I is géggl which characterizes both the
range of values the variable can name, and the form of a tyrical

Part I -- Description of the MAD/I language

Section 2: Symbols, Comments, and Spaces 27

value. For example, a variable of 'INTEGER LONG' mode can only
name values which are integers encoded (in System/360) as
fullword (32-bit) fixed-point binary numbers. Another examfple
mode 1is 'FIXED ARRAY', which specifies that the variable names
an array of values, that the bounds on each dimension of the
array are fixed, that all the values in the array are of the
same mode, and that the values are located at regularly-spaced
intervals in computer storage. In this case an individual value
is designated by writing subscripts after the variable. For
example, if AR is a variable of 'FIXED ARRAY' mode, then a value
in the array may be designated by an expression such as AR(1) .
Note: AR(1) is not a variable, but is an expression called a

——— e o o s s . i

2.2.1.2 _labels

A label is an identifier that names a fixed object. Unlike
a variable, the value of a label cannot change at run time;
thus, a label is a kind of constant. Labels are used only to
name statements in programs; each label is written in front of
the statement it names, separated from the statement by a colon
(:) . In the pre-defined lanquage, there are only two modes a
label can have: 'TRANSFER POINT' mode and 'ENTRY POINT' nmode
(see Section 3).

Part I -- Description of the MAD/I Language

28 Section 2: Symbols, Comments, and Spaces

2.2.2

Constants

A constant is a symbol (or @-expression -- see below) which
denotes a fixed value. The value of each constant is computed
in advance of run time, and may or may not be explicitly
represented in the object module. A constant may have either of
two forms:

(1) A single "constant symbol".

Examples: 419
23.7E-3
'TRUE"
(2) A constant followed by the @ symbol followed by
a parenthesized declaration; i.e., an o-

expression whose left operand is a constant.

Examples: 419d (*INTEGER SHORT')
"4E000000"Xad (*FLOATING SHORT')

"ABC"® (*CHARACTER"' (8))@ ("ALIGN' (8))

The pre-defined constant symbols include:

Unsigned-integer symbols (Sec. 2.1.5)

Unsigned-flcating-point symbols (Sec. 2.1.6)

Character symbols (Sec. 2.1.4.1)

Hexadecimal symbols (Sec. 2.1.4.2)

Pointer-constant symbols (Sec. 2.1.4.3)

Entry-name-constant symbols (Sec. 2.1.4.4)

The Boolean constants 'TRUE' and 'FALSE!

The character constant 'NULL C!

The varying-character constant *NULL VC!

The pointer constant 'NULL PT!

The entry-name constant *'NULL EN!

The reader will note that signed constants have not been

mentioned. The application of a + or - prefix symbol to a
constant results in an expression which is not <called a

"constant", although it is constant-valued.

Part I -- Description of the MAD/I language

Section 2: Symbols, Comments, and Spaces 29

2.2.3__Keywords

A keyword is a symbol which has been assigned a particular
use in a MAC/I statement form. All keywords, both pre-defined
and user-defined, are reserved symbols. The pre-defined
keywords are all primed symbols, and can be roughly divided into
four informal categories: statement keywords, end keywords,
phrase keywords, and attribute keywords.

Statement keywords are those which begin and identify a
statement forn. Each occurrence of a statement keyword is
considered to begin a statement of the form identified by the
keyword (see Section 5).

Examples: 'PROCEDURE?"
OIF'
'FOR!
"GO TO'

End_keywords are those which end statements. An end
keyword is part of the statement it ends, and is the last symbol
of the statement (see Section 5).

Examples: "END!
'END PROCEDURE!
YENDIF!

Phrase keywords are those which separate expressions, or
identify optional expressions, within a 1larger statement
context. Some phrase keywords are used 1like commas =-- to
separate expressions. Others are prefix keywords which combine
with an expression tc form a larger expression (see Section 5).

Examples: 'WITH!
OTOU
'END OF FILE'
'SAVE CODE!

Attribute keywords are those which represent attributes,
such as mode and storage class, and are used to declare the
attributes of identifiers and expressions. Attribute keywords
normally appear as suffix or infix keywords within declarations,
but they can also function as statement keywords in the
"inverted" declaration form (see Sections 3 and 5.9).

Examples: 'FLOATING LONG'
YENTRY POINT!
*NOT NEW!
'EXTERNAL"

Part I -- Description of the MAD/I Language

30 Section 2: Symbols, Comments, and Spaces

2.2.4 _Operators

An operator is a symbol which denotes an operation on data
objects. The same operator may denote a number of different
operations; the appropriate operation for each occurrence of the
operator is determined by the context of that occurrence.

Each occurrence of an operator has one or two adjoining
expressions which denote the operands (data objects) of that
occurrence. Each operator is in exactly one of four syntactic
categories:

A prefix operator 1is written Dbefore its operand

e e e e —— —

expression..

A postfix operator 1is written after its operand
expression.

An infix-left operator is written between its operand
expressions; infix-left operators of equal
precedence associate left-to-right (see Section

4y .

An infix-right operator is written between its operand
expressions; infix-right operators of equal
precedence associate right-to-left.

Note: In order to preserve both the above distinction and
traditional notation, two pre-defined symbols get
special treatment: Whenever the minus (-) symbol
appears in the context of a prefix operator, it is
transformed to the negation (. NEG.) operator.
Whenever the plus (+) symbol appears in the context of
a prefix operator, it is dropped and ignored. Thus,
the plus and minus signs retain their usual dual
roles.

A1l pre-defined operators are either special symbols or
dotted symbols. They and their associated pre-defined
operations are discussed in Section 4.

Examples: + (infix-left)
- (prefix)
:= (infix-right)
.ABS. (prefix)
.REM. (infix-left)

Part I -- Description of the MAD/I lLanguage

Section 2: Symbols, Comments, and Spaces 31

2.2.5 _Component Names

A component name is a symbol used to name (or label) a
component of a structured data object. All component names are
established at compile time, through their use in declarations
of structured variables.

For example, the declaration statement
'DCL' CMPLXN 'CS' (@REAL *'FS', ®IMAG 'FS')

declares that CMPLXN is a variable of 'COMPONENT STRUCTURE' mode
(see Sec. 3.1.2.2) with two components; each component has
'FLOATING SHORT' mode. Also, the symbols @?REAL and @IMAG are
declared to be component names, which name (for the variable
CMPLXN) the first and second components respectively. The first
component of CMPLXN can then be designated by the expression
CMPLXN $ @REAL , and the second component by CMPLXN $§ @IMAG .

The same component name can be used for different
structured variables, and can name different components of those
variables.

The compiler currently requires that all component names
nust be at-sign symbols, in order to distinguish them from
identifiers. This restriction may be relaxed in the future.
Also, the compiler presently allows component names which are
at-sign symbols to be written like ordinary subscripts; e.q.,
CMPLXN (?REAL) and CMPLXN (2IMAG).

Part I -- Description of the MAD/I Language

32 Section 2: Symbols, Comments, and Spaces

2.3 Comments and Spaces

Any soéurce program text may be enclosed in ‘"comment
delimiters" to form a comment, Comment delimiters are the

character pairs << and >> . Thus, the following is a comment:
<<THIS IS A COMMENT.>>

Oonce a left comment delimiter (<<) is recognized, all characters
after it are considered part of the comment ulitil the first
right comment delimiter (>>) occurs. Comments must not be
nested. Comments may be inserted at any point in the text of
the program except within symbols. They are bypassed in the
initial scan of the text, and they have no effect on the okject
program.

Spaces are sequences of one or more adjacent klank
characters which are not embedded within a symbol or coament.
Spaces are significant in that they will separate symbols which
would otherwise "run together". Blank characters within a
primed symbol, a quoted symbol, or a comment are legal and are
not considered as spaces; blanks cannot be embedded in any other
symbols.

Part I -- Description of the MAD/I Language

Section 3: Attributes 33

Section_3: Attributes

3.0__Introduction to Attributes

Attributes are simply "significant properties". That 1is,
the attributes of an item in a MAD/I program are those
properties of the item which are of interest to the 1language
processor (beyond the purely syntactic properties, which are not
considered attributes). Attributes must be determined by the
language processor, at "compile time", in order to produce a
correct translation of the program. The "items" for which
attributes are defined include identifiers, constants, and
expressions, as follows:

Each identifier has attributes that characterize the values

that it names and the scope of the identifier itself. Every
identifier acquires the following attributes:

A mode, which specifies both the possible values of
the identifier and the representation form of a
value. The mode may be either a primitive mode

or a structured mode. A primitive mode (such as
'BOOLEAN' mode) describes a relatively simple
data object and requires no other mode for its
definition. A structured mode (such as
"COMPONENT STRUCTURE! mode) describes a
"structured" object which has components (or

produces results) which have their own modes.

A scope, which is that portion of the program over
which the identifier is uniquely "defined"; i.e.,
that portion in which another occurrence of the
same symbol 1is another occurcrence of the same
identifier.

A storage class, which specifies the manner in which
storage is associated with the identifier.

If the identifier is a variable, then it also acquires at least
two "storage layout" attributes:

A length, which specifies the amount of storage
(nueber of bytes) required for a value.

An alignment (alignment factor), which specifies a
constraint on the position (in storage) of the
storage associated with the identifier.

Storage layout attributes do not apply to labels.

Part I -- Description of the MAD/I lLanguage

34 Section 3: Attributes

If the identifier has a structured mode, then that includes
additional attribute information to describe its value; for
example, a fixed array has "dimension", and its components have
a mode.

Each constant has a mode, a length, an alignment, and a
storage class (which is always 'STATIC' -- see Sec. 3.4.1). It
also has a value, of course, but this 1is not considered an

"gttribute",

Each expression has a mode, which 1is the mode of its
result. It may also have a storage class and storage layout
attributes.

Most of the attributes are represented in the language by
attribute keywords, which are used in declarations to specify
attributes of items. Some attribute keywords take ‘“suffixes",
which may be optional or required, to specify additional
attribute information.

Sections 3.1 to 3.4 below describe the various attributes
themselves in detail. Sections 3.5 to 3.9 describe the various
ways of assigning attributes to identifiers, constants, and
expressions.

Part I -- Description of the MAD/I Language

Section 3: Attributes 35

3.1 Mode Attributes

Every identifier, constant, and expression acquires a mode
attribute, either by explicit declaration or by implicit
declaration. Each mode characterizes a set of possible values,
and also the form of a value of that mode in computer storage.
In general, the mode of an item strongly affects the treatment
of that item by the operators and statements of the language.

Most modes also carry implied values for the 1length and
alignment attributes, so that these often need not be explicitly
declared. For examples: 'CHARACTER' mode has an implied
alignment of 1, and 'FLOATING LONG' mode has implied length 8
and implied alignment 8.

There are two classes of modes in MAD/I -- primitive modes
and structured modes:

The primitive modes characterize relatively simple data
objects, and are "atomic" in the sense that they require no
other modes for their definition. Most of the primitive modes
(like 'INTEGER SHORT' mode) are intentionally defined as direct

counterparts to the hardware data types of the IBM System/360.

Note: This approach allows the MAD/I user strong
control over the machine code produced by the
compiler. Thus, it enhances the usefulness of MAD/I
for writing system programs for the IBM 360. However,
this approach also has the disadvantage that it tends
to make programs machine-dependent and thus 1less

transferable.

Some of the primitive modes are called "arithmetic" modes. This
simply means that they characterize arithmetic values -- i.e.,
representations of numbers -- and that some arithmetic
operations (such as addition) have been pre-defined for then.

The structured modes characterize relatively conplex
objects which have "components" or "results" for which more mode
information may be required. For example, if an item has 'FIXED
ARRAY' mode, then the mode of the components of the array must
somehow be determined. This can be explicitly declared by a
declaration statement such as

'"DECLARE' A 'FIXED ARRAY' (7) 'POINTER' 'BOOLEAN'
which declares that the value of variable A is a fixed array of
7 components, each of which is a 'POINTER' mode value pointing

to an object of 'BOOLEAN' mode. 'FIXED ARRAY' and 'POINTER' are
structured modes, while 'BOOLEAN' is a primitive mode.

Part I -- Description of the MAD/I Language

36 Section 3: Attributes

Structured modes are also very
complex, user-defined modes.
in Section 9.

useful for <creating new,
This will be discussed more fully

The pre-defined modes are 1listed below, and defined 1in

detail in the following subsections:

Primitive modes:

L[]
[y

L[]

-

'*INTEGER SHORT' mode 3.1.1.1
*INTEGER LONG' mode 3.1.1.2
'"FLOATING SHORT' mode 3.1.1.3
'FLOATING LONG' mode 3.1.1.4
'PACKED' mode 3.1.1.5
'BIT' mode 3.1.1.6
YBOOLEAN' mode 3.1.1.7
'"CHARACTER' mode 3.1.1.8
TVARYING CHARACTER' mode 3.1.1.9
'FILE NAME' node 3.1.1.10
'TRANSFER POINT' mode 3.1.1.11
Structured modes: 3:1.2
Array modes 3.1.2.1
'FIXED ARRAY' mode 3.1.2.1.1
'VARYING ARRAY' mode 3.1.2.1.2
'"COMPONENT STRUCTURE' mode 3.1.2.2
'"ALTERNATE' mode 3.1.2.3
'POINTER' mode 3.1.2.4
TENTRY POINT' mode 3.1.2.5
YENTRY NAME' mode 3.1.2.6

Part I -- Description of the MAD/I Language

Section 3: Attributes 37

3-1.1__Primitive_ Modes

3.1.1.1__'INTEGER_SHORT' mode

'"INTEGER SHORT' mode (abbreviation 'IS') is an arithmetic
mode with 1integer values ranging from -32768 (-21S5) to +32767
(215-1) . It has implied length 2 and implied alignment 2.

3.1.1.2 'INTEGER LONG' mode

'INTEGER LONG' mode (abbreviations *'IL', 'INTEGER', 'I') is
an arithmetic mode with integer values ranging from -2147483648
(-231) to +2147483647 (231-1). It has implied 1length 4 and
alignment 4.

3.1.1.3 _'FLOATING SHCRTI' mode

'FLOATING SHORT' mode (abbreviations 'FS', 'FLOATING', 'F')
is an arithmetic mode with signed (+ or =-) values whose
magnitudes range from about 5.4 x 10-79 (1/16 x 16—64) to about
7 x 10?5 ((1-16-¢) x 16%3), and with a maximum precision of six
hexadecimal digits (about seven decimal digits). The zero value
is also included. This mode has implied length 4 and alignment
4.

3.1.1.4 _'FLOATING_LONG' mode

'"FLOATING LONG' mode (abbreviation 'FL') is an arithmetic
mode with essentially the same range of values as 'FLOATING
SHORT' mode, but with a maximum precision of 14 hexadecimal
digits (about 17 decimal digits). It has implied length 8 and
alignment 8.

3.1.1.5 _'PACKED' mode

YPACKED' mode is an arithmetic mode with integral values
expressed as signed decimal integers. The attribute keyword
'PACKED' takes an optional suffix of the form (L) , where L
specifies the length attribute, and must be a constant from 1 to
16. If the suffix is omitted, the default 1length is 1. The
value is 2xL-1 decimal digits, with a sign. An alignment of 1
is implied.

Part I -- Description of the MAD/I Language

38 Section 3: Attributes

3.1.1.6__'BIT' mode

A 'BIT' mode (no abbreviation) value is a fixed-length
string of bits, which can also be treated as an unsigned binary
integer. The attribute keyword 'BIT' takes an optional suffix
of the form (L) , where L is an integer constant from 1 to 32
which specifies the bit length of the string. If the suffix is
omitted, the default length is 1.

The compiler currently requires that the storage assigned
to each 'BIT' mode item lie within a singie 32-bit word (4 bytes
with alignment 4) ; that is, 'BIT' mode storage assignments
cannot overlap word boundaries. Thus, the alignment of a 'BIT'
mode item is determined by two special rules:

(a) If the item 1is a component of a 'COMPONENT
STRUCTURE', it is aligned to the next available
bit, unless the item will then not £fit within
that word, in which <case it is aligned to the
first bit in the next word.

(b) In all other cases, the exact alignment 1is
undefined. For this reason, 'BIT' mode items
currently should not be passed as parameters,
except as components of component structure or
array parameters.

3.1.1.7 'BOOLEAN' mode

'BOOLEAN' mode (abbreviation 'YBOOL') has exactly two
values: 'TRUE' and 'FALSE'. It has implied 1length 1 and

alignment 1.

3.1.1.8__ 'CHARACTER' mode

A 'CHARACTER' mode (abbreviation *'C') value 1is a fixed-
length string of characters. The attribute keyword takes an
optional suffix of the form (L) , where L is an integer constant
between 1 and 256 which specifies the number of characters in
the string. If the suffix is omitted, the default length is 1.
Since each <character requires one byte of storage, the length
attribute is the same as the character 1length. The implied
alignment is 1.

Part I -- Description of the MAD/I Language

Section 3: Attributes 39

3.1.1.9 _'VARYING_CHARACTER'_ mode

A 'VARYING CHARACTER' mode (abbreviation 'VC') value 1is a
varying-length string of characters, together with an integer
value which specifies the current length of the string. The
attribute keyword takes an optional suffix of the form (L) ,
where L is an integer constant from 1 to 32767 which specifies
the maximum string 1length. If the suffix is omitted, the
default maximum length is 256. At run time, the string value
may be any sequence of characters whose lenqgth does not exceed
the maximum length. This includes the "null" string, which has
length zero. The implied alignment is 2, and the implied length
is 2+ (the maximum length). The constant symbol 'NULL VC' is a
pre-defined constant of this mode; it has maximum length zero,
string length zero, and length attribute 2.

3.1.1.10 'FILE NAME' mode
A value of 'FILE NABE' mode (no abbreviation) is a set of

specifications for a MAD/I file. It has implied length 4 and
alignment 4. Refer to Section 6 (Input/Output).

3.1.1.11__'TRANSFER_POINT' mode

An item of 'TRANSFER POINT' mode (no abbreviation) names a
point in the program which can receive a transfer of control
from elsewhere within the same program, but which does not have
the special properties of an "entry point". 'TRANSFER POINT'
mode is never explicitly dJdeclared; instead, identifiers are
contextually declared as labels by appearing before a colon in
front of a statement. As long as nothing in the program causes
a label to be declared as ‘'ENTRY POINT' mode, then it will
receive 'TRANSFER POINT' mode by default. All items of this
mode have 'STATIC' storage class. Items of 'TRANSFER POINT!
mode cannot be formal parameters, nor can they be passed as
actual parameters.

Part I -- Description of the MAD/I Language

40 Section 3: Attributes

3.1.2 Structured Modes

Structured modes characterize data objects which involve
other, "subordinate" data objects. We will use the general tern
"subtype" to talk about a subordinate data object (such as a
"component" or ‘'result") of a structured-mode object. Unless
otherwise stated, a subtype may be of any mode, including the
structured modes.

3.1.2.1 Array _modes

A value of an array mode ('FIXED ARRAY' or 'VARYING ARRAY')
is an array of one or more component values. An array is a
"homogeneous" structure in that all its components share the
same mode, storage class, and storage layout attributes. The
attribute keyword takes an obligatory suffix -- a parenthesized
list of subscript bounds specifications (see Appendix A for
explanation of syntax notation):

array-suffix = (list , bounds)
bounds = [integer ...] integer
integer = [+ | -] unsigned-integer-symbol

If two integers are given, the first one specifies the lcwest
value (lower bound) for that subscript position, and the second
specifies the highest value (upper bound). If only one integer
is given, it specifies the upper bound, and the lower bound is
assumed to be 1. The upper bound must be greater than or equal
to the lower bound. The number of "bounds" given specifies the
number of dimensions of the array and also the number of
subscripts which must be given to designate a component. This
number, the set of bounds values, and the spacing (in storage)
of components, together constitute the dimension attribute of
the array. Dimension 1is classed as a "storage layout"
attribute.

The array-suffix may be followed by an optional explicit
declaration of a typical array component. If this is omitted,
the current 'DEFAULT' declaration is copied as an implicit
declaration. The storage class of a component cannot be
declared; it is always the same as the storage class of the
array.

Example:
'"DECLARE' A 'FIXED ARRAY'(10,-2...5) 'CHARACTER' (5)
declares that variable A names a two-dimensional array with 10

"rows" (first subscript) numbered from 1 to 10, and 8 "columns"

Part I -- Description of the MAD/I Language

Section 3: Attributes 41

(last subscript) numbered from -2 to 5. The array has 10 x 8 =
80 components, each of which 1is a fixed-length string of 5
characters.

The components of an array are assigned storage at
regularly-spaced intervals. The minimum distance from the
beginning of one component to the beginning of the next is the
"aligned length" of a component, which is computed as the length
of the component, extended as needed to satisfy the alignment of
the next component. Along each dimension (subscript position)
of an array, the successive components have the same spacing,
which 1is always a multiple of the aligned length. The default
alignment of an array is the same as the alignment of its

components.

When the components of an array must be treated in serial
order (as in storage assignment or in I/0 transmission), some
sort of "sequencing rule" must be employed. The default array
sequencing rule 1is called row-major_ _order, and is the order
produced by varying each subscript from its lower bound to its
upper bound, the last subscript varying first, then the next-to-
last, etc., until all combinations have been produced. For
example, if we have declared A 'FIXED ARRAY' (-1...1,2,0...2) ,
then row-major order gives the sequence: A(-1,1,0), A(-1,1,1),
A(’1r112)r A(-1,2,0), A(-1,2,1), A("11212)' A(0,1,0), A(O'1'1)l
— + 2(0,2,2), 2 (1,1,0), —, A(1,2,2) .

3.1.2.1.1__'FIXED _ARRAY' mode

'FIXED ARRAY' mode (abbreviation 'FA') characterizes arrays
whose dimension attributes are permanently fixed at comfile
time. That is, the number of dimensions, the subscript bounds,
and the spacing of components are all declared just once, and
cannot vary at run time. The MAD/I translator <can take
advantage of this invariance to make operations on fixed arrays
more efficient than the same operations on varying arrays.

3.1.2.1.2 _'VARYING ARRAY' mode

'"VARYING ARRAY' (abbreviation 'VA') characterizes arrays
whose dimension attributes can vary at run time. The number of
dimensions of a varying array is fixed, but the subscript bounds
and the spacing of components can be varied dynamically with the
'REDIMENSION' statement (see Section 5.14). The dimension
attribute declared in the program controls both the storage
allocated to the array, and also the interpretation of any
'PRESET' assignments into the array. The re-dimension operation
will not vary the location or size of the storage allocated to
the array. For such arrays the declared dimensions should be
large enough to accommodate the maximum-size array anticipated.

Part I -- Description of the MAD/I Language

42 Section 3: Attributes

3.1.2.2_ _'COMEONENT_STRUCTURE' mode

A value of 'COMPONENT STRUCTURE' mode (abbreviation 'CS')
is a structure of component values which may be of different
modes. Thus, a component structure is a "non-homogeneous"
structure, in that its components need not all share the same
mode and storage layout attributes. A component structure is a
single compact data object in storage, so all its components do
share the same storage class attribute. The attribute keyword
takes an obligatory suffix -- a parenthesized list of component
declarations:

cs-suffix = (list , component-decln)

component-decln =
[component-name] declaration-string

Each component-decln declares one component, which may have any
mode, primitive or structured (except *TRANSFER POINT' and
'"ENTRY POINT' modes), as specified by the declaration-string.
If a component-name (see Sec. 2.2.5) 1is given, then its
interpretation for the particular component structure is a name
for the component being declared. If the declaration-string is
empty, then the current 'DEFAULT' declaration applies to that
component.

For example, the declaration statement
'DCL' AGG 'CS*' ('BIT'(8), 'INTEGERSHORT', 'POINTER?')

declares that AGG is a variable of 'COMPONENT STRUCTUKE' nmode,
with three wunnamed components. The first component has 'BIT'
mode, the second has 'INTEGER SHORT' mode, and the third has
'POINTER' mode. Since the components are not named, they can be
designated only by their ordinal position; e.g., the second
component must be designated by the expression AGG(2) .

As another example, the declaration
'*DCL' VCHAR 'CS' ('IS', @LNG 'IS', @CHS 'FA' (50)'C')

declares that variable VCHAR is a component structure with three
components: two of 'YINTEGER SHORT' mode, and one 'FIXED ARRAY'
wvhose components are single characters. The first component can
only be designated as VCHAKR (1) ; the second as either VCHAR(2)
or VCHARS$ALNG ; the third as either VCHAR(3) or VCHAR$@CHS .
The 1Ith character of the third component may be designated as
either VCHAR(3) (I) or VCHAR$ACHS (I) .

The components of a component structure have the same

ordering in storage as in the structure declaration. Each
component is positioned after the preceding component, with the

Part I -- Description of the MAD/I Language

Section 3: Attributes 43

minimum gap needed to satisfy its alignment attribute. The
default alignment of the structure is the maximum of the
individual component alignment attributes. The default length
of the structure is the minimum length needed to contain all the
aligned components. ’

31.2.3 _'ALTERNATE' mode

A value of 'ALTERNATE' mode (abbreviation 'ALT') is similar
to a component structure (Sec. 3.1.2.2), except that the
"components" are actually alternative interpretations of the
value 1itself. It 1s equivalent to a component structure in
which the components all overlap each other, instead of being
disjoint. The attribute keyword takes the same form of
obligatory suffix, a cs-suffix.

For example, the declaration statement
'DCL' WHAT 'ALTERNATE' ('INTEGER','FLOATING')

declares that variable WHAT has ‘'ALTERNATE' mode, with two
interpretations: WHAT(1) has 'INTEGER' mode, and WHAT(2) has
'FLOATING' mode. We could also have used named components.

The value of an 'ALTERNATE' mode item has only one
component mode at a time, and it 1is the programmer's
responsibility to know which it is at any given point in the
program. Dynamic mode testing is not provided.

The alignment of the "structure" is the maximum of 1its

component alignments, and its 1length is the maximum of its
component lengths.

Part I -- Description of the MAD/I Language

4y Section 3: Attributes

3.1.2.4 'POINTER' mode

A value of 'POINTER' mode (abbreviation 'PT') is a pointer
to another value. A "pointer" is the MAD/I counterpart of a
computer storage address, but is not necessarily implemented as
a simple address. The attribute keyword takes an optional
suffix, which must be a declaration-string, to describe the
value poinrted to. If the suffix is omitted, the usual default
is not applied; rather, the value pointed to is considered as
"not declared". 'POINTER' mode has implied 1length 4 and

alignment 4.
Examples:
'DCL' P1 'POINTER®' 'INTEGER"

declares variable P1 to have 'POINTER' mode, with values that
point to values of 'INTEGER' mode.

'*DCL' P2 'PT' 'PT!

declares that the value of P2 is a pointer to a pointer to a
"not declared" value.

This mode has a pre-defined constant, 'NULL PT' , whose
value is a "null" pointer; it does not point to a valye. Other
pointer constants may be defined as described im Secticns
2.1.4.3 and 4.2.10.

Part I -- Description of the MAD/I Language

Section 3: Attributes 45

3.1.2.5 _'ENTRY POINT'_ mode

An item of 'ENTRY POINT' mode (abbreviation 'EP') names a
point in some program which can receive a transfer of control,
and which has the special properties of an "entry point"
described Dbelow. The attribute keyword takes an optional
suffix, which must be a declaration-string, to describe the
value produced as a result of "calling" the designated entry
point. If the suffix is omitted, the 'DEFAULT' declaration is
applied. Every entry point has the following properties:

(1) It can receive either "go to" or "call" transfers of
control.

(2) It can receive transfers ("call" or "go to") fronm
external procedures as well as procedures within the
Same progranm.

As a consequence, an entry point is more "expensive" than an
ordinary transfer point, since it must perform whatever rituals
are required by program linkage conventions. Also, some entry
points take parameters, whereas transfer points cannot.

An item may be declared 'ENTRY POINT' in several ways:
(1) Explicitly, with the 'YENTRY POINT' keyword.

(2) Contextually, as an identifier in a procedure-prefix.
For example,

' PROCEDURE' F.(X), G. (Y,Z)
contextually declares F and G as 'ENTRY POINT' .
(3) Implicitly, as a label which is declared 'ACCESSIBLE' .

(4) Contextually, as an identifier G which occurs in either
the context G.(—) or the context "G"E , and has not
been explicitly declared in the block containing the
occurrence,. In this case, if G is not a label in the
program, it is contextually declared ‘'EXTERNAL' as
well.

Any entry point declared only contextually is assumed to produce
result values of default mode.

An item declared 'ENTRY POINT' mnust be an identifier.
Thus, structured values cannot have components or results of
'ENTRY POINT' mode. Also, every entry point must have 'STATIC'
storage class.

Part I -- Description of the MAD/I Language

U6 Section 3:; Attributes

3.1.2.6 'ENTEY NAME' mode

A value of 'ENTRY NAME' mode (abbreviation 'EN') is a
pointer to an entry point, together with additional information
to determine an envircnment for the entry point. The attribute
keyword takes an optional suffix, which must be a declaration-
string, to describe the value produced as a result of calling
the entry point pointed to. If the suffix is omitted, the
'DEFAULT' declaration is applied.

Items of 'ENTRY NAME' mode can be constants, variables, or
expressions. (Note that 'TRANSFER :-POINT' and *ENTRY POINT'
modes do not have variables.) This mode has a pre-defined
constant, *'NULL EN* , whose value is a "null" entry name; it
does not specify an entry point or an environment. Other entry
name constants may be defined as described in Sections 2.1.4.4
and 4.2.10. Their values point to entry points, but they do not
carry environment information; this is filled in when the value
is used.

Unlike entry points, entry names are not restricted to
static storage class. Also, entry names may be passed as actual
parameters to procedures, and may be wused in 'RETURN TO!
statements.

Part I -- Description of the MAD/I Language

Section 3: Attributes 47

3.2 Storage layout Attribute§

Storage layout attributes are applicable to items which are
variables, constants, or expressions. These attritutes
determine both the amount of storage allocated to an item, and
the arrangement of the item's value in the allocated storage.

3.2.1 _length attribute

The "length" attribute of an item specifies the amount of
storage allocated to that item. The attribute keyword *LENGTH'
takes an obligatory suffix of the form (L) , where L is a non-
negative integer constant which specifies the length in bytes.
The length attribute is taken as the maximum of the value of L
and the implied length (if any) implied by other attributes of
the iten.

For example, 'INTEGER LONG' mode has an implied length of 4
bytes. The declaration statement:

'DECLARE' A 'INTEGER',
B 'LENGTH' (2) 'INTEGER',
C 'LENGTH' (6) 'INTEGER'

would cause variables A, B, and C to receive 1length attributes
of 4, 4, and 6 bytes, respectively.

For those modes whose keywords do not take "“length"
suffixes, a declaration of the length attribute has no effect on
the value of the item, but only allows extra storage to be
allocated. In the above example, variable C will get six bytes
of storage, but its values will still be the U4-byte integers of
'"INTEGER' mode.

3.2.2 Alignment attribute

The alignment attribute of an item specifies a constraint
on the positioning of its allocated storage. The attribute
keyword 'ALIGN' takes an obligatory suffix of the form (&) ,
where A 1is ‘an integer constant which specifies the "alignment
factor" for the desired alignment. The only valid values for A
are 1, 2, 4, and 8. The alignment attribute for the item is
taken as the maximum of the value of A and the alignment (if
any) implied by other attributes of the item. The values 1, 2,
4, and 8 correspond to byte, halfword, fullword, and doubleword
alignments, respectively.

Part I -- Description of the MAD/I language

48 Section 3: Attributes

For example, the declaration
'DCL' HH 'ALIGN' (4) 'CHARACTER! (8)

gives variable HH an alignment of 4.

3.2.3 _Dimension attribute

The dimension attribute applies only to items of array
modes (see Sec. 3.1.2.1), and specifies the number of dimensions
of the array, the subscript bounds for each dimension, and the
spacing (in storage) of the components along each dimension.
This attribute does not have its own keyword, but is declared as
part of the mode declaration.

Part I -- Description of the MAD/I Language

Section 3: Attributes 49

3.3 Scope Attributes

Unlike the other attributes discussed so far, scope
attributes are concerned with names rather than values. Scope
attributes apply only to names which are identifiers, and
represent properties of the identifier itself. Scope attributes
are closely related to the block structure of programs, and to
the '"renaming convention" which allows the use of the same
symbol as different names in different contexts. These concepts
are discussed in Section 7.

There are two scope attributes: ‘'"scope"™ and "“owner",
defined loosely as follows:

The scope of a name is that portion of a program (or set of
programs) in which the name is uniquely "known". The scope of a
name always includes the program text internal to the block in
which the name is declared (explicitly or implicitly), and
always excludes the scope of any other name represented by the
same symbol,

The owner of a name is that block which provides the
storage associated with the name. This 1is significant for
external names, whose scopes extend to more than one progran.

Neither of the scope attributes has a direct attribute
keyword. Instead, MAD/I has a combination of language
conventions and scope-controlling keywords, which allow the user
precise control of these attributes. The keywords are: *'NEW',
*NOTNEW', ‘'GLOBAL', 'EXTERNAL', and 'ACCESSIBLE'; they are
applied 1like ordinary attribute keywords, and are described
below.

When a name is explicitly declared, it is normally
considered to be '"new" to the "current block" (the smallest
block enclosing the declaration). It is thus a new name, its
scope 1is limited to the current block, and the current block is
its owner. = But this is not always true for contextual
declarations; see Sec. 3.7.1.

"NOTNEW' specifies that the name declared is not new tc the
current block. This keyword causes the scope and ownership of
the name to be extended to the next outer block, as though all

declarations for that name (except the 'NOTNEW' declaration) in
the <current block were written in the next outer block imnstead.

'GLOBAL' specifies " 'NOTNEW' all the way out". A nanme
declared 'GLOBAL' has its scope extended out to all blccks
containing the declaration, in the same manner as for 'NOTNEW'.

If "NOTNEW' or 'NEW' is declared for the special identifier
'DEFAULT', the declaration affects not the scope of *DEFAULT!

Part I -- Description of the MAD/I Language

50 Section 3: Attributes

itself, but rather all names in the current block which are used
but not explicitly or contextually declared. Such names require
a default assumption about their scope, and this is controlled
by 'DEFAULT'. If 'DEFAULT' is declared 'NEW' in the current
block, then such names are considered new to the block; if
'DEFAULT' is declared 'NOTNEW'!, then such names are not
considered new to the block, and thus are known in the next
outer block. If neither 'NEW!' nor 'NOTNEW' is declared for
'DEFAULT', the action is as if 'NOTNEW' were declared.

'"EXTERNAL' (abbreviation 'EXT') specifies that the name is
an "external name", that it has static storage class, and that
its owner is not in the current program (the program containing
the 'YEXTERNAL' declaration). The scope of the name is extended
from the current block to outside the progranm.

YACCESSIBLE' (abbreviation 'ACC') specifies that the name
is an external name, that it has static storage class, and that
its owner is in the current program. The scope of the name 1is
extended from the current block to outside the program. The
same name must not also be declared 'EXTERNAL' in the sane
program, since this would cause conflicting declarations of its
owner.

If two or more external names are represented by the sanme
symbol, they are considered as one name whose scope is the union
of the individual scopes. This rule is applied when programs
are linked together, and allows the scope of a name to extend to
nultiple programs. Ultimately, at run time, some program must
be the unique owner of the nane.

In a 'PROCEDURE' block, the names of all entry points are
contextuwally declared 'NOTNEW', so that the entry points are
known outside the procedure itself. If the procedure is the
outermost block, these names are contextually declared
'ACCESSIBLE!', and thus become external names.

Part I -- Description of the MAD/I Language

Section 3: Attributes 51

3.4 Storage Class Attributes

Every identifier, constant, and expression has exactly one
storage class attribute, which specifies the manner in which
storage is associated with the item. The storage class may be
declared either explicitly or implicitly.

When an item is associated with storage, then we say that
storage is allocated for the item. The storage may be allocated
either "statically" (before run time) or "dynamically" (during
run time). Since storage is used primarily to contain values,
the value of an item is not defined unless storage is allocated

for the itenm.

The storage classes are: static, automatic, based, and
formal parameter. The default storage class is static.

—— ———— s S e

3.4.1 Static storage class

This attribute has the keyword 'STATIC'. It specifies that
storage for the declared item is allocated before run time, and
cannot be de-allocated or re-allocated during run time.

Static storage class is required for external names, and is

therefore explicitly declared by the 'EXTERNAL' and 'ACCESSIBLE'
keywords.

3.4.2 Automatic storage class

This attribute has the keyword '*AUTOMATIC'. It specifies
that storage for the declared item is allocated during run tinme,
whenever the block which owns the item is activated. The
storage 1is de-allocated when the block is terminated. During
the block activation, the storage cannot be re-allocated.

3.4.3 Based storage class

This attribute has the keyword 'BASED'. It specifies that
storage for the declared item is dynamically allocated and de-
allocated during run time, under explicit control of the
progranm. Storage for based variables may be allocated and de-
allocated in either of two ways:

(1) With the .ALLOC. operator and a pointer-valued expression.
(See Section 4.)

(2) With the 'ALLOCATE' and 'DEALLOCATE' statements. (See
Sec. 5.13.)

Part I -- Description of the MAD/I Lanquage

52 Section 3: Attributes

3.4.4 Formal parameter storage_class

This attribute has no keyword. Instead, it is contextually
declared for variables which appear as "formal parameters" in
procedure prefixes (see Sec. 5.7). Formal parameter storage
class 1is a consequence of the "call by reference" convention of
MAD/I. It specifies that storage for the declared item is
dynamically allocated when the formal parameter is "bound" to
its corresponding actual parameter (argument). This "binding"
occurs whenever the procedure 1is activated through an entry
point for which the formal parameter is declared. See Section
5.7 for more information.

Part T -- Description of the MAD/I Language

Section 3: Attributes 53

3.5 Attribute Assignment --_Introduction

Sections 3.5 to 3.9 describe declarations, which specify
attributes of items. The items declared may be identifiers,
constants, or expressions.

Declarations may be explicitly written by the programmer;
these are called explicit declarations. Also, the language
processor may "“infer" attributes which have not been explicitly
indicated, but which are jmplied by the program and the rules of
the language; the inference of an implied attribute is called an
implicit declaration.

Implicit declarations may arise in two ways, by '"context"
or by "default":

The appearance of an item in a certain context can
constitute a contextual declaration for the item.

If an item lacks some necessary attribute, which has Leen
neither explicitly nor contextually declared, then it may
receive a "default" attribute by default declaration.

A declaration may have either "unconditional" or
"conditional" effect; that is, its application to the item may
be unconditional, or may depend upon the absence of prior
declarations. In general, explicit declarations are all
unconditional, default declarations are all conditional, and
contextual declarations can be either. For each item in the
program, its attributes are assigned in the following order:

(1) Assign attributes specified unconditionally. These
attributes must not conflict; if they do, it is an
error.

(2) Assign attributes specified conditionally by contextual
declarations, wherever their conditions are satisfied.

(3) Assign default attributes, wherever needed.

Constants and expressions normally do not require explicit
declarations, since a constant gets default attributes
determined by its lexical class, and an expression gets default
attributes determined by " its operator and operands. However,
the programmer can explicitly control each constant with the @
operator and each expression with the .ASTYPE. and
.ASTYPEOF. operators described in Section 3.9.

The default attributes for variables can differ from klock
to block. They are themselves declarable (See Sec. 3.7.2).

Part I -- Description of the MAD/I Language

54 Section 3: Attributes

3.6 Explicit Declarations

There are three forms of explicit declarations:

(1) The 'DECLARE' statement form.
(2) The "inverted" declaration statement form.
(3) The @-expression fornm.

The three forms are closely related; they are simply alternative
ways of writing declarations. Therefore, much of the syntax of
(explicit) declarations is common to all three forms. This
syntax is described below, both in prose and in syntax notation.
More information on @-class operators will be found in Section
4.2; the 'DECLARE' and ‘'DECLARE DEFAULT' statements are also
treated in Section 5.09.

Every explicit declaration requires: an occurrence of the
item being declared, and a "declaration string" of attribute
keywords and their suffixes. We will defer, for the moment, the
declaration of items which are constants or expressions, and
focus on the declaration of identifiers. The identifiers to be
declared by a given declaration string are written as an
"identifier list", which may be either a single identifier, or a
parenthesized list of identifiers:

identifier-list = identifier | (list , identifier)

Examples: A
(B,C,BETA)
(X)

The declaration string will be applied individually to each
identifier in the list.

A "declaration string" (decln-string) is a sequence of
attribute keyvwords and their suffixes. The sequence is
interpreted from left-to-right, and there is a restriction on
the ordering of the keywords: any keyword which appears after a
structured-mode keyword applies to a ‘"subtype", and must be
legal for that usage. (We will use the general term "subtype"
to talk about a subordinate data object (such as a component) of
a structured mode.) Each keyword, together with whatever suffix
it has, specifies a "declaration" about the identifier or a
subtype. At most one mode declaration may appear for the
identifier itself.

Part I -- Description of the MAD/I Language

Section 3: Attributes

Syntax of decln-string:
decln-string = [list non-mode-decln] [mode-decln]

non-mode-decln = scope-decln | storage-class-decln
| storage-layout-decln

scope-decln = 'NEW' | 'NOTNEW' | *GLOBAL'
| ‘EXTERNAL' | 'ACCESSIBLE!

storage-class-decln = 'STATIC' | 'AUTOMATIC' | 'BASED'

storage-layout-decln = 'LENGTH' (integer)
| 'ALIGN' (integer)

integer = [+ | -] unsigned-integer-symbol

node-decln = primitive-mode-decln | structured-mode-decln

primitive-mode-decln =
'INTEGER SHORT' | 'INTEGER LONG®
| "FLOATING SHORT' | 'FLOATING LONG®
| '"PACKED' [(integer)]
| 'BIT' [(integer)]
| "BOOLEAN'
| 'CHARACTER' [(integer)]
| 'VARYING CHARACTER' [(integer)]
| 'FILE NAME!

structured-mode-decln =
'"FIXED ARRAY' (list , bounds) subtype-decln
| 'VARYING ARRBRAY' (list , bounds) subtype-decln
| 'COMPONENT STRUCTURE' (list , component-decln)
| 'ALTERNATE' (list , component-decln)
| '"POINTER' [subtype-decln]
| 'ENTRY POINT' subtype-decln
| 'ENTRY NAME' subtype-decln

bounds = [integer ...] integer

subtype-decln = [list storage-layout-decln] [mode-decln]

component-decln = [component-name] subtype-decln

Examples of decln-string:

(a) "INTEGER SHORT®

(b) 'PACKED' (7)

(€) 'EXTERNAL®

(d) "BASED' 'ALIGN' (8)
(e) *NOTNEW' 'CHARACTER'
(f) 'FIXED ARRAY' (20)

Part I -- Description of the MAD/I Language

55

56 Section 3: Attributes

(9) "FIXED ARRAY' (5,10) 'LENGTH' (4) 'BIT' (18)
(h) "BASED' 'ALTERNATE' ('INTEGER', 'POINTER' 'BOOL')
(1) 'ALIGN' (8) 'FOINTER!

In example (g) above, the 'LENGTH' declaration follows the
structured-mode keyword, and thus it applies to the components
of the array, rather than to the array itself. In example (i),
the 'ALIGN' declaration applies to the pointer value itself,
rather than the object pointed to. Note that scope and storage

class can not be declared for subtypes; therefore the following

PR

'FIXED ARRAY' (3) 'INTEGER! *BASED!
'*POINTER' 'EXTERNAL' 'FLOATING'

Having defined and illustrated identifier lists and

declaration strings, we will now describe the various forms of
explicit declarations.

Part I -- Description of the MAD/I Language

Section 3: Attributes 57

3.6.1_ _The 'DECLARE' statement form

The 'DECILARE' statement (abbreviation 'DCL') is the ‘"root"
form for explicit declarations. It consists of the statement
keyword 'DECLARE' followed by one or more identifier lists, each
followed by a declaration string, separated by commas.

DECLARE-statement
'DECLARE' list , { identifier-list decln-string }

Note that a decln-string can be ‘"empty"; i.e., it <can be
onmitted. The effect of the 'DECLARE' statement is:

(a) Each identifier in each identifier list is "declared"
in the «current block. This will usually cause it to
be "new" to the current block (see Section 3.3).

(b) In each identifier list, each identifier receives the
attribute specifications defined by the declaration
string (if any) immediately following. These
attributes are specified "unconditionally".

Examples of 'DECLARE' statements:

'DECLARE' A

'DECLARE' (B,C,D,E)

*DECLARE' M,NN,P

*DECLARE' AA 'INTEGER®

'DCL' (BB,CC,DD) 'BOOLEAN'

*DCL' FF 'FIXED ARRAY' (0...5) 'FLOATING',
(6G,HH) 'BASED' 'INTEGER',
FLAGS 'ACCESSIBLE' 'BIT' (32)

Part I -- Description of the MAD/I Language

58 Section 3: Attributes

3.6.2 Inverted declaration_statement form

The "inverted" declaration statement form is provided
solely for programmer convenience. It may be considered as a
"transformation”" of the 'DECLARE' form, in which the 'DECLARE!
keyword is replaced by an attribute keyword, which is extracted
from the declaration string. Some example pairs of equivalent
statements:

'DECLARE' A '"INTEGER!
'"INTEGER' A

'DECLARE' B 'FIXED ARRAY' (4,4) 'FLOATING'
'FIXED ARRAY' B (4,4) 'FLOATING'

'DCL' (C,D,E) *CHARACTER' (50), F 'CHARACTER' (5)
"CHARACTER' (C,D,E) (50), F (5)

Each inverted declaration statement consists of an
attribute keyword (which also functions here as a statement
keyword) followed by one or more identifier lists separated by
commas; each identifier list may be followed by whatever suffix
the keyword needs, followed by the remainder of the desired
declaration string.

inverted-declaration-statement =
attribute-keyword list , { identifier-list
[decln-suffix] [decln-string] }

decln-suffix = (integer)
| (list , bounds) [subtype-decln]
| (list , component-decln)
| subtype-decln
The inverted statement is treated as though it were transformed
to a 'DECLARE' statement by replacing the initial attritute
keyword with 'DECLARE', and inserting the attribute keyword
immediately after each identifier list.
More examples of inverted declaration statements:
'*INTEGER' A,B,C
'LENGTH' S (10), T (8) 'INTEGER', U (8) 'CHARACTER'

'BASED' (L,M,N) 'INTEGER', (P,Q) 'BOOLEAN',
STR 'COMPONENT STRUCTURE' (*BIT* (8), 'BIT' (24))

Part I -- Description of the MAD/I language

Section 3: Attributes 59

3.6.3 The_a-expression_form

The @d-expression declaration form is included primarily for
specifying the attributes of constants, but it may also be used
for identifiers. This form allows an explicit declaration to be
attached to an ordinary occurrence of an identifier or constant
in an expression. The declaration consists of the item Leing
declared, followed by the infix operator @ , followed by a
parenthesized declaration string:

d-expression = {identifier | constant} @ (decln-string)

The effect of the @-expression for an identifier is the same as
that of a 'DECLARE' statement with the same identifier and
decln-string. The effect for a constant will be discussed 1in
Section 3.8. The result of the expression is the same as the
result of the identifier or constant.

Exanrles: ABC @ ('INTEGER')

17 @ ('PACKED' (5))
"00C1C2C3" @ ('CHARACTER')

Part I -- Description of the MAD/I Language

60 Section 3: Attributes

3.7 Implicit Declarations

3.7.1_ _Contextual Declarations

Contextual declarations are those which are implied by the
usage of items in certain particular contexts. An appearance of
an item in one of these contexts constitutes a contextual
declaration about the item. The following contexts are defined:

Statement label. If an identifier appears before the
special symbol : in front of a (possibly empty) statement,
that identifier is contextually declared as a label , and as
"new" to the current block.

Procedure-prefix _entry _point. Each i@éntifier ~which
appears as an entry point in a proc-prefix (Sec. 5.7) is
contextually declared as:

(a) a label;
(b) "notnew" to the procedure block;
(c) of '"ENTRYPOINT' mode.

If the procedure block 1is the outermost block, each such
identifier is contextually declared 'ACCESSIBLE' as well.

Procedure-prefix_fcrmal parameter. Each identifier which
appears as a formal parameter in a proc-prefix is contextually
declared as a variable, "new" to the procedure block, and of
formal parameter storage class.

Procedure-call. If an identifier appears as the left
operand of the procedure-call operator (.), it is contextually
declared as 'EXTERNAL' and ‘'ENTRYPOINT'. This 1is specified
"conditionally", so that if any explicit declarations appear for
the identifier, the contextual declaration will not be appiied.
The scope of the identifier is otherwise not affected. If the
identifier appears as a label in the program, the 'EXTERNAL'
specification is not applied.

Part I -- Description of the MAD/I Langquage

Section 3: Attributes 61

3.7.2 Default Declarations

MAD/I does not require that the attributes of each
identifier be declared completely. For example, if a variable
is declared to have an array mode, but the mode of the array
components is not explicitly declared, this is not an error. 1In
each program block there is a set of default attributes, which
are used to "fill-in" attributes which have been neither
explicitly nor contextually declared. There are default
attributes for storage class and mode, and a default rule for
determining the scope attribute. 1In each block, the default
information for that block 1is associated with the special
identifier 'DEFAULT' , which is itself declarable as descrited

below.

The rules for applying default attributes to a given
variable in a given block are:

(1) If the variable has been used in the block, but has not
been explicitly or contextually declared, then its scope
with respect to this block is determined from 'DEFAULT' as
follows:

(a) If 'DEFAULT' is declared *NEW' or 'NOTNEW' in
this block, the variable is "new" or "notnew" to the
block, respectively (see Sec. 3.3).

(b) If 'DEFAULT' is not declared either 'NEW' or
'NOTNEW' in this block, the variable is “"notnew" --
the usual case.

(2) If the variable has no storage class specified, apply the
default storage class. This may be any storage class cther
than formal parameter.

(3) If the variable has no mode specified, apply the default
mode. If the variable has a structured mode specified, but
some subtype (e.g., component, result) mode is not
specified, then apply the default mode to each such
subtype.

The rule for applying default attributes to a given label
in a given block is: if the label has no mode specified, apply
'TRANSFER POINT' mode; if the label has 'ENTRY POINT' mode but
the subtype mode is not specified, apply the default mode to the
subtype.

Part I -- Description of the MAD/I Language

62 Section 3: Attributes

The default information itself is declarable for each
block. It can be explicitly declared in any of three ways:

(1) With the 'DECLARE DEFAULT' statement (abbreviation *'DCLD';
see Section 5.9).

E.g., 'DECLARE DEFAULT' 'INTEGER LONG'

(2) With a 'DECLARE' statement with 'DEFAULT' in an identifier
list.

E.g., 'DECLARE' 'DEFAULT' 'AUTOMATIC" 'FLOATING'

(3) With an inverted declaration statement with *'DEFAULT' in an
identifier list.

E.g., 'FIXED ARRAY' 'DEFAULT'(3) 'FLOATING'

If the default information for a block 1is not completely
explicitly declared, then the missing attributes are "filled in"
from the defaults of the next outer block. For this purgose,
the outermost program block is considered as contained in an
imaginary block with defaults 'STATIC' 'FLOATING SHORT'. For

example, if the outermost program block contained the -

declaration
'DECLARE DEFAULT' 'FIXED ARRAY!' (3)

and no other explicit declaration of defaults, then the defaults
for that block would be

Storage-class: '*STATIC®
Mode: 'FIXED ARRAY' (3) 'FLOATING SHORT' .

Part I -- Description of the MAD/I Language

Section 3: Attributes 63

3.8 Attributes of Constants

As previously described in Sections 2.1 and 2.2.2,
constants have various external forms, which we call "lexical
classes", For each constant, the compiler must be able to
compute an appropriate internal form for computation. MAD/I
allows the explicit specification of attributes of constants,
and provides that the conversions from external to internal
forms are controlled by both 1lexical class and additional
attributes.

For each lexical class of constant symbol, there is a
standard conversion to a specific mode. The programmer can use
the) operator to declare additional attributes of an
occurrence of a constant symbol. The 'LENGTH' and ‘'ALIGN'
attributes can be used to adjust the storage allocation and
positioning of the internal form. For some lexical classes, the
mode attribute is also declarable. All constants have only
'STATIC*' storage class. The rules for the various lexical
classes are described below. The <conversion rules themselves
are not declarable, nor are they affected by the defaults
established for identifiers.

3.8.1 Unsiqned-integer symbols

Standard conversion: '"INTEGER LONG' mode.

Alternate conversions: 'INTEGER SHORT', 'FLOATING SHORT',
'FLOATING LONG', 'PACKED' (with optional length).

Example: 305@('IS') converted to 'INTEGER SHORT'.

3.8.2 _Unsigned-floating-point symbols

Standard conversion: *FLOATING SHORT' mode.
Alternate conversion: "FLOATING LONG'.

Example: 12.372(*FL') converted to 'FLOATING LONG'.

3.8.3 Character symbols

Standard conversion: 'CHARACTER' mode, with length equal to
the number of characters represented between the quotes.

Alternate conversion: '"CHARACTER' mode, with length greater
than that implied by the symbol; the internal form is
extended on the right with character-£fill characters
(blanks) .

Part I -- Description of the MAD/I Language

Section 3: Attributes

ard conversion: 'INTEGER LONG' mode; the hexadecimal
digits are treated as an integer expressed in base 16.

64

Example: "ABCDE"® (*CHARACTER"' (8))
3.8.4 Hexadecimal symbols

Stand

Alter

nate conversions: ‘'INTEGER SHORT' mode: base 16 integer.
'PACKED' mode: Lase 16 1integer. 'CHARACTER' mode: the
hexadecimal digits are treated as a bit string, and are
left-justified in the storage allocated for the constant,
with trailing zero bits as fills. "FLOATING SHORT' and
'"FLOATING LONG' modes: bit string left-justified, with
trailing zero bits as fills.

Example: "O1FF"Xd (*'C' (5)) converted to 'CHARACTER' mode.

3.8.5 _Pointer-constant_symbols

Standard conversion: 'POINTER' mode.

Alternate conversions: none.

3.8.6__Entry-name_constant_symbols

Standard conversion: *ENTRY NAME' mode.

Alternate conversions: none.

Part I -- Description of the MAD/I Language

Section 3: Attributes 65

3.9 Attributes of Expressions

Most expressions need not have their attributes explicitly
declared. Instead, an expression's attributes are implicitly
"synthesized" from the attributes of its operands, according to
a "mode context" rule of its operator. But sometimes the
implied attributes cannot be synthesized because of incomflete
information (e.g., a pointer value may point to an "undeclared"
value) . Also, a programmer may occasionally need to “override"
the implied attributes. Thus, there are two pre-defined
operators which allow the programmer to explicitly declare
attributes of expressions; these are the .ASTYPE. and
.ASTYPFOF. operators, described below.

.ASTYPE. (abbreviation .AS.) 1is an infix operator which
takes an expression as its 1left operand and a parenthesized
declaration string as its right operand:

astype-expression = expression .ASTYPE. (decln-string)

The result of the astype-expression is exactly the result of
"expression", but with the mode and storage-layout attriktutes
specified by "decln-string"; the storage class of the result is
always the storage class of "expression".

For example, suppose we wish to create a "translate table"
of characters, such that for each integer which is the internal
code of a character, the table maps that integer to the
'CHARACTER' mode value which has that internal code. Thus, the
table defines an "identity" translation on character codes. Let
the table be named TTC; it might be constructed for the IBM 360
by the following program segment:

'DCL* I 'INTEGER', IB 'BIT'(8),
TTC *FIXED ARKRAY' (0...255) 'CHARACTER' (1);

'FORY I:=0,1,I>255; 1IB := I;
TTC(I) := IB .ASTYPE. ('C') 'ENDFOR'

This example assumes (correctly) that the length and alignment
of a variable declared 'BIT'(8) will satisfy the requirements of
'CHARACTER' (1). All uses of .ASTYPE. and .ASTYPECF. involve
such assumptions; it is the programmer's responsibility to be
sure they are correct.

Part I -- Description of the MAD/I lLanguage

66 Section 3: Attributes

.ASTYPEOF. is an infix operator which takes an expression
as its left operand and a parenthesized variable as its right
operand:

astypeof-expression = expression .ASTYPEOF. (variable)
The result of the astyreof-expression is exactly the result of
"expression", except that its mode and storage-layout attributes

are copied from "variable",

For example, in the "translate table" example descrited
above, we could have written:

'DCL' I 'INTEGER', IB 'BIT'(8), CHAR 'C'(1),
TTC *FIXED ARRAY' (0...255) 'C';

'FOR' I:=0,1,I>255; 1IB := I;
TTC(I) := IE .ASTYPEOF. (CHAR) 'ENDFOR!

Part I -- Description of the MAD/I Language

Section 4: Expressions 67

Section U4: Expressions

4.0 Basic Concepts

An expression is a syntactic form which specifies the
computation of a cresult. An expression can be a "primitive
expression" (such as a constant or identifier), whose result
requires 1little or no computation, or a "composite expression"
(such as A+ (B*C), VT (I), or .ABS.X), whose result 1is ottained
from an operation upon the result(s) of one or more sub-
expressions, or an "embedded statement", which is described
later. Each composite expression consists of an operator, with
one or two adjoining "operand expressions" whose results are the
operands for the operation. The operation itself is determined
by the operator, together with selected attributes (such as
mode) of the operand expressions.

The result of an expression is either a reference or a

value. A "reference" 1is, in effect, a "location" -- an

identification of a region of storage which contains a value
(primitive or structured). An expression which produces a

—— . e i o e e

Note: A "reference" is not the same as a "pointer"“. A pointer
is a type of value which corresponds to a reference, tut
which can be copied and otherwise manipulated.

Example_expressions Designator?
ALPHA Yes
VECT (1,J) Yes
AA + BB No
FN. (X) No
V=1 Yes
"ABCM No
-10 No
.IND. PTR Yes
A ** _ABS.B No
(A+R) / (C-D) No

Any expression can be enclosed in parentheses without
affecting its meaning. Parentheses so used act as "grouging
marks" only, and do not convert an expression into a "list" or
"sequence".

The operators, besides being categorized as prefix,
postfix, infix-left, and infix-right (see Sec. 2.2.4), are also
assigned precedences ("precedence levels", “priorities",
"binding strengths"). Operator precedences are used in the
usual way to resolve the structure of expressions which are not
fully parenthesized, and which might otherwise be syntactically

Part I -- Description of the MAD/I Language

68 Section 4: Expressions

ambiqguous. See Sec. 4.3 for the precedences of the pre-detined
operators.

The order of computation of a composite expression is only
defined as constrained by the structure of the expression,
together with the interpretation rules of the individual
operations. In particular, we do npot say that an expression is
normally evaluated "left-to-right". For example, in the
expression (A+B)*(C+D), the sub-expressions A+B and C+D must
both be evaluated before the * operation, but they may be
evaluated in either order.

Expressions are used (syntactically) to build statements.
That is, an expression can constitute a statement or a part of a
statement. Likewise, it is possible to use statements to build
expressions. Any MAD/I statement can be made into a
parenthesized statement which produces a well-defined result;
such statements are called "embedded statements", and they
qualify as expressions. See Sec. 5.6 for more information on
embedded statements.

We will occasionally wish to talk about expressions which
produce results of certain modes. We will use the tern
"arithmetic expression" to refer to any expression which
produces a result of an arithmetic mode: 'INTEGER SHORT',
'"INTEGER LONG', 'FLOATING SHORT', 'FLOATING LONG', or 'PACKED'.
We will also use the term "character-string expression" to refer
to any expression producing a result of 'CHARACTER' or 'VARYING
CHARACTER' mode. Similarly, "arithmetic designator" and
"character-string designator" refer to arithmetic and character-
string expressions which produce reference results.

4.1 _Primitive Expressigcns
There are only two kinds of primitive expressions:
identifiers and constants.

An identifier (a variable or a label) produces a reference
result -- a reference to the storage currently allocated for the
identifier, which 1is assumed to contain the value of the
identifier. If no storage is so allocated, this is an error
condition, and the result is undefined.

A constant produces a value result -- the value denoted by
the constant. A constant may or may not be explicitly
represented in the object module; it may or may not have
associated storage.

Part I -- Description of the MAD/I Language

Section 4: Expressions 69

4.2 Operations

The various pre-defined operations are listed below. For
each operation there is a pre-defined operator which denotes
that operation in some contexts. The contexts are all defined,
unless otherwise indicated, by the mode attributes of the
operand expressions. Thus, for each operation and corresponding
operator, we give those pre-defined "mode contexts" for which
the operator denotes the operation and the operation is defined.
We also give the mode and type of the result.

Legend for context tables:

The various 1st operand modes 1label the rows, and the
various 2nd operand modes label the columns. Each row-
column position corresponds to a potential mode context for
the operator. Each blank position defines an invalid mode
context; each non-blank position defines a valid mode
context. A non-blank table entry has one of two forms: (1)
A mode abbreviation of one or two letters, meaning that the
operation 1is defined for this context, and the result has
the mode indicated. (2) A digit (1 or 2) followed by a
mode abbreviation, meaning that a copy of the 1st or 2nd
operand (as indicated by the digit) is converted to the
mode indicated, and the table is re-entered with the new
mode context.

4,2.1 Arithmetic_operations

The arithmetic operations are primarily defined on the
following "arithmetic modes":

Keyword (Abbrev. _For_Tables)
'INTEGER SHORT!' IS
'INTEGER LONG! IL
'"FLOATING SHORT! FS
'FLOATING LONG?! FL
*PACKED" PK

Some arithmetic operations are also defined for some contexts
using the "semi-arithmetic" modes:

'BIT! BT
"POINTER" PT

The arithmetic operations are as follows:

Part I -- Description of the MAD/I lLanguage

70

Addition (binary), denoted by "+"; e.g., "A + B".

Section 4:

Expressions

The operand-

result contexts are summarized in the table below.

wew | FL | FS | IL | IS | PK | BT | PT |
it + +——rt t 4 |
FL | PFL | 2FL | 2FL | 2FL | 2FL | | 1IL |
FS | 1FL | FS | 2FS | 2FS | 2FS | | 1IL |
IL | 1FL | 1FS | IL | 2IL | 2IL | 2IL | PT |
IS | 1FL | 1FS | 1IL | IS | 2IS | 2IS | PT |
PK | 1FL | 1FS | 1IL | 1IS | PK | | 1IL |
BT | | | 1IL | 1IS | | BT | |
PT | 2IL | 2IL | PT | PT | 2IL | I I
]

Subtraction (binary), denoted by "-"; e.g., "A - B". The

result

is a value -- the value of the 1st operand minus the value
See the following table.

of the 2nd operand.

w-w | FL | FS | IL | IS| PK | BT | PT |
% 4 + + + +——rt |

FL | FL | 2FL | 2FL | 2FL | 2FL | | |
FS | 1FL | FS | 2FS | 2FS | 2FS | I |
IL | 1FL | 1FS | IL | 2IL | 2IL | 2IL | [
IS | 1FL | 1FS | 1IL | IS | 2IS | 2IS | |
PK | 1FL | 1FS | 1IL | 1IS | PK | | I
BT | [| 1IL | 1IS | | BT | |
PT | 2IL | 2IL | PT | PT | 2IL | | IL |
J

1

Multiplication (binary), denoted by "*"; e.g., "A * B". The
-- the product of the operand values.

result

is

a

value

See the following table.

wkw | FL | FS | IL | IS | PK | BT |

t 1 + + + + |

FL | FL | 2FL | 2FL | 2FL | 2FL | |
FS | TFL | FS | 2FS | 2FS | 2FS | |
IL | 1FL | 1FS | IL | 2IL | 2IL | 2IL |
IS | 1PL | 1FS | 1IL | IS | 2IS | 2IS |
PK | 1FL | 1FS | 1IL | 1IS | PK | |
BT | | | 1IL | 1ISs | { BT |

J

Division (binary), denoted by "“/"; e.g., "A / B". The result is

a value
operand value by the 2nd operand value.

the

quotient

obtained by dividing the 1st

If both operands

have integer-like (not floating-point) modes, the operation
is "integer division".

above.

See the table for

multiplication,

Part I -- Description of the MAD/I language

Section 4: Expressions 71

Remainder (binary), denoted by ".REM."; e.g., "I .REM. J", The
result is a value -- the remainder obtained from dividing
the 1st operand value by the 2nd operand value. See the
following table.

“.REM."| IL | IS | PK | BT |
+ : ¢ ¥ |

IL | IL | 2IL | 2IL | 2IL |

IS | 1IL | IS | 2IS | 2IS |

PK | 1IL | 1IS | PK | |

BT | 1IL | 1IS | | BT |

J

Negation (unary), denoted by ".NEG." (or prefix "-"); e.g.,
"_NEG. A", "-pAnw, The result is a value -- the arithmetic
negative of the operand value. See the following table.

".NEG."| FL

{
+
|

F

wn

IL IS | PK

l |
o l l
T +

f{ IS | PK |

! |
+ :
FL | |

FS IL

Absolute value (unary), denoted by ".ABS."; e.g., ".ABS. A",
The result 1is a value -- the value of the operand if that
is non-negative, otherwise its negative. See the table for
negation, above.

Exponentiation (binary), denoted by "**"; e.g., "A %% B", The
result is a value -- the 1st operand value raised to the
power of the 2nd operand value. See the following table.

wkxw| FL | FS | IL | IS | PK | BT |
+ % 1 4 + + |

FL | FL | 2FL | PL | 2IL | 2IL | 2IL |
FS | WFL | FS | FS | 2IL | 2IL | 2IL |
IL | 1FL | 1FS | IL | 2IL | 2IL | 2IL |
IS | 1FL | 1FS | 1IL | 1IL | 2IS | 2IS |
PK | 1FL | 1FS | 1IL | 1IS | IL | |
BT | I | 1IL | IS | | BT |
d

Part I -- Description of the MAD/I language

72 Section U4: Expressions

4.2.2 Relational operations

The six pre-defined relational operations are described as
a group. The result of each is a Boolean value -- representing
whether the operand values satisfy the specified relation.
Equality (binary), denoted by "="; e.g., "A = B",

Inequality (binary), denoted by "-=" and ".NE."; e.g., "A -~= BY,
"A. NE. B",

Greater-than (binary), denoted by ">"; e.g., "A > B".

Greater-than-or-equal-to (binary), denoted by ">="; €.G.,
"A >= BN,

less-than (binary), denoted by "<"; e.g., "A < B",
Less-than-or-equal-to (binary), denoted by "<="; e.g., "A <= B".

All six operations are defined for the mode contexts shown
in the following two tatles:

REL'N| FL | FS | IL | IS | PK | BT |
+ + 1 t + + [
FL | BL | 2FL | 2FL | 2FL | 2FL | i
FS | "FL | BL | 2FS | 2FS | 2FS | |
IL | 1PL | 1FS | BL | 2IL | 2IL | 2IL |
IS | 1FL | 1FS | 1IL | BL | 2IS | 2IS |
PK | 1FL | 1FS | 1IL | 1IS | BL | I
BT | I | 1IL } 1IS | i BL |
d
REL'N|] BL | BT | VC | C |
} + + + |
BL | BL | 2BL | | I
BT | 1BL | BL | | I
ve | | | BL | BL |
C | | { BL | BL |
J

Boolean values are compared by interpreting 'TRUE' as "1"
and 'FALSE' as "O". Character strings are compared according tc
the collating sequence of the character set. If the two
character strings have different 1lengths, the shorter string
value is extended on the right with character-fill characters
(blanks) before comparison.

Part I -- Description of the MAD/I Language

Section 4: Expressions 73

The equality and inequality operations are also pre-defined
for operand pairs of the following modes:

'POINTER! (PTI, PT)

'ENTRY NAME' (EN, EN)

4.2.3 Boolean operations

The Boolean (logical) operations are defined on operands of
Boolean and Bit modes only; they all produce Boolean value
results which depend upon the values of the operands. Bit mode
operands are converted to Boolean mode.

Logical negation (unary), denoted by "-" and ".NOT."; e.g.,
L1 . Pll' II.NOT. Pll.

Logical "and" (conjunction) (binary), denoted by "&" and
"_AND."; e.g., "P & Q", "P .AND. Q". If either operand is
'FALSE', the other operand expression possibly may not be
evaluated.

Logical "or" (disjunction) (binary), denoted by "|" and ".OR.";
€.g., "P | Q", "P .OR. Q". If either operand is 'TRUE',
the other operand expression possibly may not be evaluated.

Logical "exclusive or" (binary), denoted by ".EXOR."; e.g.,
"p .EXOR. Q".

Logical "implication" (binary), denoted by ".THEN."; e€.g.,
"p .THEN. Q". The result is 'FALSE' if the 1st orperand is
'*TRUE' and the 2nd operand is 'FALSE'; otherwise, the
result is 'TRUE'. If the 1st operand is 'FALSE' or the 2nd
operand is 'TRUE', the other operanda expression possibly
may not be evaluated.

Logical 1"equivalence" (binary), denoted by ".EQV."; €.q.,

“p ,EQV. Q". The result is 'TRUE' if the operand values
are equal, and 'FALSE' otherwvise.

Part I -- Description of the MAD/I language

74 Section 4: Expressions

4.2.4 Bit-string operations

The bit-string operations are defined on operands of all
modes except 'TRANSFER POINT' and 'ENTRY POINT'. The result is
always a bit-string value, with the same mode and length as the
1st operand.

The_bitwise logical operations:

The operand values are treated as bit strings. The Dbinary
operations "and", "or", and "exclusive or" require equal-length
operands.

Bitwise negation (unary), denoted by ".N."; e.g., ".N. A". Each
bit of the result 1is the negation (complement) of the
corresponding bit of the operand.

Bitwise "and" (binary), denoted by ".A."; e.g., "A .A. B". Each
bit of the result 1is the "and" (conjunction) of the two
corresponding bits of the operands.

Bitwise "or" (binary), denoted by ".V."; e.g., "A .V. B". Each
bit of the result is the Y“or" (disjunction) of the two
corresponding bits of the operands.

Bitwise ‘"exclusive or" (binary), denoted by ".EV."; e€.g.,
"A _EV. B". Each bit of the result is the "exclusive or"
of the two corresponding bits of the operands.

The bitwise shift operations:

The first operand value is treated as a bit string. The
second operand must have an arithmetic mode or 'BIT' mode; its
value is converted (if necessary) to an integer value, which
must be non-negative and is used as the shift count. The result
is a new value; neither operand is affected.

Bitwise-logical left shift and right shift (binary), denoted by
n.LS." and ",RS.", respectively; e.g., "A .LSs. J",
A .RS. J". The 1st operand value is shifted 1left (or
right) by the. number of bit positions specified by the
shift count. If the shift count is negative the operation
is undefined. The bit string stays the same length; Lits
shifted off either end are lost, and vacated bit rfpositions
are filled with 0 bits.

Bitwise-arithmetic left shift and right shift (binary), denoted
by ".LSA."™ and ".RSA.", respectively; e.g., "A .LSA. J",
A (RSA. J". The first operand value 1is treated as a
binary representation of a signed integer. It is shifted
left (or right) by the number of binary digits specified by
the shift count. If the shift count is negative the

Part I -- Description of the MAD/I Language

Section U4: Expressions 75

operation is undefined. The binary integer stays the same
length; it is =<shifted so as to preserve its sign, and
effect multiplication (or division) by a power of two.
Digits shifted off either end are lost.

4.2.5 Character-string operations

Concatenation (binary), denoted by "||" and ".CONCAT."; e.q.,
"a ||y B8", "A .CONCAT. B". Both operands must be of
character-string modes: 'CHARACTER' or 'VARYING CHARACTER'.
The result is a value -- the 1st operand value concatenated
with (followed by) the 2nd operand value. The 1length of
the result 1is the sum of the (current) operand lengths.
The result mode is 'CHARACTER' if both operands are of
'"CHARACTER' mode, and 'VARYING CHARACTER' otherwise.

4.2.6 Selection operatjons

Selection by component name (binary), denoted by "$"; e.qg.,
"A $ QNAME", The 1st operand must be a reference of a
structured mode allowing named components ("COMPONENT
STRUCTURE' or 'ALTERNATE'). The 2nd operand must be a
component name which names some component of the 1st
operand. The result is a reference of the named component;
its mode, length, and other attributes are obtained from
the subtype-decln part of the component declaration.

Selection by subscript value (n-ary), denoted by ".TAG." or
implied by the syntactic context " expression ("; e.g.,
"A .TAG. I", "A(I)", "A(I,J)", " (EXP) (K)". The 1st operand
must be a reference of a structured mode allowing numtered
components (*FIXED ARRAY', ‘'VARYING ARRAY', 'COMPCNENT
STRUCTURE', 'ALTERNATE'). The remaining operands must have
values convertible to integers (arithmetic or 'BIT' modes),
and are interpreted as an ordered set of subscript values.

If the 1st operand has ‘'COMPONENT STRUCTURE' or
'"ALTERNATE' mode, there must be exactly one subscript. The
integer subscript value must be at least 1 and not greater
than the number of declared components. If the subscript
expression is a constant (with possible sign), then the
mode and other attributes of the result are obtained from
the subtype-decln in the component declaration. If the
subscript 1is not a constant, the attributes of the result
cannot be synthesized by the compiler; then the attritutes
are considered "undeclared", and are usually attached with
an .ASTYPE. or .ASTYPEOF. declaration.

If the 1st operand has an array mode, there must be
exactly as many subscripts as the array's dimension

Part I -- Description of the MAD/I Langquage

76 Section 4: Expressions

attribute specifies. Each integer subscript value must be
in the range defined by the corresponding lower and upper
subscript bounds; otherwise the result is undefined. The
node and other attributes of the result are obtained from
the subtype-decln in the mode declaration of the array.

In any case, the result is a reference of the selected
component.

Substring selection (ternary), denoted by ".TAG." or implied by
the syntactic context " expression {("; e.g., "“CH(I)",
"A .TAG. (I,J)", "CH(I,J)". The ist operand must have a
character-string mode ('CHARACTER' or 'VARYING CHARACTER'),
and may be either a reference or a value. Its value 1is the
character string (possibly null) in which a substring is to
be selected. Let S denote the string and 1let m be the
current string length. The 2nd and 3rd operands must have
values convertible to integers. Let j and k be the integer
values of the 2nd and 3rd operands, respectively; these are
interpreted as the position and length of the desired
substring. We require that j>0 and k20. The 3rd operand
may be omitted; if it is, k=1 is assumed. The 3rd operand
may also be the special symbol # ; if it is, k=m-j+1 is
assumed. If j>m or if Jj+k-1 > m, the operation is
undefined. Otherwise the substring is S(3j) -- S(j+k-1).
The result is a reference or value according as the 1st
operand is a reference or value. If the 3rd operand
expression is an integer constant or omitted, then the
result is 'CHARACTER' mode with length k; otherwise the
result is 'VARYING CHARACTER' mode, with current length k.

4.2.7 Procedure-call operation

Procedure-call (n-ary) is denoted by "."; e.g., "F.X",
"G. (X,Y)". The 1st operand must have either 'ENTRY POINT' or
'"ENTRY NAME' mode; it may be either a reference or value. This
operand identifies a procedure entry point to be called. The
remaining operands (if any) may be references or values; they
are the actual parameters to be passed to the procedure. Those
parameters which are values are held in temporary storage, and
are replaced by references of their allocated storage.

There are also two phrase keywords which may appear after
the actual parameter 1list; these are 'ERROR EXIT' and 'SAVE
CODE', and are used to examine a possible auxiliary '"return
code" from the called procedure. 'ERROR EXIT' introduces a 1list
of labels; the labels denote places to "go to" for various non-
zero return code values. 'SAVE CODE' must be followed by an
'INTEGER LONG' variable; it is used to save the return code for
later reference.

Part I -- Description of the MAD/I Language

Section 4: Expressions 77

Examples:
RANDOM.
F. (X)
SORT. (N, VA, VB) _
GETLINE. (LINE 'ERROR EXIT' L1)
FN. (P,Q 'ERROR EXIT' L1,L2 'SAVE CODE' RC)

The procedure-call proceeds as follows:

(1) Evaluate the 1st operand expression to determine the
desired entry point.

(2) Evaluate the operand expressions for the actual parameters.
Convert each 'ENTRY POINT' result to 'ENTRY NAME' mode, and
assign the current environment information. (The entry
point named pust be owned by the current block, but this
cannot be checked by the compiler.) Disallow 'TRANSFER
POINT' mode. Allocate temporary storage for those operands

which are values, and let the actual parameter 1list be

(3) Save the current program position and environment
information, and transfer control to the procedure entry
point, in such a way that execution of a ‘'RETURN' will
cause control to be resumed at (4) below.

(4) If a 'SAVE CODE' phrase appears in the procedure call,
assign the return code to the integer variable. (See
Section 14 for implementation.)

(5) If 'ERROR EXIT' appears in the procedure call, examine the
return code. If the return code is zero, proceed to (6)
below; otherwise, transfer control to the statement named
by the k-th 1iabel if the return cocde is k, k=1,2,... If
the return code exceeds the number of labels, the action is
undefined.

(6) The result is the value returned from the procedure; its

attributes are obtained from the subtype-decln part of the
1st operand declaration.

4.2.8 Conversion operations

MAD/I provides a number of operations to convert a value of
one mode to a corresponding value of another mode. In general,
the result is a new value, obtained by copying and transforming
the original value. Most conversions are implied by context and
automatically generated by the compiler. However, the
operations are all binary, and are denoted as a class by the
".CONV." operator; e.g., "A .CONV. ('INTEGER')". This operator

Part I -- Description of the MAD/I Language

78 Section 4: Expressions

requires a parenthesized decln-string as 1its 2nd operand
expression.

The pre-defined cenversions are described below. In the
context table, each position represents a potential conversion
from the row mode to the column mode. A "O" entry means that
the conversion is defined and is trivial; other entries refer to
the text following the table.

to
=

~
=
b e — o ——— ——

IS

g
=

".CONV."| FL BT

o]
wn

1
FL |
FS |
IL |
Is |

i
|
|

| o
g O >
OO U™

PK
BT
BL

QO woOmm
QO oOwHrd

0

—— e - —— - —
=

— e - —— — e o
g

|
4
|
|
I
|
|
|
i

— g — —— — o cn—

|
t
{
|
|
|
|
I
|

[«

(A) The value is extended (or truncated) on the low-order end
to the new length.

(B) The value is extended (or trancated) on the high-order end
to the new length. Truncation of a value not representable
in the new mode will produce an erroneous result.

(C) The value is <converted from decimal to binary, and
truncated (if necessary) to the new length. Information
may be lost if the value is too large.

(D) The value is converted from binary to decimal; the result
is 'PACKED' (16).

(E) The value is converted to binary (if necessary), them to
un-normalized floating-long, then normalized, and finally
truncated (if necessary) to the new length.

(F) The value is extended (if necessary), to floating-long,
then de-normalized to align the integral part, then
converted to inteqger-long, and finally (if necessary)
truncated or converted to decimal.

(G) The bit-string value is interpreted as an unsigned binary
integer, and extended with =zeros (if necessary) on the
high-order end to the new length.

(H) The bit-string is interpreted as 'FALSE' if all bits are 0,
and as 'TRUE' othlerwise.

Part I -- Cescription of the MAD/I language

Section U4: Expressions 79

4.2.9 Assignment operations

Assignment of a value is a binary operation, denoted by
"i=". e,g., "A := B", "VAR := 100". The 1st operand must be a
reference other than a label, and not of 'TRANSFER POINT' or
'ENTRY POINT' mode. The 2nd operand may be a reference or a
value.

The 1st operand expression is evaluated to produce a
reference. Then the 2nd operand expression is evaluated. The
value of the 2nd operand is converted (if necessary) to the mode
and storage-layout attributes of the 1st operand, and replaces
the value identified by the 1st operand. The result is a
reference of the 1st operand.

Assignment is pre-defined for the following contexts; sone
notes are provided to fill in details which are not obvious.

(Arithmetic mode, Arithmetic mode)

(BL, BL) ' BOOLEAN!

(BT, BT) 'BIT' -- extend/truncate on left.

(BT, BL) Set all bits 1 ('TRUE') or O ('FALSE').
(BT, 1IL) Express integer as bit string.

(BT, IS) Express integer as bit string.

(C, O "CHARACTER'; extend/truncate on right.
(VvC, VC) 'VARYING CHARACTER'!

(vc, C) Set current length = fixed length.

(C, VvC) Extend/truncate on right.

(PT, PT) *PCINTER"

(EN, EN) - YENTEY NAME!

(*ENTRY NAME', 'ENTRY POINT') The entry name value points
to the entry point, and the current environment
information is assigned. The entry point must be
owned by the current block; this cannot (in general)
be checked by the compiler.

("ENTRY NAME', 'TRANSFER POINT') The entry name value
points to the transfer point; the environment
information is undefined. The resulting value can be
used in a 'GO TO', but not in a procedure call, nor as
an actual parameter.

Part I -- Description of the MAD/I Language

80 Section U4: Expressions

4.2.10 oOther operaticns

Length of a value (unary), denoted by ".LN."; e.g., ".LN. B".
The operand may be a reference or value of any mode cther
than '"TRANSFER POINT' or 'ENTRY NAME'. The result is a
value of 'INTEGER LONG' mode -- the "length" of the operand
value. For 'VARYING CHARACTER' operands, the "length" is
the current length of the character string.

Association of storage (binary), denoted by ".ALLOC."; e.g.,
"A ,ALLOC. B". The 1st operand expression must be a
variable of based or formal parameter storage class, and of
any mode. The 2nd operand must be a reference or value of
'POINTER' mode. The storage reference determined by the
pointer value is associated with the variable, so that the
variable now has this reference as its result. If the
pointer value equals 'NULL PT', then the variable beccnmes
"not allocated", and its result is undefined.

Create pointer (unary), denoted by ".PT."; e.g., ".RT. B". The
operand must be a reference (of any mode). The result is a
value of 'POINTER' mode corresponding to the reference;
i.e., a pointer to the operand.

Indirect reference (unary), denoted by ".IND."; e.g., ".IND. BE",
The operand must have 'POINTER' mode; its value must be a
non-null pointer. The result is the reference determined
by the pointer; the mode and storage layout attributes are
obtained from the subtype-decln part of the pointer
declaration.

Create a pointer constant (unary; compile-time only), denoted by
".PTCON."; e.g., ".PTCON. (B)". The operand expression nust
be an identifier, and must be enclosed in parentheses. The
result is a constant of 'POINTER' mode corresponding to the
reference of the identifier.

Create an entry-name constant (unary; compile-time only),
denoted by ".ENCON."; e.g., ".ENCON. (B)". The operand
expression must be an identifier, and must be enclosed in
parentheses. The result 1is a constant of 'ENTRY NAME!
mode; it points to the entry point named by the identifier,
but it does not carry environment information.

Part I -- Description of the MAD/I Language

Section U: Expressions 81

4U.3__Operator Precedence_and Class

MAD/I operators are symbols which denote operations (see
Sec. 2.2.4). The orerations themselves are described in the
preceding subsection; we now describe the syntactic properties
of operators.

Every operator has a gsyntactic _class and a precedence
level., The syntactic <class tells how the operator is written

_——— .

with respect to its operand expressions:

Prefix: before its operand expression(s).

— —

Postfix: after its operand expression(s).

Infix-left: between its operand expressions;
associates left-to-right with operators of
equal precedence.

Infix-right: between its operand expressions;
associates right-to-left with equal-
precedence operators.

An operator's precedence level (precedence) determines its
syntactic "binding strength" relative to other operators. An
expression appearing between two operators is ‘"bound" as an
operand expression to one operator or the other as follows:

If the operators have different precedence levels, the
expression is bound to the higher-level operator.

If the operators have the same precedence level, they
must be either both infix-left or both infix-right.
The expression is bound to the left operator if they
are infix-left, and to the right operator if they are
infix-right.

To avoid the possibility of ambigquous constructions, a rule 1is
applied to all operators, both pre-defined and user-defined:

All operators having the same precedence 1level nmust
have the same syntactic class.

Also, parentheses may be used as grouping marks in the usual
way: one or more expressions (separated by commas) may be
enclosed in parentheses, forming a "group" of expressions which
is bound as a unit. This is often necessary in denoting n-ary
operations; e.qg., ARRAY .TAG. (I,J,K) .

Part I -- Description of the MAD/I Language

82 Section 4: Expressions
The following table shows the
arranged from highest precedence

pre-defined

level, and the syntactic class at each 1level. (There
pre-defined postfix operators.)
INFIX]INFIX| |
LEFT|RIGHT|PREFIX]| OPERATORS
X | | | .TAG. . @ .CONV. .ASTYPE. .ASTYPEGF.
| | |
| i X | .ABS. .LN. .PT. .IND. .PTCON.
| i | :
X | i i .LS. .RS. .LSA. .RSA.
| | |
i i X | «N.
| | |
X | | | .A.
| | |
X | i | .V. LEV.
| | |
it X | | **
l | i
| i X | <NEG.
| | |
X | i { * / .REM.
| | |
X | | I+ -
| l |
X | { i il .CONCAT.
l | |
X | | | = == L.NE. > >= < =
| | |
l l X ' - «NOT.
| | |
X | | | & .AND.
[| |
X | | | .OR. .EXOR.
| | |
X | | | .THEN.
| | |
X | | I .ECV.
[| |
| X | { := .ALLOC.
Part I -- Description of the MAD/I lLanguage

operators,
level to lowest precedence

Section 4: Expressions 83

4.4 sSyntax of Expressions

The set of MAD/I operators is extensible, and new operators
may introduce new precedence levels between the existing levels.
Therefore we must resort to unconventional methods to present a
syntax which will describe all possible expressions.

Let precedence levels be denoted by special variables: i,
j» k, 1. Let notations such as ">j" mean "any level higher than
level j". Also let the notation "i®3j" mean "the lower of levels
i and j", and let "+" denote the highest possible level.

Associate with syntax variable "exp" (for "expression") two
precedence level parameters: the precedence "viewed from the
left", and the precedence "viewed from the right". Thus, the
syntax notation "exp(i,j)" will denote an occurrence of an "exp"
with precedence levels i and j as viewed from the 1left and
right, respectively.

Also define syntax variables for the operators, with their
precedence levels as parameters. Thus, "prefix-op(j)" denotes
an occurrence of a prefix operator with precedence level j, and
similarly for postfix-op(j), infix-L-op(j), and infix-R-op(j).

In this extended notation, we now define the formal syntax
of MAD/1I expressions. An example rule is explained below.

exp (+,+) = constant | identifier | embedded-statement
| (list , exp)

prefix-op(j) exp(>j,k)

1]

exp (+, 3oKk)

exp (i°j,+) exp(i,>j) postfix-op (J)

exp(i®j,3%k) = exp(i,2j) infix-L-op(j) exp(>j,k)
exp(i®j,j°k) = exp(i,>]j) infix-R-op(J) exp(23j,k)
expression = exp

For example, the syntax rule
exp (+,3°Kk) = prefix-op(j) exp(>j,k)

means: "A prefix operator with precedence level j, followed by
an expression with any left-precedence greater than j and any
right-precedence k, forms a composite expression with left-
precedence "highest" and right-precedence equal to the lower of
j and k". Referring to the operator table in Section 4.3, vwe

see that this rule can combine ".NEG." and Y"A**B" to get
" _NEG.A**B", but it cannot combine ".NEG." and "A+B" to get
". NEG. A+B".

Part I -- Description of the MAD/I Language

84 Section 5: Statements

Section 5: Statements

5.0 Intgoduction

Each non-empty statement in the language falls into one of
five classes: (i) simple statements, (ii) compound statements,
(iii) prefix statements, (iv) list statements, and (v)
declaration statements. Unless otherwise indicated by the
interpretation of a statement, its successor (at run time) 1is
the statement written immediately after it. Two adjacent
statements are always separated by a semicolon, but the
semicolon is not a part of the statement it follows.

Empty statements

A statement can also be "empty" (consisting of no symbols).
An empty statement specifies no computation; it can, however, be
labeled.

Syntax: statement = empty

Labeled statements

Any statement can be labeled, by prefixing it with an
identifier and a colon; the resulting form is itself a
statement. Labels on declaration statements are permitted.

Syntax: statement = identifier : statement

Simple statements

The simple statements have two general forms:
(1) a single expression;

(2) a simple-statement keyword, possibly followed by one or more
expressions separated by commas or phrase keywords (a
"phrase list").

In case (1), the expression is simply evaluated; it has no
effect other than the effects produced under the rules of
expressions; the result is not saved. Such a statement 1is
usually an assignment, an .ALLOC. expression, or a procedure
call.

In case (2), the exact statement form is determined by the
statement keyword and its associated statement definition. For

Part I -- Description of the MAD/I Language

Section 5: Statements 85

each statement keyword, there is a fixed number of exrressions
which may follow.

Syntax: statement = expression
| simple-stmt-keyword [phrase-list]

phrase-list = list { , | phrase-keyword } expression
Examples: A := B

FN. (X,Y)
"GO TO' LB

Compound_statements

A compound statement is simply a sequence of statements
separated by semicolons and bracketed by a compound-statement
keyword and an end keyword. The resulting form is itself a
statement.

Syntax:
statement = compound-stmt-keyword stmt-seq end-keyword

stmt-seq = list ; statement

—r—

Example:
'BEGIN' A :

B; B := C 'END!

Prefix statements

Each prefix statement form begins with a "prefix part",
consisting of a prefix-statement keyword and a fixed-length
phrase list, such as:

'IF' exprn
or
'FOR' desig := exprn, exprn, exprn

For each such prefix part there are two forms of the prefix
statement: (1) the prefix-part followed by a comma and a single
statement (the "short form"); (2) the prefix-part, possibly
followed by a semicolon and a statement-sequence, and ending
with a matching end keyword (the "long form"). The particular
end keyword which "matches" depends upon the statement keyword;
however, the symbol 'END' is a general-purpose end keyword which
may be used to end any long-form prefix statement.

Prefix statements and compound statements may be properly

nested; each occurrence of a long-form prefix statement requires
its own end keyword.

Part I -- Description of the MAD/I Language

86 Section 5: Statements

Syntax:

statement prefix-stmt-keyword phrase-list

{ , statement
| [; stnt-seq] end-keyword }
Short-form example:
'IF' A > B, B := A

Long-form examples:

(1 'FOR' I =1, 1, I > N;
V(I) := I 4+ 1; W(I) := 0 'ENDFOR'
(2) 'FOR' J := 0, 1, C(J) = 0 "ENDFOR'

Note that in example (2), the prefix is followed immediately by
the end keyword; the "scope" of the statement is empty.

List_statements

A list statement consists of a prefix followed by a varying
nunber of expressions. The prefix begins with a statement
keyword; the form of the rest of the prefix depends upon the
particular statement keyword.

Examples:
'WRITE' ("317%*",1), J, K, L

3

'"PRESET' A:=3, V(1):=1, V(3):

'LIST' X(I), Y(I), Z(I)

Declaration_statements

Declaration statements have two general forms: the
'DECLARE' statement and the "inverted" declaration statements.
They have a special syntax, described in Sections 3.6 and 5.9.
Examples:

'DECLARE" A 'INTEGER', (B,C,D) 'FLOATING®

'BOOLEAN' S1, S2, S3

Part I -- Description of the MAD/I Language

Section 5: Statements 87

5.1 Expression Statements

An expression is also a simple statement. Execution of an
"expression statement" consists of evaluating the expression and
ignoring the result.

Notice that expressions include assignments and procedure
calls.

Examples: V := A + B
BV .ALLOC. (.PT. V)
SORT. (N, A1, A2, KEY)
A + 8B

Part I -- Description of the MAD/I Language

88 Section 5: Statements

5.2 The 'GO TO' Statement

This {(simple) statement has the form:
GO TO*'* S

Here S may be any label or entry point or any expression in
entry name mode. Execution of this statement <causes the
computation to continue at the statement whose label 1is the
value of S.

Examples:

'GO TO' LOOPU4

GO TO' ENTRYB

If the value of S is an entry point (i.e., if it has
appeared in a 'PROCEDURE' definition or has been declared 'ENTRY
POINT') a 'GO TO' statement may be used, even if the statement
it labels 1is not in the same program. In addition, for entry
points one can get parameter substitutions at the same time by a

‘WITH! clause containing a parenthesized 1list of actual
parameters:

'GO TO' S 'WITH' (E(1), E(2), —, E(N))

where the expressions E(i) agree in mode and 1length with the
formal parameters declared for the entry point designated by S.

Part I -- Description of the MAD/I Language

Section 5: Statements 89

5.3__The 'IF' Statement

This (prefix) statement has a prefix of the form
'IF' bool-exprn

where "bool-exprn" is an expression of Boolean mode. Thus,
examples of the short form are: ‘

'IF* X > Y, 'GO TO' S1
'‘IF* A=B & I =J, Q := R + .ABS. T
The general long form is:

'IF' bool-exprn ; stmt-seq
[list 'OR IF' bool-exprn ; stmt-seq}]
L

{;
[R ELSE'; stmt-seq] 'ENDIF'
stmt-seq = list ; statement

The 'OR IF' groups are optional; any number of them may be
used. The 'OR ELSE' group is likewise optional, but only one
'OR ELSE' may appear in a given long-form 'IF' statement. 'OR
ELSE' may be abbreviated as 'ELSE'.

The effect of this statement is to select for execution one
of the statement sequences "stmt-seq". Specifically, the first
Boolean expression "bool-exprm from the left found to be true
causes the execution of the immediately following "stmt-segq".
Here, 'OR ELSE' can be interpreted as "always true", i.e., as
'OR IF' 'TRUE'.

Example long-form 'IF' statements:
'IF* A=B; S :=T + J; I := I-1; 'GO TO' M 'END IF?

'IF' Q < S; I := I+41; 'OR IF' Q > S; I := I-1;
'OR ELSE'; 'GO TO' ST 'ENDIF'

'*IF' J=0; D(J):=1; 'ELSE'; D(J):=D(J)+1 "ENDIF'

Part I -- Description of the MAD/I Language

90 Section 5: Statements

5.4 The 'FOR' Statement

The 'FOR' statement is a prefix statement for specifying
iterations. The statement-keyword and phrase-list are:

'FOR' desig := exprn2, exprn3, exprnl

where "desig" produces a reference of the iteration value,
"exprn2" gives the initial value, "exprn3" gives the increment
value, and ‘"exprn4" is a Boolean expression to test for
completion. The modes of exprn2 and exprn3 must be such that
"desig := exprn2" and "desig := desig + exprn3" are legitimate
expressions. The end-keyword for the 'FOR' statement 1is
'ENDFOR"'.

The interpretation of the 'FOR' statement with scope "stmt-
seq" is as if it had been written as follows:

desig := (exprn2);
L: 'IF' -~ (exprnl);
stmt-segq;
desig := (desig) + (exprn3);
'GO TO' L
'ENDIF'

where "L" represents a local 1label. In other words: the
designator is evaluated to get the reference for the iteration
value; the iteration value is initialized to the value of
exprn2; as long as the value of exprnl4 is 'FALSE', the scope
stmt-seq is executed, followed by incrementing the iteration
value by the 1latest value of exprn3. Note that if exprnd is
'TRUE' on the first test, the scope is not executed at all.

Examples:
(1) 'INTEGER' J,N;
SUM := 0.;
'FOR* J := N, -1, J <0, Y := SUM * X + C(J)

(2) 'FOR' I = 1, 1, CH(I) ="," | I > K, ;
'IF'' I > K, 'GO TO' NOCOMMA

(3) '"POR' I := 1, 1, I > M;
J := 0;
'FOR' S(I) := 0, B(I,J), (J :=J + 1) > M
"ENDFOR?!
'ENDFOR'!

Part I -- Description of the MAD/I Language

Section 5: Statements 91

5.5 __The_ 'FOR_VALUES' Statement

The 'FOR VALUES' statement is another prefix statement for
specifying iterations. The prefix has the form:

'FOR VALUES' desig := (list , exprn)

where "desig" designates the iteration value, and each "exprn"
in the 1list has a mode such that "desig := exprn" is a valid
assignment. The end keyword for the 'FOR VALUES' statement is
'ENDFOR?'.

The interpretation of the 'FOR VALUES!' statement is as
follows:

(1) Evaluate "desig" to determine the iteration value.

(2) Set (local variable) i equal to 1.

(3) Evaluate the i-th "exprn" in the list, and let its value
(with the appropriate conversion, if necessary) replace the

iteration value.

(4) Execute the scope (statement or statement sequence). let
normal sequencing proceed to (5).

(5 If i is equal to the number of "exprn"s in the 1list, the
'FOR VALUES' statement is finished; otherwise, increment i
by 1 and go back to (3).

Examples:
(@)) 'FOR VALUES' K := (0,1,5), A(K) =0
(2) 'FOR VALUES' CH := (nAn' nxu' uou' n1u);
J := SCAN. (LINE, CH);
YIF' CH = “X", JX :=J
'ENDFOR'

Part I -- Description of the MAD/I Language

92 Section 5: Statements

5.6 The 'VALUE' Statement

This (prefix) statement has a prefix of the form
'VALUE' V := E

where V is a designator, and E is an expression such that the
assignment V := E is legitimate. A shorter form of the prefix
is

'VALUE' V
in which case the initial value of V is the value it had Jjust
before execution of the 'VALUE' statement. The end keyword is
'END VALUE'.
An example of the short form is:

'VALUE' S := 0., 'FOR' I := 1,1,I > N,

S := S % A(I)
An example of the long form is:

'VALUE' TRACE := O0O.;

'FOR' I := 1,1,I > N;

'FOR' J := 1,1,d > N;

C(I,Jd) := C(I,J) + A(I,K)*B(K,J)'END FOR' ;
TRACE := TRACE + C(I,I)'END FOR' '"END VALUE!

The interpretation of the 'VALUE' statement is that a value
is produced for V as a result of the execution of the scope.
This prefix statement may now be enclosed in parentheses and
used as an embedded statement, since it has produced a value.
The expression E in the prefix is an initial value for V. Thus,
in the long-form example above, if N = 0, then none of the scope
would actually be executed (since I > N), and the value produced
(which in any case is the final value of TRACE), is O.

Part I -- Description of the MAD/I Language

Section 5: Statements 93

5.7 Procedures

S5«71.1__The 'PROCEDURE'_ Statement

This (prefix) statement, called a procedure definition, has
the following syntax:

procedure = proc-prefix; list ; statement 'END PROCEDURE'
proc-prefix = 'PROCEDURE! ll§§ , entry-spec
entry-spec = identifier-list [.][formal-parameters]
formal-parameters = (list , identifier)
A typical prefix would be:
'PROCEDURE' (J,K,L). (X,Y,Z,W)

where the first part specifies entry points for the procecure,
i.e., J, K, and L, and the second part specifies formal
parameters to be associated with each of those entry points. If
there 1is only one entry point, the parentheses around it may be
omitted. If there are no formal parameters, the second pair of
parentheses may be omitted. The period is always optional in a
procedure prefix. Thus, the prefix

"PROCEDURE' (F,G).(X), H.(X,Y), L.

specifies that F and G are entry points with formal parameter X,
that H is an entry point with parameters X and Y, and that 1 is
an entry point with no parameters.

The short form of the 'YPROCEDURE' statement differs
somewhat from the wusual short form; it 1looks much like an
assignment expression:

procedure~short =
'PROCEDURE' identifier [.] formal-parameters
1= expression

where "expression" is any expression (possibly an embedded
statement). As an example we have:

'PROCEDURE' REM. (A,B) := A - (A/B)*B

The long form uses the usual sequence of statements,
separated by semicolons and terminated by the end keyword
'END PROCEDURE'. Each entry point occurring in the prefix may
appear as a label on some statement in the scope of the
'PROCEDURE' prefix. If no such label appears on any statement,

Part I -- Description of the MAD/I Language

9y Section 5: Statements

it 1is as 1if the label vwere on the first executable statement
within the definition of the procedure. Procedure definitions
may be properly nested within other procedure definitions.

Procedures are defined at compile time only; at run time, a

procedure statement in a statement sequence behaves as an empty
statement in that sequence.

5.7.2__Formal Parameters

The formal parameters of a procedure are 1local variables
which are dynamically "bound" to their storage references when
the procedure is entered. All formal parameters declared in the
procedure prefix are variables usable throughout the procedure
body. For each formal parameter, however, only certain entry
points cause it to be bound -- namely those entry points whose
"entry-spec"s mention that formal parameter.

A formal parameter, like any other variable, acquires mode
and storage-layout attributes. These may be declared (within
the procedure) in any of the ways described in Section 3.

Whenever (at run time) a procedure is entered at a given
entry point, the formal parameters specified for that entry
point are considered in the order declared and bound to the
actual parameters (arguments) received from the <calling
procedure. There must be at least as many actual parameters as
formal parameters; each actual parameter must be a reference of
the same _mode as the corresponding formal parameter. Generally
the storage-layout attributes must also agree, but there are a
few permissible exceptions:

'"CHARACTER' mode: The length of the actual parameter may be
greater than the length of the formal parameter.

'VARYING CHARACTER' mode: The maximum length of the actual
parameter may be greater than that of the formal parameter.

Array modes: The formal parameter may optionally be declared
with an "array-suffix" in which all the "bounds" entries
are the special symbol # . In this case, the numkter of
dimensions of the actual and formal parameters must agree,
but the bounds values and storage spacing of the formal
parameter are taken from those of the actual parameter (cf.
Section 3.1.2.1). For example:

'DCL' AA 'FIXED ARRAY' (#,%#) 'FLOATING'
However, for 'FIXED ARRAY' parameters, dgreater efficiency

can often be realized if the actual bounds are known and
declared in the procedure.

Part I -- Description of the MAD/I Language

Section 5: Statements 95

5.7.3__Procedure_Returns

The execution of a procedure ends when any of ‘'RETURN',
'RETURN TO', or 'END PROCEDURE' is executed. The forms of these

statements are:
(i) 'RETURN' [expression] [,return-code]

where return-code is the return code value and the expression is
the result value of the procedure. If the return-code is
missing, a return-code of zero is given. If a return-code 1is
given, it must be a non-negative integer expression. The
"return" is made to the point immediately after the last "call"
was executed.

(ii) '"RETURN TO' S

where S is (1) a formal parameter of the current procedure, and
(2) has ‘YENTRY NAME' mode and has an actual parameter value
which is an entry name for some procedure whose call preceded
the current one in the currently effective chain of "calls".
For example, suppose procedure A1 has <called A2, which has
called A3, each call passing as a parameter the entry name L in
A1. Then A3 might contain the statement:

'RETURN TO' S

where S is a formal parameter for which L is the actual
parameter. The next statement executed after the 'RETURN TO!
statement is that denoted by the value of L.

S also can be a variable of 'ENTRY NAME' mode which has
been assigned a value by means of an assignment operation
located in the procedure which owns the associated entry point.
At the time the 'RETURN TO' is executed, the entry name variakle
must have a value which points to a currently active block; that
is, the environment information must still be valid.

The execution of 'END PROCEDURE' , which ends the scope of

a procedure, is permissible and is equivalent to the execution
of 'RETURN' with no result value and no return-code specified.

Part I -- Description of the MAD/I language

96 Section 5: Statements

5.8__Input/Qutput Statements

There are several statements for specifying input/output
operations; they are mentioned below. For a complete treatment
of input/output, refer to Section 6; the statements are
described in Sections 6.8 and 6.9.

'OPEN!

‘CLOSE!

'READ DATA!

'WRITE DATA!

'READ!

'WRITE®

'"READ UNCONVERTED'
'"WRITE UNCONVERTED®

Part I -- Description of the MAD/I Language

Section 5: Statements 97

5.9__Declaration Statements

The statements in this section have a purely "compile-time"
effect; at run time, they act as "empty" statements.

The 'DECLARE' statement and the inverted declaration
statements are described in Section 3.6; refer to that section.

The 'DECLARE' statement (abbreviation 'DCL') -- Section
3.6. 1.
Inverted declaration statements -- Section 3.6.2.

The 'DECLARE DEFAULT' statement (abbreviation 'DCLD') is
used to declare default mode and storage class attributes. It
can also be used to control the scope of identifiers referenced
but not declared.

Syntax: 'DECLARE DEFAULT' decln-string
This statement has the same effect as the statement
'DECLARE' 'DEFAULT' decln-string

which is described in Section 3.7.2.

Example: 'DECLARE DEFAULT' 'INTEGER"

Part I -- Description of the MAD/I Language

98 Section 5: Statements

5.10 The 'BEGIN' and_'BLOCK'_ Statements

The 'BEGIN' and 'BLOCK' statements are compound statements,
consisting of a sequence of constituent statements bracketed by
the compound-statement keyword and an end keyword.

Syntax: statement = 'BEGIN' stmt-seq 'END'
| 'BLOCK!' stmt-seq 'END'

The 'BEGIN' statement serves only to treat the statement
sequence as a single statement -- it has no other effect.
Execution of a 'BEGIN' statement means execution of the
statement sequence.

The 'BLOCK' statement is the same as the 'BEGIN' statenment,
except that it forms a new block (see Section 7). The scopes of
names and declarations appearing within the *BLOCK' statement
are determined with respect to this block.

Exanmples:
'BEGIN' T := A; A := B; B := T VEND'

'BLOCK
'EXTERNAL' (B1,B2,B3) 'BOOLEAN';
ANYB := B1 | B2 | B3

YEND'

Part I -- Description of the MAD/I Language

Section 5: Statements 99

5.11 The 'PRESET' Statement

'"PRESET' is a statement used to specify initial values of
variables. An "initial value" is a value assigned to a variable
at the time storage is allocated for the variable. Stcrage for
'STATIC' variables 1is considered to be determined at compile
time and allocated just prior to run tinme. Only 'STATIC'
variables which are not 'EXTERNAL' may be preset.

sSyntax:
statement = 'PRESET' list , pre-assign
pre-assign = pre-var := { list , init-value }
pre-var = variable [list { (list , integer) }]
init-value = const-exprn
| replic-exprn
| empty
const-exprn = constant
| - constant-exprn
replic-exprn = unsigned-integer (list , init-value)
Exapples:
of pre-var: BCX
AA(1,-3,2)
CC(2,1) (4) (17)
of const-exprn: 20

"Haw!"
-4 @ ("INTEGER SHORT')
. ENCON. LOGTAN

of replic-exprn: 3(1.2, 7, "“AB")
300 (0)
20(1.0,8(0.0),2.0)

of preset statements:

1]
o
-
Q
=]
[X)
]
(o)
-
N
w

'PRESET' A := 0, B :
*PRESET' V(1) := 2., V(4) := 0., V(10) := 10.
'PRESET* AB(1,1) := 1, 1, 2, 0, AB(2,1) := 4(0)

Interpretation

A pre-var specifies either a variable to be preset cr a
component of a variable at which presetting is to start. The

Part I -- Description of the MAD/I Language

100 Section 5: Statements

list of init-value's following the ":=" specifies a sequence of
constant values to be pre-assigned to the pre-var. If the pre-
var is a variable of a primitive mode, there should be only one
init-value 1in the 1list. If the pre-var is an array or
component-structure variable, then presetting begins with the
1st component and continues with successive components at the
same structural level. If the pre-var is a component of such a
variable, presetting begins with that component and continues as
above.

An empty init-value causes the corresponding component to
be skipped without being preset. A '"replic-exprn" is treated as
an abbreviation for the enclosed list of init-value's written
out "unsigned-integer" times. The unsigned-integer must be non-
zero. For example, :

2(1,2, ,4)
is equivalent to
1,2, ,4,1,2, ,4.
The initial values must have the same mode as their

corresponding variables or components; no automatic conversion
is performed.

Part I -- Cescription of the MAD/I Language

Section 5: Statements 101

5.12 The_ 'DECLARE CSECT' and 'DECLARE_PSECT'_ Statements

'"DECLARE CSECT' and 'DECLARE PSECT' are both simple
statements used to control the names given by the compiler to
sections of the object module.

Syntax: statement = 'DECLARE CSECT' identifier
| "DECLARE PSECT' identifier

The compiler normally produces an object program segregated
into two sections: (1) a section ("csect") which is never
modified as the program is run and is "shareable" by different
recursion 1levels in the task and by different tasks in the
operating system, and (2) a section ("psect") which contains all
the rest -- the variable values and non-shareable text. The
programmer may occasionally need to specify the names given to
these sections.

These statements cause the specified identifier to be used
as the name for the specified section. It is the programmer's
responsibility to make sure that the name is acceptable to the
operating system in which the object program will be run.

Part I -- Description of the MAD/I Language

102 Section 5: Statements

5.13__The 'ALLOCATE'_ and_ 'DEALLOCATE'_ Statements

These are simple statements which dynamically allocate and
de-allocate storage for variables of based storage class.

Syntax: statement = 'ALLOCATE' variable [, exprn]
| 'DEALLOCATE' variable

The 'ALLOCATE' statement specifies a based variable to
receive a new allocation. The "exprn", if included, must be
integer-valued, and specifies the number of contiguous storage
locations (bytes) to be allocated; if the expression is omitted,
the length attribute (Sec. 3.2.1) of the variable is used. The
storage is acquired (from the operating system) and associated
with the based variable. If storage was already allocated for
that variable, the variable's reference of that storage is lost
(i.e., not saved or automatically freed).

The 'DEALLOCATE' statement is used only to de-allocate the
storage allacated to a based variable by an 'ALLOCATE'
statement, The specified variable is set to '"not allocated",
and the storage previously allocated for it is freed (returned
to the operating system). If the variable has storage which was
allocated by means other than the 'ALLOCATE' statement, then the
action of 'DEALLOCATE' is undefined.

Examples:
"ALLOCATE' BLOCK
'DEALLOCATE' BLOCK
"ALLQCATE' MATRIX, M*Nx*4

'DEALLOCATE' MATRIX

Part I -- Description of the MAD/I Language

Section 5: Statements 103

5.14___The 'REDIMENSION' Statement

'REDIMENSION' is a statement for dynamically modifying the
dimension attributes of 'VARYING ARRAY's at run time. Refer to
Section 3.1.2.1 (Array modes) for information on 'VARYING ARRAY'
mode.

1]

Syntax: statement '"REDIMENSION' list , TO-phrase

TO-phrase = desig 'TO' (list , run-bounds)

run-bounds = [exprn ...] exprn

Example:
'REDIMENSION' AA 'TO' (M,0...N)

In the syntax above, "desig" denotes a designator, which
must have 'VARYING ARRAY' mode. 1In each TO-phrase, the numker
of "run-bounds"s must equal the declared number of dimensions of
the array designated by "desig". Also, "“exprn" denotes any
expression whose value is convertible to an integer. The
(optional) 1st exprn specifies the 1lower bound for that
subscript position; if omitted, a lower bound of 1 1is assunmed.
The 2nd exprn specifies the corresponding upper bound.

For each TO-phrase, the run-bounds expressions are
evaluated, and their values are converted (if necessary) to
integers. The dimension attribute of the array denoted by the
designator 1is changed to reflect the new subscript bounds.
However, the storage allocated to the array is not changed;
therefore, if the array is in an allocated state (i.e., storage
is allocated for it), then the storage requirement of the re-
dimensioned array must not exceed the amount of storage
allocated.

For example, if we had declared:

'"DECLARE' (V1, V2) 'VARIABLE ARRAY' (100),
AD 'VARIABLE ARRAY' (30, 20)

then we might write re-dimension statements like these:
'REDIMENSION' V1 'TO' (M)

"REDIMENSION' V2 'TO' (0 ... N=1),
AD 'TO' (0...K, L¢1)

Part I -- Description of the MAD/I Language

104 Section 6: Input/Output

Section 6: Input/Output

Before discussing the input/output statements in detail,
several general concepts should be defined.

6.1__Data_sets, Records, and Files

A data_set is a collection of data external to the progranm.
Input activity transmits data from a data set to a program.
Qutput activity transmits data from a program to a data set. A
data set consists of discrete records, each consisting of zero
or more bytes. An input activity, then, transmits one or more
whole records from a data set to a program while an output
activity transmits one or more whole records from a program toc a
data set. An input activity is also referred to as reading
while an output activity is also referred to as writing.

A file is a usage c¢f a data set. A file <can be opened
either explicitly or implicitly. A file is opened explicitly by
means of an 'OPEN' statement. In this case the file is
characterized by the value of the variable of 'FILE NAME' mode
specified as a part of the 'OPEN' statement. Every explicitly
opened file is a unique file even if it uses the same data set
as another file, A file is opened implicitly through the
execution of an input/output statement (other than 'OPEN') which
references it with no prior implicit opening of the file. The
file referenced is deduced from the data set name given in the
input/output statement and the manner in which the data set name
is specified. An implicitly opened file is characterized by the
value of a variable of 'FILE NAME' mode owned by the systenm
input/output support software. This filename variable cannot be
referenced by nanmne, but only implicitly through the
specification of the same data set name in the same manner as
when it was 1implicitly opened. This will be clarified 1in
Section 6.3. Note that several files may be open which use the
same data set, The behavior in this case is dependent upon the
system and the type of data set organization.

Section 6: Input/Output 105

6.2 Types of Input/Qutput Activities

There are four types of input/output activities supported
in MAD/I: data-directed, 1list-directed, format-directed, and
unconverted. This section describes the general characteristics
of these transmission modes.

6.2.1 _Data-directed_Transmission

Data-directed transmission permits the user to read or
write self-defining data.

Input: The data are in a form similar to a ‘'PRESET' statement,
consisting of a 1list of designators, each followed Lty an
assignment symbol (or equality symbol) and a 1list of constant
values to be assigned. The input for a single data-directed
input transmission is free-form and may span one or more whole
records. The transmission is terminated by a semi-colon in the

last input record. A typical input record is:

A:=-3.2, B:="S", COMPLXN$aR:=1.5, Z2(2):=1,,5(2);

Output: The data values to be transmitted are specified by a
data-list in the output statement. The data are placed into one
or more output records and consist of a 1list of designators,
each followvwed by the value referenced. If a data-list
expression is not a designator (e.g., X+3), then three asterisks
(¥**) are printed in place of the designator. The records
produced by a data-directed output transmission are suitable as
input records for a data-directed input transmission; the items
identified with three asterisks are ignored.

6.2.2_ _List-directed Transmission

List-directed transmission permits the user to specify the
designators to which data are assigned or from which data are
transmitted, without specifying the format.

Input: The data are in the form of free-form constant values
separated by blanks or commas. The designators to which the
data are to be assigned are specified by a data-list in the
input statement.

Output: The data values to be transmitted are specified by a
data-list in the output statement. Each data item is converted

Part I -- Description of the MAD/I Language

106 Section 6: Input/Output

to an external form (according to its mode and value), and the
external forms are concatenated to form output records.

6.2.3_ _Format-directed Transmission

Format-directed transmission permits the user to specify:
(1) the designators to which data are to be assigned or from
which data are to be transmitted, through a data-list, and (2)
the form of the data fields in the records, through a format
specification.

Input: The form of the data in the input records is defined Ly a
format specification. The designators to which the data are to
be assigned are specified by a data-list.

Output: The data values to be transmitted are defined by a data-
list. The form that the data are to have in the output records
is defined by a format specification.

6.2.4 uncqnyggggd Transmission

Unconverted transmission permits the user to read or write
information directly, with no conversion. The unconverted
input/output statements cause a single record to be transmitted
from or to the data set. The designators to which the data are
to be assigned or from which data are to be transmitted are
specified through a data-list.

Part I -- Description of the MAD/I language

Section 6: Input/Output 107

6.3__Associating Data_sets_with_ Files

A data set is associated with a file at the time the file
is opened. The data set name can be specified in five different
ways in either the ‘'OPEN' statement (for explicitly opened
files) or an input/output statement other than 'OPEN' (for
implicitly opened files.) These five ways are: (i) through a
unit specification, (ii) through a data set name specification,
(1ii) through a character-string specification, (iv) through an
entry-name specification, and (v) through a default
specification. Only one of these five ways can be used in any
one statement.

6.3.1__Unit Specification

A unit is a name which is associated with a particular data
set through the job control language of the operating system in
which the MAD/I program is being run. The unit 1is specified
through the 'UNIT' specification in the input/output statenent.
This specification can be an arithmetic expression or a
character-string expression. The values of these expressions
are interpreted in a system-dependent fashion.

In input/output statements other than 'OPEN', the unit
specification can also be an expression of 'FILE NAME' mode, in
which case the named file is used. It must have previously been
opened in an 'OPEN' statement.

All implicit references to files which satisfy the
following two rules will be considered as references to the same
file:

1. All references are by means of a unit specification.

2. Either all references are by means of arithmetic
expressions which compare as equal in value or all
references are by means of character-string
expressions which compare as equal in value.

In MTS, the value cf a character-string expression must be
the name of a "logical I/0 unit". The valid logical I/O0 units
are: SCARDS, SPRINT, SPUNCH, GUSER, SERCOM, and the numbers 0
through 9. The value of an arithmetic expression must be
integer-valued from 0 through 9 or the address of a "FDUB" as
returned by the subroutine GETFD. Non-integer values will be
truncated to the next lower integer value.

In 0S, the value cf a character-string expression must be a
current "ddname". These names are defined through DD job
control language statements. The value of an arithmetic
expression must be integer-valued from 0 through 99. Non-
integer values will be truncated to the next 1lower integer

Part I -- Description of the MAD/I Language

108 Section 6: Input/Output

value.
Examples: (using MTS conventions)

'OPEN' (' UNIT' "O",'END OF FILE' MACEND) ,MACLIB
'OPEN' (*UNIT' O, 'END OF FILE' MACEND) ,MACLIB
'OPEN' (0, MACEND),MACLIB

are all equivalent and open the file MACLIB which uses the data
set associated with the logical I/O unit 0.

'READ DATA' ("UNIT'" MACLIB)
'REALC DATA' (MACLIB)

are equivalent and use the file MACLIB. If MACLIB vwere opened
with one of the above 'OPEN' statements, the data set ultimately
used would be the one associated with the logical I/O unit O.

‘READ DATA' ('UNIT' "SCARDSY)
'READ DATA' ("SCARDS")

are both equivalent and perform a data-directed input
transmission using the data set associated with the logical I/0
unit SCARDS. The file associated with the wunit specification
"SCARDS" will be implicitly opened the first time it is
referenced through the execution of an input/output statement
which specifies it.

Part I -- Description of the MAD/I lanquage

Section 6: Input/Output 109

6.3.2 Data_set Name_Specification

The name of a data set can be specified through the ‘'DATA
SET! specification in the input/output statement. This
specification is done through a character-string exrpression.
The value of this expression is interpreted in a system-
dependent fashion.

All implicit references to files which satisfy the
following two rules will be considered as references to the same
file:

1. All references are by means of a data set nanme
specificaticn.

2. All references are by means of character-string
expressions which compare as equal in value.

In MTS, the value of the character-string expression mnust
be a file or device name ("FDname"). The name may be a
concatenation of file or device names, each followed by
modifiers or a 1line number range, as described in the MTS
manual. The FDname need not be followed by a blank. Note that
the MTS term "file" represents a different concept than the
MAD/I term "file". Note that the conventions governing implicit
references to MAD/I files dictate that "F" and "F " name the
same MAD/I file while "F(1,10)" names a different MAD/I file
although all three forms use the same MTS file. A FDUB is
acquired from MTS each time a MAD/I file is opened with a data
set name specification.

Examples: (using MTS conventions)

'OPEN' ("DATA SET' "*SYSMAC",'END OF FILE®
MACEND) ,MACLIB
'OPEN' (,MACEND, '*DATA SET' "*SYSMAC") ,MACLIB

are equivalent and open the file MACLIB which uses the data set
consisting of the MTS file "*SYSMAC".

'READ DATA' (*CATA SET' "*SQURCEx*")

performs a data-directed input transmission using the data set
consisting of the MTS FDname *SOURCE*, which is usually the
user's terminal (or tatch stream.) The file associated with the
data set name specification "*SQURCE*" will be implicitly opened
the first time it is referenced through the execution of an
input/output statement which specifies it.

Part I -- Description of the MAD/I Language

110 Section 6: Input/Output

6.3.3__Character-string Specification

The character-string specification allows a character-
string expression to be used as if it were a data set containing
one record. A character-string specification is specified
through the 'STRING DATA SET' specification in the input/outrput
statement. This specification is a character-string expression.
For output transmission, it is restricted to a desigmnator which
references a character-string.

All implicit references to files by means of a character-
string specification will be considered as references to
different files.

Examples:
'"OPEN' ('"STRING DATA SET' "“data string"),DATASTRING

opens the file DATASTRING which uses the data set comsisting of
one record, the contents of the constant "data string".
DATASTRING can only be used for an input activity, since a
constant cannot be used as a designator.

'"DECLARE' S 'VARYING CHARACTER' (256)
'OPEN' (*STRING DATA SET' S),DATASTRING

opens the file DATASTRING which can be used for either an input
activity or an output activity. In either case, the data set is
considered to have a capacity of only one record.

'DECLARE' S 'VARYING CHARACTER! (256)
'WRITE DATA' (*STRING DATA SET' S),data-list

performs a data-directed output transmission using the variable
S as the data set. The file associated with the character-
string specification S will be implicitly opened each time it is
referenced through the execution of an input/output statement
which specifies it. Thus the character-string specification S
can be wused repeatedly, but only one record can be read or
written with it during each execution of an input/output
statement.

Part I -- Description of the MAD/I Language

Section 6: Input/Output 111

6.3.4 _Entry-name_Specification

The entry-name specification allows a data set to be
defined in terms of two procedures, one which is called for
every input record, the other which is called for every output
record. An entry-name specification is specified through the
'"ENTRIES' specification in the input/output statement. This
specification consists of a variable of 'ENTRY NAME' mode or a
parenthesized list of two variables of 'ENTRY NAME' nmode. The
first (or only) variable is called once for every input record
required. The input record must be returned as an expression of
'"VARYING CHARACTER' mode. The second variable is called cnce
for every output record. The call includes one parameter, the
contents of the output record in a variable of 'VARYING
CHARACTER' mode. An end-of-file or end-of-volume condition can
be returned through a return index of 1.

All implicit references to files which satisfy the
following three rules will be considered as references to the
same file:

1. All references are by means of an entry-nane
specification.

2. All the variables of 'ENTRY NAME' mode for reading
compare as equal or all are missing.

3. All the variables of 'ENTRY NAME' mode for writing
compare as equal or all are missing.

Examples:

'OPEN' (*ENTRIES' IN) ,PROCFILE
'OPEN' (*ENTRIES' (IN,OUT)),PROCFILE
'OPEN' ('ENTRIES' (,0UT)) ,PROCFILE

all open the file PROCFILE which calls the procedures IN and CUT
for input activity and output activity respectively. Omitting
the input procedure (example 3) causes an end-of-file condition
on input transmission requests; omitting the output procedure
(example 1) causes an end-of-volume condition on output
transmission requests.

'READ DATA' ('ENTRIES' (IN,OUT))

performs a data-directed input transmission using the data set
associated with the entry-name specification (IN,OUT). The file
associated with this specification will be implicitly opened the
first time it 1is referenced through the execution of an
input/output statement which specifies it.

Part I -- Description of the MAD/I Langquage

112 Section 6: Input/Output

6.3.5 _Default Specification

A data set is associated with a file by default if none of
the previous four ways of specifying the data set has been used
in the input/output statement. The default data set for input
is that associated with the system standard input unit. The
default data set for output is that associated with the systen
standard output unit.

All implicit references to the default ipput are considered
to be references to the same file. All implicit references to
the default output are considered to be references to the same
file, but different from the file assumed for default input.

In MTS, the default data set for input is that associated
with the logical 1I,/0 uanit SCARDS; the default data set for
output is that associated with SPRINT.

In 0S, the default data set for input is that associated
with the ddname SYSIN; the default data set for output is that
associated with SYSPRINT.

Examples: (using MTS conventions)

"OPEN' ('END OF PILE' A,'END OF VOLUME' B),FNAME
'OPEN' (,A,B),FNAME

are equivalent and open the file FNAME which uses the systen
standard input unit (SCARDS) for input and the system standard
output unit (SPRINT) for output.

'READ DATA!

performs a data-directed input transmission using the default
input file which is associated with the logical I/0 unit SCARDS.
The default input file will be implicitly opened the first time
it is referenced through the execution of an input/output
statement which specifies it.

Part I -- Description of the MAD/I Language

Section 6: Input/Output 113

6.4 File Attributes

Each file has a collection of attributes associated with
it. For explicitly opened files, the attributes and their
values can be specified in the 'OPEN' statement. Attriltutes
which are omitted are given default values. For implicitly
opened files, all attributes are given default values. The
value of most file attributes can be overridden in any
input/output statement for the duration of the execution of that
statement.

6.4.1 Data set Associated with the File

The most important attribute of a file is the data set name
used by the file and the manner in which this name was
specified. This attribute has been described in Section 6.3.
This attribute cannot be overridden in an input/output
statement.

6.4.2 End-of-file File Attribute

The end-of-file file attribute is specified through the
'END OF FILE' specification of an input/output statement and has
as its value an entry-name variable. This entry-name is called
whenever an end-of-file condition is sensed from the data set
associated with the file in response to an input request. The
default end-of-file attribute value is the system subroutine
which terminates execution. The end-of-file file attribute can
be overridden in an input/output statement. In this case its
value can be either an entry-name or a transfer-point.

In MTS, the default end-of-file attribute value 1is the
system subroutine SYSTEM.

Examples:

"OPEN' ("SPRINT",MACEND) ,FNAME

'OPEN' (*END OF FILE®' MACEND,'UNIT' "SPRINT") ,FNAME
'READ DATA' (ENAME, NEWEND)

'READ DATA' ('"END OF FILE' NEWEND,'UNIT' FNAME)
'READ DATA' (*END OF FILE' NEWEND)

'"READ DATA' (,NEWEND)

6.4.3 End-of-volume File Attribute

The end-of-volume file attribute is specified througqgh the
'END OF VOLUME' specification of an input/output statement and
has as its value an entry-name variable, This entry-name
variable is called whenever an end-of-volume condition is sensed

Part I -- Description of the MAD/I Language

114 Section 6: Input/Output

from the data set associated with the file in response to an
output request. The default end-of-volume attribute value is
the system subroutine which terminates execution. The end-of-
volume attribute can be overridden in an input/output statement.
In this case 1its value can be either an entry-name or a
transfer-point.

In MTS, the default end-of-volume attribute value 1is the
system subroutine SYSTEM.

Examples:

'OPEN' ("SPRINT", ,MACEND) ,FNAME

'OPEN' ('"END OF VOLUME' MACEND,'UNIT' "SPRINTY) ,FNAME

'"WRITE DATA' (FNAME,NEWEND) ,data-list

'"WRITE DATA' (*END OF VOLUME' NEWEND,'UNIT' FNAME),data-
list

'"WRITE DATA' (*END OF VOLUME' NEWEND) ,data-list

'WRITE DATA' (,NEWEND) ,data-list

6.4.4 Error File Attribute

The error file attribute is specified through the 'ERROR'
specification of an input/output statement and has as its value
an entry-name variable. This entry-name variable is called
whenever an error condition is sensed from the data set
associated with the file in response to an input or output
request. The default error attribute value is the systenm
subroutine which terminates execution abnormally. The error
attribute can be overridden in an input/output statement. 1In
this case its value can be either an entry-name or a transfer-
point.

In MTS, the default error attribute value is the systen
subroutine ERROR.

Examples:

'OPEN' ("SPRINT",,,MACERR) ,FNAME

'OPEN' (' ERROR' MACERR,'UNIT' "SPRINT") ,FNAME

'WRITE DATA' (FNAME,,NEWERR) ,data-list

'READ DATA' (FNAME, ,NEWERR)

'"WRITE DATA' ('ERROR' NEWERR,'UNIT' FNAME) ,data-list
'READ DATA' ('ERROR' NEWERR,'UNIT' FNAME)

'"WRITE DATA' (*ERROR' NEWERR) ,data-list

'READ DATA' (*ERROR' NEWERR)

'"WRITE DATA'(,,NEWERR) ,data-list

'READ DATA' (,,NEWERR)

Part I -- Description of the MAD/I Language

Section 6: Input/Output 115

6.4.5 Maximum-length File Attribute

The maximum-length file attribute is specified through the
'MAX LENGTH' specification of an input/output statement and has
as its value an arithmetic expression or a parenthesized list of
two arithmetic expressions. If only one expression is given,
its value, truncated to the next lower integer value, 1is taken
as the maximum input and output record length in bytes. If two
expressions are given, the value of the first, truncated to the
next lower integer value, is taken as the maximum input record
length in bytes; the value of the second, similarly truncated,
is taken as the maximum output record length in bytes. The
default maximum-length file attribute values are the maximum
input and output record lengths allowed for the data set
associated with the file. The maximum-length file attribute can
be overridden in an input/output statement.

In MTS, the default maximum-length attribute values are the
maximum input and output record lengths as returned by the
subroutine GDINFO.

Examples:

'OPEN' ("SPRINT", *MAX LENGTH' 133) ,FNAME

'OPEN' ("SPRINT",'MAX LENGTH' (255,71)),FNAME
'"WRITE DATA' (FNAME,'MAX LENGTH' NEWLN) ,data-list
‘READ DATA' (*MAX LENGTH' NEWLN)

6.4.6 Echo File Attribute

The echo file attribute is specified through the 'ECHO'
specification of an input/output statement and has as its value
any operand acceptable as a unit specification. Every
input/output transmission using the file is echoed on the unit
specified by the echo file attribute. The default echo file
attribute value is no echoing. The echo attribute can be
overridden in an input/output statement.

Examples: (using MTS cornventions)
'*OPEN' ("SPRINT",*ECHO' "SERCOM") ,FNAME

'READ DATA' ('ECHO' "SPRINT")
'READ DATA' ('ECHO' FNAME)

Part I -- Description of the MAD/I Language

116 Section 6: Input/Output

6.5__Miscellaneous Input/output Specifications

The miscellaneous input/output specifications are used to
specify both required and optional information within an
input/output statement.

6.5.1 Format Specification

A format can be specified through a 'FORMAT' specification
in an 1input/output statement. The format is used in format-
directed transmission to control the form and conversion of
data. This specification is done through a character-string
expression, whose value 1is the format. The value of this
expression 1is interpreted in a system-dependent fashion; there
is no specification of a format language as a part of MAD/I.

In MTS, IOH360 is used as the format interpreter. The
character-string expression must be a valid format as descrited
in the IOH360 description in the MTS manual.

Examples: (using MTS conventions)
~ YWRITE'("' X=',F10.0,' X*X=',F10.0%"), X, X*X

'"WRITE' (*UNIT' "SERCOM",'FORMAT* "' FILE ',C,' HAS BEEN
CREATELDL. '*") ,FNAME

6.5.2 Line Specification

A line specification is used to perform random accesses to
a data set. The line is specified via the 'LINE' specification,
which specifies an arithmetic expression. The value of this
expression is interpreted in a system-dependent fashion to
determine the position in the data set at which the input/output
activity of the current statement is to Dbegin. Further
input/output activity will be conducted in a sequential fashion
until the next occurrence of a line specification.

In MTS, the line specification can be used for 1line files
or sequentia} files. For 1line files, the value of the
arithmetic expression 1is interpreted as the 1line numter,
multiplied by 1000, of the 1line to be next read or written.
That is, the expression must have a value of 1500 to read or
write beginning at line 1.5 of the file. This is the same value
as used by the MTS input/output subroutines, such as SCARELS.
For sequential files, the value of the arithmetic expression
must be a value returned by a 'LAST LINE' specification in a
previous input/output statement. This value is used internally
to retrieve the corresponding note-point information. Both the
read and write pointers are updated with the appropriate values.

Part I -- Description of the MAD/I language

Section 6: Input/Output 117

Examples: (using MTS conventions)

'‘READ' ("15%",0,'LINE' 1000) ,NUMB
'"WRITE' ("I5%",0,'LINE' A+B) ,NUMB

6.5.3 last-line_Specification

A last-line specification is used to record the current
position in a data set so that a file can later be re-positioned
to that position in the data set. This is specified via the
'"LAST LINE' specification, which consists of a designator for an
arithmetic value. The input/output system returns a value which
can be used in the 'LINE' specification to position the data
set. This returned value 1is treated in a system-dependent
fashion.

In MTS, the last-line specification can be used for any
data set. For line files, the value returned is the line number
of the last record read or written by this statement, multiplied
by 1000. That is, the value 1500 is returned if 1.5 was the
line number of the last record read or written by the statement.
This is the same value as used by the MTS input/output
subroutines, such as SCARDS. For sequential files, the value
returned is a code used internally to retrieve the note-point
information corresponding to the last record read or written.
For all other types of data set organization, a pseudo line
nunber is returned as computed by MTS.

Examples: (using MTS conventions)
READ' ("I5",0,'LAST LINE' LLINE),NUMB
'"WRITE' ("I5%",'LAST LINE' LNUM),NUMB

6.5.4 _Llast-length Specification

A last-length specification is used to obtain the 1length,
in bytes, of the last record read or written by the input/output
statement. This is specified via the '"LAST LENGTH®
specification, which consists of a designator for an arithmetic
value.

Examples:

'*READ UNCONVERTED® (0,*LAST LENGTH' N),ARRAY
'WRITE DATA' ('LAST LENGTH' LEN),data-list

Part I -- Description of the MAD/I Language

118 Section 6: Input/Output

6-6__Input/output Specification Summary

The following table summarizes all the possible
input/output specifications and the possible modes of their
value expressijions.

Keyword File Atr? Designator? Permissible_ Modes
'"DATA SET! Yes* No Character-string
'ECHO! Yes No Arithmetic
Character-string
Filename
'END OF FILE' Yes No Entry-name
Transfer-point 1
'END OF VOLUME! Yes No Entry-name
Transfer-point 1t
'ENTRIES! Yes#4 No Entry-nane
Two entry-name 2
'ERROR! Yes No Entry-name
Transfer-point 1
"FORMAT! No No Character-string
'LAST LENGTH' No Yes Arithmetic
'*LAST LINE' No Yes Arithmetic
"LINE' No No Arithmetic
'MAX LENGTH! Yes No Arithmetic
Two arithmetic 2
STRING DATA SET' VYes Yes3 Varying-character
'"UNIT! Yes+ No Arithmetic
Character-string
Filename

(1) Transfer-point expressions cannot be used in YOPEN!
statements.

(2) Two expressions are represented as a parenthesized 1list of
two expressions.

(3) Need not be a designator for input activity.

(4) These specifications are used to denote the file to be used;
hence, at most one of these can be given per input/output
statement.

Part I -- Description of the MAD/I Language

Section 6: Input/Output 119

6.7 Data-lists

—— s e e S S e

to be transmitted (for output activity.) The elements of a
data-list may be either block-elements or expressions. For
input activity, the expressions are restricted to designators.
For example, the data-list

A, X+3, C

is valid for output activity but not for input activity, because
X+3 is not a designator. In either case, it should be
understood that expressions include embedded statements. For
input activity, further references involving designators earlier
used as data-list expressions refer to the new value just read.
For example, N,A(N) uses the new value of N in forming the
reference to A(N).

6.7.1 _Block Elements

A block-element is a pair of subscripted elements from the
same array separated by an ellipsis (without commas). The
subscripts may be arbitrarily complex. An example of a block-
element is:

A(I,Jd)...A(I+3,K)

The block-element represents all the elements of the array, from
the first-named element through the second-named elenment,
sequencing through the elements in the order determined by the
array sequencing rule (Sec. 3.1.2.1). For example, if we have
declared

A 'PIXED ARRAY'(-1...1,2,0...2)
then
A(0,1,1)...2(0,2,2)
represents the five elements
A(0O,1,1), A(0,1,2), 2(0,2,0), 2(0,2,1), A(0,2,2) .
The number of array elements represented by a block-element can
vary during execution as the subscript values vary. For

example, B(1)...B(N), where B has been declared an array with
one dimension, represents N array elements.

Part I -- Description of the MAD/I Language

120 Section 6: Input/Output

6.7.2 _Array_Expressions

An expression whose result is of an array mode represents
all the elements of the array, sequencing through the elements
in order. For example, if we have declared

C 'FIXED ARRAY'(-1...1,2)

then the use of C as an expression in a data-list represents the
six elements

C('1r1)r c(-1,2), C(Ov1)v C(Ov2)' c(1l1)l C(112) .

6.7.3 _Component-structure Expressions

An expression whose result 1is a component structure
represents all the elements of the component structure from
left~to-right in the same order as declared. For example, if we
have declared

D '"COMPONENT STRUCTURE®' (@A 'INTEGER',@B 'FIXED ARRAY'(2))

then the use of D as a data-list expression represents the three
items

Dar, D@B(1), D$aB(2) .

6.7.4 Unsupported Modes

Expressions whose result is one of the following modes
cannot be used as data-list expressions: 'ALTERNATE', 'BIT',
"ENTRY POINT', 'FILE NAME', and 'TRANSFER POINT'.

Part I -- Description of the MAD/I Language

Section 6: Input/Output 121

6.7.5 Embedded Statements

An embedded statement can be used as an expression in a
data-list. For prefix statements, the expressions in their
scope (i.e., the expressions following the comma in the short
form or the expressions delimited by semicolons in the long
form), will be called scope_expressions. In the execution of
the emnbedded statement in the data-list, any scope expressions
which appear in a 'LIST' statement are treated as a part of the
data-list. For an input activity, the scope expressions of a
'LIST' statement are restricted to designators.

Examples:
The data-list
N, ('FOR' I := 1,1,I>N, 'LIST' X(I))
is equivalent to the data-list
N, X(1)...X(N) .
The data-list

N, (YFOR' I := 1,1,I>DN; 'LIST' X(I),Y(I); 'IF' I>1,
'LIST' Z(I) 'END')

is equivalent to

N,X(1) IY(1) e X(2) ,Y (2) lz(z) lx(3) IY(3) Py (3) ¢ T
X (N) ,Y(N),Z(N) .

Part I -- Description of the MAD/I Langquage

122 Section 6: Inputy/Output

6.8__Syntax of the Input/output Statements

An input/output statement (other than 'CLOSE') consists of
a keyword, followed by an optional parenthesized specification
list, optionally followed by a comma and a data-list. A close
statement consists of the keyword 'CLOSE' followed by a file-
name expression.

I/0-statement = I/O-keyword [I/0-spec-~list] [, data-list]
close-statement = 'CLOSE' filename-expression
Examples:

"OPEN' ("SPRINT", MACEND) ,FNAME
'READ DATA!

'READ',A,B,C

'CLOSE' FNAME

The permissible input/output statement keywords are:
'"QPEN', 'READ', 'READ DATA', 'READ UNCONVERTED', 'WRITE', 'WRITE
DATA', and 'WRITE UNCONVERTED'.

I/0-keyword = 'OPEN' | 'READ' | 'READ DATA' | 'READ
UNCONVERTED' | 'WRITE' | °'WRITE DATA' |
'WRITE UNCONVERTED'

An input/output specification 1list consists of a
parenthesized 1list of one or more specifications which can be
given in a positional or a keyword form, or a mixture of Ytoth.
For each input/output statement, the input/output specifications
are each assigned a position in the 1list, from most-commonly-
used specification (on the 1left) to least-commonly-used
specification (on the right). A specification can be given in
positional form by putting its expression in the appropriate
position in the input/output specification list. Specifications
can be skipped over in the positional form by using successive
commas. Positional specifications cannot be used to the right
of the first keyword specification in the list. A specification
can be given in keyword form by preceding its expression by the
appropriate keyword. A keyword specification can be given in
any position in the list. The syntax is as follows:

Part I -- Description of the MAD/I Language

Section 6: Input/Output 123

I/0-spec-list = (I/O-keyword-spec-list)
| (I/0-positional-spec-list)
| (I/0-positional-spec-list ,
I/0-keyvord-spec-list)

I/0-positional-spec-list = list , I/0O-spec-expr

I/0-keyword-spec-list = list , { I/0-spec-keyword
I/0-spec-expr }

I/0-spec-keyword = 'DATA SET' | 'ECHO' | 'END OF FILE' |
'END OF VOLUME' | 'ENTRIES' | 'ERRCR' |
'FORMAT' | 'LAST LENGTH' | *LAST LINE!
| 'YLINE' | MAX LENGTH' | 'STRING DATA
SET' | 'UNIT!

I/0-spec-expr = expression
| (expression , expression)
| (, expression)
Examples:
("SCARDS" ,ENLFILE)
("SCARDS" ,ENDFILE, '"MAX LENGTH' 72)

(*MAX LENGTH' (72,132))
("SCARDS", ,GOERR)

A data-list consists of a list of expressions and block-
elements, separated by commas. Data-lists have been discussed
in Section 6.7.

data-list = list , { expression | block-element }

block-element = array-element-desig ... array-element-desig

Part I -- Description of the MAD/I Language

124 Section 6: Input/Output

6.9 __Input/Output Statements

A brief description of the input/output statements is given
below. Each descriptive section begins with the statement
prototype followed by a 1list, in positional order, of the
acceptable specification elements (which may, of course, take
default values).

6-9.1__File Specification

Statement Prototype:
'"OPEN' [I/0O-spec-list] , filename-designator

Allowable Specification Keywords: 'UNIT', 'END OF FILE', 'END OF
VOLUME', 'ERROR', 'ECHO', 'MAXLENGTH', 'DATA SET', *STRING
DATA SET', 'ENTRIES!

The file referenced by the filename-designator is
explicitly opened. The values of its file attributes are
determined by the I/O-spec-list. Those attributes which are not
given values take on default values. All file attributes (other
than the data set associated with the file) can be overridden in
input/output statements which reference the file. A file which
has been explicitly orpened can be used in the unit specification
of all input/output statements other than 'OPEN' until the file
is closed through a 'CLCSE' statement.

Examples:

'OPEN' (0,MACEND) ,MACLIB

'OPEN' (YEND OF FILE' MACEND, 'UNIT' O) ,MACLIB
'OPEN' (,MACEND,'DATA SET' "*SYSMAC") ,MACLIB
'OPEN' ("ENTRIES' (IN,OUT)),PROCFILE
'OPEN',DEFAULTFILE

Statement Prototype: '"CLOSE' filename-expression

The explicitly opened file specified by the filename-
expression is closed. The filename-expression cannot be used in
any further input/output statements without being opened again.
No other copies of the value of the filename-expression can be
used in further input/output statements, even if the file 1is
opened again. If 3 data set name specification ('DATA SET') was
used when the file uas opened, the system in which the MAD/I
program is being run is notified that this usage of the data set
has ceased. The system is then free to close the data set when
it feels that is appropriate.

Examples:

Part I -- Description of the MAD/I Language

Section 6: Input/Output 125

'CLOSE' MACLIB
'CLOSE' FILEARRAY (I+3)

6.9.2 _Data-Directed_ I/0

Data-Directed Input

Statement Prototype: 'READ DATA' [I/O-spec-list] [, data-list]

Allowable Specification Keywords: ‘'UNIT', ‘'END OF FILE',
'ERROR', 'LINE', 'LAST LINE', 'LAST LENGTH', 'ECHO', 'MAX
LENGTH', 'DATA SET', 'STRING DATA SET', 'ENTRIES'

This statement causes a data-directed input transmission.
The format of acceptable input records is discussed in Section
6.2.1. If the data-list is given, the designators allowed on
the input records are restricted to those which reference the
variables specified in the data-list. If no data-list is given,
any designator which is valid within the block containing the
'READ DATA' statement can be given in the input records. All
variables known within the block which can be specified in the
input records as described above will automatically be entered
(at compile time) in the run-time symbol table.

Examples:

'READ DATA'

"READ DATA' ('ECHO' "SPRINT")

*READ DATA' (*TCATA SET' "INITVALUESY)
'READ DATA', A,B,COMPLXN,Z

each could be used to read the record:

A:=-3.2, B:="S", COMPLXN$@R:=1.5, 2(2):=1,,5(2);
The first three examples would force all the variables known
within the block containing the 'READ DATA' statement into the

run-time symbol table, while the last example would force only
A, B, COMPLXN, and Z into the run-time symbol table.

Data-Directed Output

Statement Prototype: 'WRITE DATA' [I/O-spec-list] , data-list
Allowable Specificaticn Keywords: 'UNIT', 'END OF VOLUME',

'ERROR', 'LINE', ‘'LAST LINE', 'LAST LENGTH', 'ECHO', 'MAX
LENGTH', 'DATA SET', 'STRING DATA SET', 'ENTRIES'

Part I -- Description of the MAD/I Language

126 Section 6: Input/Output

This statement causes a data-directed output transmissicn.

The format of the output records produced is discussed in
Section 6.2.1. Symbol table entries for each element in the
data-list will automatically be entered in the run-time symltol
table. .
Examples:

'WRITE DATA',X+3,A
would produce an output record like:

¥k = 10, A = -3.2;
Also,

'WRITE DATA' ('DATA SET' "NEWVALUES") ,Z(2)...Z(5)

would produce an output record like:

Z(2)

1.5, 3.6, -10.2, 8.63;

6.9.3__List-Directed I/0

List-Directed Input

Statement Prototype: 'READ' [I/O-spec-list] , data-list

Allowable Specification Keywords: o, 'UNIT', 'END OF FILE',
'ERROR', 'LINE', 'LAST LINE', 'LAST LENGTHK', 'ECHO', 'MAX
LENGTH', 'DATA SET', 'STRING DATA SET', 'ENTRIES®

This describes a list-directed input transmission. The o
represents the '"FORMAT* 1I/0 specification. List-directed
input/output is distinqguished from format-directed input/outrut
by the absence of the 'FORMAT' specification. The format of
acceptable input records is discussed in Section 6.2.2. Symbol
table entries for each data-list element will automatically be
entered in the run-time symbol table.

Examples:
'READ' ,N,M,X(1)...X(N)
'READ' (,0) ,N,M,X(1)...X(N)
'READ' (*UNIT' O) ,N,M,X(1)...X(N)

each could be used to read the record:

Part I -- Cescription of the MAD/I language

Section 6: Input/Output 127

List-Directed Output

Statement Prototype: 'WRITE' [I/0-spec-list] , data-list

Allowable Specification Keywords: o, 'UNIT', 'END OF VOLUME',
YERROR', 'LINE', 'YLAST LINE', *'LAST LENGTH', 'ECHO', 'MAX
LENGTH', 'DATA SET', 'STRING DATA SET', 'ENTRIES'

This describes a list-directed output transmission. The o
represents the 'FORMAT' I/0 specification. List-directed
input/output is distinguished from format-directed input/outfput
by the absence of the 'FORMAT' specification. The format of
output records produced is discussed in Section 6.2.2. Symbol
table entries for each data-list element will automatically be
entered in the run-time symbol table.

Examples:
'WRITE', N,“"VALUES ARE:",X(1)...X(N)
'WRITE' (,0), N,"VALUES ARE:",X(1)...X(N)
"WRITE* ('UNIT' O), N,"VALUES ARE:",X(1)...X(N)
each would produce a record like:

4 VALUES ARE: 1.5 3.2 -0.7 16.0

6.9.4 Format-Directed I/0

Format-Directed Input

Statement Prototype: 'READ' I/O-spec-list , data-list
Allowable Specification Keywords: ‘'FORMAT', ‘'UNIT', 'ENLC OF

FILE', '"ERROR', 'LINE', 'LAST LINE', 'LAST LENGTH', ‘'ECHO',

'MAX LENGTH', 'DATA SET', 'STRING DATA SET', 'ENTRIES'

This describes a format-directed input transmission, as
described in Section 6.2.3. Format specifications themselves
are discussed in Section 6.5.1.

Examples:

"REAL' ("IS5*"),N
'READ' ("I5*",0),N

each could be used to read the record:

ooo3no

Part I -- Description of the MAD/I Language

128 Section 6: Input/Output

where each o represents a blank.

Format-Directed Output

Statement Prototype: 'WRITE' I/O-spec-list [, data-list]

Allowable Specification Keywords: 'FORMAT', ‘'UNIT*, *END OF
VOLUME', ‘'ERROR', 'LINE', 'LAST LINE', ‘'LAST LENGTH',
"ECHO', 'MAX LENGTH', 'DATA SET', ‘'STRING DATA SET',
'ENTRIES!

This describes a format-directed output transmission, as
described in Section 6.2.3. Format specifications themselves
are discussed in Section 6.5.1. The first character of the
output line may be treated as a 1logical carriage control,
depending upon the system in which the MAD/I program is being
run and the type of the data set organization.

Examples:
'WRITE' ("'&ENTER THE FILE NAME:'*V)
will produce the output record:
EENTER THE FILE NAME:
In MTS, the "&" will be treated as a logical carriage control
which suppresses a line-feed at the end of the line if the data

set is a terminal.

'"WRITE' ("'X="',F3.2%") X
'"WRITE' ("'X="',F3.2%",0) ,X

each would produce an output record like:

X¥=315.52
6.9.5 _Unconverted I/0
Ungconverted Input:

Statement Prototype:
'READ UNCONVERTED' [I/O-spec-list] , data-list

Allowable Specification Keywords: 'UNIT', ‘'END OF FILE',

'ERROR', 'LINE', ‘'LAST LINE', 'LAST LENGTH', 'ECHO', 'MAX
LENGTH', 'DATA SET', 'STRING DATA SET', 'ENTRIES'

Part I -- Description of the MAD/I Language

Section 6: Input/Output 129

This statement causes an unconverted input transmission as
described in Section 6.2.4. Exactly one record will be read.
The record must have been written with a *WRITE UNCONVERTED'
statement. The data-list items must agree in mode with those
specified in the 'WRITE UNCONVERTED' statement which produced
the record. Symbol table entries for all the variables which
are referenced in the data-list will automatically be entered in
the run-time symbol table. Unconverted input/output is the most
efficient type of transmission because conversion is not needed.

Examples:

'"REALD UNCONVERTED', N,X(1)...X(N)
'READ UNCONVERTED' (0), N,X(1)...X(N)

Unconverted Output:

Statement Prototype:
'"WRITE UNCONVERTED' [I/O-spec-list] , data-list

Allowable Specification Keywords: 'UNIT', *'END OF VOLUME',
'ERROR', 'LINE', 'LAST LINE', 'LAST LENGTH', 'ECHO', 'MAX
LENGTH', 'DATA SET', 'STRING DATA SET', 'ENTRIES!®

This statement causes an unconverted output transmission as
described in Section 6.2.4. Exactly one record will be written.
The record can be read only with a 'READ UNCONVERTED' statement
whose data-list items agree in mode to those specified in the
'"WRITE UNCONVERTED' statement which produced the record. Symbol
table entries for all the data-list elements will automatically
be entered in the run- time symbol table. Unconverted
input/output is the most efficient type of transmission because
conversion is not needed.

Examples:
'"WRITE UNCONVERTED', N,X(1)...X(N)

'WRITE UNCONVERTED' (0), N,X(1)...X(N)
'WRITE UNCONVERTED',N+3,M,X(1,1)...X(N+3,M)

Part I -- Description of the MAD/I Language

130 Section 7: Program Structure

Section 7: _Progqram_Structure

7.1__Block Structure

Like other languages such as PL/I and ALGOL 60, MAD/I
includes the concept of block structure.

There are two kinds of blocks: compound-statement blocks
and procedure blocks.

A compound-statement__block is a 'BLOCK" statement
{Sec. 5.10). The block begins with the statement keyword
'BLOCK', ends with the corresponding end keyword ‘'END', and
contains all the intervening text. If the statement is labeled,

the label is not contained in the block.

A proceduyre block is a !'PROCEDURE' statement (Sec. 5.7.1).
The block begins with the statement keyword 'PROCEDURE', ends
with the corresponding end keyword ('END PROCEDURE' or ‘'END'),
and contains all the intervening text. If the statement is
labeled, the label is not contained in the block. Both the
short-form and the long-form 'PROCEDURE' statements are blocks.

Blocks may be properly nested; a block may contain other
blocks, which may in turn contain other blocks. We will say
that a portion of text T (a symbol, expression, or statement) is
internal to a block B, and that B properly contajins T, if and

(1) B contains T, and

(2) there is no block C such that B contains C amnd C
contains T.

Every MAD/I program is a block -- either a compound-
statement block or a procedure block. It is called the
outermost block, and is not internal to any block. Every other
block in the program is internal to exactly one block.

Part I -- Description of the MAD/I language

Section 7: Program Structure 131

7.2__Scope of names

The block structure of a program provides a convenient
framework in which to define the "scope of names" and a "re-
naming convention". We shall take "names" to mean identifiers
only, although these concepts could potentially be extended to
operators and keywords as well.

The re-naming _convention allows the same sequence of
source-program characters (i.e., the same symbol) to be used to
represent more than one name in the program, provided that the
different usages are disjoint, so that each instance of the
symbol represents a well-defined name.

Example:
'PROCEDURE"' AA;
'INTEGER' I, J, K;
stmt-seq-A1l;

'PROCEDURE' BB;
'INTEGER' I, J, L;
stmt-seq-B;

'END PROCEDURE';

stmt-seq-A2;
'END PROCEDURE!

In the above example, the four symbols I, J, K, and L are used
to represent six different identifiers (names):

in block AA, but not block BB;
in block AA, but not block BB;
in block AA;
in block BB;
in block BB;
in block BB.

HOH>=XOH

The scope of a name is the union of all portions of a
program (or a linked set of programs) in which the nanme is
"known"; i.e., all places where it may be used. (See also
Section 3.3.) A name is "known" in a portion of text T if an
instance in T of the symbol representing the name is recognized
as an occurrence of that name.

Every name must be declared (explicitly or implicitly) in
some block (see Sections 3.5-3.7). The scope of a given name N
can be determined as follows (let S be the symbol representing
N):

(1) The scope of N includes all text internal to the block B in

which N is declared (B is the block to which the
declaration of N is internal).

Part I -- Description of the MAD/I language

132

(2)

(3)

(4)

Section 7: Program Structure

If the scope of N includes declarations that N is 'NOTNEW'
or 'GLOBAL', the scope of N 1is extended "“outward"
accordingly (see Sec. 3.3). Multiple declarations of N are
permitted so 1long as they do not comflict, but only one
mode declaration is allowed.

Let B1 be the smallest block containing all the scope of N
(B1 either is B or contains B). The scope of N is now
extended "inward" into all blocks internal to B1, and all
blocks internal to those, etc., except that the scope of N
is not extended into any block which properly contains the
scope (or part of the scope) of any other name N
represented by the same symbol S.

Names declared 'EXTERNAL' or 'ACCESSIBLE' are called
"external" names. If two or more external names are
represented by the same symbol, they are merged into a
single name whose scope is the union of the individual
sE%ges. The attributes of the names must not conflict.

Part I -- Description of the MAD/I Language

Section 7: Program Structure 133

7.3__Block structure_at Run_time

At run time, blocks are activated (entered) and terminated

(exited) in a dynamic sequence determined by the order of
execution of the progranm.

A compound-statement block is activated when control passes
through the statement keyword ('BLOCK') for the block. It is
terminated when control passes through the end keyword ('END')
for the block, or when execution of a 'GO TO' statement
transfers control to a point not in the block.

A procedure block is activated when any one of 1its entry
points is called. It is terminated in any of the ways described
in Section 5.7.3.

Recursive procedures have not yet been defined in the MAD/I
lanquage.

Part I -- Description of the MAD/I Language

134 Section 8: Compile-Time Facility

Section 8: Compile-Time Facilities

Sometimes it is useful to be able to perform operations
that result in some change in the source text. These operations
or computations are performed at compilation time and not at run
time. MAD/I has some facilities for performing compile-time
operations.

8.1__The 'SUBSTITUTE'_ Statement

The 'SUBSTITUTE' statement may be used to associate a given
synbol (other than a constant) with an arbitrary sequence of
symbols at translation time. The form of this statement is

SUBSTITUTE X S1 S2 ... Sn 'END SUBSTITUTE'

where X and S1 through Sn are legal MAD/I symbols and X is not a
constant. After the occurrence of this statement, each
occurrence of the symbol X will be replaced by the sequence of
symbols S1 through Sn.

Substitution would normally be used for representing either
repetitious portions of a program or some sequence occurring in
many parts of a program and changing from tramnslation to
translation.

Note that S1 through Sn must be complete symbols. Also,
the <context in which X occurs will in no way affect the
recognition of the symbols S1 through Sn.

Since the substitution of a symbol is effective only after
it has been defined by a 'SUBSTITUTE' statement, that symbol may
have had a different meaning (i.e., may have been a variable,
operator, constant, etc.) previously. Whenever a substitution
definition is assigned to a symbol, the previous meaning 1is
pushed down. Previous definitions of a symbol may be restored
by means of the 'POP SUBSTITUTE' statement, which has the form:

'POP SUBSTITUTE' X
This will cause the last previous meaning of X tc be

restored. There is no limit on the number of redefinitions of a
symbol. :

Part I -- Description of the MAD/I Language

Section 8: Compile-Time Facility

For example, the following program section:

'SUBSTITUTE"

'SUBSTITUTE'

'SUBSTITUTE'

"SUBSTITUTE'

'SUBSTITUTE'

'SUBSTITUTE'

'SUBSTITUTE'

'SUBSTITUTE!

"SUBSTITUTE'

'"SUBSTITUTE'

SIZE 16 'END SUBSTITUTE';

PI 3.1415927 *END SUBSTITUTE';

+ - VEND SUBSTITUTE';

IF 'IF' 'END SUBSTITUTE';
Q 3 * Q 'END SUBSTITUTE';
Q 2 * Q 'END SUBSTITUTE';
A 'FIXED ARRAY' (15,SIZE)

TEMP := 'END SUBSTITUTE';

= = VYEND SUBSTITUTE';

= TEMP 'END SUBSTITUTE';

'POP SUBSTITUTE' TEMP ;

'"DECLARE' XYZ A ;

IF MMM & DOW, EST = EST + 1 ;

BOR1 = Q / PI;

'POP SUBSTITUTE' Q;

BOR2 = Q / PI;

is equivalent to

*DECLARE' XYZ 'FIXED ARRAY' (15,16);

*IF' MMM & DOW, EST := EST - 1;

BOR1 := 2 * 3 * Q / 3.1415927;

BOR2 := 3 * Q / 3.1415927;

'END

SUBSTITUTE';

Part I -- Description of the MAD/I language

135

136 Section 8: Compile-Time Facility

8.2__The 'INCLUDE' form

The 'INCLUDE' form allows the programmer to specify, as a
part of the text of his source program, a place where more
source text may be obtained. The text so obtained is inserted
in place of the 'INCLUDE' form at compile tinme.

Syntax: 'INCLUDE' character-symbol

The character string in the character-symbol (Sec. 2.1.4.1)
specifies the 1location of the text to be included. The
'"INCLUDE' form itself may occur anywhere.in the source progran
{except within a symbol or comment) -- it is not considered a
statement. The included text 1is obtained as a sequence of
characters, and 1is scanned 1like any other portion of source
text; it replaces the 'INCLUDE' form which specified it, and
should therefore be syntactically valid in the context of the
'INCLUDE' form. Included text may contain further 'INCLUDE'
forms.

The character string in the character-symbol is taken as a
data set name, and is interpreted in a system-dependent fashion
(see Section 6.3.2).

Example: YINCLUDE' "DEFPACKAGE"

Part I -- Description of the MAD/I Language

Section 9: MAD/I Definitional Facility 137

Section 9: Definitional Facility

This section has not yet been written. Facilities are
planned which will allow the programmer to define new data
types, new operations, new operators, and new statements. New
constructs would be defined either in terms of existing
constructs (pre-defined or user-defined) or in terms of an
assembler-like language.

The feasibility of an effective definitional facility has
already been established by actual experiments with MAD/I. (See
the memorandum by Srodawa which is cited in the Preface.) It
remains to design and implement a clean mechanism which allows
the user to express his definitions in a reasonable way. This
requires more research.

One of the authors (Springer) is now writing a doctoral

dissertation which describes an experimental definitional
facility based on MAD/I.

Part I -- Description of the MAD/I Language

138 Section 10: Example MAD/I Progranms

Section_10:; Example MAD/I Progra

—

14)]

10.1__Procedures CALLSQRT and SQR

3

This example shows two MAD/I procedures, CALLSQRT and SQRT.
CALLSQRT is the "main" program and calls upon the procedure
SORT. There is no main program declaration; CALLSQRT becones
the main program by being the first program executed by the
operating system. The default mode is 'FLOATING SHORT' since it
is not otherwise declared. The procedure CALLSQRT reads a
nunber, then prints the number entered followed by the value
returned by SQRT. The procedure SQRT computes the square root
of 1its argument using a Newton-Raphson approximation technigque.

'PROCEDURE' CALLSQRT.;
CALLSQRT: 'WRITE' ("'SENTER X:'*%);

READ' ("WF"), X;

'WRITE' ("' X=',WF,' SQRT OF X=',WF*"),X,SQRT. (X):

"GO TO' CALLSQRT

"END!

'PROCEDURE' SQRT. (X);
'"PRESET' EPS := .0001;

SQORT: 'IF' X=0. | X=1., 'RETURN' X;
Y := X;
LOOP: 2 = (Y+X/Y)/2.;
'IF' .ABS. (Y-Z) < EPS, 'RETURN' Z;
Y := Z;
'G0 TO' LOOP
VEND!

The following is a sample run of the procedures CALLSQRT
and SQRT. The numbers following "ENTER X:" are input data typed
by the user.

ENTER X: 100.0

X= 100.0000 SQRT OF X= 10.0000
ENTER X: 1.0

X= 1.0000 SQRT OF X= 1.0000
ENTER X: 0.

X= .0000 SQRT OF X= .0000
ENTER X: 4.0

X= 4.0000 SQRT OF X= 2.0000
ENTER X: ¢

**%* ALL INPUT DATA HAS BEEN PROCESSED - AT LOCATION 500788

Part I -- Description of the MAD/I language

Section 10: Example MAD/I Programs 139

The two independent procedures CALLSQRT and SQRT can be
combined into one program by making SQRT internal to CALLSQRT.
SQRT must be declared 'ACCESSIBLE' if it is to be reterenced 1in
other programs. The sample run of this program is identical to
the previous sample run.

'PROCEDURE' CALLSQRT. ;
CALLSQRT: 'WRITE' ("'SENTER X:'*");
READ' ("WF"), X;
"WRITE' ("' X=',WF,' SQRT OF X=',WF*"),X,SQRT. (X) ;
"GO TO' CALLSQRT;

'PROCEDURE' SQRT. (X) ;
'*PRESET' EPS := .0001;

SQORT: 'IF' X=0. | X=1., 'RETURN' X;
Y := X;
LOOP: 2 := (Y+X/Y)/2.;
'IF* .ABS. (Y-2) < EPS, 'RETURN' Z;
Y := 2;
'GO TO' LOOE
VEND!
'END'

Part I -- Description of the MAD/I Language

140 Section 10: Example MAD/I Programs

10.2__Procedures HASHTEST and HASH

The procedure HASH maintains a hashed symbol table. It 1is
called with one arqument, the 'CHARACTER'(8) symbol to be
hashed. HASH then computes a key with a value ranging from O
through 7 which 1is the hash of the symbol name. The operator
.AS. is used to treat the symbol as two integers in the
computation of the key. Finally, the appropriate thread is
searched for a symbol table entry having the argument as its
name. If no such entry is found, a new symbol table entry is
allocated using the 'ALLOCATE' statement and inserted at the
head of the appropriate thread. HASH returns the pointer to the
requested symbol table entry.

The procedure HASHTEST requests a symbol as input, calls
HASH with the symbol as the argument, and prints the pointer
returned and the contents of the symbol table entry. HASHTEST
is the main progranm.

"PROCEDURE' HASHTEST.;

*DECLARE' 'DEFAULT' *INTEGER';

'DECLARE' HASH 'ENTRY POINT' 'POINTER';

"DECLARE' PTR 'POINTER';

*DECLARE' SYMENT 'BASED' 'COMPONENT STRUCTURE' (

" BOINTER',
"CHARACTER' (8),
*INTEGER',
'BIT' (8));
*DECLARE' SYMBOL 'CHARACTER' (8) ;
HASHTEST: 'WRITE' ("'SENTER NEXT SYMBOL: '*") ;

*READ' ("C8.8%"), SYMBOL;

PTR := HASH. (SYMBOL);

SYMENT .ALLOC. PTR;

'WRITE' ("*SYMBOL TABLE ENTRY AT: ',X8.4,' PTR=',
X8.4,' NAME=',C8.8%"), PTR,
SYMENT (1) ,SYMENT (2) ;

'GO TO' HASHTEST;

"END?

Part I -- Description of the MAD/I Language

HASH:

100P:

FOUND:

The £
and HASH.

ENTER NE
¥k¥x%k KEY=
SYMBOL TA

ENTER NE
kkkk KEY=
SYMBOL TA

ENTER NE
*k%k%k KEY=
SYMBOL TA

ENTER NE
*kkk KEY=
SYMBOL TA

ENTER NE

Section 10: Example MAD/I Programs

'"PROCEDURE' HASH. (SYMBOL) ;

'DECLARE DEFAULT' 'INTEGER';
'DECLARE' SYMBOL 'CHARACTER' (8) ;
'*DECLARE' HASH 'ENTRY POINT' 'POINTER';

141

*DECLARE' SYMENT 'BASED' 'COMPONENT STRUCTURE" (

'POINTER?', << NEXT SYMBOL >>
'CHARACTER' (8), << SYMBOL NAME >>
'INTEGER', << STORAGE ALLOC >>
'BIT'(8)) << CLASS MODE >>

'DECLARE' THREADS 'FIXED ARRAY' (0...6) "POINTER';

'"DECLARE' FINGER 'POINTER';
'"DECLARE' NAMES 'FIXED ARRAY' (2) 'INTEGER';
'PRESET* THREADS := 7 ('NULL PT'); .

(NAMES .AS. ('CHARACTER' (8))) := SYMBOL;
KEY := .ABS. ((NAMES (1) +NAMES(2)).REM.7);
"WRITE' ("“'****x KEY=',I*"),KEY;
FINGER := THREADS (KEY) ;
*IF' FINGER = 'NULL PT';

"ALLOCATE' SYMENT;

SYMENT (1) := THREADS (KEY) ;

THREADS (KEY) := .PT. SYMENT;

SYMENT (2) := SYMBOL;
SYMENT (4) := SYMENT(3) := 0;
"ELSE';

SYMENT .ALLOC. FINGER;
'IF' SYMBCL = SYMENT(2), 'GO TO' FOUND;
FINGER := SYMENT(1);
*GO TO' LCCE
YENDY;
'RETURN' .PT. SYMENT
"END!

ollowing is a sample run of the procedures

XT SYMBOL: a

1
BLE ENTRY AT: 00500068 PTR=00000000 NAME=A
XT SYMBOL: b

2
BLE ENTRY AT: 00500080 PTR=00000000 NAME=B
XT SYMBOL: ¢

3
BLE ENTRY AT: 00500098 PTR=00000000 NAME=C
XT SYMBOL: d

4
BLE ENTRY AT: 005000B0 PTR=00000000 NAME=D
XT SYMBOL: e

Part I -- Description of the MAD/I Language

HASHTEST

142 Section 10: Example MAD/I Programs

*k%k%x KEY= 5
SYMBOL TABLE ENTRY AT: 00500C68 PTR=00000000 NAME=E
ENTER NEXT SYMBOL: f

k¥ k% KEY= 6

SYMBOL TABLE ENTRY AT: 00500C80 PTR=00000000 NAME=F
ENTER NEXT SYMBOL: g

k%% KEY= 0

SYMBOL TABLE ENTRY AT: 00500C98 PTR=00000000 NAME=G
ENTER NEXT SYMBOL: h

*kk*k KEY= 1

SYMBOL TABLE ENTRY AT: 00500CBO PTR=00500068 NAME=H
ENTER NEXT SYMBOL: i S

k%% KEY= 2

SYMBOL TABLE ENTRY AT: 00500CC8 PTR=00500080 NAME=I1
ENTER NEXT SYMBOL; a

¥x%k%k KEY= 1

SYMBOL TABLE ENTRY AT: 00500068 PTR=00000000 NAME=A
ENTER NEXT SYMBOL: h

*¥%%¥% KEY=) 1

SYMBOL TABLE ENTRY AT: 00500CBO PTR=00500068 NAME=H
ENTER NEXT SYMBOL: aardvark

k¥ KEY= 4

SYMBOL TABLE ENTRY AT: 00500CE0 PTR=005000B0 NAME=AARDVARK
ENTER NEXT SYMBOL: quail

X¥x¥ KEY= 0

SYMBOL TABLE ENTRY AT: 00500CF8 PTR=00500C98 NAME=QUAIL
ENTFR NEXT SYMBOL: wunerful

*%x%%k KEY= 2

SYMBOL TABLE ENTRY AT: 00500D10 PTR=00500CC8 NAME=WUNERFUL
ENTER NEXT SYMBOL: a

*k%% KEY= 1

SYMBOL TABLE ENTRY AT: 00500068 PTR=00000000 NAME=A
ENTER NEXT SYMBOL: "4

*%%%x ALL INPUT DATA HAS BEEN PROCESSED - AT LOCATION S5009EO

Part I -- Description of the MAD/I lLanguage

Section 11: The Compiler in *MAD1 143

PART II -- USER'S GUIDE FOR MAD/I IN MTS

Section_11:; The Compiler Public File *MAD1

—— — o B e S S i e

Contents: The object modules which make up the MAL/I
compiler.

Purpose: To compile MAD/I programs.

Usage: The compiler 1is invoked by a RUN command,

specifying *MAD1 as the object file.
logical I/0 units referenced:
SCARDS - The source program to be compiled.

SPRINT - The compiler listings and
diagnostics.

SPUNCH - The resulting object module. This
can be controlled by the DECK
option.

Examples: $RUN *MAL1
(SCARDS, SPRINT, SPUNCH default to *SOURCE*

SINK, *PUNCH*, respectively)
$RUN *MAD1 SPUNCH=-F1 PAR=NOSOURCE

Description: See Part I of this manual for a description of
the MAL/I Language.

Compiler options can be passed by the optional PAR= field
on the RUN command. This field must be the last in the sequence
of specifications on the RUN command. The PAR= field consists
of a 1list of option specifications separated by blanks or
commas. Many of the option keywords have abbreviations. Some
options have pairs of alternative keywords of the forms
"option", "NOoption". In each case, the 1M"optiom" keyword
requests a service, and the "NOoption" keyword rejects the
service. Each option has a default. The default value for some
options depends upon whether the compiler is being run in batch
or from a terminal. 1In case of conflicting options, the right-
most option specification has effect. A list of the option
keywords, along with their abbreviations, defaults, and meanings
follows:

Part II -- User's Guide for MAD/I in MTS

144 Section 11: The Compiler in *MAD1

KEYWORD ABBREVIATION DEFAULT VALUE
SOURCE S Batch: SOURCE
NOSOURCE NS Terminal: NOSOURCE

Requests that a listing of the MAD/I source progranm ke
written to SPRINT. '

DECK D DECK
NODECK ND
Requests that the generated object module be written
to SPUNCH.
LIST L NOLIST
NOLIST NL

Requests that a 1listing of the generated machine
instructions and a storage map be written to SPRINT.

MAP M NOMAP
NOMAP NM

Requests that a storage map showing the storage
assignments of all variables and constants be written to
SPRINT.

XREF X NOXREF
NOXREF NX
Requests that a cross-reference table for all the
identifiers in the program be written to SPRINT.
ATR A Batch: ATR
NOATR NA Terminal: NOATR
Requests that a 1list of the attributes of each
identifier be written to SPRINT.
OPLIST OL Batch: OPLIST
NOOPLIST NOL Terminal: NOOPLIST

Requests that a listing of the option assignments for
this compilation be written to SPRINT.

Part II -- User's Guide for MAD/I in MTS

Section 11: The Compiler in *MADA1 145

SORMGIN= (m,n) SM= SORMGIN=(1,256)
=m,n
=(m n)
=m n

Specifies the left and right margins of the source
program lines to be g and n, respectively, where 1<m<n<256.
All text outside of this range is ignored. For instance,
to read source lines which have sequence-id information in
columns 73 to 80, specify m=1 and n=72.

FREEFORM FF FREEFORM
LINEFORM LF

FREEFORM specifies that the input text is completely
free-form, extending from 1line to 1line as a continuous
sequence of characters, with statements separated by
semicolons. LINEFORM specifies that each input line will
have a semicolon automatically appended to it unless the
last character (the one at the right margin) is the
continuation character. The continuation character 1is
specified with CCNTCHAR option.

CONTCHAR=C CC= CONTCHAR=+

Specifies that ¢ is the continuation character to be
used in conjunction with the LINEFORM option.

SOQURCETAB=n ST= SOURCETAB=6

Specifies that the source program, if it 1is printed,
be printed beginning in column n. The source progran
listing itself is controlled by the SOURCE option.

SIZE=(m,n) SIZE=(3,255)
=m,n
=(mn n)
=m n

Specifies the sizes of two internal tramslator tables.
M specifies the maximum number of control sections. X
specifies the maximum number of "basetab" entries. These
need not be given except for very large prograums.

Part II -- User's Guide for MAD/I in MTS

146 Section 12: Sample Runs of MAD/I in MTS

Section 12: Sample Runsfg; MAD/I in MTS

12.1__Sample Run of CALISQRT and SQRT

The following excerpt from a terminal session shows the
runs of the MAD/I compiler used to generate the sample output of
Section 10.1. Notice that the compiler is run twice, once for
each progranm. Also notice that the defaults for terminal
operation are such that no listings are produced. In this and
all following examples lower-case characters are typed by the
user. Lines preceded by a "#" are commands to MTS. Some lines
have been truncated on the right to fit within the column width
of this report.

#list callsqrt

> 1 'PROCEDURE' CALLSQRT.;

> 2 CALLSQRT: 'WRITE' ("'EENTER X:'%");

> 3 *READ' ("“WFx*"), X;

> u 'WRITE' ("' X=',WF,' SQRT OF X=',WF*") X,
> 5 'GO TO' CALLSQRT

> 6 'END?

> 7

> 8

> 9

> 10

> 1M 'PROCEDURE"' SQRT. (X) ;

> 12 'PRESET' EPS := .0001;

> 13 SQRT: 'IF' X=0. | X=1., 'RETURN' X;

> 14 Y := X;

> 15 LOOP: Z := (Y+X/Y)/2.;

> 16 'IF' .ABS. (¥Y-2) < EPS, 'RETURN' Z;
> 17 Y := Z;

> 18 'GO TO*' LOOP

> 19 'END?

#END OF FILE
#run *mad?1 scards=callsqrt(1,10) spunch=-load
#EXECUTION BEGINS

MAD/I COMPILER VERSION PR240-093943.

MAD/I COMPILER STATISTIC PASS1 ALLOC PASS?2

CPU TIME (SEC) 1.125 1.575 2.981
ELAPSED TIME (SEC) 2.423 2.637 8.093

CPU VM INTEGRAL (PG-SEC) 168.693 238.740 456.407 8
MEAN VM SIZE (PGS) 113.569 116.595 121.376 3
DRUM READS 29 27

STATEMENTS 5

DESCRIPTORS 35

#EXECUTION TERMINATED
#run *mad1 scards=callsqrt(11) spunch=-load (last+1)

Part II -- User's Guide for MAD/I in MTS

Section 12: Sample Runs of MAD/I in MTS

#EXECUTION BEGINS

MAD/I COMPILER VERSION PR240-093943.

MAD/I COMPILER STATISTIC

CPU TIME
ELAPSED TIM

(SEC)
E (SEC)

CPU VM INTEGRAL (PG-SEC)

MEAN VM SIZ
DRUM READS
STATEMENTS
DESCRIPTORS

E (PGS)

#EXECUTION TERMINATED

#run -load

#EXECUTION BEGINS

ENTER X: 1
X= 100.00

00.0
00 SQRT OF X=

ENTER X: 1.0

X= 1.0000 SQRT OF X=
ENTER X: O.

X= .0000 SQRT OF X=
ENTER X: 4.0

X= 4.0000 SQRT OF X=
ENTER X: ¢

PASS1
.988
1.343
147.653
125.010
1
10
65

10.0000
1.0000
.0000
2.0000

ALLOC
1.464
1.654
222.130
125.994
4

147
PASS?2
2.854
3.496
436.374 8
127.794 3

*%%% ALL INPUT DATA HAS BEEN PROCESSED - AT LOCATION 500788
#EXECUTION TERMINATED

Part II -- User's Guide for MAD/I in MTS

148 Section 12: Sample Runs of MAD/I in HNTS

12.2 _Sample Run of HASHTEST and_ HASH

The following excerpt from a terminal session shows the
runs of the MAD/I compiler used to generate the sample output of
Section 10.2. The option ol chosen on the first run caused all
the compiler option assignments to be printed. Likewise, the
be produced. Note +that on line 14 of HASH the *NULL PT' has
been replaced by 0. This is necessary due to a minor bug in the
compiler which does not allow 'NULL PT' to work properly in a
'PRESET' statement.

#enpty -deck

#DONE.

#run *mad1 scardszhashtest spunch=-deck par=source,bdl
EXECUTION BEGINS

Part II -- User's Guide for MAD/I in MTS

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

Section 12: Sample Runs of MAD/I in MTS 149

MAD/I COMPILER OPTION ASSIGNMENTS:

SOURCE,DECK,NOLIST,SORMGIN=(001,256) , FREEFORM,CONTCHAR
SOURCETAB=006,SIZE=(0003,0255) ,COMPILE
NOMAP,NOXREF, NOATR,OPLIST,USER,ADDENDA

MAD/I COMPILER VERSION PR240-093943.

MAD/I COMPILER SOURCE PROGRAM LISTING ecee eae oo

"PROCEDURE' HASHTEST.;
*DECLARE' 'DEFAULT' 'INTEGER';
'DECLARE' HASH 'ENTRY POINT' 'POINTER';
'DECLARE' PTR 'POINTER';
'DECLARE' SYMENT 'BASED' 'COMPONENT STRUCTURE" (
'POINTER',
*CHARACTER' (8),
*INTEGER?,
'*BIT' (8))
'DECLARE' SYMBOL *'CHARACTER!' (8) ;

HASHTEST: 'WRITE' ("'EENTER NEXT SYMBOL:'*");

10012 'READ' ("C8.8%"), SYMBOL;
0013 PTR := HASH. (SYMBOL);

0014 SYMENT .ALLOC. PTR;

0015 'WRITE' ("'SYMBOL TABLE ENTRY AT: ',X8.4,' PTR=!
0016 X8.4," NAME=',C8.8%"), PTR,

0017 SYMENT (1) , SYMENT (2) ;

0018 "GO T0' HASHTEST;

0019 YEND!

MAD/I COMPILER STATISTIC PASS1 ALLOC PASS2

CPU TIME (SEC) 2.151 2.307 3.612
ELAPSED TIME (SEC) 3.370 3.364 4.930

'CPU VM INTEGRAL (PG-SEC) 322.617 350.213 552.274 12
MEAN VM SIZE (BGS) 88.212 88.768 89.635 2
DRUM READS 13 17 4
STATEMENTS 13

DESCRIPIORS 92

#EXECUTION TERMINATED
#run *mad1 scards=hash spunch=-deck (1000) par=s
#EXECUTION BEGINS

0001
0002
0003
0004

MAD/I COMPILER VERSION PR240-093943.

MAD/I COMPILER SOURCE PROGRAM LISTING «ve cve «..
"PROCEDURE' HASH. (SYMBOL) ;
"DECLARE DEFAULT' 'INTEGER';

'DECLARE' SYMBOL 'CHARACTER' (8);

Part II -- User's Guide for MAD/I in MTS

150 Section 12: Sample Runs of MAD/I in MTS
0005 *DECLARE' HASH 'ENTRY POINT' *POINTER';
0006 "DECLARE' SYMENT 'BASED' 'COMPONENT STRUCTURE' (
0007 '"POINTER', << NEXT SYMBOL >>
0008 'CHARACTER!" (8) , << SYMBOL NAME >>
0009 'INTEGER?', << STORAGE ALLOC >>
0010 '*BIT' (8)); << CLASS MODE >>
0011 '"DECLARE' THREADS 'FIXED ARRAY'(0...6) 'POINTER
0012 'DECLARE' FINGER 'POINTER';
0013 'DECLARE' NAMES 'FIXED ARRAY'(2) 'INTEGER';
0014 'PRESET' THREADS := 7(0);
0015
0016 HASH: (NAMES .AS. (*CHARACTER' (8))) := SYMBOL;
0017 KEY := .ABS. ((NAMES (1) +NAMES (2)) .REM.7);
0018 'WRITE' ("'*%%%x KEY=!',I*") ,KEY;
0019 FINGER := THREADS (KEY) ;
0020 LOOP: 'IF' FINGER = 'NULL PT?';
0021 "ALLOCATE' SYMENT;
0022 SYMENT (1) := THREADS (KEY) ;
0023 THREADS (KEY) := .PT. SYMENT;
0024 SYMENT (2) := SYMBOL;
0025 SYMENT (4) := SYMENT(3) := O0;
0026 'ELSE';
0027 SYMENT .ALLOC. FINGER;
0028 'IF' SYMBOL = SYMENT(2), 'GO TO' FOUND;
0029 FINGER := SYMENT(1);
0030 GO T0' LOOP
0031 '"END';
0032 FOUND: 'RETURN' .PT. SYMENT
0033 'END!
MAD/TI COMPILER STATISTIC PASS1 ALLOC PASS?2
CPU TIME (SEC) 2.928 3.026 7.363
ELAPSED TIME (SEC) 4.663 4.773 11.367
CPU VM INTEGRAL (PG-SEC) 439.160 459.257 1126.523 20
MEAN VM SIZE (BGS) 92.347 92.970 94.465 2
DRUM READS 29 18 1
STATEMENTS 26
DESCRIPTORS 202 2

#EXECUTION TERMINATED
#run -deck
#EXECUTION BEGINS
ENTER NEXT SYMBOL: a
k% KEY=
SYMBOL TABLE ENTRY AT: 00500068 PTR=00000000 NAME=A
ENTER NEXT SYMBOL: b
*%kk¥x KEY=
SYMBOL TABLE ENTRY AT: 00500080 PTR=00000000 NAME=B
ENTER NEXT SYMBOL: <c

Aok ok

KEY=

1

2

3

SYMBOL TABLE ENTRY AT: 00500098 PTR=00000000 NAME=C
ENTER NEXT SYMBOL: d
kkkk KEY=

4

Part ITI -- User's Guide for MAD/I in MTS

Section 12: Sample Runs of MAD/I

SYMBOL TABLE ENTRY AT: 005000BO
ENTER NEXT SYMBOL: e

*%k%kk KEY= 5

SYMBOL TABLE ENTRY AT: 00500C68
ENTER NEXT SYMBOL: f

*x%% KEY= 6

SYMBOL TABLE ENTRY AT: 00500C80
ENTER NEXT SYMBOL: g

*%k%k%k KEY= 0

SYMBOL TABLE ENTRY AT: 00500C98
ENTER NEXT SYMBOL: h

xk%%k KEY= 1

SYMBOL TABLE ENTRY AT: 00500CBO
ENTER NEXT SYMBOL: i

*%%k% KFY= 2

SYMBOL TABLE ENTRY AT: 00500CC8
ENTER NEXT SYMBOL: a

*kkk KEY= 1

SYMBOL TABLE ENTRY AT: 00500068
ENTER NEXT SYMBOL: h

x¥x%k%k KEY= 1

SYMBOL TABLE ENTRY AT: 00500CBO
ENTER NEXT SYMBOL: aardvark

k% k% KEY= n

SYMBOL TABLE ENTRY AT: 00500CEOQ
ENTER NEXT SYMBOL: quail

*%k%k%k KEY= 0

SYMBOL TABLE ENTRY AT: 00500CF8
ENTER NEXT SYMBOL: wunerful

*%k%kk KEY= 2

SYMBOL TABLE ENTRY AT: 00500D10
ENTER NEXT SYMBOL: a

*%k%% KEY= 1

SYMBOL TABLE ENTRY AT: 00500068
ENTER NEXT SYMBOL: ¢

PTR=00000000

PTR=00000000

PTR=00000000

PTR=00000000

PTR=00500068

PTR=00500080

PTR=00000000

PTR=00500068

PTR=005000B0

PTR=00500C98

PTR=00500CC8

PTR=0000G000

*%%% ALL INPUT DATA HAS BEEN PROCESSED - AT

#EXECUTION TERMINATED

in MTS 151

NAME=D

NAME=E

NAME=F

NAME=G

NAME=H

NAME=I

NAME=A

NAME=H

NAME=AARDVARK

NAME=QUAIL

NAME=WUNERFUL

NAME=A

LOCATION 5009E0

Part II -- User's Guide for MAD/I in MTS

152 Section 12: Sample Runs of MAD/I in MTS

12.3__Sample Run of Combined CALLSQRT and_ SQRT

The following excerpt from a terminal session shows a run
of the MAD/I compiler on the procedures CALLSQRT and SQRT as
combined into one program. All compiler output (except for
internal compiler debugging aids) is turned on in this exanmfple.
The output is described in some detail below.

The first page consists of the option assignments and
source program listing. Each 1line of the program is given a
line number which is used as a reference in error messages and
object program listing.

The next page gives the storage allocation of the constants
in the program. Other constants are generated as needed and are
printed interspersed with the object program 1listing which
follows. The two-byte and six-byte fields at the beginning of
each line are the control section identification and relocatatle
address (within the control section) of the beginning of the
data. The third field is the text of the constant. All numbers
are in hexadecimal.

The next five pages are a listing of the generated object
program. The object code is preceded by the line or lines which
caused it to be generated. The first three fields are the
control section identification, relocatable address, and text,
as described above. A "+" is printed in lines which set out-of-
line text. There are two types of out-of-line text. First,
instructions which reference addresses not yet generated are
modified (actually, completed) by out-of-line text when the
forward reference is resolved. Second, additional constants and
internal variables are allocated out-of-line as required. The
remainder of the line is a pseudo-assembler code representation
of the 1line. Run-time symbol table entries and the base tatle
(used for addressability) are generated at the end of the object
program listing.

Next come two pages giving the external symbol dictionary
and relocation dictionary. The notation used in these tables is
similar to that used in other System/360 translators.

The next page of output gives a storage map showing the
allocation of all variables and constants in the program. The
first field gives the control section identification of the
allocation. If the item has no allocation in this program, "00"
is given as the control section identification. The next field
gives the storage class of the item. The correspondence is as
follows:

01 Static
02 External

Part II -- User's Guide for MAD/I in MTS

Section 12: Sample Runs of MAD/I in MTS 153

03 Formal Parameter
07 Based

The next field gives the displacement within the base table of
the base address constant to be used in referencing this itenm.
Notice that formal parameters, external symbols, and Lased
variables always have a unique base table entry, while many
static items may be referenced using the same base table entry.
The last field gives the relocatable address of the item within
the control section.

The last page gives the attributes of each symbol in the
progran and 1is self-explanatory. The numeric fields are
identical to those given in the storage map.

#empty -deck

#DONE.

#run *mad1 scards=callsqrt2 spunch=-deck par=s,a,l,m,o0l
#EXECUTION BEGINS

Part II -- User's Guide for MAD/I in MTS

154 Section 12: Sample Runs of MAD/I in MTS

MAD/I COMPILER OPTION ASSIGNMENTS:
SOURCE, DECK,LIST,SORMGIN=(001,256) , FREEFORM,CONTCHAR=+
SOURCETAB=006,SIZE=(0003,0255) ,COMPILE
MAP ,NOXREF ,ATR,OPLIST,USER,ADDENDA

MAD/I COMPILER VERSION PR240-093943.

MAD/I COMPILER SOURCE PROGRAM LISTING cee coea eeoe

0001 YPROCEDURE' CALLSQRT.; -

0002 CALLSQRT: 'WRITE' ("'SENTER X:'*W);

0003 'READ' ("WF*"), X;

0004 "WRITE' ("' X=',WF,' SQRT OF X=',bWF*"),X,SQRT. (
0005 'GO TO' CALLSQRT;

0006

0007 "PROCEDURE' SQRT. (X) ;

0008 'PRESET' EPS := .0001;

0009 SOQRT: 'TF' X=0. | X=1., 'RETURN' X;

0010 Y := X;

0011 LOOP: 7 1= (Y4X/Y)/2.:

0012 ‘IF' .ABS.(Y¥-2) < EPS, 'RETURN' Z;
0013 Y := Z;

0014 'GO TC' LOOP

0015 '"END?

0016 'END?

Part II -- User's Guide for MAD/I in MTS

Section 12: Sample Runs of MAD/I in MTS 155

STORAGE ALLCCATION

01
01
01
01
01
01
01

000000
000064
000068
00006C
000070
00008a
00008D

41200000

41100000

00000000
7DUOETTE7TD6BE6C66BTD
E6C65C

+
+
+
+
+
7D50CS5D5E3CSDIUOETTA +

#CALLSQR CSECT
CONST 2.
CONST 1.
CONST 0.
CONST "' X=',WF,' SQ
CONST "WF*"
CONST "'EENTER X:'*"

Part II -- User's Guide for MAD/I in MTS

156

Section 12: Sample Runs of MAD/I in MTS

MAD/I COMPILER OBJECT PROGRAM LISTING ...

02 000000
*0001
*0002 Ca

02 000000

02 000000

02 000000

02 000004

02 000008

02 00000C

02 000010

02 000014

02 000018

02 0000127

02 000020

02 000024

02 000028

02 000027

02 00002E

02 000032

02 000036

02 000032

02 00003E

02 000040

02 000044

02 000048

01 00005C

01 000060

01 000058

02 00004cC

02 000050

02 000054

02 000058

02 00005cC

02 000060

02 000064

02 000066

02 00006A

02 00006E

02 000070

02 000074

02 000078

02 00007C

02 000080

02 000084

02 000086

02 00008A
*0003

02 00008E

02 000090

02 000094

'PROCEDURE!
"WRITE' ("'EENTER X:'*%);

LLSQRT:

90ECDOOC
58CO0F020
58EQCO00C
S8EQEQOU4
50E0DO0O8
SO0DOEQO4Y
18DE

47F0F028
00000000
58C0F020
1B 11

5840C00C
41E0DO4S
98234000
90DE4000
58F0CO14
ODEF

90234000
58B0C000
50F0B09C
0000008D
00300C00
00000001
4110B05C
5840Cc00C
41E0DOUS
98234000
90DE4000
58F0C018
ODEF

90234000
S0F0B09C
1B 11

5840C00C
L1EODO4SB
98234000
90DEL000
58F0C01C
ODEF

90234000
S0F0B0O9C

'READ!

1B11

5840C00C
41E0DOUS

@CALLSQR
CALLSQRT. ;

CALLSQRT

("WE*V) , X;

CSECT

CNOP
EQU
STHM
L

L

L

ST
ST
LR

B

DC

L

SR

L

LA
LM
STHM
L
BASR
STM

ST
DC
CONST
CONST
LA

LA
LM
STHM

BASR
STM
ST
SR

L

LA
LM
STM
L
BASR
STM
ST

SR
L
LA

0,4

*
14,12,12(13)
12,32(,15)
14,%STKADR
14,4 (,14)
14,8 (,13)
13,4 (,14)
13,14

40 (,15)

A ($BASETAB)
12,32, 15)
1,1
4,%STKADR
14,72 (,13)
2,3,0(4)
13,14,0 (4)
15, #+20
14,15
2,3,0(4)
11,0(,12)
15,%RTNCODE
A("'6ENTER X:!
3148800

3
1,#CALLSQR+92
4,%STKADR
14,72 (,13)
2,3,0 (4)
13,14,0 (4)
15, #+24
14,15
2,3,0(4)

15, $RTNCODE
1,1
4,%STKADR
14,72 (,13)
2,3,0(4)
13,14,0 (4)
15, #+28
14,15
2,3,0(4)
15, %RTNCODE

1,1
4,%STKADR
14,72 (,13)

Part II ~-- User's Guide for MAD/I in MTS

02
02
02
02
02
02
01
01
01
02
02
02
02
02
02
02
02
02
01
01
01
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

000098
00009C
0000a0
0000AY
0000A6
0000aA
000050
000054
0ooouc
0000AE
0000B2
0000B6
0000BA
0000BE
0000C2
0000C6
0000cC8
0000cCC
000044
000048
000040
0000D0
0000DU
0000D8
0000DC
0000EO
0000E4
0000ES8
0000EA
0000EE
0000F2
0000F4
0000F8
0000FC
000100
000104
000108
00010a
00010E

*0004

02
02
02
02
02
02
02
02
02
01
01
01

000112
000114
000118
00011cC
000120
000124
000128
000122
00012E
000038
00003C
000034

Section 12: Sample Runs of MAD/I in MTS 157

98234000
SODE4000
58F0C020
ODEF

90234000
SOF0B0O9C
00000082
00300300
00000001
4110B050
5840C00C
U1EODO4S8
98234000
90DE4000
58F0C018
ODEF

90234000
50F0B09C
0000000C
00720400
00000001
4110B044
5840C00C
41E0DOUS8
98234000
90DE4000
S8F0C024
ODEF

90234000
50F0B09C
1B11

5840C00C
41E0DOUS
98234000
90DE4000
58F0C01C
ODEF

90234000
50F0B09C

'WRITE'

1B 11

5840C00C
41E0DOUS
98234000
90DE4000
58F0CO14
ODEF

90234000
50F0B0O9C
00000070
00301400
00000001

+

(" X=',WF,"

LM 2,3,0(4)

STM 13,14,0 (4)

L 15,#+32

BASR 14,15

STM 2,3,0 (4)

ST 15,%RINCOLE

DC A ("WF*n)

CONST 3146496

CONST 1

LA 1,#CALLSQR+80

L 4,%STKADR

LA 14,72 (,13)

LM 2,3,0(4)

STM 13,14,0 (4)

L 15,#+24

BASR 14,15

STM 2,3,0(4)

ST 15,%RTNCODE

DC A (X)

CONST 7472128

CONST 1

LA 1,#CALLSQR+68

L 4,%STKADR

LA 14,72 (,13)

LM 2,3,0(4)

STM 13,14,0 (4)

L 15,#+36

BASR 14,15

STM 2,3,0(4)

ST 15,%RTNCODE

SR 1,1

L 4,%STKADR

LA 14,72 (,13)

LM 2,3,0(4)

STM 13,14,0 (4)

L 15,#+28

BASR 14,15

STM 2,3,0(4)

ST 15,%RTNCOLE
SQRT OF X="',WFx") X, SOR

SR 1,1

L 4,%STKADR

LA 14,72 (,13)

LM 2,3,0(4)

STM 13,14,0 (4)

L 15,#+20

BASR 14,15

STM 2,3,0(4)

ST 15,%RTNCODE

DC A("' X=',WF,'

CONST 3152384

CONST 1

Part II -- User's Guide for MAD/I in MTS

158

02
02
02
02
02
02
02
02
02
01
01
01
02
02
02
02
02
02
02
02
02
01
01
01
02
02
02
02
02
02
02
02
02
02
02

01
01
02
02
02
02
02
02
02
02
02
02
02
02
02
02

000132
000136
000137
00013E
000142
000146
000142
00014cC
000150
00002C
000030
000028
000154
000158
00015¢C
000160
000164
000168
00016C
00016E
000172
000020
000024
00001C
000176
000172
00017E
000182
000186
00018a
00018E
000192
000194
000198
00019C
000014
000018
000010
0001a0
0001A4
0001a8
0001aC
0001B0
0001B4
0001B8
0001BA
0001BE
0001c2
0001CH
0001cCs8
0001cCcC
0001D0

Section 12: Sample Runs of MAD/I in MTS

41108038
5840C00C
41E0DOU S
98234000
90DE4000
S8F0C018
ODEF

90234000
50F0B09C
0000000C
00720400
0000000 1
4110B02C
5840C00C
41E0DO48
98234000
90DE4000
S8F0CO24
ODEF

90234000
SOF0BO9C
0000000C
00720400
00000001
41108020
5840C00C
41EODOLS
98234000
90DE4000
58A0C000
41FOR000
ODEF

90234000
50FOB09C
7000B0A0
00000040
00720400
00000001
41108014
5840C00C
41E0DOYS
98234000
90DE4000
S8F0CO24
ODEF

90234000
SOF0B09C
1B11

5840C00C
41E0DO4 8
98234000
90DE4000

+ +

LA

LA
LM
STM

BASR
STM
ST

DC
CONST
CONST
La

LA
LM
STM

BASR
STM
ST

DC
CONST
CONST
LA

L

LA

LM
STM

L

LA
BASR
STM
ST
STE
DC
CONST
CONST
LA

L

LA

LM
STM

L
BASR
STH
ST

SR

L

LA

LM
STM

1,#CALLSQE+56
4,%STKADR
14,72 (,13)
2,3,0(4)
13,14,0 (4)
15,424
14,15

2,3,0 (4)
15,%RTNCODE
A (X)
7472128

1
1,#CALLSQR+44
4,%STKADR
14,72 (, 13)
2,3,0 (4)
13,14,0 (4)
15, #+ 36
14,15

2,3,0 (4)
15, %RTNCODE
A (X)
7472128

1
1,#CALLSQR+32
4,%STKADR
14,72 (, 13)
2,3,0(4)
13,14,0 (4)
10,0(,12)
15, SQRT
14,15
2,3,0(4)
15,%RTNCODE
0,%TMPO001
A (%TMP0001)
7472128

1
1,#CALLSQR+20
4,%STKADR
14,72(,13)
2,3,0(4)
13,14,0 (4)
15, #+ 36
14,15

2,3,0 (4)
15, %RINCODE
1,1
4,%STKADR
14,72 (, 13)
2,3,0(4)
13,14,0 (4)

Part II -- User's Guide for MAD/I in MTS

02 0001D4
02 0001D8
02 0001DA
N2 0001DE
*0005
02 0001E2
02 000028
02 0001EUY
02 0001ES8
*0006
*0007
*0008
01 000000
*0009 SQ
02 0001EC
02 0001EC
02 00018C
02 000190
02 0001EC
02 0001FO
02 0001F4
02 0001F8
02 0001FC
02 000200
02 000204
02 000206
02 00020C
02 000210
02 000214
02 000218
02 00021C
02 000220
02 000224
02 000228
02 00022C
02 000230
02 000234
02 000238
02 00023C
02 000232
02 000236
02 00023C
02 000240
02 000244
02 000248
02 000 24cC
02 000250
02 000246
02 0002u4A
02 000250
02 000256
02 00025C

Section 12: Sample Runs of MAD/I in MTS 159

58F0C01C L
ODEF BASR
30234000 STHM
50F0B0O9C ST
*GO TO' CALLSOQRT;
1B 11 SR
0 EQU
5890C008 L
47F09028 B
*PROCEDURE' SQRT. (X) ;
"PRESET' EPS := .0001;
3A2AF31D + CONST
RT: 'IF* X=0. | X=1., 'RETURN' X;
CNOP
SQORT EQU
co08 +
A1EC +
90ECDOO0C STM
58COF020 L
58 E0CO0C L
S8EQOEOQOOU L
50E0D0O0O8 ST
S0DOEOOUY ST
18DE LR
47F0F028 B
00000000 DC
S8COF020 L
58201000 L
5020C010 ST
58B0C010 L
7820B00O0 LE
58A0C000 L
7920A06C CE
92FFAOAL MVI
5890C000 L
47809000 BE
9200A0A4 MVI
%FLAQO002 EQU
c008 +
923C +
79207068 CE
92FFAOA6 MVI
5880C000 L
47808000 BE
92004026 MVI
¥FLAOQ0O03 EQU
c008 *
8250 +
D200A0OASA0AY MVC
D600AOASAOAG ocC
9500A0A5 CLI

15,#+28
14,15
2,3,0(4)
15,%RTNCODE

1,1
CALLSQRT+40
9,8(,12)
@CALLSQR+40

14,12,12(13)
12,32(,15)
14,%STKADR
14,4 (,14)
14,8 (,13)
13,4(,10)
13,14

40 (,15)

A ($3BASETAE)
12,32 (,15)
2,0(,7)
2,4416
11,16 (, 12)
2,X
10,0(,12)
2,=0.
%TMPO001, "FF"X
9,0(,12)
%FLA0002

%TMP0001, 0
*

2,=1.
%*TMP0002,"FF"X
8,0(,12)
%FLA0003

%TMP0002,0
*

%TMP0O003 (1) ,%T
%TMP0003(1) ,%T
%$TMP0003,0

Part II -- User's Guide for MAD/I in MTS

160 Section 12: Sample Runs of MAD/I in MTS
02 000260 5870C000 L 7,0(,12)
02 000264 47807000 BE %FLDO00OS
02 000268 3802 LER 0,2
02 00026A 58DODOOU4 L 13,4(,13)
02 00026E 98ECDOOC LM 14,12,12(13)
02 000272 1BFF SR 15,15
02 000274 O7FE BR 14
02 000276 %¥FLDO0O0S EQU *
02 000262 CO008 +
02 000266 7276 +
*0010 Y := X;
02 000276 58B0C000 L 11,0(,12)
02 000272 58A0C010 L 10,16 (,12)
02 00027E D203B0O04A0O0O MVC Y(4),X
*0011 LOOP: Z = (Y+X/Y)/2.;
02 000284 LOOP EQU *
02 000284 58B0C010 L 11,16 (,12)
02 000288 7820B00O0 LE 2,X
02 00028C 58A0C000 L 10,0(,12)
02 000290 7D20A004 DE 2,Y
02 000294 7A20A004 AE 2,Y
02 000298 7D20A064 DE 2,52,
02 00029C 7020A008 STE 2,2
*0012 *IF' .ABS.(Y-2) < EPS, 'RETURN' Z;
02 0002A0 7820A004 LE 2,Y
02 0002A4 7B20A00S8 SE 2,2
02 0002A8 3022 LPER 2,2
02 0002AA 79202000 CE 2,EPS
02 0002AE 5890C000 L 9,0(,12)
02 0002B2 47B09000 BNL %®FLDOO007
02 0002B6 7800A008 LE 0,2
02 0002BA 58D0ODO0UY L 13,4 (,13)
02 0002BE 98ECDO0C LM 14,12,12(13)
02 0002C2 1BFF SR 15,15
02 0002C4 O7FE BR 14
02 0002C6 %FLDO007 EQU *
02 0002BC €008 +
02 0002B4 92C6 +
*¥0013 Y := Z;
02 0002C6 58BOCO0O L 11,0(,12)
02 0002CA D203BOOUBOOS MVC Y(4),2
*0014 'GO TO' LOOP
*0015 ‘END?
02 0002D0 58A0C008 L 10,8(,12)
02 0002D4 47FOA284 B LOOP
*0016 YEND?
*0016 ?ICODEENDOFFILE

RTST ENTRIES FOR BILOCK %BLNOOO1

RTST ENTRIES FOR BLCCK %BLN00O2

Part II -- User's Guide for MAD/I in MTS

01
02
02
01
01
01
01
01
01
01
01
01
01

000028
00020cC
000020
000048
0000AC
0000BO
0000BUY
0000B8
0000BC
0000CO
0000Cu
0000C8
0000CC

Part II -- User's Guide for MAD/I in MTS

Section 12: Sample Runs of MAD/I in MTS

000000A8
000000A8
00000000
000000A8
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

P I I I I

®BASETAB EQU %BASETAB

162 Section 12: Sample Runs of MAD/I in MTS

EXTERNAL SYMBOL DICTIONARY (SYMBOL,TYPE,ID,ADDR,LENGTH/LDID)

#CALLSQR PD 01 000000 0000DO
®CALLSQR SD 02 000000 0002D8
MADSTACK ER 03
CALLSQRT LD 000000 000002
MADWRITE ER 04
FORMAT ER 05
ENDIOP ER 06
MACREAD ER 07
I0P ER 08

Part II -- User's Guide for MAD/I in MTS

RELOCATION DICTIONARY

01 01 oOcC
01 01 oOC
01 01 Oc
01 01 OcC
01 01 OcC
01 01 OcC
01 01 oOcC
02 01 OC
02 01 oOcC
01 01 oOC
01 01 ocC
01 02 0OC
01 03 0OC
01 04 OcC
01 05 ocC
01 06 OC
01 07 oOcC
01 08 OcC
02 000000

Section 12: Sample Runs of MAD/I in MTS

00005C
000050
000044
000038
00002cC
000020
000014
00020C
000020
ooooas
0000AC
0000R0
0000BY
0000BC
0000C0O
0000CH4
0000C8
0000cCC

(P.ID,R.ID,FLAGS,ADDRESS)

END

CALLSQRT

Part II -- User's Guide for MAD/I in MTS

163

164 Section 12: Sample Runs of MAD/I in MTS

STORAGE MAP

00 02 0014 000004 MADWRITE
00 02 0018 000005 FORMAT
00 02 001C 000006 ENDIOP
00 02 0020 000007 MADREAD
00 02 0024 000008 IOP

00 03 0010 000000 X

01 01 0000 000000 EPS

01 01 0000 0OOOOU Y

01 01 0000 000008 2

01 01 0000 00000C X

01 01 0000 000064 2.

01 01 0000 000068 1.

01 01 0000 00006C O.

01 01 0000 000070 ™' X=',WF,' SQRT OF X=',WF*"
01 01 0000 00008A "WE*"

01 01 0000 00008D ™'EENTER X:'*"
01 01 0000 00009C %ETINCODE
01 01 0000 0000A8 ®EASETAB
02 01 0008 000000 CALLSQRT
02 01 0008 0001EC SQRT

02 071 0008 000284 LOOP

Part II -- User's Guide for MAD/I in MTS

Section 12: Sample Runs of MAD/I in MTS 165

SYMBOL ATTRIBUTES

BLOCK %BLNOOO1 NUMBER OF SYMBOLS=19

*DEFAULT' 'FLOATINGSHORT' 00 00 0000 000000
#RINCODE 'INTEGERLONG' 01 01 0000 00009C
CALLSQRT 'ENTRYPOINT' 02 01 0008 000000 'ACCESSIBLE'
RESULT= 'FLOATINGSHORT'
ENDIOP 'ENTRYPOINT®' 00 02 001C 000006 'EXTERNAL'
EPS 'FLOATINGSHORT' 01 01 0000 000000
FORMAT 'ENTRYPOINT' 00 02 0018 000005 'EXTERNAL'
IOP 'ENTRYPCINT' 00 02 0024 000008 'EXTERNAL'
MADREAD 'ENTRYPOINT' 00 02 0020 000007 'EXTERNAL!
MADWRITE 'ENTRYPOINT®' 00 02 0014 000004 "EXTERNAL'
SQRT 'ENTRYPOINT' 02 01 0008 00O01EC
RESULT= 'FLOATINGSHORT'
X 'FLOATINGSHORT' 01 01 0000 00000C
Y 'FLOATINGSHORT' 01 01 0000 000004
Z 'FLOATINGSHORT' 01 01 0000 000008
"v X=',WF,' SQRT OF X=',WF*" 'CHARACTER' 01 01 0000 000070

LENGTH=26

WYSGENTER X:'*" *'CHARACTER' 01 01 0000 00008D
LENGTH=12

"WF%" *CHARACTER' 01 01 0000 00008A
LENGTH=3

O. 'FLOATINGSHORT' 01 01 0000 00006C
1. 'FLOATINGSHORT' 01 01 0000 000068
2. 'FLOATINGSHORT' 01 01 0000 000064

BLOCK %BLN0002 NUMBER OF SYMBOLS=2

LOOP 'TRANSFERPOINT' 02 01 0008 000284
X 'FLOATINGSHORT' 00 03 0010 000000 (FORMAL PAR)

MAD/I COMPILER STATISTIC PASS1 ALLOC PASS?2

CPU TIME (SEC) 2.115 2.649 10.213
ELAPSED TIME (SEC) 6.067 6.946 29.114

CPU VM INTEGRAL (PG-SEC) 316.617 402.356 1565.634 22
MEAN VM SIZE (BGS) 79.199 79.600 81.137 2
DRUM READS 57 77 245 3
STATEMENTS | 15

DESCRIPTORS : 100 1

#EXECUTION TERMINATED
#run -deck map

e o0 e oo LAY ® o0 e e o ® o0 o o0 ® o0 ® e e o0 ®o o0 LRI) LI I Y e oo e oo o e

ENTRY = 500128 SIZE = 00802D

NAME VALUE T RF NAME VALUE T RF NAME VALUE

Part II -- User's Guide for MAD/I in MTS

166

GETSPAC
SYSTEM
GETFD
SPUNCH
WRITE
@CALLSQ
MADREAD
IOP
MADSTAC
IOHOUT
JOHERP
ROPEN
PCLOSE

Section 12:

E 20DDYE
2157cCcC
218878
218B58
218C04

R 5001A8
5005F0
50077C

K 503000
504114
508000
S50BOCE
50B1C0

* ¥ I I #

500128

*
*

*503000

%*

*503F18

%*
*

#EXECUTION BEGINS

ENTER
X= 1
ENTER

ENTER
X=
ENTER
X=
ENTER

X: 100.
00.0000
X: 1.0
1.0000
X: 0.
.0000
X: 2.0
2.0000
X: 4.0
4.0000
X: ¢

0
SQRT

SQRT
SQRT
SORT

SQRT

OF

OF

OF

OF

OF

Sample

Runs of MAD/I in MTS

O**%*% ALL INPUT DATA HAS BEEN PROCESSED - AT LOCATION

#EXECUTION TERMINATED

Part II -- User's Guide for MAD/I in MTS

FREESPAC 20EQ9E * LOAD 20F7BO
ERROR 2157F6 * PGNTTRP 2181CC
SCARDS 218B34 * SPRINT 218B46
SERCOM 218B6A * READ 218BES
LCSYMBOL 2197D0 * #CALLSQR 5000D8
SPIE 500480 *500480 MADIO 5005F0
MADWRITE 50061E * FORMAT 50073A
ENDIOP 5007C2 * MDIOPSCT 500958
I0H360 504000 *504000 IOHIN 5040F0
IOHETC 50483C * ONEQATIM 50492C
GLAP 502000 *506988 IOPKG 50B000
RCLOSE 50B148 * POPEN 50B174
X= 10.0000
X= 1.0000

X= .0000
X= 1.4142

X= 2.0000

500768

Section 13: MAD/I Error Messages 167

Section 13: MAD/I Error Messages

This section has not yet been written -- sorry.

Part II -- User's Guide for MAD/I in MTS

168 Section 14: Object Module Description

Section 14: Object Module Description

14.1__Representation of Data

Alignment_Attribute

The alignment attribute of an item specifies a constraint
on the positioning of its allocated storage. The alignment
attribute for an item is taken as the maximum of the value
explicitly declared through the 'ALIGN' keyword (if any) and the
alignment implied by other attributes of the item. The valid

alignment values and their definitions are:

Any byte boundary.

Any halfword boundary.
Any fullword boundary.
Any double-word boundary.

D END
e0 o0 00 o0

Mode Representations

The following table gives the internal representations used
for the various MAD/I modes. Representation terminology is
defined in the IBM System/360 Principles of Operation manual.
The "length" given is the length in bytes.

Mode Alignment Length Representation

'INTEGER SHORT' 2 2 Halfword fixed-point number.

'"INTEGER LONG' 4 4 Fullword fixed-point number.

'FLCATING SHORT!' 4 4 Short floating-point numter.

'FLOATING LONG! 8 8 Long floating-point number.

'PACKED' (n) 1 n Packed-decimal number.

'BIT' (n) - - n bits, allocated such that
all bits are contained in one
fullword.

'BOOCLEAN! 1 1 A logical byte; all bits 1

represents 'TRUE' and all
bits 0 represents 'FALSE'.

'CHARACTER' (n) 1 n Variable-length logical
information; i.e., n bytes

Part II -- User's Guide for MAD/I in MTS

Section 14: Object Module Description 169

'VARYING CHARACTER' (n)

'FILE NAME!

'TRANSFER POINT'

'FIXED ARRAY' (—)

'"VARYING ARRAY' (—)

*COMPONENT STRUCTURE'

"ALTERNATE' (—)

'POINTER'

'ENTRY POINT?®

YENTRY NAME!

2

(—)

n+2

representing n characters 1in
EBCDIC.

The halfword fixed-point

number representing the
current length of the
character string, followed by
the characters, one per byte.

Fullword address of a control
block in the MAD/I
input/output support tables.

The first instruction at the
transfer point.

The component values, laid
out by the array sequencing
rule. The alignment and
length are determined as in
Section 3.1.2.1. There may
also be an array dope vector,
as described below.

See 'FIXED ARRAY' above.

The component values, laid
out in the order declared.
The alignment and length are
determined as in Section
3.1.2.2. There may also be a
dope vector, as described
below.

The alternative values,
overlaid one "atop" the
other. The alignment and
length are determined as in
Section 3.1.2.3.

Fullword address of the itenm
pointed to.

The first instruction at the
entry point.

Fullword address of the entry
point followed by the
fullword address of the
appropriate environment
information.

Part II -- User's Guide for MAD/I in MTS

170 Section 14: Object Module Description

Array Dope Vectors

An array dope vector is used to compute the displacement of
a component within an array. The dope vector for an n-dimension
array consists of the 3*n+1 items: n, L(1), U(1), MV, ...,
L(n), U(n), M(n), where each item is a fullword fixed-point
nunber. n is the number of dimensions of the array, L(i) is the
lower bound of the i-th subscript, U(i) is the upper bound of
the i-th subscript, and M(i) is a multiplier used to compute the
displacement of a c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>