
Mixing of Fluids Flowing Through 
Beds of Packed Solids 

While there have been numerous in- 
vestigations of radial mass and heat 
transport in packed beds (3, 7,12,15, go), 
axial mixing in the direction of flow has 
been neglected until recently because of 
experimental and analytical difficulties. 
Lapidus and Amundson (11) presented 
a mathematical treatment for adsorption 
in beds, including axial mixing, which 
involved the response function of the 
system to an inlet step function change 
in concentration. Danckwerts (4) arrived 
at similar r e s u h  and determined an 
axial mixing factor for water flowing 
through packed Raschig rings at a single 
Reynolds number. Employing a frequency 
response technique, Kramers and Alberda 
(10) presented two experimental results 
for axial diffusion in a system similar to 
that of Danckwerts'. More recently, 
McHenry and Wilhelm (14) employed 
this method of sinusoidally varying con- 
centrations in the study of axial mixing 
of binary gas mixtures flowing through a 
random bed of spheres. Additional mathe- 
matical analyses for the longitudinal 
mixing of fluids in flow through reactors 
have been presented by Levenspiel and 
Smith (IS), Klinkenberg and Sjenitzer 
(9), Wehner and Wilhelm (19) and Aris 
and Amundson (1). 

Previous investigations have thus re- 
sulted in data concerning the radial 
mixing of both gases and liquids flowing 
through fixed beds, and the axial mixing 
of gases flowing through fixed beds of 
spheres. The data of Kramers and Al- 
berda, and of Danckwerts weie all that 
existed for axial mixing in liquid systems. 
This study was undertaken to  extend 
the limited data and to investigate more 
thoroughly the axial mixing of liquids 
flowing through fixed beds of solids. The 
variables which were investigated were 
fluid velocity, particle diameter, particle 
shape, and liquid viscosity. 

EXPERIMENTAL 

Methods 

Four different techniques have been 
employed in the investigations of mixing in 
fixed beds. Each method analyzes the 
response curve resulting from some kind 
of initial disturbance in a dynamic system. 
In the point source method the initial 
disturbance is the diffusion of a tracer from 

E. A. Ebach ia presently with the Dow Chemical 
Company. Midland. Michigan. 

EARL A. EBACH and ROBERT R. WHITE 

University of Michigan, Ann Arbor, Michigan 

a point source into the flowing fluid (3, 7, 
12, 15). For frequency response experiments, 
the inlet concentration is varied aa a 
harmonic function of time (6, 10, 14). 
In the step-function method an instan- 
taneous change in tracer concentration 
occurs a t  the inlet (4, 11). The initial 
disturbance in the pulse-function method is 
the instantaneous injeotion of a concentrated 
tracer into the flowing liquid ( 4 ,  22). 

rwo techniques were employed in the 
present research. 

The first approach, the frequency-response 
technique, required the response to a sinu- 
soidally varying inlet concentration. By 
comparing the amplitudes of the inlet and 
outlet waves, the axial mixing coefficient 
can be determined. The frequency response 
method was employed in part of the present 
research because it presented advantages of 
simplicity during both the experimental 
work and calculations. However, analytical 
difficulties were encountered in the low 
flow-rate range because of the length of 
the runs and the small axial mixing rates. 

The second method used, the pulse- 
function method, waa employed by Yagi 
and Miyauchi (22) in their study of mixing 
in continuous flow reactors. Danckwerts (4) 
suggested this method for the investigation 
of mixing in packed beds. In this method, 
one determines the exit concentration 
profile for an experiment in which the 
tracer is injected over a short period of 
time, that is, in the form of a unit pulse. 
From the exit concentration profile, the 
axial mixing coefficient can be calculated. 
The pulse function technique was used 
during the present research for the low 
flow-rate range. 

Flow Systems 

The flow system for the frequency 
response experiments is shown in Figure 1. 
The liquid solutions were forced under 
constant pressure through the system from 
feed tanks containing a clear solution and 
a dye solution. The clear and dye solutions 
were alternated by the three-way direc- 
tional-flow solenoid valve and partially 
mixed during flow through the pre-bed, 
thus forming a periodically varying con- 
centration wave. The liquids then flowed 
through the packed test section, the calming 
section, and flowmeters. Analyses of the 
flowing streams were made at both the 
inlet and outlet of the testing section by 
means of continuous photometers. 

The pre-bed served two purposes: first 
it  produced an approximate constant 
velocity profile at the inlet testing section. 
Studies by Schwartz and Smith (l7), by 
Thatcher (18) and by Hirai (8) indicated 
that for a ratio of particle diameter to 
tube diameter less than 0.04 the assumption 

of uniform velocity distribution for fluids 
in packed beds is valid. The pre-beds used 
in the experiments met this condition. The 
second purpose of the pre-bed was to 
disperse or mix the interfaces of the alternate 
solutions so that an approximate sine wave 
composition would be bbtained. The pre- 
bed, through the mixing process, served as 
a damping factor, which removed most of 
the higher harmonics from the approximate 
square waves which were introduced by the 
three-way valve. 

Essentially the same flow system was 
employed for the pulse-function runs 
except for minor modifications. A small 
cylinder containing the concentrated tracer 
solution replaced one of the larger storage 
tanks. The clear liquid flowed continuously 
through the system. A short dye pulse was 
injected into the flowing stream by means 
of the three-way directional-flow solenoid 
valve. The pre-bed was not used; hence 
longer test columns were employed. The 
liquid flowing through the column was 
analyzed only a t  the outlet of the testing 
section by a continuous photometer. 

Test Column 

Figure 2 is a sectional drawing of the 
column showing the several sections flanged 
together in preparation for a frequency 
response run. Two %-in. glass spacers used 
in the analytical system separated the tee t  
section from the pre-bed and the calming 
section. All glass sections of the column 
were 2-in. I.D. Pyrex glass pipe. The 
spacers, gaskets, and brass calming section 
were likewise 24x1. I.D. so as to maintain a 
smooth wall across the joints. Two-, three- 
and five-foot length were used for the 
test sections. 

Glass spheres, Raachig rings, Berl saddles, 
and Intalox saddles were used as packing. 
The characteristics of the packings are 
shown in Table 1. The porcelain packings 
were supplied through the courtesy of the 
United States Stoneware Company. The 
void space in the packed beds was deter- 
mined by measuring the volume of water 
in a length of the unpacked column and 
in the same length of B packed column. The 
same method of packing, i.e., pouring a 
small amount of beads and tapping the 
column to promote settling, was used each 
time the column was repacked. The packing 
waa supported on a 100-mesh screen. 

Analytical System 

Pontamine Sky Blue 6BX dye was 
employed as the tracer. The concentration 
profiles were'measured aa a function of time 
by continuous colorimet,ric photometers 
which gave an instantaneous measurement 
of the fluid composition flowing through a 
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Equivalent 
Nominal Diameter 

Type Material Size 5 

Spher ica 1 

Spherica 1 

Spherical 

Spherical 

Raschig rings 

Berl saddles 

Intalox saddles 

Bed 
Por 0s it y 

%/% 

G ~ S S  60180 mesh .ma3 in.  .0&2 .35z 

Glass I l l U f I  .Ojg in .  .020 .340 

Glass 3llUfI .l33 in .  .067 .340 

Class 6 m  .265 in .  .13 .367 

Porcelain 1/4 in. .22 in .  .u .632 

Porcelain 1/4 in .  .23 in .  .12 .616 

Porcelain 1/4 in. .20 in .  . lo  .629 

horizontal section of the column. The thin 
light beams passed through the glass 
spacers on a diameter just above or just 
below the test section. Details of the design 
and construction of the photoelectric 
colorimeters are available elsewhere (6). 
The output of the phototube circuit was 
measured by a Leeds and Northrup 
Speedomax Indicating Recorder. 

Most runs were made with dilute water 
solutions. A few runs employed mixtures 
of propylene glycol and water to  vary the 
viscosities of the liquid. All runs were made 
with a completely flooded column. 

Experimental Procedure and Data 

For each frequency-response run a 
pre-bed, having a suitable height and 
particle diameter to produce a satis- 
factory periodic wave in the desired 
frequency and flow rate, was installed 
above the test column. Dynamic calibra- 
tions of the inlet and outlet colorimeters 
were made, first with the clear and then 
with the dye solution. The timer, set at 
a predetermined frequency and control- 
ling the three-way directional-flow sole- 
noid valve, was started. Recorder traces 
were then obtained for both the inlet 
and outlet wave concentrations. 

Typical experimental data (6) for the 
frequency-response runs are presented in 
Table 2. The corrected interstitial 
velocity of the liquid solutions is reported 
in column 2. The maximum and minimum 
concentration points, averaged for ten 
inlet periodic waves, are presented in 
columns 3 and 4, respectively; the maxi- 
mum and minimum concentration, aver- 
aged for the ten corresponding outlet 
waves is presented in columns 6 and 7, 
respectively. Typical curves are shown 
in Figure 3, which presents the inlet and 
outlet waves for Run 28 resulting after 
the conversion to concentration units. 
The points are averages of experimental 
concentrations, while the lines are true 
sinusoidal waves. 

The experimental procedure for the 
pulse function method was as follows: 

the flow rate and temperature of the clear 
solution was adjusted as desired. The 
outlet colorimeter was calibrated with 
the clear flowing liquid. A stopwatch was 
employed to measure the residence time 
of the injected concentrated dye. A 
recorder trace was then obtained for the 
outlet pulse wave. This procedure was 
repeated several times for a given flow 
rate. 

Typical experimental data for the pulse- 
function runs are presented in Table 3. 
Column 2 contains the corrected liquid 
interstitial velocity. The data for an exit 
pulse profile, averaged from the recorder 
traces of three or more waves, are pre- 
sented in columns 3 and 4. Column 3 
contains the maximum value of the 
pulse wave in concentration units and 
column 4 the area under the exit con- 
centration profile of the pulse wave. 

TREATMENT OF EXPERIMENTAL DATA 

As a fluid, in which concentration 
gradients exist, flows through a packed 
bed, eddy diffusion or mixing occurs 
which can be described by the equation 

A material balance for an increment of 
time dt made for a cylindrical element dr 
in thickness and dz in height results in 
the equation: 

I n  theory, determinations of concen- 
tration, c, as a function of position, T and 
z, and time, t, in an  experiment where a 
tracer is fed a t  a point source into fluid 
of known composition and flow rate, 

yield the information required to deter- 
mine DR and DL through the evaluation 
of the various first and second partial 
derivatives by numerical differentiation 
and smoothing. The difficulties of ob- 
taining such data and the large error 
involved in differentiating the data twice, 
lead to special experimental conditions for 
which Equation (2) has known mathe- 
matical solutions which permit the 
evaluation of effective diffusivity from 
specific values of c, r,  z, and t. The point- 
source experiment results in the evalua- 
tion of effective radial diffusivity, D R ,  
while other types of experiments lead to 
values of effective axial diffusivity, DL. 

Frequency-Response Experiment 

In  the frequency-response method the 
concentration a t  the inlet is varied 
sinusoidally and the response is obtained 
a t  the outlet. Comparison of the ampli- 
tudes of the inlet and outlet harmonic 
functions leads to values of the axial 
diffusivities. 

Mathematical Representation 

Sinusoidal Solutions. In  the mathe- 
matical representation of the frequency- 
response experiment, no radial concentra- 
tion gradients exist and the effective axial 
diffusivity and velocity are independent 
of position leading to the modification of 
Equation (2) as follows: 

The two experimental boundary condi- 
tions which were chosen are: first, the 
inlet concentration is a harmonic function 
of time; second, at a sufficiently long 
distance down the bed the amplitude 
approaches zero. These boundary con- 
ditions can be represented as follows: 

( 3 d  c(0, t )  = c, + A(0) coswl:  

c( co , t )  = c, or A(z) = 0 for z -+ = 

With the introduction of the above 
boundary conditions, the periodic steady- 
state solution resulting is: 

c(z, t )  = c, + A(O)e-’ cos ( w t  - 4) (4) 

where 

r I 

and 

I ,  

The functions B and 4 are representative 
of the decrease in amplitude and the 
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1 

Run 

8 
7 
6 
9 
5 
4 
3 
2 
1 

25 
26 
21 
22 
23 
20 
24 
19 

TABLE  TYPICAL EXPERIMENTAL DATA AND CALCULATED RESULTS * FREQUENCY RESPONSE TECHNIQUE 
2 3 4 5 6 7 8 9 10 11 12 

Periodic wave data 
Interstitial Inlet wave Outlet wave Frequency Axial Reynolds Peclet 

velocity Maximum Minimum Amplitude Maximum Minimum Amplitude rad./sec. diffusivity number number 
ft./sec. concen- concen- Ai concen- concen- -4, sq .  ft./sec. d,vJ d,u 

tration tration tration tration DL 
Particle diameter 0.039 in.; porosity 0.34; height 3.01 ft. 

0150 .757 .244 .513 .633 .367 ,266 .0785 ,0001 19 1.60 .41 
.0151 .789 .212 ,577 ,726 ,273 ,453 .0519 .000103 1.61 .52 
.0224 .808 .192 ,616 .734 .267 ,467 .0850 .000144 2.35 .50 
.0224 .734 ,267 ,467 .634 ,367 ,267 .126 ,000132 2.58 .55 
,0326 .853 .147 .706 .751 .250 .501 .126 .000254 3.65 .38 
.0788 .861 .138 .723 .749 .250 ,499 ,313 ,000617 8.21 .43 
.146 .881 .120 .761 ,781 .220 .561 .523 .00116 15.35 .39 
.210 .868 ,132 .735 ,766 .235 .531 .785 .00164 22.16 .41 
.270 .918 .082 .836 .840 ,160 .680 .785 .00233 29.54 .36 

Particle diameter 0.0083 in.; porosity 0.35; height 3.04 ft. 
.00647 ,856 .144 ,712 .807 .193 .614 .0419 .0000075 .15 .60 
.0122 .830 .171 .659 .776 .224 .552 .0785 .0000175 .28 .48 
.0193 ,876 .124 ,752 .825 .175 .650 .lo5 .0000316 .42 .42 
.0293 .876 .124 .752 .820 ,180 .640 .157 .0000543 .63 .37 
.0630 .887 ,113 .774 ,835 .166 ,669 .314 .000121 1.38 .36 
.0658 .752 .247 .505 .724 .275 .449 .314 .OW164 1.64 .30 
.lo1 .913 .087 .826 .873 .125 .748 .449 .000168 1.68 .41 
.190 .797 .203 .594 .772 ,228 .544 .785 .OW468 5.06 .30 

phase shift of the outlet wave, respec- 
tively. 

Boundary conditions, other than that 
employed above, have been reported 
(4, lo),  which eventually lead to the same 
approximate solution as Equation (5) 
below. The space required for analysis 
during these experiments was held to a 
minimum, thus maintaining bed con- 
tinuity across the boundaries. Hence the 
above infinite column boundary condi- 
tions, Equation (3a) , appear compatible 
with the experimental technique em- 
ployed. 

Approximate Solution. An approximate 
form of the above solution can be 
employed when experimental conditions 
are such that the ratio, 4wDL/up, is 
small. By changing Equation (4) to 
complex form, expanding the radical by 

means of the Binomial Theorem and 
rejecting the imaginary terms, the follow- 
ing approximate solution is obtained: 

The value of B can be approximated, 
assuming the terms beginning with 
5zw+DLa/u7 are insignificant, as 

The ratio of inlet to outlet amplitudes 
then leads to the equation 

from which DL can be calculated. For 
experiments in whish the term, 
5zw4DL3/u7, is significant, the ratio of 
amplitudes can be approximated by the 
equation 

from which DL can be calculated by trial 
and error. The diffusivities were calcu- 
lated by one of the above approximations 
so that the maximum error in the value 
of B caused by the approximation is less 
than 1.5%, which is’ well within the 
error of measurement. 

Evaluation of axial diffusivity from 

1 
Run 

P15 
P16 
P17 
P18 
P19 
P20 
P21 
P22 
P23 

P32 
P30 
P31 
P29 

TABLE 3.-TYPICAL EXPERIMENTAE DATA AND CALCUL-%TED RESULTS * PULSE FUNCTION TECHNIQUE 
2 3 4 5 6 7 8 

Interstitial Average pulse data Maximum Residence Axial Reynolds 
velocity Maximum Area Under concentration time Diffusivity number 

of pulse 
d p o p  __ sq. ft./see. 

B ?$p” R 

U Concen- Pulse 
tration Profile 

ft./sec. g./liter X 102 g./liter X loa R-Y 

.000773 .391 .0305 12.81 1.35 .00000105 .021 

.00154 .539 .0407 13.24 1.16 .00000265 .040 

.00232 .400 .0254 15.86 1.13 .00000294 ,062 

.00310 .543 .0362 14.98 1.08 .00000486 .085 

.00587 .439 .0262 16:72 1.09 .WOO0727 .16 

.00879 .562 .0327 17.19 1.05 .0000111 .23 

.0145 .632 .0347 18.23 1.04 .0000164 .38 

.0215 .428 .0231 18.54 1.03 .WOO239 .56 

.0315 .557 .0318 17.51 1.02 .0000402 .82 

60/80 Mesh spheres-particle diameter 0.0083 in.; porosity 0.35; height 5.12 f t .  

in. Raschig ring-particle diameter 0.27 in.; porosity 0.62; height 5.0 f t .  
.00333 .455 .169 2.69 1.04 .000169 3.81 
.00811 .569 .201 2.83 1 .oo .000405 9.28 
.0174 .589 .203 2.91 1 .oo .000830 20.4 
.0362 .372 .117 3.17 1.01 .00140 40.4 

9 
Peclet 

number 

I 

.51 

.40 

.54 

.44 

.56 

.55 

.61 

.62 

.54 

.36 

.37 

.39 
I47 
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measurement of the phase angles was 
not carried out during the present 
research, since the measurements of 
amplitude ratios provided a more accu- 
rate and reliable means of evaluation. 
Axial diffusivities calculated from phase 
shift gave poor accuracy and reproduci- 
bility. 

Nonsinzisoidal Solution. The outlet 
wave from the pre-bed, or the inlet wave 
to the test section, was not always 
siriusoidal although periodic. Under these 
conditions, the periodic concentration 
wave could be represented by a Fourier 
series having the form 

a0 

2 c(0, t )  = - 

m + C (a, cos nut + b, sin nut) (7) 
n=1 

or the form 

c(0, t )  = 5 2 

where 

represents the amplitude of the n-th 
harmonic and 

represents the phase lag of the n-th 
harmonic with reference to a pure cosine 
wave of the same frequency. Thus, as 
the above equations indicate, the periodic 
function is a combination of simple 
harmonic waves. The term a0/2 repre- 
sents the neutral position: the terms, 
al cos wt + bl sin wt, the fundamental 
wave; and the other terms, a, cos nut + 
b, sin not,  the higher harmonics. The 
outlet concentration wave then also 
must be represented by a Fourier series 
in which each harmonic component is 
damped and shifted in phase. By the 
principle of superposition, each harmonic 
in the outlet corresponds to the outlet 
expected if the corresponding harmonic 
in the inlet wave was the only inlet. 
Applying the periodic, but non-sinusoidal, 
inlet wave as a boundary value to the 
differential equation for the diffusion- 
convection mixing of a liquid flowing 
through b e d  beds, results in the approxi- 
mate solution 

a0 
c(2, t )  = 

L 

*!%zGq.@ REGULATOR 

TWE-WAY MRECTIONAL VALVE 

EXPANSON SECTION 

I I PRE-BED 

DRAIN 

TEST COLUMN 
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P m m ) M m R  
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S E W N  FLWCONTROL 

VPLVE 

Fig. 1. Flow-system-frequency-response experiments. 
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GEND: 
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Fig. 2. Column-detail-frequency-response technique. 

MESH 

This solution confirms the earlier 
statement that each harmonic component 
is dampened and shifted in phase. The 
fact that a periodic function can be 
resolved into its simple harmonic com- 
ponents permits the reduction of the 
inlet wave to its simple harmonic com- 
ponents, the application of each compo- 
nent to the system, and the construction 
of the general outlet case by addition of 
the components. The application of the 

frequency response method to the periodic 
concentration waves requires a harmonic 
analysis of the experimental functions, 
that is, a representation of the functions 
as Fourier Series. 

Sinusoidal Data. For the sinusoidal 
input concentration waves, the ratio of 
the inlet and outlet amplitudes was used 
to calculate the longitudinal diffusivity 
according to Equation (5b)  or (6). 

The amplitude ratio was determined 

Page 164 A.1.Ch.E. Journal June, 1958 



in the following manner: the minimum 
and maximum concentrations for ten 
consecutive inlet sinusoidal waves and 
their corresponding outlet waves, were 
averaged and were reported as in columns 
3, 4, 6, and 7, respectively, of Table 2. 
From these concentrations the amplitudes 
(columns 5 and 8), and hence the ampli- 
tude ratio, AJA.,  lead to the calculation 
of the axial diffusivity, D,, (column 10) 
as described above. 

Nonsinusoidal Data. For nonsinusoidal 
input waves the experimental inlet com- 
position wave must be converted into a 
form of the Fourier series. A numerical 
procedure known as the 12-ordinate 
scheme of harmonic analysis, discussed 
in Wylie (21), was used to determine the 
coefficients in the Fourier series. This 
numerical procedure is equivalent to the 
graphical method of approximating the 
periodic concentration wave when a 
series of harmonics, whose sum ap- 
proaches that of the given periodic 
function is assumed. For the numerical 
harmonic analysis the values of the 
concentration wave a t  intervals of one 
twelfth of a period were obtained by 
averaging a series of ten periodic inlet 
waves. From these concentration values, 
co, c l ,  . . . CIZ, the values of the Fourier 
coefficients a, and b, were obtained by a 
series of successive condensations. The 
Fourier series for the inlet wave resulting 
from the numerical analysis has the form: 

a 
2 c(0, t) = 

+ a, cos wt + b,  sin wt - - 
+ a, cos 5ot + b,  sin 5wt (8) 

The corresponding series for the outlet 
wave must be 

a, 
2 c(2; t) = - 

+ 
+ a,e-n'B cos n6 + b,e-naB sin n6 - . * 
+ a5e-25B cos 56 + b5e-25B sin 56 (9) 

cos 6 + b,e-B sin 6 - - . 

where 

6 = w t - c J  

The equation for B, approximated by the 
methods previously presented for sinu- 
soidal waves, is: 

( 5 4  

The maximum concentration, c(z, QmZ, 
and the cori-esponding angle, 6, were 
averaged for the ten outlet waves. Sub- 
stitution of these values, c(z, and 6, 
and the coefficients a,, and b,, determined 
from the harmonic analysis of the inlet 
wave, into Equation (9), results, after a 

7 I WNT (r TEST sEcnoN - 
0 EXPERIMENTAL 

S J  

3' 

Fig. 3. Periodic sinusoidal waves (run 28). 
Prebed: 3-mm. spheres, height 1.5 ft. 

trial-and-error procedure in a value of B 
based upon the maximum concentration 
of the outlet wave. The calculation of B 
was simplified because the third and 
higher terms of the series represented by 
Equation (9) were small, and the expo- 
nential approached zero rapidly. This 
value of B for the peak concentration was 
then used to compute the entire outlet 
wave according to Equation (9). Com- 
parison of the calculated wave with the 
experimental outlet wave indicated that 
the evaluation of B from Equation (9), 
by substituting the value of the peak 
and angle of the outlet concentration 
wave, was valid. In  Figure 4, the upper 
wave is the inlet nonsinusoidal wave 
employed to evaluate the coefficients of 
the Fourier series. The lower curve is the 
experimental outlet wave, and the points 
are those calculated from Equation (9) 
with values of B determined from the 
maximum outlet concentration point. 
The axial diffusivity was then deter- 
mined from Equation (5a). 

Pulre-Function Experiment 

It should also be possible to evaluate 
the axial mixing of liquids flowing through 
fixed beds from the shape of an outlet 
concentration profile resulting from a 
step function change in concentration at 
the inlet (4, 11, 19). However, experi- 
mental difficulties were encountered in 
obtaining a true step function and 
failure of this method to give reproducible 
results led to the consideration and use 
of the pulse function method (4,  13). 

Mathematical Representation. The pulse- 
function method is an extension of the 
step-function approach. The inlet bound- 
ary conditions are obtained by injecting 
instantaneously into the flowing stream 
a concentrated tracer solution. The con- 
centration profile for the pulse is deter- 
mined a t  the outlet of the test section. 
Danckwerts (4) has shown that the exit 
concentration profile for a unit pulse is 
the derivative of the dissribution function 
for a step function. Step-function experi- 
ments had indicated that adsorption of 

the tracer substance occurred at low flow 
rates. Since the pulse-function runs were 
made at low flow rates, adsorption of the 
tracer also occurred. The mathematics of 
longitudinal diffusion combined with 
adsorption for fluids flowing through 
packed beds have been discussed by 
Lapidus and Amundson (11). The diffu- 
sion convectiofl Equation (3), modified to 
include the adsorption effect, is 

where 

q = amount of tracer adsorbed on the 

E = fractional void volume in the bed. 

The solution to Equation (10) with the 
boundary conditions for an inlet step 
function for a finite column 

particle surface 

} (10a) 
c(2, 0) = 0 2 < 0 

q(2, 0) = 0 2 > 0 

c(0, t) = 1 t > 0 (lob) 

( 1 0 4  

and an assumed adsorption mechanism 

7 = k,c + k,  
is 

co 2 

where 

k 
y = 1 + , dimensionless adsorp- 

e 
tion factor 

ut R = - , dimensionless time variable 
2 

D S = , dimensionless mixing factor 
ZU 

The formula for the concentration profile 
for the unit pulse, resulting from the 
differentiation of Equation (11), is 

where Q is the quantity of tracer injected 
into the feed stream at time 0 and V 
is the void volume of the bed. Similar 
results have been obtained by Levenspiel 
and Smith (13). The values of S and y 
can be determined so that a calculated 
distribution curve .will approximately 
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- 
Fig. 4. Variation of 
axial Musivity with 
viscosity at constant 
velocity (u CZ 0.0023 
ft./sec.) and constant 

particle diameter 
(d, = 0.039 in.). 

I I I I I I 

I n  I I I Y n I  I 

d Z  .S I0 I I  1.2 13 

d 

Fig. 6. Dependency of 
axial diffusivity on par- 
ticle diameter, plot of 
C, = Cd,5 where 
DL = Dd,- ub = Club. 

I DIMENSIONLESS TIME VAR1ABLE.R 1 
Fig. 5. Comparison of experimental and 

calculated outlet pulse function waves. 

duplicate an experimental concentration 
profile. The adsorption mechanism, Equa- 
tion (~OC), which indicates that equili- 
brium is established at  each point in the 
bed, was assumed for mathematical 
convenience and when checked against 
experimental pulse waves appeared to 
be a satisfactory mechanism. 

Evaluation of Data: During this research 
the pulse-function method was employed 
for runs made .at low liquid flow rates, 
and also for runs using nonspherical 
particles. The fact that the area under 
the concentration profile for a unit pulse 
is equal to unity was of value in evaluating 
the axial diffusivity. The exit concentra- 
tion profiles recorded on the chart paper 
were converted to the proper concentra- 
tion units and time units; i.e, Vc/Q and 
R (columns 5 and 6, respectively, Table 
3). After several trial-and-error calcula- 
tions on a series of runs in which S and 
y were approximated in order to duplicate 
an experimental pulse wave, it was found 
that under the experimental conditions 
used, the peak of the concentration pro- 
file occurred at R = y. Hence, the value 
of Vc/Q at  the peak, determined by 
setting y = R in Equation (12), is 

from which DL can be calculated. The 
feasibility of using the maximum point 

on the pulse function to calculate the 
axial diffusivity is shown in Figure 5, 
which is typical of the pulse-function 
runs. The curve is the experimental pulse 
profile, and the points are calculated 
from Equation (12) with the use of an 
axial diffusivity determined from the 
peak point. 

A differentiation of Equation (12) to 
determine the time a t  which the maxi- 
mum occurs in the output pulse does not 
indicate that R = y, and thus there is an 
inconsistency between the experimental 
data and Equation (12). However, the 
experimental value of R was always close 
to unity and the inconsistency was small 
as indicated by the agreement between 
the experimental data and the calculated 
curve in Figure 5. 

RESULTS 

The prime variables affecting axial 
mixing which were investigated were 
liquid velocity, particle size, particle 
shape and liquid viscosity. 

Liquid Velocity and Particle Size 

A series of experiments was made with 
spheres for each of four particle sizes 
(0.0083, 0.039, 0.133 and 0.265 in.) in 
which the interstitial velocity was vaced 
from 0.0008 to 0.3 ft./sec. A plot of the 
logarithm of axial diffusivity as a function 
of the logarithm of interstitial velocity 
with particle size as parameter is pre- 
sented in Figure 6. Data from the two 
experimental techniques, the frequency 
response method (solid symbols) covering 
the high flow rates and the pulse-function 
method (empty symbols) covering the 
low flow rates, are presented in the figure. 
The data from both techniques for a 

01 10 

INTERSTITIAL VELOCITY. u.Wacc. 

single particle size results in a straight- 
line relationship between the logarithm 
of axial diffusivity and the logarithm of 
interstitial velocity. The correlation of 
data obtained by both methods indicated 
the axial diffusivity measurements were 
quite reliable and not dependent upon 
the experimental technique employed. 

The family of straight lines in Figure 6 
is drawn with equal slopes. The separate 
slopes of each set of data were obtained 
by least squares, and the common slope 
was determined by a simultaneous least- 
squares method. Statistical tests indicate 
that the differences between the indi- 
vidual slopes and the common slope 
might reasonably be caused by sampling 
variation, i.e., the common slope does 
not differ significantly from the individual 
slopes (16). The value of the common 
slope is 1.08 and its standard deviation 
is f0.02. Statistical tests also indicate 
that a common theoretical slope of one, 
which would result if the axial diffusivity 
were directly proportional to the inter- 
stitial velocity, differs significantly from 
the slopes obtained from the experimental 
data. 

In Figure 6 the straight-line relation- 
ship does not exist for the 0.133-in. spher- 
ical particles for interstitial velocities 
greater than 0.06 ft./sec. In this range 
the axial diffusivity does not increase as 
rapidly with the increase in interstitial 
velocity as in the lower range. The same 
is true for the 0.265-in. spheres at  inter- 
stitial velocities greater than 0.02 ft./sec. 

Figure 6 also indicates a relationship 
between axial diffusivity and particle 
size. The relationship between the axial 
diffusivity, particle size, and interstitial 
velocity can be represented by the 
equation 
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The values of the coefficients, evaluated 
by least squares from the experimental 
data, are 

DL = 2.92 dPU1‘O8 (144 

Fig. 9. Correlation of data of this investigation. 

where 

d,u c 5.5 x 10-~sq. ft./sec. 
As indicated, this relationship is valid 
only in the region where the product of 
particle diameter and linear velocity is 
less than 5.5 X 10-4 sq. ft./sec., since 

100 

the straight-line approximations of the 
experimental data exist only in this region. 

Particle Shape 

Several various types of packing were 
investigated to determine the effect of 
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Fig. 10. Peclet number vs. Reynolds number correlation. 

particle shape on the mixing of liquids 
flowing through a packed bed. The 
smallest available Raschig rings, Berl 
saddles, and Intalox saddles, each having 
a nominal size of in., were used. Glass 
spheres, of 6 mm. diam. were also investi- 
gated to obtain a comparison of the 
large odd shapes with spheres of an 
approximate equivalent diameter. The 
properties of the various packings are 
presented in Table 1. The data for the 
above packings are plotted in Figure 7 
which shows the relationship between 
axial diffusivity and interstitial velocity. 
Both experimental procedures, the fre- 
quency response method, and the pulse 
function method, were used in obtaining 
data for the 6-mm. glass spheres to 
establish the reproducibility of the 
techniques for the large dJdr ratio. The 
axial diffusivities for the other packings 
were obtained by pulse-function experi- 
ments. Data for all packings studied, 
having an equivalent diameter in the 
range 0.20 to 0.26 in., fall approximately 
along the same line. This indicates that 
the axial mixing is dependent upon the 
size of the particle and not the shape of 
the particle in so far as i t  has been 
investigated. 

l iquid Vircorify 

A series of runs was made to determine 
the effect of viscosity. Aqueous solutions 
containing various percentages of propy- 
lene glycol were used to vary the vis- 
cosity. During these experiments the 
particle diameter (0.039 in.) and the linear 

velocity (approximately 0.002 ft./sec.) Experimental Variables 
were held constant, with the viscosity 
being the only variable. Figure 8 shows 
that over the viscosity range covered, 
1 to 26 centipoises, there was no variation 
in axial diffusivity. 

General Correlation 

The preceding correlations suggested a 
relationship between the ratio, DLp/p ,  
and a modified Reynolds number, dDup/p, 
based upon interstitial velocity and 
particle diameter. The ratio, D L p / p ,  is a 
dimensionless diffusivity ratio since it is 
actually axial diffusivity divided by 
kinematic viscosity. The values of DLp/p  
are plotted as a function of d p u / p  ih 
Figure 9. All the data of this investigation 
(86 points), even that for Raschig rings, 
Berl saddles, and Intalox saddles are 
correlated by a single curve which for 
values of dDup/p  < 100 may be repre- 
sented by the equation 

D L p / p  = 1.92(d ,~p/p) ' .O'  (15) 
The coefficients evaluated from the data 
have the following standard deviations: 

1 . 9 2  =I= 0 . 0 2  

1.06 f 0 . 0 1  

In order to remove the possibility that 
the nonspheres were effecting the corre- 
lation, the constants were recalculated 
for all data obtained with spherical 
packing. There was no significant varia- 
tion in the values of the constants. 

0 

Several variables resulting from the 
experimental techniques were also in- 
vestigated. The frequency and amplitude 
of the periodic function in the frequency- 
response experiments were varied and 
found to have no effect on the axial 
diffusivity. A second dye was used as 
tracer and previous results were dupli- 
cated. The column diameter was held 
constant in all experiments. Several runs 
were made with various bed lengths and 
no noticeable variation in axial diffusivity 
measurements was observed. The length 
of the packed testing sections used and 
the method of analysis employed made 
end-effects negligible. 

DISCUSSION 

The results of this study of axial mixing 
in liquids flowing through beds of packed 
solids are graphically compared in Figure 
10 with the results of other investigations 
concerning the axial and radial mixing of 
gases and liquids flowing through beds. 
Modified Peclet numbers, dDu/DL, are 
plotted as a function of Reynolds number, 
dDVop/p.  The results of this study are 
represented by the symbols in the lower 
portion of the figure. Peclet numbers 
varied from 0.3 to 0.8 for the range of 
Reynolds numbers from 0.01 to 150. 

Kramers and Alberda ( lo) ,  using the 
frequency-response method, investigated 
the longitudinal mixing of water flowing 
through a column (diam.: 2.9 in., length: 
13.4 in.) packed with %-in. Raschig rings. 
The value of Peclet number, 0.86, computed 
from the data of Kramers and Alberda, is 
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shown in Figure 10 for the two water 
velocities investigated (Reynolds numbers: 
85 and 155). The data agree with the results 
of this research. 

Another experiment concerning the axial 
mixing of water flowing through a bed 
(diam.: 1.9 in.; length: 4.6 ft.), packed with 
%-in. Raschig rings haa been presented by 
Danckwerts (4). The value of Peclet 
number, 0.49, for a Reynolds number of 22 
is also in agreement with the data of this 
research aa indicated by Figure 10. 

Measurements on the axial mixing of 
binary gas mixtures flowing through a 
random bed of spherical particles have been 
reported by McHenry and Wilhelm (14). 
The test columns of 1.93 in. diam., were 
randomly packed with 0.127-in. spherical 
particles to a height varying from 1 to 3 ft. 
For the gas systems Hz-N~ and c2H4-N~ 
and for Reynolds numbers between 10 and 
400, the mean of 21 determinations of axial 
Peclet number was 1.88 f 0.15. The curve 
shown in Figure 10 summarizes graphically 
the data of McHenry and Wilhelm. 

The axial mixing data for the gas systems 
does not coincide with the results for the 
liquid systems. The greater degree, of axial 
mixing in liquid systems results probably 
from the increased by-passing, trapping, 
and short-circuiting of the liquid packets, 
since there is less efficient mixing within the 
void cells themselves. Thus, if the Reynolds 
number range were increased beyond 170 
for liquid systems, the values of axial 
Peclet numbers would approach those of 
the gas system. This should result since the 
greater turbulence would create a higher 
degree of mixing in the void cells, hence 
less by-passing and short-circuiting, and 
thus less axial mixing for the bed as a whole. 

A comparison of the axial mixing data 
with data from the literature concerning 
radial mixing is also made in Figure 10. 
The point-source method was employed to 
evaluate the extent of radial mixing for 
both liquid and gas systems. The curves 
shown are a summary of the data of 
Bernard, Latinen, and Wilhelm (3, 18, 80) 
and are representative of other radial 
mixing investigations (7, 16). The data for 
gas systems indicate that radial Peclet 
number is approximately 10 for Reynolds 
numbers between 25 and 600. The liquid 
systems show a constant Peclet number of 
11 for Reynolds numbers greater than 150, 
with an increase in Peclet numbers below 
this region. The results of both investiga- 
tions agree with the statistical “random- 
walk” approach of Baron ( 8 )  who predicted 
a Peclet number of 11 for fully developed 
turbulence. The above comparisons indicate 
that for flow through packed beds a greater 
degree of mixing exists in the axial direction 
than in the radial direction. 

The curves for molecular diffusion for 
the three gas systems and the water-dye 
system are included in Figure 10. These 
curves indicate the large increase in mixing 
occurring because of processes other than 
molecular diffusion. At low flow rates, with 
other effects being negligible, the curves for 
effective and molecular diffusion should 
merge. 
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NOTATION 

a = constant 
a, 

A .  = outlet amplitude 
A; = inlet amplitude 
A(0) = amplitude of inlet concentra- 

A ( z )  = amplitude of concentration wave 

A,(O) = amplitude of n-th harmonic in 

b = constant 
b, = coefficients of sine terms of 

Fourier series 
B = function representative of the 

decrease in amplitude of outlet 
wave 

= concentration of tracer in solu- 
tion, moles/unit volume or 
g./unit volume 

= mean composition about which 
concentration oscillates in fre- 
quency response experiments 

en = concentration values employed 
in numerical harmonic analysis 

co = initial Concentration of solution 
admitted to bed 

C = constant 

= coefficients of cosine terms of 
Fourier series 

tion waves 

a t  z 

periodic wave 

c 

c, 

ac -- 
aY 

n 
N 

Pe 

Q 

7 

R 
Re 

s 
t 
U 

vo 

V 
2 

= concentration gradient, moles/ 

= particle diameter, in. 
= tube or column diameter, in. or 

= effective axial diffusivity, sq. ft./ 

= effective radial diffusivity, sq. 

= total effective diffusivity, sq. ft./ 

= molecular diffusivity, sq. ft./sec. 
= adsorption velocity constant, 

= number of harmonic 
= mass transfer rate, moles/(sec.) 

= P.eclet number; radial, d,u/DE 
or axial, d,u/DL 

= quantity of tracer injected in 
pulse function experiments, 
moles 

= radial coordinate in cylindrical 
coordinate system 

= dimensionless time ratio, ut/z 
= Reynolds number, dnvop/p or 

dDUP/P 
= dimensionless diffusivity ?atio, 

DL/ZU 
= time, sec. 
= mean linear velocity (interstitial 

velocity), ft./sec. 
= superficial velocity based on 

empty column, ft./sec. 
= void volume of bed, cu. ft. 
= longitudinal coordinate in cy- 

lindrical coordinate system 

(cu. ft.)/(ft.) 

ft. 

sec. 

ft ./sec . 
sec. 

sec.-l 

(sq. ft.) 

Greek Letters 

y 

S 

6~ 
a = fraction void or porosity of 

packed bed 
q = amount of tracer adsorbed on 

particle surface, moles/unit vol- 
ume of bed 

= viscosity of solution, centipoise 
= density of solution, g./cc. 
= function representative of the 

phase shift of outlet wave 
= phase lag of n-th harmonic in 

periodic wave 
= angular frequency of periodic 

wave, rad./sec. 

= function of adsorption velocity 
constant, equivalent to 1 + k l / e  

= angle of periodic wave, equiva- 
lent to (cot - 4) 

= mixing diffusivity, sq. ft./sec. 

p 
p 
4 

J. 

w 
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