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Experimental kinetic data are most conveniently correlated by the integrated form of the 
differential rate equations which the reactions are presumed to obey. A new method of obtaining 
an approximate integral solution of the differential equations is described and applied to a set 
of three consecutive competitive reactions. 

The approximote integral solution is used to correlate experimental data on systems whose 
stoichiometry would indicate a consecutive competitive mechanism. The compositions of the 
reaction mixes are predicted with a standard error of estimate of less than 4% of the original 
concentration of the initiating reactant, in most cases less than 2%. The estimates of the rate 
constants, found by fitting the approximate solution to the data, are within experimental error 
of the values obtained by differentiation of the published results. 

Consider a set of irreversible con- 
secutive reactions carried out at con- 
stant temperature 

k, 
A + B + Pi $- . . . 

k, 
P , + B +  P,+ . . .  
etc. 

( 1 )  

The differential equations governing 
the course of the reaction set are 

-=- dCA1 k , [ A ] [ B ]  (Za) 
at 

-= d [ P i l  kt[Pol CB1 
dt 

Because many addition, substitu- 
tion, and polymerization reactions are 
stoichiometrically characterized by 
Equation (1 )  an integrated solution of 
Equations ( 2 )  is desirable. In the dis- 
cussion to follow it will be assumed 
that only A and B are originalIy present 
and that the density of the system does 
not change as the reaction proceeds. 

To date the equations above have 
not been solved for the general case of 
any initial composition and any set of 
rate constants. In fact no solution has 
been reached for the simpler case in 
which only A and B are originally 
present. The equations have been 
solved for certain initial molar ratios 
and for particular sets of rate con- 
stants (7, 27) ,  but these solutions can- 
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not be extended to more complex 
cases. Approximate solutions have been 
obtained (12, 13, 17, 28) for the spe- 
cial case in which the initial concentra- 
tions of A and B are the same. Experi- 
mental data have been used (5, 21, 24, 
29, 30) to determine the individual 
rate constants for consecutive competi- 
tive reaction systems. By suitable treat- 
ment of the differental equations Fuoss 
(8) ,  Natta and Mantica (18),  and 
others (1, 4, 11, 15, 22, 23, 25, 26) 
have derived formulas which describe 
the distribution of converted A among 
the products as a function of the rate 
constants. Product distribution studies 
for similar but more complex reaction 
systems have also been reported (2, 3, 
9).  Thus, given the rate constants for 
the reaction set, if the quantity of A in 
the reaction mix could be computed, 
product distribution studies could then 
be used to predict the entire composi- 
tion of the reaction mix at any time, for 
any set of initial conditions. Once this 
can be done, practical problems in- 
volving systems of consecutive com- 

etitive reactions can be solved. It will 
Ee possible to correlate the large body 
of experimental data on systems whose 
stoichiometry obeys Equation (1) to 
see whether the mechanism of the re- 
actions is well represented by the dif- 
ferential rate equations and to find rate 
constants for the twin purposes of ex- 
trapolation and design. Hence the first 
purpose of this paper is the develop- 
ment of equations describing the time 
dependence of the concentration of A. 

APPROXIMATE SOLUTION OF THE 
RATE EQUATIONS 

Each consecutive competitive reac- 
tion system is a member of one of two 
classes. The first, exemplified by the 
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saponification of diesters, contains those 
reactions in which the reactant A has a 
few reacting groups which are changed 
to an unreactive form by addition of, 
or substitution with, B .  The second 
class contains addition reactions, such 
as the reactions between ethylene oxide 
and the ethanolamines. Typical addi- 
tion polymerizations are special cases 
of a consecutive competitive reaction 
set of this second class. A survey of the 
literature revealed no complete experi- 
mental data for systems of more than 
three reactions, so 'k& was taken to be 
zero in the study to follow. 

Numerical Integration 

Equations ( 2 )  were numerically in- 
tegrated for a wide range of values of 
the rate constants. In order that the 
results might be applied to a wide 
variety of systems the equations were 
first put into dimensionless form. De- 
fine 

and 

[A1 
yo= - 

CAI" 

( 5 )  

(7)  

Equations ( 2 )  then become 

An LMlO analogue computer was 
used for preliminary studies of the SO- 
lution of the differential equations 
above. The results obtained on the 
analogue computer were confirmed, 
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and numerical solutions were obtained 
on an IBM-650 data processing ma- 
chine. A Runge-Kutta subroutine was 
used for the numerical integration. It 
was assumed that equimolar amounts 
of A and B were initially present and 
that the original mix contained none 
of the reaction products. As will be 
shown below, the results of this inte- 
gration can be used to predict the 
course of reaction for any initial molar 
ratio of A to B .  
Form of the Approximate Solution 

When no Pt is present at the start 
of reaction, yo is a function of only Po, 
t', and the { K c } .  The equations giving 
the {yb} as functions of yo and the 
{ K , }  are 

yo - yoK' 
yl = (9a) Kz- 1 

K2yo - KzKyo + &KsyoKz - &yoK2 
( 1 - Ka) ( 1 - K2) ( K z  - K3) 

yz = 

ya = 1 - yo - yl - yz ( 9c) 

For the range of parameters studied 
here there are two useful correlation 
schemes, one applicable when Kz is 
small and one for large values of this 
ratio. 

When K, is small, the time depend- 
ence of yo may safely be approximated 
by neglecting the second reaction; the 
concentration of higher products are 
found from Equations (9) .  For small 
K 2  and B. # 1 

yo = - t' + 1 
Deviations from material balance accu- 
racy will be minor, as little P ,  and P ,  is 
formed. Equations (10) are simply the 
solutions of the rate equations for a 
single second-order reaction. The bulk 
of this paper will consider consecutive 
reaction sets in which the second reac- 
tion cannot be neglected. 

To begin the search for an approxi- 
mate solution of the rate equations 
when K,  is large, define the rate of 
disappearance of Pc by 

(i = 1,2,3; j = 0,1,2) (11) 
where f is defined by Equations (8).  
A material balance on B gives 

J 

/3=8.-I:iyL= /3.-g(yo,K,) 
i =, 

(i = 1,2,3) (12) 

TABLE 1. CORRELATION OF PRODUCT DISTRIBUTION DATA 

Reaction 
A + B  

Methanol + propylene oxide 
l-methoxy-2-propanol+ pro- 

Monoethanolamine + ethyl- 

Ammonium hydroxide + eth- 

Propylene + chlorine 

pylene oxide 

ene oxide 

ylene oxide 

Benzene + chlorine 

Ref- 
Conditions K z  K, s. erences 

NaOH catalyst, 45°C. 0.12 - 0.001 (L4,19) 

NaOH catalyst, 60°C. 1.01 1.03 0.009 ( 1 4 )  

10°C. 0.75 - 0.022 (20) 

10" to 30°C. 5.7 4.3 0.011 (20) 
510" to 528"C.", 1.02 1.01 0.011 (10) 
atmospheric pressure, 
flow reactor 
440" to 450"C.", 0.48 0.00f 0.015 (16)  
atmospheric pressure, 
flow reactor 

" Chlorination found to be entirely substitutive. + Found by fitting observed trichlorobenzene concentrations. 

where g is described by Equations (9). 
Clearly yo is a single-valued function 
of & - 8, since both and yo decrease 
continuously as the reaction proceeds. 
Equations (11) and (12) imply that 
for a given set of { K 4 } ,  whenever a 
certain amount of B has been con- 
sumed, the quantities of the P ,  pro- 
duced and A reacted are determined 
and are independent of the amount of 
B initially present; that is the y4 are 
functioiis of (8. - 8 )  alone. Equation 
(11) indicates that the effect of raising 
8. is simply a reduction in the time 
required to reach a given B-free distri- 
bution of A. This being the case it 
should be possible to relate the solutions 
of Equation (8) for any runs in which 
the { K , }  are the same, in terms of the 
value of 8. for each one. 

Denote by the subscript T a refer- 
ence run for which 8. = 1. Let t,.' be 
the time required to reach a given 
value of yn when 8. = 1. Let t' be the 
time required to reach this same value 
of yo, for an arbitrary initial Is, 8.. As 
yo is the same in each case, from Equa- 
tion (12) the decrease in /3 must also 
be the same; call it B. Then 

Here the differential times are those 
required for the same differential 
change in y4, after a diminution B of P 
has taken place. Rearranging and in- 
tegrating one gets 

(14) 

B=l-& (15) 

For the reference case 

Equation (14) then becomes 

In Figure 1 log 8, is plotted against 
tc'. The graphs are nearly linear. 
For this reason Equation (17) was 
taken to represent the functional de- 
pendence of 8, on t,' 

(17) 
where b is an empirical parameter of 
the approximation. Substituting Equa- 
tion (17) into (16) and integrating 
one obtains 

fir = e-"'v 

1 
h 

t,' = - -1n (/30e-b" - + 1) 

(18) 
Substituting Equation (17) into (8a) ,  
separating variables and integrating 
one gets 

1 
y,,.. = exp [ - (e-'''. - 1) ] b 

(19) 
But this value of yo obtains for any t' 
and Po which satisfy Equation (18). 
Substitution of Equation (18) into 
( 19) and (17) gives, respectively 

a11d 

The dependences of the concentrations 
of the initiating reactants on time and 
initial composition, as given by Equa- 
tions (20) and (21), are consistent 
with the known properties of the exact 
solution of the differential rate equa- 
tions. I t  can further be shown that 
yl(t ' ) ,  given by Equations (9a )  and 
(20), exhibits a maximum and point of 
inflection if 8. is large enough. 

Construction of the Working Formula 

In the derivation of the approximate 
solution given by Equations (20) and 
(21) only one empirical parameter b 
was proposed. This parameter is a 
function of only the { K , } .  The nature 
of this dependence was found by fit- 
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ting the data obtained from the digital- 
computer integration to Equation (20),  
through the method of least squares. 
The deviation was defined as 

(22) 

The zero of ( a D ) / ( a b )  was found by 
means of Newton’s method. Figure 2 
shows the variation of b with K, for K, 
values of zero, three, and five. The val- 
ues of b for K, 3 0.1 were correlated 
by a second-degree multinomial in K ,  
and log,K,: 

h = 0.897 + 0.429 log K,  

D = 2 ( i o  - yap), 
i l l 1  

<1:,ti, 

+ 0.O53lofK2 + O.lK,(O.736 

+ 0.632 log K, + 0.273 log” K z )  

- 0.01 KZ (0.720 + 0.545 log K, 
+ 0.262 log K 2 )  (23) 

The standard error of prediction of yo 
is given by 

The values of yo. were taken from 
Equation ( lob)  or (20),  and u p r e d  was 
computed in either case to determine 
the ranges of applicability of the two 
approximations to yo. Figure 3 is a plot 
of u p r e d  vs. K,  for two values of K ,  
and for the two correlation schemes. 
The low-K, correlation is preferred 
when K ,  is less than 0.12, for K, 
= 0; or less than 0.04, when K ,  = 5. 

The standard error in yo never exceeds 
0.025. A material balance will show 
that this also limits the errors in the 
dimensionless product concentrations. 

DATA CORRELATION 

It  is possible with the product dis- 
tribution equations described above 
and the approximate time-dependent 
solution given by Equations (20) and 
(21) to directly correlate data on sys- 
tems of consecutive competitive reac- 
tions without the tedium of guessing at 
the {k}, numerically solving the rate 
equations, and repeating the procedure 
until the best fit to the data is ob- 
tained. If one uses the equations de- 
rived above, not only can literature 
data be analyzed to find rate constants, 
but in addition if the fit is good, added 
confirmation of the presumed and theo- 
retical model is obtained. Glaring dif- 
ficulties in fit, beyond those shown in 
Figure 3, may be evidence of poor 
experimental method or a deviation be- 
tween the true reaction mechanism and 
that required by Equations (2) .  

Two methods will be used to find 
the rate constants from experimental 
data, a differential approach and an in- 
tegral method. First experimental data 
will be differenced and fit to a differ- 
ence form of Equations (2) .  Second 
the {K , }  will be found by fitting prod- 
uct distribution data to Equations (9) .  
Lastly the approximate model derived 
above will be used to correlate time- 
composition data on reaction sets 

whose stoichiometry follows Equation 
(1) .  

Differential Treatment of the Rate 
Equations to Find Rate Constants 

Two differential methods of corre- 
lating kinetic data will be discussed 
below. Before proceeding to the actual 
problem of data analysis the basic steps 
in the differential treatment will be 
outlined: 

1. The data consist of a set of times 
{t ,}  and associated compositions 
{ [ A ~ J } ,  { [Pt l~} ,  and {[BIJ}. Define 
the semidimensionless average rate of 
disappearance of P ,  ( i  = 0,1,2) over 
the time interval tJ to by 

Ag4 y 4 J  - y d , J + l  

At t l r l  - tJ 
(25) ;mi, = - - = 

- 
2. Plot Tmct against t. If rmL is the 

ordinate, this plot consists of a set of 
horizontal lines of height rmiJ, each ex- 
tending from t j  to tj+*. 

3. Draw a smooth curve through 
this difference plot. This curve is a 
graph of the true reaction rate rmi vs. 
time. Construct such derivative plots 
for each reacting component. 
4. At each experimental point use 

Equations (2) to obtain the rate con- 
stants. 

Exact Treatment when All Data are 
Based on the Same Initial Conditions. 
In this case the procedure described 
above is applied directly. The data are 
all obtained from runs having identical 
initial conditions; this is the case when 
aliquots are withdrawn from a reaction 
mix during the course of a single run. 
In order to study the production of 
ethanolamine from ethylene oxide and 
ammonium hydroxide Potter (20) 
mixed the two reactants and withdrew 
samples at intervals. The chemical re- 
actions are 

Fig. 2. b vs. Kz. 
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NH, + H2C-CH2 (ETO) + 

H,NCH,CH,OH (monoethanolamine; 

MEA) (26a)  

MEA + ETO -+ HN (CH,CH,OH), 

(diethanolamine; DEA) (26b)  

DEA + ETO -+ N (CHzCHzOH) 

(triethanolamine; TEA) (26c )  
Potter's data were differenced to 

give smooth plots of rmK vs. time, and 
the {kk} were computed from Equation 
( 2 7 ) :  

P 2 rmlj 
1 Z O  I 

The indicated summations were taken 
to minimize the effects of errors in the 
{y'} late in the reaction. The rate con- 
stants determined in this fashion are 
given in Table 2.  

Approximate Treatment when Data 
are Based on Various Initial Conditions. 
Equation ( 2 5 )  can be applied directly 
only when the data to be differenced 
are based on the same value of P o .  If 
one wishes to correlate a set of data 
obtained from reaction mixes not hav- 

I . .K.* 

Fig. 4. Arrhenius plot for ethanolamine synthesis. 

- 
T 

ing common initial conditions, a cor- 
rection must be applied to take the 8. 
associated with each run into account. 

When the { P o }  are not identical 
throughout, the times at which each 
sample is taken are replaced by the 
times at which the same product distri- 
bution would obtain if ,8, were equal to 
some reference value. The reference 
value of 8. = 1 is chosen so that Equa- 
tion (18) can be used. The procedure 
employed is: 

1. Start with a set of guesses at the 
(kc}, given by k,"', K?', and KR"'. 

2. Compute b'" from Equation (23). 
3. Compute t'"' for each run from 

Equation (4), using k,"' and the initial 
conditions for each run. 
4. Compute t/"" for each run, using 

Equation (18). 
5. Compute pP'l) for each run 

~ , ' "  = 1 - (Po  - 8) ( 2 8 )  
6 .  Proceed as in the exact differen- 

tial treatment described above, using 

t ,  ' as the independent variable. The 
rates to be determined by difference 
will be the dimensionless ones defined 
by Equation (11). 

The best estimates of the rate con- 
stants are obtained when continued 
iteration yields values of the rate con- 
stants identical to those guessed before 
the last cycle. I t  should be remarked 
that these rate constants are not neces- 
sarily the best ones to represent the 
reaction system, but they are the best 
values consistent with the approxima- 
tion used to reduce the times to the 
reference case. 

This method of solution was applied 
to the data of Groll and Hearne (10) 
on the substitutive chlorination of 
propylene at 525°C. The calculated 
rate constants are listed in Table 2.  

If enough data based on a single 
value of p,, are available, Equation 
(16) may be integrated numerically to 
reduce data based on other initial 
molar ratios to the modal case. Al- 

TABLE 2. ESTIMATION OF ALL RATE CONSTANTS FOR SELECTED CONSECUTIVE COMPETITIVE REACTIONS 

Reaction 
A + B  

Temp.* 
ki K z  K? SE 

Benzene + chlorine 450°C. 11,600 cc./mole-min. 0.68 - 0.032 
8907 cc./mole-sec. 1.10) 1.45f 0.019 propylene + chlorine 

Ammonium hydroxide + ethylene oxide 10 0.00125 cc./mole-min.7 t 5.7 4.6 0.014 
20 0.0039ftQ* 6.0ff 4.5ff 0.013 
30 0.0091f f 5.4 4.5 0.022 

525 to 528 
Methanol + propylene oxide 45 0.0174 cc./mole-hr. 0.88 - 0.011 

0 Other conditions the same as in Table 1. 
t Values obtained by differentiation: ki = 830, Kz = 1.19 Ks = 1.40. 

00 Values obtained by differentiation: ki = 0.0038 Kz = d.2 Ks = 4 7. 
t t  kl reported by investigator (Potter): 10°C.. 0.06135; 20ed., 0.0039; 30'C.. 0.0095. 
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Fig. 5. Concentration-time profiles for ethanolamine synthesis Fig. 6. Concentration-time profiles for ethanolamine synthesis a t  2OoC. Curves are 
a t  10°C. Curves are computed from calculated rate con- computed from calculated rate constants and approximate model. 

stants and approximate model. 

though that portion of the data used 
to evaluate the integral may be suffi- 
cient to give useful values of the rate 
constants, the use of the additional data 
checks the assumption that the rate 
constants are independent of compo- 
sition. 
Correlation of Product Distribution Data  

The product distribution equations 
(9) may be used to estimate best val- 
ues of K z  and K ,  from experimental 
data when the reaction time is either 
unknown or infinite. The latter is the 
case when steady state product distri- 
butions are reported. A program was 
written for an IBM-704 to determine 
rate constant ratios from product dis- 
tribution data; zjo is the independent 
variable and the {KL} are the parameters 
of the approximation. Newton's method 
was used to find those values of the 
rate constant ratios which minimized 
the deviation between the predicted 
and experimental dimensionless prod- 
uct concentrations. The required sec- 
ond derivatives of the devi a t '  ion were 
approximated by difference quotients. 
The best {K,} and the associated stand- 
ard errors of prediction are given in 
Table 1 for several experimental sys- 
tems. 

The experimental data fit the prod- 
uct distribution equations quite well. 
The standard errors are a measure of 
experimental inaccuracy and deviations 
of the true rate equations for the re- 
action set from those assumed in Equa- 
tion ( 2 ) .  Below, where time is reintro- 
duced as an independent variable, the 
standard error of prediction will again 
be computed. The differences between 
the two corresponding variances may 
be used to measure the ability of the 
approximate model to describe the rate 
equations. 
Determination of Rate Constants from 
Complete Reaction Mix Data 

Equations (9), (20), and (211, 
which comprise the approximate solu- 
tion of the rate equations, may be fit- 

ted to experimental data when sampling 
times, as well as the compositions of 
the reaction mixes, are given. The 
value of f i  can be found from either 
Equation (21) or a material balance. 
These two methods predict different 
values for the dimensionless concentra- 
tion of B .  Although the use of Equation 
(21) would render any results inter- 
nally inconsistent from a material bal- 
ance point of view, the authors are 
more concerned with a representation 
of the true solution of the differential 
equations than with the internal con- 
sistency of the approximation. Eight 
points were chosen at random from the 
computer-generated solutions of the 
rate equations. The values of /? pre- 
dicted by the two methods were com- 
pared with the true solutions of the 
differential equations, and the corre- 
sponding variances were calculated. 
The results of an F-test showed that, 
at 90% confidence, the material bal- 
ance does not predict /? as well as the 
shorter Equation (21), when Equation 
(20) is used to determine the frac- 
tional conversion of A. 

When K ,  is low enough to allow the 
reaction set to be represented by a 
single second-order reaction, /3 is found 
from a material balance: 

- B r ,  

An IBM-704 program was written to 
correlate experimental kinetic data on 
consecutive competitive reactions, with 
the equations developed above to find 
the best values of the rate constants 
for each reaction step. Table 2 contains 
a summary of the results. When rate 
constants have also been computed by 
differential methods or reported by the 
experimenter, these values are in- 
cluded for comparison. The accuracy 
of the rate constants in Table 2 varies 
from system to system and depends on 
the number of pieces of data em- 
ployed, the levels of the dimensionless 
concentrations and times, and the ex- 
perimental error. Furthermore it should 
be noted that, in contrast to the prod- 
uct distribution correlation, the {k,} are 
adjusted not only to describe the prod- 
uct concentrations but also to give a 
value of b, through Equation (23),  
which describes as well as possible the 
time dependence of the concentrations 
of the initiating reactants. This ex- 
plains the larger standard error in the 
present case. 

As there was a large body of data 
available on ethanolamine synthesis, 
this system was treated in greater de- 

0 5 0 1 5 2 0 2 5  3 0 3 5 4 0 4 5 5 0 S M 6 5  

TIME, YIN 

Fig. 7. Concentration-time profiles for ethanolamine synthesis a t  3OOC. Curves are 
computed from calculated rate constants and approximate model. 
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tail than were the others. Rate con- 
stants were estimated at lo", 20°, and 
30°C., so the activation energy could 
be calculated for each ethylene oxide 
addition. Figure 4 shows Arrhenius 
plots for the three reactions. The plots 
indicate an activation energy of about 
17 kcal./mole for each addition. The 
predicted and observed compositions of 
the reaction mixes, for this system, are 
shown in Figures 5 through 7. 

APPROXIMATE INTEGRATION OF 
DIFFERENTIAL RATE EQUATIONS 

The approximate integral solution 
used above to treat consecutive com- 
petitive reaction systems is an applica- 
tion of a more general algorithm to a 
particular reaction set. This procedure 
will now be described briefly and gen- 
erally to indicate its applicability in the 
analysis of other systems whose rate 
equations defy exact solution." 

1. An analogue or digital computer 
is used to integrate the proposed rate 
equations for a wide range of values of 
the rate constants and initial conditions. 
The effort required here can be re- 
duced if the equations are first put in 
dimensionless form. Frequently some 
properties of the true solution can be 
found from the differmtial equations 
themselves. Among these are product 
distribution equations and equations, 
such as (16), which relate concentra- 
tion-time profiles for two runs to their 
initial conditions. 

2. The least possible number of de- 
pendent variables are represented em- 
pirically. The approximations should be 
simple, should be applicable over a 
wide range of conditions, should re- 
duce to the known initial conditions at 
zero time, and should possess reasona- 
ble asymptotes at infinite time. The 
choice of the concentrations to be so 
represented will also depend upon the 
ease and accuracy with which the other 
variables can be predicted from the 
approximation. 

3. With the approximations chosen 
in step 2 the rate equations are solved 
analytically, with any parameters of the 
approximations as yet unspecified. 

4. The values of the parameters are 
found by fitting the results of step 3 to 
the computer-generated results given 
by step 1. 

The integral solution of the rate 
equations is considerably more con- 
venient than the equations themselves 
for the correlation of literature data 
and for the derivation of design equa- 
tions (6). Although it is an inexact 
method, the greatest portion of the 
variance between experimental results 
and those predicted by the model pre- 
sented here are almost certainly due 
- 

0 See reference 6 f0r.a more thorough descrip- 
tion of the procedure bnefly outlined here. 

to experimental error and to the in- 
ability of the proposed rate equations 
to describe the true kinetics of the sev- 
eral reactions. 

CONCLUSIONS 

Equations explicit in concentration 
have been derived which describe to 
within 2% the theoretical course of a 
set of three consecutive competitive re- 
actions, when only the initiating reac- 
tants are originally present. The equa- 
tions are easy to apply and are applic- 
able to diverse chemical systems. 

These formulas have been used to 
correlate experimental data on consecu- 
tive competitive reaction systems. The 
standard deviation between the ex- 
perimental and calculated compositions 
of the reaction mixes was always less 
than 4% and usually less than 2% of 
the initial concentration of A. The val- 
ues of the rate constants which were 
used to obtain the best fit to the pub- 
lished data agree closely with the val- 
ues found by more direct means, such 
as data differentiation and graphical 
integration. 
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NOTATION 

B 

b 

= decrease in dimensionless con- 
centration of B 

== parameter of the approxima- 
tion to the rate equations, di- 
mensionless 

D = deviation, defined by Equa- 
tion (22) 

j = number of reactions 
K ,  = dimensionless rate constant for 

the i-th reaction, defined by 
Equation (7)  

= rate constant for the i-th reac- 
tion, cu. ft./mole hr. 

= number of pieces of data 
= semidimensionless rate of dis- 

appearance of P,, defined by 
Equation (25), hr.-' 

T &  = dimensionless rate of disap- 
pearance of P , ,  defined by 
Equation (11) 

ki 

N 
rnli 

s, = estimate of standard error 
t = time 
t' = dimensionless time, defined by 

Equation (4) 
yo = dimensionless concentration of 

A, defined by Equation ( 3 )  
y& = dimensionless concentration of 

P i ,  defined by Equation (6) 
/3 = dimensionless concentration of 

B, defined by Equation ( 5 )  
= standard error of prediction, 

defined by Equation (24), di- 
mensionless 

[ ] = concentration, moles/cu.ft. 

Subscripts 

o = initial value 
P 

(20) 
= value obtained from Equation 

= reference case 

Superscripts 
A 

- = average value 
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