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A theoretical analysis is presented of the liquid film flowing around long, bullet shaped, 
gas bubbles which characterize the slug-flow regime in two-phase flow through vertical pipe. 
Integral mass and momentum balances on the liquid film allow the prediction of gas bubble 
shape, liquid holdup around the bubble, wall shear stress acting on the liquid film, and 
velocity profiles in the liquid film. These predictions are in good agreement with data available 
in the literature. 

If a sufficient quantity of gas is introduced into a stag- 
nant liquid column or a flowing liquid stream, a bullet 
shaped bubble is formed. The consecutive passage of 
these bubbles up a circular pipe characterizes the slug- 
flow regime of vertical two-phase flow. Previous studies 
of these bubbles by various investigators (1, 2, 3, 4, 5, 6, 
7) have been concerned primarily with the prediction 
and correlation of bubble rise velocities. Bretherton (8) 
has investigated theoretically the shapes of bubbles mov- 
ing slowly in horizontal and vertical capillaries in which 
the forces of surface tension and viscosity were included 
for the horizontal case and surface tension and gravity for 
the vertical case. Walters and Davidson (9, 10) have in- 
vestigated the initial motion of cylindrical (two-dimen- 
sional) and spherical (three-dimensional) bubbles when 
released from rest in a vertical conduit. In the latter case 
they predicted and observed the deformation of the bub- 
ble from a sphere to a spherical cap. Taylor and Acrivos 
(11 ) have investigated theoretically the slow, creeping 
motion of a fluid around a viscous, deformable drop. Their 
analysis revealed that the drop would deform from a 
sphere to a spherical cap as the fluid velocity (and there- 
fore inertial terms) increased in magnitude. Brown (12) 
extended earlier work (1, 2 )  to include the effects of 
liquid viscosity on the velocity of bullet shaped bubbles. 

The objective of th is  study is to examine the fluid me- 
chanics of the liquid film which flows downward with 
respect to the bubble, around the bubble, forming a wake 
behind it as indicated in Figure 1. Integral mass and 
momentum balances on this film allow estimations of the 
bubble shape, liquid holdup around the bubble, wall 
shear acting on the liquid film, and velocity profiles in the 
liquid film. The predictions of the theory are in good 
agreement with the experimental data of Nicklin ( 5 )  
and Laird and Chisholm ( 4 ) .  The unique features of this 
analysis are that the flow around the bubble is analyzed 
at the bubble terminal velocity, where the nonlinear in- 
ertial forces may be quite large. Secondly, the analysis is 
not restricted to bubbles rising through a stagnant liquid. 
Finally, the momentum balance is formulated in such a 
manner as to continuously analyze the forces in the liquid 
film along the length of the bubble as opposed to those 

~ 
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analyses which comprised an inertia-gravity controlled 
solution at the head of the bubble, which may or may not 
be patched to a viscosity-gravity controlled solution in 
the film at the tail of the bubble. 

THEORETICAL ANALYSIS 

It will be assumed in this analysis that predictive meth- 
ods or correlations are available for the estimation of bub- 
ble rise velocity. The bubble rise velocity is expressed in 
the form 

Z)B = 0 0  + UL + w 

The regions of the pipe occupied by the liquid phase are 
assumed to travel at a superficial velocity equal to wa + 
z ) ~ ;  therefore, w is interpreted as the velocity with which 
the gas bubble travels through the surrounding liquid. It 
is this quantity which is of paramount interest. 

(1) 

m 
Fig. 1. Schematic representation of a rising 

gas bubble. 
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Integral Mars and Momentum Balances 
Let a difEerentia1 element of liquid film located a dis- 

tance z from the head of the bubble be taken as the sys- 
tem under consideration (the element CDEFGHlJ in 
Figure 2 ) .  This system is allowed to move with the bub- 
ble at the bubble rise velocity which is assumed constant. 
A mass balance yields 

az l:urdr = 0 (2) 

JT urdr = d W / 2  ( 3 )  

where u, the velocity in the z direction, is a function of 
r and z .  A mass balance on the system ABEFZJ yields 

A momentum balance on the differential element dz yields 

ivRr auD 
a z D  N m  a7, (4) m 

The terms in Equation (4)  take into account liquid ac- 
celeration and the forces due to viscous wall shear, grav- 
ity, and surface tension, respectively. 

It is assumed that the pressure gradient across the gas 
bubble is negligibly small. This has been observed ex- 
perimentally by Laird and Chisholm ( 4 )  for a gas bubble 
rising through a stagnant liquid. Furthermore, it is as- 
sumed that at the gas-liquid interface 

( 5 )  

Thus the transfer of momentum from the gas bubble to 
the liquid film is assumed to have a negligible effect on 

r"l 
Fig. 2. Mathematical model of a rising gas 

bubble. 

where 

U D  = U / U Q  + UL + W, Z D  = zg/ (u ,  + t)L + w)' ,  
7)  = r/rw 

NFr = Froude number =(uO + vL + w)2/grw 
rl7 = dbx 

N,,  = Reynolds number = rw (00 + uL + w ) p / p ,  

N, ,  = Weber number = (uQ + uL + w)'prW/u 

Second 

(9) 

U D  (1, z D )  = 1 (10) 

The integral form of the mass and momentum equations 
requires that a functional form of the velocity profile be 
assumed in order that Equations (7) through (10) be 
solved. Therefore, let a general velocity profile subject to 
the three conditions (7). (9), and (10) be assumed in 
the form 

u D ( q ,  z D )  = fi(B)Fl(s) + f2 (8 )F*(q )  + f S ( 8 ) F S ( ? )  

(11) 

If the functions F z ( q ) ,  F2(q), and F.(q)  are arbitrarily 
specified, then fi( 8) , f&), and fa@) are determined by 
(7) ,  ( S ) ,  and (10). Substitution of (11) in (8) then 
yields 

and 

The differential Equation (12) may be solved to yield 

Vof. 1 1, No. 4 A.1.Ch.E. Journal Page 645 



k 
F(B, V >  + - 

dB (16) 
2 N w e  

N R .  

z D =  

[ ( l - B ) / 2 + 5 f ( / 3 )  3 
where @(z,) = 0 at zD = 0. Equation (16) may be ex- 
pressed more compactly in the form 

The momentum balance (8) becomes 

(23) 
Equations (22) and (23) can be combined by elimina- 
tion of uD to give 

The function G will be referred to as G(B) in the sequel. 

Equation (17) allows the prediction of gas bubble 
shape and (I 1) the estimation of velocity profiles in thc 
liquid film. The cumulative volumetric liquid holdup 
around the gas bubble is given as a function of bubble 
length by 

h = cumulative volumetric holdup of liquid/cross-sec- 
tional pipe area 

= 1 C1-8(z)ldz= (1 -B)  G ( / 3  dl3 (18) 

The cumulative viscous shear acting on the liquid film 
at the wall is defined as the total shear force acting on 
the film at the wall divided by the cross-sectional pipe 
area 

which may be written as 

Liquid Film Velocity Profiler 

functional forms of uD (7, z D )  ; namely 
The e f k t s  on bubble shape were investigated for three 

ULJ == +(?) 

uo = 4(?, 2,) = f i ( B ) i  + f*(B)?* + f a ( B ) ? "  

UD = d(zD) 
and 

For the case in which the velocity in the film is a func- 
tion of T only, the mass balance (7) can be evaluated 
from Liebnitz' rule. The result is 

The bubble is therefore cylindrical in shape. The dimen- 
sionless area of the bubble is given by substitution for un 
in ( 8 ) :  

or 
2x,, 
N,. 

B = 1 + -#(l) (21b) 

Because #? 1. 1, +'( 1) 0, which implies that the fluid in 
the film must be traveling downward with respect to the 
pipe wall. If G~ is neither a function of 7) nor zD, (b'( 1) = 
0 and /3 = 1; that is, the gas bubble is a cylinder occupy- 
ing the entire cross section of the pipe. 

For the case in which the velocity in the film is a func- 
tion of zD only, the mass balance (7) becomes 

This equation is solved by 
Nw. - - 2 D  
k 

p(z , )  = 1 - e  (2-5) 

which satisfies the initial condition S ( 0 )  = 0. For this 
case then the bubble shape is exponential. The bubble 
surface asymptotically approaches the wall as zD ap- 
proaches infinity. 

Finally the velocity in the film is taken as a function of 
both 7 and zD. The first three terms of an even power 
series in T were taken because at the bubble head ,9 = 0 
the film velocity is an even function of 7. The conditions 
(7),  (9). and ( lo) ,  when combined with the specific 
form of (11) used, yield the following expressions for 
f l ( B ) ,  f i ( B ) >  and fW: 

12[V( 1 - 2@) + (8- 1/3 - 213 pi] 
- 1 + 66--6Sg--S@+ I5/3'-6P f 3  = (26c) 

Equations (26) specify uD(q, z,) which give upon sub- 
stitution in ( 14) 

1 -- fl  1 -- /y 
1- ( f z f i '  + flfs' + fly*) (-> + (f2'fi + f:fs', (&- ) 

f3' 1 dS df8 == l2 [ (2V- 1 + 2/37 -- 6 A Y ]  (28c)  X 
nnd 

A : = V ( 2 B -  1 )  + 1 / 3 - B +  2 / 3 p  (29a)  

Y=1-2 /3 -4@+10@-5$  (2%) 

X = 1 - 6 6  f 6s" + 8p- IS@ + 6 g  (29h) 

Finally substitution for uD in (15) yields 

*\ = H ( j 3 )  = 2f1 + 4fi + 6fi (30) 
a7 , 1=1 

Substitution of Equations (26) through (30) allows the 
calculation of the bubble shape (/I as a function of z ) .  
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TABLE 1. SUMMARY OF DATA FOR NUMERICAL EXAMPLES or 

Numerical 
Numerical example of Numerical 
example Laird& example 

of Nicklin Chisholm of Fig. 9 

TW, cm. 1.29 2.54 
uo +VL, cm./sec. 0.0 0.0 
w, cm./sec. 17.3 25.3 
p, g./cc. 1 .o 1 .o 
p, centipoises 1 .o 1 .o 
u, dynes/cm. 72.8 72.8 
k 1 .o 1 .o 
g, cm./sec.Z 980.0 980.0 

2.86 
100.0 
63.0 

1.0 
1.0 

72.8 
1 .o 

980.0 

Because of the complicated form of the integrand in ( 16), 
an analytical solution was not obtained. Rather, the in te  
gration was performed numerically on a digital computer 
for specific cases to be presented. 

Considerations of Dimensional Analysis 

Equations (7)  through ( 10) indicate that 

If a mean value of p is defined by 

then ( 3 1 ) becomes 

where the group (v,  + vL + w)a/glQ is a Froude num- 
ber based on gas bubble length. 

For long gas bubbles rising through a stagnant liquid 
for which the effects of surface tension are negligible, 
(33) reduces to 

Fig. 3. The function G(p) for the numerical 
example of Nicklin. 

(34) 

(35) 

where v(&) is a function of the bubble geometry. This 
result corresponds to the theoretical predictions of Dumi- 
trescu ( 2 )  and Davies and Taylor (1) who obtained for 
an a priori specification of bubble shape: 

w = C v $ p  (36) 

If arbitrarily one sets Y(&) = C' rw4Ia and C' = d- 
( C p / p ) ,  then (35) reduces to (36).  Thus the constant C 
in (36) should be a function of the physical properties of 
the liquid, a result which has been experimentally verified 
by White and Beardmore (7) and Brown ( 1 2 ) .  

If the restriction of a stagnant liquid is removed, (33) 
reduces to 

(37) 

This expression corresponds to the results of Nicklin ( 5 )  
and GrifEth and Wallis (3) who obtained correlations for 
the bubble-rise velocity for an air-water system in the gen- 
eral form 

w = c l ~ $ + C 2 ( v Q + 2 ) L )  (38) 

The correspondence can be demonstrated by substitution 
in (37) for /3M by (34) and (36): 

And for a given gas-liquid system 

w = Y! [ds, (0 ,  + V L ) ]  (40) 

Finally, the Froude number based on bubble length in 
(33) indicates that the bubble velocity should be a func- 
tion of bubble length, a result which has been confirmed 
experimentally by Laird and Chisholm ( 4 )  and Nicklin 
( 5 )  * 

2 -  
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Fig. 4. Bubble shape (d7 vs. Z) and velocity 
profiles in the liquid film for the numerical 

exdrn@le of NicWin. 
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BUBBLE LENGTH, in 

Fig. 5. Cumulative holdup in the liquid film vs. bubble length for 
the numerical example of Nicklin. 

These considerations indicate that [in the sense of 
(33),  (35), and (40) ] the functional dependence of bub- 
ble-rise velocity as predicted by the model presented here 
agrees with the experimental observations of many in- 
vestigators (1, 2, 3, 4, 5, 7 ) .  This qualitative correspond- 
ence would appear to lend credence to the theoretical 
analysis. 

RESULTS AND COMPARISONS WITH EXPERIMENTAL 
DATA 

Experimental data of Nicklin ( 5 )  and Laird and Chis- 
holm ( 4 ) ,  who studied air bubbles rising through a stag- 
nant column of water in pipes of 1.29- and 2.54-cm. 
radius, respectively, have been compared with the theo- 
retical predictions of this model. In addition examples are 
presented of predictions of bubble shape and velocity pro- 
files for a bubble rising through a continuously flowin 
liquid. The specific data used for these three numerica 
examples are presented in Table 1. In all cases un was 
taken as a function of r )  and zo in the manner prescribed 
by Equation (11) and Equations (26) through (30). 

A typical example of G(@) as a function of @ is pre- 
sented in Figure 3 for the numerical example of Nicklin. 
The singularity at 8 = 0.229 indicates the existence of a 
second solution for bubble shape for bubbles of small 
areal extent. From experimental observations it is known 
that bubbles of small areal extent are approximately 
spherical in shape. The approximate expression used here 
for the velocity profile, however, does not allow predictian 
of this spherical shape. 

= 0.895 predicts that the 
film will attain a limiting thickness given by a balance of 
wall shear and gravity forces. The thickness is predicted 
by Equations (21).  Moreover, even if the gas bubble is 

K 

The singularity in G(B)  at 

B U B B L E  L E N G T H .  I n .  

Fig. 7. Cumulative holdup in the liquid film 
vs. bubble length for the numerical example of 

Laird and Chisholm. 

infinitely long, a thin film of liquid will adhere to the 
pipe wall. This is precisely the phase configuration called 
annular flow. Because interfacial shear is neglected here, 
no quantitative information can be gained into the transi- 
tion process from the slug flow regime to the annular flow 
regime. However, the slug flow regime and the annular 
flow regime differ in that the velocity profiles in the thin 
film in slug flow are directed downward with respect to 
the pipe wall, whereas in annular flow the velocity pro- 
files are directed upward. Therefore a transition flow 
regime must exist to effect a change in the direction of the 
liquid-film velocity profiles through the mechanism of 
interfacial shear. It is known experimentally that this flow 
regime is not well defined geometrically and consists of 
many regions of upward and downward flow such that 
considerable depletion and regeneration of these two types 
of flow occur. 

Figure 4 contains a comparison between the predicted 
bubble shape and the bubble shape measured from a 

... )I. 1.1111, .n. 

Fig. 6. Cumulative wall shear acting on the 
liquid film vs. bubble length for the numerical 

example of Nicklin. 

BUBBLE CENQTH, l o  

Fig. 8. Cumulative wall shear acting on the 
liquid film vs. bubble length for the numerical 

example of Laird and Chisholm. 
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photograph of Nicklin ( 5 ) .  The velocity profiles presented 
are those measured with respect to the pipe wall: 

O D =  [(u- ( u 5 + ~ L + w ) ] / ( u O + v L + w )  = u D - 1  
(41) 

The unidirectional nature of the wall shear agrees directly 
with the data of Nicklin. 

Figures 5 and 6 compare the theoretical predictions of 
cumulative liquid holdup and cumulative wall shear with 
the data of Nicklin ( 5 ) .  The theoretical predictions of 
Nicklin are plotted in Figure 5. 

The limiting values of the slopes of the lines in Figures 
5 and 6 correspond to the conditions in the limiting film: 

(2)  l l m  = (1 - @ ) I , ,  

I 

and 
0.102 experimental from 

Nicklin ( 5 )  

0.105 theoretical from (t>,,. =(%>,,. -1 this work 

Figures 7 and 8 compare the theoretical predictions of 
cumulative liquid holdup and cumulative wall shear with 
the data of Laird and Chisholm ( 4 ) .  Their theoretical 
prediction of liquid holdup is presented in Figure 7, 
which neglects wall shear and surface tension and 
does not extend to continuously flowing liquid systems. 
Although these investigators did not recognize the exist- 
ence of a limiting film thickness in their paper, a straight 
line drawn through their data as indicated in Figure 8 
yields the following comparison: 

0.12 experimental from data of Laird and 

0.07 theoretical from this work 

-1 Chisholm ( 4 )  .. 

The low values predicted for cumulative wall shear and 
limiting film thickness are probably due to the approxi- 
mate nature of the velocity profiles used. 

One of the distinguishing features of the model pre- 
sented here is its ability to predict bubble shape, wall 
shear, etc. for pipes in which a continuous flow of gas and 
liquid is occurring. A numerical example of the prediction 
of bubble shape is presented in Figure 9 for the data in 
Table 1. Examples of the velocity profiles are also pre- 
sented. This example shows the streamlining effect of 
higher bubble-rise velocities on the bubble shape. In ad- 
dition, the bidirectional nature of the velocity profiles and 
wall shear becomes apparent. The solid line drawn in 
Figure 9 at z = 12.5 cm. indicates the location at which 
the velocities in the liquid film are zero with respect to 
the pipe wall. 

SUMMARY 

1. Integral mass and momentum balances on the liquid 
film flowing around the bullet shaped bubbles which char- 
acterize slug flow allow the prediction of bubble shape, 
liquid holdup around the bubble, viscous wall shear, and 
velocity profiles in the liquid film. 

2. This analysis extends the work of previous investi- 
gators ( 4 ,  5 )  to include viscous effects in the liquid film, 
the effects of surface tension, and effects of a continuously 
flowing liquid stream. 
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Fig. 9. Bubble shape (~'FVS. Z) and velocity 
profiles in the liquid film in a continuously 

flowing air-water system. 

3. Dimensional analysis of the equations developed in- 
dicates a functional dependence of the bubble-rise veloc- 
ity of the form observed experimentally by many investi- 
gators. 

4. The theoretical predictions are in good agreement 
with the data for bubble shape, liquid holdup, and wall 
shear of Nicklin ( 5 )  and Laird and Chisholm ( 4 )  for air 
bubbles rising through a column of stagnant water. 

In conclusion, it is perhaps appropriate to state an ap- 
plication of this theory to the theory of slugging gas-liquid 
systems as devised by Street and Tek (6 ) .  In analyzing 
slug flow, one need only treat the gas bubble regions as 
regions of constant pressure. This means that the effects 
of acceleration of liquid around a gas bubble cannot be 
neglected. In the analysis of slug flow one need not worry 
about liquid holdup around a bubble or wall shear; one 
need only recognize the fact that the combined effects 
of liquid acceleration, surface tension, wall shear, and 
liquid holdup are self-cancelling. 
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NOTATION 

D = pipe diameter 
f1,2,8 = functions defined by (11) 
F,,?,, = functions defined by (11) 
F = function defined by (14) 
F ,  = cumulative wall shear 

= acceleration of gravity 8 = function defined by (17) 
M = function defined by (15) 
k = constant in surface tension force 
1, = length of gas bubble 
N,, = Froude number, (v ,  + vL + w)?/grW 
NILs = Reynolds number, rw(vO + DL + w ) p / p  
Nw. = Weber number, (v ,  + vL + w)'prw/o 
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Y = pressure 
r = radius 
ro 
r," = pipe radius 
u 

gas bubble 
uo 
v 

vn = bubble-rise velocity 
vo = superficial gas velocity 
vL = superficial liquid velocity 
V 
w 

z 
zD 

= radius at which gas-liquid interface is located 

= velocity in liquid film measured with respect to 

= dimensionless velocity, u/  (v ,  + vr. + w )  
= velocity in liquid film measured with respect to 

pipe wall 

= dimensionless velocity, w/  (0, + vI, + w )  
= velocity of gas bubble through surrounding liq- 

= vertical distance from bubble head 
= dimensionless vertical distance, zg / (v ,  + or, + 

uid 

W l Z  

Greek Letters 

f l  = dimensionless area occupied by gas bubble, 

7 = dimensionless radius. r / r m  
ro2/rWZ 

A =  
c L =  
P =  

@ =  
v =  
d =  

u =  

, I .. 
cumulative volumetric liquid holdup 
liquid viscosity 
liquid density 
functional dependence 
functional dependence 
functional dependence 
surface tension 

Subscripts 

lim = liquid film when it has attained its limiting thick- 
ness 
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Thermal Conductivity Measurements for 

Nitrogen in the Dense Gaseous State 
DRAGOSLAV MlSlC and GEORGE THODOS 

Northwestern University, Evanston, Illinois 

A coaxial cylindrical type of cell was designed and constructed for the measurement .of 
the thermal conductivity of gases at high pressures and moderate temperatures. This cell was 
used to establish the thermal conductivity of nitrogen for pressures up to 4,625 Ib./sq.in.abs. 
and for temperatures of 22.2" and 50.5"C. The resulting thermal conductivity values were 
found to be in agreement with values reported in the literature for nitrogen a t  these 
elevated pressures. These experimental measurements indicate that the cell developed for 
this investigation is capable of producing reliable thermal conductivities for gases a t  high 
pressures. 

The transport properties of liquids and gases in the 
dense gaseous state are currently receiving considerable 
attention from both experimental and theoretical points 
of view. Predvoditelev (36) points out that the transfer 
of heat through a liquid medium possesses similar char- 
acteristics that are comparable to the transfer of heat 
through dense gases on the one hand and through solids 
on the other hand. Predvoditelev indicates that a general- 
ized approach to the transport properties is possible. In 
1881, Kamerlingh Onnes (17) introduced a normalizing 

parameter to produce a generalized viscosity correlation 
for gases at atmospheric pressure. Predvoditelev extends 
and refines this concept and applies it to the thermal con- 
ductivity of liquids. Chapman ( 5 )  and Enskog (7) inde- 
pendently developed, from rigorous kinetic theory con- 
siderations, expressions for the transport properties of the 
rare gases. For the effect of pressure on thermal conduc- 
tivity, Enskog (8) presents the relationship 
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