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Theoretical Study of Bubble Dynamics 

in Purely Viscous Fluids 
WEN-JEI YANG and HSU-CHIEH YEH 

University of Michigan, A n n  Arbor, Michigan 

This paper analyzes the growth or collapse of a spherical bubble in an incompressibie, viscous 
fluid. Theoretical results include the timewise variations in the bubble size and i ts growth or 
collapse rate, the fluid pressure, and the rate of energy dissipation. The analysis is general and 
may be applied to both Newtonian and non-Newtonian fluids. A comparison i s  given for the 
collapse of the bubble in several viscous fluids. 

In connection with studies on cavitation and cavitation 
damage, it is desirable to have mathematical expressions 
for the pressure and velocity fields in the neighborhood 
of a rowing or collapsing gas- or vapor-filled cavity in a 
liquicf The problem for a spherical bubble in an incom- 
pressible nonviscous liquid has been solved (1, 2 ) .  Ef- 
fects of viscosity and compressibility on the bubble dy- 
namics have been investigated (3 ,  4 ) .  Barlow and Lang- 
iois ( 5 )  considered the diffusion-fed growth of a spherical 
gas bubble into a Newtonian viscous liquid under iso- 
thermal conditions. Later, the problem of isothermal bub- 
ble growth, dominated by viscosity and diffusion, was 
studied (6). 

In problems of heat transfer with boiling, the time 
history of bubble formation and growth in a superheated 
liquid is of great importance. For nucleate boiling in a 
subcooled liquid, the collapse of bubbles must be con- 
sidered in addition to the formation and growth. The so- 
called extended Raykigh‘s equation ( 7 )  has been solved 
for the growth of a vapor bubble in a superheated liquid 
(8, 9). The dynamics of bubble in binary mixtures are 
treated in references 10 and 11. Recently, the mechanics 
of vapor bubble collapse under spherically symmetrical 
conditions were examined to ascertain the relative im- 
portance of the liquid inertia and heat transfer rate (12). 

In this work, the d namic equations governing the 
pressure distribution a n 8  growth or collapse of a spheri- 
cal gas or vapor bubble in incompressible fluids are for- 
mulated from the conservation laws of mass and momen- 
tum. The expression for the rate of energy dissipation, or 
the rate of irreversible conversion of mechanical energy 
into internal energy, in the liquid region due to the bub- 
ble motion is obtained. The analysis is general and may 

be applied to both Newtonian and non-Newtonian fluids. 
Numerical results are obtained for the collapse of the 
bubble. 

ANALYSIS 

Consider a spherical bubble growing or collapsing in 
an infinite mass of homogeneous incompressible liquid, 
The model of a spherical bubble is justified when its 
radius is less than 0.5 mm. ( 1 3 ) .  For bubbles of radius 
between 0.5 and 4.0 mm., which are oblate spheroid ap- 
proximately, the bubble size may be specified by its equiv- 
alent spherical radius. The spherical shape of the bubble 
remains stable under the action of surface tension in a 
spherically symmetric external pressure field. The assump- 
tions of the symmetric pressure field and the absence of 
wall effects and external temperature gradients are rea- 
sonable for the bubble growing or collapsing outside a 
thin thermal boundary layer of the wall. In case of New- 
tonian fluids, however, the theoretical prediction b the 
present model is reported in good agreement wit i  ex- 
perimental results obtained for bubbles growing on a 
heated surface (8 to 10). In the absence of body force 
and in laminar flow regime (including creeping flow), 
the equations of continuity and motion in the liquid with 
constant density may be expressed in spherical coordi- 
nates as (14 )  

and 
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respectively, where 

If R and R represent the instantaneous bubble radius and 
its time derivative, and the density ratio of gas inside the 
bubble to liquid is small, then the integration of Equation 
(1) yields 

The substitution of Equation (4) into Equation ( 2 ) ,  fol- 
lowed by an integration with respect to r from r to r,  at 
a particular time, gves 

u = RZ ii/rz (4) 

where ro is a reference radius in the liquid where its pres- 
sure is p ( r , ) .  Equation (5) represents the pressure dis- 
tribution in the liquid. The dynamic equation governing 
the growth or collapse of the bubble may be obtained 
from Equation (5) by replacing r with R as 

The balance of forces at the bubble wall requires that 
2u 

p l ( R )  + R + ~ r r ~ ( R 1  = p g ( R )  - ~ r r , g ( R )  (7) 

where T ~ ~ , ~  is the radial normal stress acting on the bub- 
ble surface due to the gas phase viscosity and may be ex- 
pressed by 

T ~ ~ , , ( R )  = - 2pg (aU/ar),=R = 4pg ( 8 )  

on the assumption that the gas inside the bubble is a 
Newtonian fluid. The combination of Equations (6) ,  
(7) ,  and (8) yields 

in which 4pg R / R  is generally very small compared with 
T ~ , ~ ( R )  and may therefore be neglected from the ex- 
pression. T,.,.J ( R )  cannot be generally written in 

au R 
= 4pl-,  similar to that of 

R the form - 2pl (x) 
r = R  

T+r,g(.R), unless the liquid is a Newtonian one. The term 
4pg R / R  for T ~ , . , ~  is  retained in Equation (9) for gen- 
erality. However, it is pointed out in the line right below 
Equation (9) that T,.,.,~ is generally small compared with 
~ ~ , l .  So it is appropriate to leave the T ~ ~ , ~  or 4pg R / R  as 
it is in the expressions. The instantaneous bubble size and 
its time derivative may be obtained by solving Equation 
(9) with the initial conditions 

R ( 0 )  = R, ( 

and 

(lob) R ( 0 )  = 0 

which describes that initially the bubble with radius R,  
is in equilibrium with the surrounding liquid. 

The rate of energy dissipation (or the rate of irreversi- 
ble conversion of mechanical energy into internal energy) 
due to the bubble motion, defined as - ( ; : V i )  per unit 
volume, is 

for the liquid domain between radii R and r,. 
If the growth or collapse of the bubble is affected by 

heat diffusion across the bubble wall, then the equation 
of bubble motion [ (6) or (9)] has to be coupled with 
the equation for the temperature field in the liquid: 

aT RzR dT d2T 2 aT -+--= 
at  r2 ar 

The appropriate initial and boundary conditions for the 
energy equation are 

T ( r ,  0) = T ,  ( 13a) 
T ( w ,  t )  = T ,  

and 
dT 
ar 

k - =  pghfg R at r = R 

Equation ( 1 3 ~ )  shows that the liquid is initially at a 
uniform temperature T,. Equation (13b) indicates that 
the liquid temperature at  a distance from the bubble re- 
mains unchanged at T,. Equation (13c) is obtained from 
the consideration of the conservation of energy at the 
bubble wall by neglecting the gas velocity relative to 
and temperature gradient in gas phase. 

The analysis is general and may be ap lied to both 

common two-parameter models are investigated: power 
law (or Oswald-de Waele) and Bingham plastic models. 
Their rheological character is listed in Table 1. For special 
cases both models become a Newtonian fluid: zero yield 
stress in the Bingham plastic model and n = 1 in the 
power law model. The deviations of the yield stress from 
zero in the former and of n from unity in the latter in- 
dicate the degree of deviation from Newtonian behavior. 
For values of ower law model less than unity, 

unity, the behavior is dilatant. 
Table 2 presents the equations in the dimensionless 

form for the bubble motion, the pressure distribution. 
and the rate of energy dissipation in two non-New- 
tonian models and the Newtonian fluid. They are ob- 
tained by the combination of Table 1 and Equations (Fj), 

Newtonian and non-Newtonian fluids. For t ph e latter, two 

in the 
the behavior is pseudop P astic, whereas for n greater than 

(91, and (11). 

NUMERICAL RESULTS AND DISCUSSION 

Only the collapse of the bubble caused by a step in- 
crease in the system pressure, that is, pl(w) = 1 atm. 
(or pa = 1) for the Newtonian and power law model 
and p(#rO') = 1 for the Bingham plastic model, is investi- 
gated numerically. It is assumed that the system is under 
the isothermal condition and that effects of surface tension 
are negligible. The gas pressure inside the bubble is con- 
sidered vacuum, that is, p,' = 0. The equations of bub- 
ble motion presented in Table 2 are numerically inte- 
grated by means of a 7090-IBM digital computer for the 
collapse of the bubble from an initial size R, = 0.5 cm. 
or Race) = 1 with zero initial collapsing rate R*(o)  = 0. 
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TABLE 1. RHEOLOGICAL CHARACTER OF NEWTONIAN AND NON-NEWTONIAN FLUIDS 

Stress tensor 
- - 
T 

- - 
t = - m  

Non-Newtonian fluids 

Power law model Bingham model 

[f 

Newtonian fluid 

for n + 0 

for n f 0 

& 8452% to RzR In ( r o / R )  

Note: For terms with plural signs, the upper sign for Ro 2= 0, the lower sign for do 6 0. 

Re,  Re ,  and R" are obtained by steps of t" = 0.001. The 
method of Runge and Kutta was employed for this pur- 
pose. The reference radius r,, is selected at 20 correspond- 
in to ro = 10 cm. for the Bingham plastic model and at 
inkity for the other fluids. Now with the numerical val- 
ues of R", Re ,  and R" available, the liquid pressure pt* 
and the energy dissipation rate cp" are calculated from the 
equations listed in Table 2. The pressure-time history is 
evaluated at T = 0.75 cm. or r" = 1.5 for all models. 

The time variations in the bubble size and collapsing 
rate, the fluid pressure, and the rate of energy dissipa- 
tion are presented elsewhere? for four different viscous 
fluids at 71'F.: 10% volume fraction of alumina par- 
ticles (average 3 mu in diameter) suspended in 25% sul- 
furic acid solution (15) 7 = 6.81 x (1b.f) (sec.)/ 
sq. ft., ro = 1.254 x lb.f/sq. ft., 7" = 6.48 X 

roo = 5.90 x lo-'; 5% polyisobutylene in water, 
n = 0.34, m = 1.7 (1b.f) (sec..)/sq. ft., m" = 1.09 X 
10-2 (16); 0.83% solution of ammonium alginate in 
water, tz = 0.78, m = 1.865 x lod3 (1b.f) (sec.n)/sq. ft., 
m" = 3.95 x ( 1 7 ) ;  and pure water, p = 0.658 X 

(1b.f) (sec.)/sq. ft., pl" = 8.26 x loW4. The first 
fluid may be considered as a Bingham plastic, the second 
and third fluids as power law models, and the fourth 
fluid as a Newtonian model. The effects of the param- 

t Deposited as document 8874 with the American Documentation 
Institute Photoduplication Service Libra of Congress Washington 
25, D. k,, and may be obtained ;or $l .Zrfm photoprim& or 35-ma. 
microfilm. 

0 

eters n, m" for power law model and roo for Bingham 
plastic model on the bubble size and velocity, the 
fluid pressure, and the rate of energy dissipation are 
illustrated in Figures 1, 2, and 3, respectively. Since 
the Newtonian fluid may be regarded as a special 
case of the Bingham plastic model for roo = 0 and 
r," = 00, one observes from the figures that a de- 
crease in roo or an increase in roo result in increases in 

rwr.,. 

Fig. 1. Radius and collapsing rate time history of collapsing bubbles 
in Newtonian and non-Newtonian fluids. 
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Fig. 2. Pressure-time history ot  r* = 1.5 in Newtonion and non- 
Newtonion fluids. 

Fig. 3. The time history of the rote of energy dissipation in 
Newtonion ond non-Newtonion fluids. 

the collapsing rate and fluid pressure and in a decrease 
in the rate of energy dissipation. For the power law 
fluids it is disclosed that increases in the collapsing rate 
with a decrease in n or n’ increases the pressure with an 
increase in n, and the rate of energy dissipation decreases 
with an increase in n or a decrease in m’. 
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NOTATION 

hf, = latent heat of evaporation 
k = thermal conduclivity of liquid 
n, m = parameters in power law model 
m’ = ( m / R 2 ~ p )  ( A p / p )  n/2 

p = pressure; p g ( R ) ,  of gas at bubble wall; pgo,  of 
gas inside at zero time; pk(r) ,  of liquid, p l ( r o ) ,  
of liquid at a reference radius 7,; p t o ( r ) ,  of liq- 
uid at zero time; p., of liquid at infinity or sys- 
tem Dressure 

Ap = presiure difference, = - p g o  

2 p1’ = 
p ( r )  - Pso 

p’ = ; pg’ = 
Ps P R )  - Pgo. 

AP AP 
p d d -  Pso , p d 4  - Pgo 

9 pt,’ = 
AP AP 

R = bubble radius 
R, = initial bubble radius 
R = dR/dt 
R = d2R/dt2 

R* = R/R,  
fi’ = f i ( p J A p ) I i 2  
R’ = R R , p l / ~ p  
r 
r,  = reference radius 
ri’ = r /R,  
r,’ = ro/Ro 
T 
t = time 
t’ = ( t / R o )  ( A P / P ~ ) ’ ”  
u 
Greek Letters 
(Y 

71 

= distance from the center of spherical bubble 

= liquid temperature; T,, at infinity 

= radial velocity of liquid at r 

= thermal diffusivity of liquid 
= parameter of Bingham model 

= viscosity; pl, of liquid; ps, of gas 

= density; pt, of liquid; p g ,  of gas 

71’ = ( d R 0 )  ( U P t  Ap)l12 

P’ = ( P / R O )  ( l / P l A P ) ” 2  
p 
A = rate of deformation tensor 
u = surface tension 
U’ = u / ( R ~ A ~ )  
r 

r0 
7,’ = r , /Ap 
7 = stress tensor 
(F:Vi) = rate of energy dissipation per unit volume 

J V  

= normal stress; T++, r o e  and r++, in the direction of 

= yield stress of Bingham model 
r, 0 and +, respectively 

- 

?I, = viscous force per unit volume in radial direc- 
tion 

= rate of energy dissipation 
@’ 

Superscripts 

= ( @/RO2)  ( pl/Ap3)  ‘ I2 

‘ = dimensionless physical quantity 

. . 
Subscripts 

f = liquid phase 
o 

= first derivative with respect time 
= second derivative with respect time 

= gas phase 

= at zero time, except r,, roo, r,, and 7,’ 
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