
and higher flow rates, for which adsorption rate limita- 
tions may become significant. Second, unless the perme- 
ability is constant, the optimal timing of the control se- 
quence will vary and unless corrections for this are made 
in the control, suboptimal operation will result. To avoid 
this problem, adsorbent particles that resist abrasion and 
maintain a constant flow resistance should be used. The 
round particles used in this research were found to be 
satisfactory. 

Another factor that affects the operation of the adsorber 
is the length of the column. Unlike most chemical process 
equipment, decreased length increases the capacity of this 
system (within certain limits). To achieve the same prod- 
uct composition for shorter lengths, higher frequencies 
are required. Since the optimal frequency increases as 
the inverse of the square of the length (Kowler, 1969), 
shorter lengths would require faster operation. This result 
is valid for flow rates for which adsorption rate limitations 
can be neglected. In fact, since the optimal frequency in- 
creases so quickly as length decreases, the performance of 
the controlling solenoid valves may limit the achievement 
of the optimal frequency for shorter lengths. Despite these 
limitations, it is clear that attempts should be made to use 
shorter lengths of column to increase capacity and de- 
crease equipment costs at the same time. 

Having found (theoretically) the optimal feed bound- 

ary cyclic control of (maximum pressure, zero flow, mini- 
mum pressure) and having gained a better understanding 
of the design parameters, a cyclic adsorption system can 
now be more properly designed. For the separation of gas 
mixtures for which there exists an adsorbent with a high 
relative volatility, the cyclic adsorption process may well 
be of commercial value. 
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Part II. Theory 

The fixed bed binary gas adsorber, when alternately fed and exhausted 
at one end, produces a purified product from the other end. Coupled partial 
differential equations in pressure and composition, representing total mass 
and component balances with local equilibrium, describe the operation. The 
Maximum Principle is applied to determine the optimal cyclic unsteady feed 
policy for the balanced objectives of product purity and quantity. The se- 
quence (maximum feed, no flow, maximum exhaust) is optimal. The experi- 
mental optimum is close to the calculated optimum. Dimensional analysis 
is used to determine parametric effects. 

This cyclic adsorption device represents an example of 
a distributed parameter feed-driven unsteady process. Ex- 
perimental work has shown that there exist both an opti- 
mal frequency and an optimal feed pressure program for 
achieving the goal of separation of a binary gas mixture. 

This paper will concern itself with the development of 
the model for the system, application of optimal control 
theory, and the numerical solution for the optimal feed 
boundary pressure cycle. The details and results of the 
experimental study of this system have been presented in 
Part I. 

MATHEMATICAL MODEL 

We consider first the development of a mathematical 
model of the molecular sieve adsorber and the formulation 
of necessary conditions for optimal control. The state vari- 
ables of the system and the adjoint variables of the control 
problem are governed by partial differential equations. 
Because of the complexity of these equations and of the 
computational procedures involved, the computer cost for 
a finely spaced finite difference solution of these equations 
is excessive. Therefore a lumped-parameter model (cell 
model) is also developed. A pictorial model is shown in 

Figure 1. Feed and exhaust can either alternate or they 
can alternate with intermediate shut-off periods. 

In establishing the bases for a model for the molecular 
sieve bed, Turnock and Kadlec (1971) made the following 
assumptions and approximations: 

1. Ideal gas behavior 
2.  Darcy’s Law representation of the gas flow 
3. Viscosity of the gas phase is composition invariant 
4. Plug flow conditions 
5. At any instant, equilibrium exists between the gas 

phase and the adsorbed phase. 
6. The effect of the heat of adsorption on the tempera- 

ture profile will be neglected; isothermal operation is as- 
sumed. 

i =n  
i - 1  i = 2  

Fig. I .  Model for the cell system. 
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TABLE 1. MATHEMATICAL MODEL FOR THE ADSORPTION SYSTEM 

In the following equations, 
z = (absolute pressure)2 in adsorption bed 
y = mole fraction N2 in adsorption bed 
Z R  = (absolute pressure)2 in flow regulator 
Y R  = mole fraction N2 in flow regulator 

State equations: 
Adsorption bed: 

z = F 1 =  
U2Z1l2ZAA 

(a1 + a3~(~-1) /2)  
~ Z Z A Y A  - ~ ( 1  - Y )  11 

a z z ~ y ~  - 
a1 + ~ 3 ~ ( 7 - 1 ) / 2 )  ( y + a( 1 - Y) ) 

y = F z =  
221/2D 

-I 

when ZA ( L ,  t )  0, YR = 0 

Based upon Lederman’s (1961) studies of methane- 
nitrogen adsorption on Linde molecular sieve type 5A, 
the following observations were made: 

7. The total equilibrium amount adsorbed is indepen- 
dent of composition. 

8. The equilibrium adsorption isotherms are fit well by 
the Freundlich relationship: 

N = kWPv  (1)  

9. The relative volatility a relates the relative adsorp- 
tion of the two gases components and does not vary with 
composition. 

Before deriving the state equations for the system, a brief 
look into the validity and importance of some of the above 
relations will be made. 

Since Davison 5A molecular sieve was used in this 
study, the adsorption equilibria of methane and nitrogen 
on this sieve were investigated experimentally. I t  was 
found that relation 7 is not strictly valid. However, the 
composition during operation varies over a composition 
range for which it is a reasonable approximation to use 
an average total adsorption independent of composition. 
This approximation is an important factor in uncoupling 
the pressure equation from the composition equation. This 
greatly simplifies the numerical solutions of the system 
equations and the optimal control problems, and was 
found to produce reasonable results. 

Relations 3 and 9 are also needed to uncouple the pres- 
sure equation. The relative volatility was found experi- 
mentally to be constant over the range of operating con- 
ditions. The gas viscosity does vary with composition, but 
the range is not wide so that an average will be used. 

Since the rate of adsorption is rapid, instantaneous 
equilibrium is assumed as in relation 5. This then elimi- 
nates rate considerations from the model and places an 
attendant restriction on its region of validity. 

For any given feed boundary pressure control and prod- 
uct flow rate, the preceding model bases yield the differ- 
ential equations, time conditions, and boundary conditions 
which are compiled in Table 1. For a desired product 
capacity, the performance of the adsorption system is di- 
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rectly related to this feed boundary pressure control. It is 
then necessary to establish the conditions necessary to find 
the control that optimizes the performance of the adsorber. 

In the formulation of the cell model, the column and 
adsorbent are equally divided into n segments, each one 
of which behaves like an ideally mixed stage, as shown in 
Figure 1. To describe this cell system, the following addi- 
tional assumptions are made: 

1. Within each ideally mixed stage the gas and ad- 
sorbed phases are in equilibrium. 

2. The pressure drop between cells is caused by a 
Darcy’s Law pressure drop across the adsorbent. 

3. The pressure of the gas flowing between cells is 
taken as the average of the cell pressures. 

4. The last cell includes the volume of the product line 
preceeding the constant product flow rate controller. 

THEORY 

With ordinary differential equations entering the bound- 
ary cmditions at A = L and the control entering at the 
A = 0 boundary, the method for setting up the necessary 
conditions as proposed by Katz (1964) or the conditions 
presented by Egorov (1964, 1966) are inadequate. Fol- 
lowing the variational approach used by Denn (1966), 
the necessary conditions for optimality in the adsorption 
system can be formulated. 

To simplify the development, the state vectors w and r 
will be defined. 

A A 

Thus, the state equations presented in Table 1 take the 
form 

A A -  A 

w = F ( w ,  WA, WAA) 0 < X < L 

X = L  
(4)  

A a 2 -  

r = G (  r,  W ,  W J  

The distributed system, containing a boundary control 
11, is optimized by maximizing the value of a performance 
index I .  This index is an average, over a steady state” 

* T h e  words “steady state” are here taken t o  mean a repetitive proc- 
ess which does not change from cycle to cycle. 
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cycle, of functions of the state and control variables. For 
this adsorption system, the values taken by the state vari- 
ables within the bed have no direct significance. The only 
terms of interest in the performance index will depend 
upon the product composition and the rate of exhaust 
from the system. Thus, the following performance index 
will be considered: 

The value that the above index can achieve is con- 
strained by Equation ( 4 ) .  The control u, applied at the 
A = 0 boundary, is constrained by the maximum available 
feed gas pressure and atmospheric pressure so that 

At A = 0, 1 L z  zmax (6) 

In addition, the control is required to be periodic piece- 
wise continuous with discontinuities only at a finite num- 
ber of points. 

The differential equation constraints ( 4 )  are introduced 
into the performance index with the use of the adjoint 
variables, that is, the set of Lagrange multipliers. The ex- 
istence of these adjoint variables, although not guaranteed, 
will be assumed and they will be denoted by 

Entering the differential equation constraints into the per- 
formance index for an arbitrary value of B, 

The control is chosen as 

Application of a variational procedure, with T constant, 
produces a set of differential equations which govern the 
behavior of the adjoint variables. These necessary condi- 
tions may be found elsewhere (Kowler, 1969). Major 
simplification of these complex equations was possible by 
letting A = 1.0. Since a narrow pressure range is used in 
this work and the experimental value for y is 0.87, the 
approximation using A = 1.0 is reasonable. 

For convenience, the function Ho is defined such that 

The optimal choice of u ( t ) ,  which is denoted by uQ, is 
composed of subarcs which will hereafter be referred to 
as the optimal control components. For an optimal system 
where the adjoint variables are described by the necessary 
conditions, the following maximum principle must be sat- 
isfied: 

Except at a finite number of points, the function Ho, 
the feed boundary Hamiltonian, is made stationary with 
respect to the components of u’ which lie in the interior 
of its admissible region. The Hamiltonian is made a 
maximum with respect to the components of uQ which 
lie at the boundary of the admissible region. 

Note that the optimal control satisfying the above maxi- 

mum principle is not necessarily a unique extremal nor is 
the existence of such an optimal control assured. 

The maximum principle can be used to predict possible 
forms of the optimal control through examination of the 
behavior of the Hamiltonian. Written in terms of p1, p2, 
a, and Y, 

For gas entering the system u < 0, the behavior of PZ 
is described by a hyperbolic partial differential equation. 
When flow direction changes and leaves the system at 
A = 0 ( u  > 0) , there is no boundary condition for com- 
position which requires that p2 be immediately constrained 
by the boundary condition p2 = 0. This would appear to 
lead to a discontinuous behavior for aH,/au and would 
occur only in switching from u < 0 to u > 0. 

In switching from u > 0 to u < 0, initially p2 = 0. This 
adjoint variable must then change value continuously as 
described by its partial differential equation and thus no 
discontinuity in p 2  would result from a switch in this 
direction. For the case where exhaust flow is to be mini- 
mized, am,/au has a value only when flow leaves the sys- 
tem, u > 0. This appears to increase still further any dis- 
continuous behavior of aHo/au  in switching from u < 0 to 
i i  > 0 and would create a discontinuity in switching from 
I (  > 0 to u < 0. 

However, the Hamiltonian cannot exhibit discontinuities 
i n  its behavior. To fully examine its behavior, a specific 
performance index and the resulting Hamiltonian are in- 
troduced. 

where C = 0 for u < 0. 

With the exhaust rate proportional to u when u > 0, 
the magnitude of C determines the relative composition 
maximization. This leads to 

] [ {::;p2, u 
0 

u > o  P1 + H o =  - U  

(13) 
where 

Applying the maximum principle to the above Hamil- 
tonian shows that uQ can be composed not only of the 
extreme values of the control (u,,,, and urnin) but also of 
the control u = 0, as well as possible singular controls 
from the interior of the admissible region. In other words, 
the possible discontinuities in the Hamiltonian resulting 
from switches from u > 0 to u < 0 or from u < 0 to u > 0 
give rise to the optimal control of u’ = 0 which eliminates 
the discontinuities. This control corresponds to one for 
which there is zero flow at the feed boundary. A graphical 
representation of the regions for applying these optimal 
components for values of p ( 0 ,  t )  is presented in Figure 2. 

For any situation where aHo/au = 0, it is possible that 
a control from the interior of the admissible region maxi- 
mizes the Hamiltonian. This will arise if, for an interior 
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control, 

pi = - Mo pz (16) 
occurs at more than a finite number of points. The optimal 
control is then referred to as a singular control. 

At some time in the operation of this adsorption system 
the situation must exist when u > 0. Otherwise, with no 
exhaust flow, there could be no separation in steady state 
operation. From Figure 2 it can be seen that u' = u,,, 
is the only possible optimal control component for u > 0 
unless p 1 ( 0 ,  t )  = 0 for a singular control component. It is 
also noted that when C' = 0 (exhaust minimization is un- 
important compared to product composition maximiza- 
tion), Ho would exhibit the discontinuous behavior only 
in the switch from u < 0 to u > 0. Thus the component 
u' = 0 can only occur, if at all, after u' < 0 has been 
applied. Then if there are no singular controls, the form 
of the optimal sequence would be ( urnin, 0, urnax) or (full 
feed pressure, zero flow, exhaust to minimum pressure). 

Although at this point in the mathematical development 
the uniqueness of such an optimal control is not assured, 
knowledge of the behavior of the adsorption system leads 
to the conclusion that the existence of at least one such 
practical extremal is guaranteed. Specifically, if no control 
switching is made, there is no steady state separation. If 
infinitely fast switching is made between u,,, and Umin, 

the feed gas would almost completely bypass the bed and 
exhaust, except for a small unseparated product flow rate. 
Since it is known that steady state cyclic separations are 
possible, there must exist some maximum in product com- 
position for a control switching sequence between no 
switching and infinite switching. 

The model for the adsorption system previously derived 
leads to a very complex adjoint system. Therefore, in turn- 
ing to the numerical solution of the problem, a simplified 
cell model approximation of the system was used. 

Butkovskii ( 1961) has suggested the discretization of 
the distributed-parameter model so that Pontryagin's 
Maximum Principle can be used to derive the necessary 
conditions for optimal control (Pontryagin, 1962). These 
necessary conditions are well presented and applied in the 
text by Athans and Falb (1966). The following formula- 
tion will concern itself only with the system of interest. 

For the cell model, the behavior of the system is de- 
scribed by 

Fig. 2. Relation of optimal control components and adjoint variables 
at the control boundary for product composition maximization and 

exhaust minimization. 

i = f t ( a  u) 

yi = g4z,  y, u )  
(17) 

where f i  and gi  are derived using the cell model approxi- 
mations presented above. These state equations are the 
dynamical restraints on the performance index 

(18) 
1 

I = - Job+T m3(21, yn,  u)dt 
T 

As in the variational approach, adjoint variables must be 
used to introduce these dynamical constraints into the per- 
formance index. Thus, p i ( t )  will be the adjoint variables 
associated with zi and q i ( t )  will be the adjoint variables 
associated with yi. 

The Hamiltonian function is defined as 

n 

H = (p i f i  + V i g i l  -k m3(21, ynu) (19) 

The maximum principle states that for an optimal control 
trajectory, the above Hamiltonian is maximized with re- 
spect to the control at all times provided that the adjoint 
variables are defined by 

t = 1  

n 

The adjoint variables are also constrained by the time con- 
dition for periodic processes. 

pi(t0) = p i ( t 0  + T) and q i ( t o )  = q i ( h  + T) (22) 

The maximized Hamiltonian, for the optimal system using 
the above definitions for the adjoint system, will be con- 
stant over the time period when the variable zo is treated 
as the control u'. 

It has been shown (Kowler, 1969) that as the number 
of cells in the model increases, the state and adjoint equa- 
tions will approach the mathematical description of the 
state and adjoint variables for the distributed-parameter 
model. 

The preceding necessary conditions were based on a 
constant period 7. A necessary condition for the optimal 
period is now needed. Following the approach used by 
Horn and Lin (1967) the necessary condition for the opti- 
mum T can be written for a time invariant Hamiltonian: 

dZ 1 - = - [ m3(z1, yn, u> dT 7 

With the use of the necessary conditions developed for 
optimality of the cell model, numerical computations for 
the optimal control can be made. 

COMPUTATION OF OPTIMAL CONTROLS 

In order to compute the optimal controls, a method 
suitable for use on the digital computer must be developed 
to find the solution to the necessary conditions for opti- 
mality. This method must not only provide a means for 
converging to the optimal control function from an initial 

AlChE Journal (Vol. 18, No. 6) November, 1972 Page 1215 



assumed control function but must also provide solutions 
to the state and adjoint equations. 

Because the state and adjoint variable time conditions 
require matching, a technique with minimum computation 
is needed to find the necessary set of conditions. As the 
mathematical properties of the equations describing these 
two systems of variables are different, separate techniques 
are used for the two systems. Horn and Lin (1967) have 
suggested the techniques to handle both. A general com- 
putational procedure is presented in Figure 3. Details of 
the computational methods within this procedure may be 
found elsewhere (Kowler, 1969). 

The equation relating a change in performance index 
with a change in the control function is given by 

0.45 

0.40 

0.35 

This equation can be used to converge from an initial arbi- 
trary control to the optimal control by improving the per- 
formance index until no further improvement is possible. 
Then where u+ ( t )  is used as the initial control and 
U +  + ( t )  is the improved control 

I I I 

- - 

Numerical ly Determined - 0 

1 - 

, + > o  ( 2 5 )  l 4 +  + ( t )  = u+ ( t )  + + - d H o  
au 

Chwse 
Control 
Function and -----) 
Period Length 

unless this violates the inequality constraint (6).  In this 
case, u+ + ( t )  takes the value of the corresponding bound- 
ary of the admissible set of controls. Since second order 
and higher terms were not considered in deriving Equa- 
tion (24),  4 should be chosen small enough so that these 
neglected higher order terms will not be significant. With 
such a value of + the integrand in Equation (24) becomes 

+ (z) which is always positive and thus improves 

the performance index I .  
The number of equations to be integrated, per cycle of 

computation, is approximately four times the square of the 
number of cells used in the model. This rapid increase in 
computation and computer storage requirements was an 
important factor that led to the formulation of the cell 
model rather than directly discretizing the necessary con- 
ditions for the distributed-parameter model. Computations 
were made with a small number of cells. For the case 
where exhaust minimization was not considered (C = 0) , 
the effect of the number of cells on the computed optimal 
control function was examined. 

I t  was found that for this performance index, the cyclic 
control sequence of [U'maxl 21, ~ ' m i n ]  maximizes product 

aHo 2 

- 
Compute Use Harniltonian 

to Check for Op- 
timality of  Con - 

Steady - State 

t ro l  Function 
System 
Behavior 

Adjoint 
System 

Make 
Correction 
i n  Period 
Length 

Correction 
in Control 

N G. 

0 K. 
.I 

Check lor 0p- 
timalttyof 
Period Length c7 

composition. These controls are physically brought about 
with two valves: a feed valve and an exhaust valve. u',,, 
corresponds to opening only the feed valve, dmin to open- 
ing only the exhaust valve, and u = z1 to opening neither 
valve. The fractions of the period spent in the regions of 

= zl, and ufo = ufmax are presented in Figures 4 and 
5. It is evident from these figures that although the ap- 
plication of u'* = z1 decreased to a short interval, the 
fraction of the period for u" = ulrnax, FFVO, does not 
change much for increasing n. 

The number of cells used in the model has a great effect 
on the optimal period length T O .  Figure 6 shows the 

L I I 

NUMBER OF CELLS I N  MODEL 

Fig. 4. Change of fraction of period with both valves closed as number 
of cells in model increases. 

Oe30 t 
0.251 ' I I I 

3 4 5 0 

NUMBER OF CELLS IN  MODEL 

Fig. 5. Fraction of period with feed valve open versus number of cells 
in model. 

0.1 0 2  0 3  0.4 
II(NUMBER0FCECCSI - l ( n  

Fig. 6. Convergence of optimal period t* as number of cells in model 
increases. 
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change of T O  with increasing n. By plotting 7. versus l/n, 
iis in Figure 6, the 7' for n = co can be predicted by 
extrapolation. The number of cells also greatly affects the 

60 
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0 Composition 
A Exhaust 
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40 

20 
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l / ( N U M B E R  OF CELLS) = l l n  

Fig. 7. Convergence of product composition and exhaust rate as num- 
ber of cells in model increases. 

computed system outputs, product composition, and ex- 
haust rate. From Figure 7 it can be seen that a significantly 
larger number of cells is required for convergence of the 
system outputs than is required for the convergence of the 
form of the optimal control function. Thus, if interest is 
centered on the form of the optimal control function rather 
than the system outputs, a computational investigation can 
be limited to a small number of cells. 

The influence on the optimal control form of the system 
constants and operating variables was investigated. These 
computations were carried out for the 4-cell model and 
the performance index of maximization of product com- 
position. The results are presented in Table 2. Unless 
otherwise noted, the system constants shown at the top of 
the table were used with a product flowrate of 9.14 
st.cm3/s and a maximum feed pressure of 168 kN/rnZ. 

A performance index which included both product com- 
position and exhausr rate was then considered. The opti- 
mal control was computed for a few values of c. The 
effect on the optimal pressure control form of increased 
importance of the exhaust rate term was then demon- 
strated. These computed optimal controls for a 4cell 
model are shown in Figure 8, along with the correspond- 
ing system outputs. 

In each case the optimal pressure wave forms are com- 
puted to be the sequence [dmaxr 21, ~'min] .  

INTERPRETATION OF RESULTS 

The computational results indicated that the optimal 
feed boundary control is the cyclic sequence (maximum 
pressure, zero flow, minimum pressure). These results 
were based on models containing 6 cells or less. Before 
it can be concluded that this control sequence would be 
optimal for a model with a large number of cells, the opti- 
mal trajectories should be examined further. 

TABLE 2. CHANGES IN THE COMPUTED OPTIMAL CONTROL TIMING WITH VARIATIONS IN THE SYSTEM PARAMETERS FOR n = 4 

Maximum pressure: 188 kN/d (10 psig) QP = 9.14 st. cm3/s (1.18 SCFH) 
A = 3.45cm3 W = .440 kg L = 1.52m 
VR = 40.0cm3 YF = 28.6% gmol adsorbed 
K = 100pm2 ~1 = 1.75 x 10-5 N s/mz k = 0.155 

u = 2.3 e = 0.623 
kg adsorbent 

Unless otherwise noted, the parameters shown above were used. 

Optimal control 
% of Period to 

be applied 
Parameter Feed Both 

varied New value valve open valves closed Period 7' 

None 
a 
a 
k 

z 
P 
Y F  
VR 
VR 

QP 
QP 
QP 

VRoo 

Pmax 

- 
1.65 
2.95 
0.169 
0.700 

75.0 
1.27 x 10-5 
0.200 

70.0 
500.0 

5000.0 
4.72 

14.16 
18.88 

138 

37.0 
36.5 
37.5 
37.0 
37.0 
41.0 
34.0 
37.5 
37.0 
41.0 
46.0 
29.0 
43.0 
47.0 
21.0 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
1 

14.3 
14.5 
14.3 
15.2 
14.6 
19.0 
10.4 
14.3 
14.5 

>20.0 
25.0 
14.8 
14.3 
14.3 
15.0* * * 

Product 
composition 

% Nz 

33.57 
31.33 
35.37 
33.86 
33.43 
33.13 
33.98 
24.00 
33.81 
34.23 
35.53 
34.28 
32.85 
32.39 
37.74 

O* Nonoptimal computation made to determine system outputs. 
O0* Nonoptimal 7. 
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Computed 
system 
outputs 

Exhaust rate, 
st. c d / s  

48.7 
48.5 
48.9 
48.0 
48.2 
38.0 
66.8 
48.9 
48.5 
40.7 
39.9 
45.7 
48.0 
48.3 
94.8 
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Fig. 8. Effect on 4-cell model optimal control form of minimizing ex- 
haust as well as maximizing product composition. 

For the 3, 4, 5, and 6 cell models, the optimal trajectory 
for product composition maximization passes through the 
optimal control regions for dmax, zl, and u’,,,,. From Fig- 
ure 4 it appears that the fraction of the period that the 
trajectory spends in each of the control regions for large 
n can be predicted by extrapolation. However, the path 
that the trajectory takes between these control regions 
may exhibit different behavior as the number of cells is 
increased; a singular control subarc may become optimal. 
Although such a singular control component cannot be 
ruled out absolutely, it can be neglected practically; if 
the singular control does exist, it would be applied for 
such a small fraction of the period that its effect would be 
insignificant. 

Experimental results presented in Part I have shown, 
as do the computational results in Table 2, that the opti- 
mal frequency does not noticeably vary with the product 
rate. FFVO’ was determined and is compared with the 
computed results in Figure 9. Although the trend of an 
increase in FFVO’ with increasing product flow rate is 
evident with both sets of data, there is a significant differ- 
ence between absolute values. In addition, the experi- 
mentally determined optimal frequency of 0.35 cycles/ 
second is significantly different from the value of 0.25 
cycles/second based upon computational results. A dimen- 
sional analysis of this system is presented in the Appendix. 

Exact agreement of results is not expected because of 
the many simplifying assumptions made in the construc- 
tion of the distributed-parameter model and because of 
the approximate numerical solution of it. 

CONCLUSIONS 

With the use of a maximum principle for nonsingular 
controls, the optimal boundary control components are 
maximum pressure, zero flow rate, and minimum pressure. 
Without computational work, the optimal timing and se- 
quence for the control components are unknown. 

Because of the complexity of the distributed state and 
adjoint system, a cell approximation of the adsorption sys- 
tem was formulated. This model, made up of ordinary 
differential equations, may be used in conjunction with 
Pontryagin’s Maximum Principle to locate the optimal feed 
boundary pressure controls. 

Although it was found that the number of cells used 
greatly influences the optimal frequency, the timing of the 
optimal switching sequence within a dedimensionalized 
period length does not change significantly for cell models 
larger than the 4-cell model. 

From experimental work it appears that applying the 
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Fig. 9. Variation of optimal fraction of period feed valve open as 
product flowrate changes. 

zero flow control for a short interval (<S% of the period) 
does not noticeably decrease the product composition al- 
though it does significantly reduce the exhaust rate and 
hence improves the performance of the adsorption system. 
Thus, it has been established that an optimal control other 
than bang-bang (maximum control-minimal control only) 
does not exist for this separation process. 

NOTATION 

ai = constants defined in Table 1 
A = cross-sectional area of the adsorption column, cm3 
B = arbitrary factor in the variational equation 
C = weighting factor for exhaust minimization 
D = constant defined in Table 1 
f i  = functions for zi defined by Equation (17) 
Fi = functions defined in Table 1 
FFVO = fraction of period that feed valve is open 
gi = functions for yi defined by Equation (17) 
Gi = functions defined in Table 1 
H = Hamiltonian function 
I = performance index 
k 
K 

L 
mi 

M o  
n 
N 
pi  

ables 
P = pressure, N/m2 
qi 

Q p  
ri 
R 
t = time variable, s 
t o  = initial time, s 
T = temperature, K 
u = controlled variable 
VR 

sure regulator, cm3 
wi 
W 

= constant in the Freundlich adsorption isotherm 
= permeability of the packed adsorption column, 

= length of the adsorption column, m 
= functions making up the integral performance in- 

= group of terms defined by Equation (15) 
= number of stages in the cell model 
= amount of gas adsorbed, gmol 
= adjoint variable associated with the pressure vari- 

Pm2 

dex 

= adjoint variable associated with the composition 

= product flow rate, st.cm3/s 
= state variables in the product line volume 
= ideal gas low constant 

variables 

= volume of the product line preceding the pres- 

= state variables in the adsorption column 
= weight of adsorbent in column, g 

I 
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x 
y 
z = pressure2 (N/m2)2 

Greek Letters 

= composition of nitrogen in the adsorbed phase 
= composition of nitrogen in the gas phase 

= relative volatility 
= power constant in the Freundlich adsorption iso- 

= small variation of a state or control variable 
= porosity of adsorption column 
= adjoint variables associated with pressure regu- 

= distance variable, m 
= average viscosity of gas flow stream, N*s/m2 
= adjoint variables associated with adsorption col- 

umn distributed variables 
= length of operating period, s 
= constant which determines the magnitude of the 

correction of the control 

therm 
6 
c 
7 

lator variables 

p 
pi 

T 

4 

Subscripts 

F = relating to a property of the feed gas 
i = one of a set 
i = oneof a se t  
max = upper limit of possible values for variable 
min = lower limit of possible values for variable 
0 = applicable at  feed boundary of the column 
R = relating to the product line between end of ad- 

sorption column and pressure regulator 
A = first partial derivative with respect to distance 
Ah = second partial derivative with respect to distance 

Superscripts 

0 
+ = vector quantity 
T 

= first partial derivative with respect to time 

= transpose of a vector 
= optimal value 
= rescaled variable 

+ = starting value ++ = corrected value 

I 
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APPENDIX. DIMENSIONAL ANALYSIS 

A dimensional analysis of the state Equations ( 4 )  shows 
that if the dimensionless groups 

K T Z ~ ~ ~ ~  2RTL QPP [ T I ,  [ z,,, AK 

wRTkyzmax‘~-l)’z], [ - &h ] 
[ AL zmax 

and the dimensionless parameters c, (I, y, and yF are not 
changed, the solution to the dedimensionalized state equations 
will not change. This means that the optimal control which 
maximizes the product composition of the dimensionless state 
equations will not change form, other than the optimal period 
length T o ,  if the above dimensionless groups are kept constant. 
Thus, if ( K / p )  is changed to ( K / p ) ‘ ,  the optimal solution will 
be maintained if the optimal time constant T O  changes by a 
factor of ( K / p ) / (  K / p ) ’ .  In addition, Q p  must be changed by 
the inverse of this factor. This is confirmed by the computed 
results in Table 2, where the values of K and p were vaned. 
Since QP was not changed, the To computed in both cases was 
changed by the factor ( K / f i ) / ( K / p ) ’  but the F W Q ”  cor- 
resporided to that of a product flow rate which was changed 
by the same factor ( K / f i ) / ( K / p ) ’ .  For any such solution of 
the dimensionless state equations where the above dimension- 
less groups are kept constant, the exhaust rate will change by 
the factor 

1 A L zmax% 
[ %RT 

Thus, a variation in K or p by changing the optimal period 
length T o  will change the exhaust rate. Since T O  is changed by 
the factor ( K / p ) / (  K / p ) ’ ,  the exhaust rate will change by the 
inverse factor ( K / p ) ’ / ( K / p ) .  

If the separation accomplished and the fraction of feed gas 
recovered as product were the only important factors in. the 
operation of the system, it would appear that operation at 
lower product flow rate would result in the best performance. 
However, a factor not yet discussed is the capacity of the sys- 
tem. For example, in obtaining a recovered fraction of 0.09, 
a 55.6% N, product would be achieved for a product flow rate 
of 9.14 st.cm3/5 whereas a product composition of only 55.8% 
N, would be achieved for a product flow rate of 14.16 st.cms/5. 
Although a smaller separation would be obtained for the latter 
operating condition, a 55% increase in capacity would result. 
Thus, in order to find the best operating (conditions for the 
adsorption system, the capacity, as well as t’he fraction of feed 
recovered as product, needs to be considered. 

Variation in permeability from K to 1K‘ will result in a 
change of T* by the factor ( K / R ) .  If the product flow rate is 
also altered by this factor, the same separaftion will result and 
because the exhaust rate changes by the same factor, the frac- 
tion of the feed gas recovered as product will remain un- 
changed. It is then clear that the penneatdity directly affects 
the capacity of the system but not the relationship between 
the fraction of feed gas recovered and the separation achieved. 

An increase in the length L of the adsoiption column, unlike 
the behavior of most chemical process e:quipment, will result 
in a decrease in the capacity of the system. A change in length 
from L to L‘ will change T* by a factor of (L’/L)2 and the 
same optimal control form and separation will result if the 
product flow rate is changed by a factor of ( L / L ‘ ) .  Since the 
exhaust rate is also altered by the factor (L/L’), the fraction 
of feed gas recovered as product does not change. 

Caution must be used in extending the above results. It ap- 
pears that shorter lengths or hiqher permeabilities will favor- 
ably affect the performance of the system. However, since the 
frequency of the control is proportional to L-2 and K ,  the opti- 
mal frequency for shorter lengths or hieher permeabilities may 
require faster operation than is attainable with solenoid valves. 
In addition, the increayed flow rates will increase the signifi- 
cance of the rate limiting factors which have been neglected. 
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