
JOURNAL REVIEW 

Facilitated Transport via Carrier- 
Mediated Diffusion in Membranes: 
Part I I. Mathematical Aspects and Analyses 

Part I1 of this review is concerned with the mathematical analysis of 
facilitated transport. An exposition is given of the most generally useful 
techniques for obtaining asymptotic or approximate solutions to one-dimen- 
sional carrier-mediated diffusion in membranes, involving multiple per- 
meant and carrier species which undergo one or more chemical reactions. 
Primary emphasis is devoted to the limiting regimes of weakly-perturbed 
membranes (small driving forces) and slow or fast reactions (small or large 
Damkohler numbers). Many of the results appearing in the literature are 
unified and extended, and a systematic procedure for using these to esti- 
mate membrane performance is put forth. Finally, some areas for further 
work are identified. 

SCOPE 
In  Part I" of this review (Schultz et al., 1974) we.have 

discussed mechanisms, experimental systems, and charac- 
teristic regimes of carrier-mediated diffusion through 
membranes. As pointed out there, the focus of our review 
is on membrane systems which are globally nonreactive 
in the steady state and in which the internal transport 
mechanism is postulated to consist solely of molecular 
diffusion accompanied by homogeneous reaction of per- 
meant or volatile species with entrapped carriers or non- 
volatile species. 

Then, with the assumption of constant diffusivities, the 
steady state behavior of these systems is governed by well- 
known field equations of the form 

D V2C = -r(C) (I 4.1) 

As defined in 'Part I, a carrier-mediated transport system 
has associated with it a rather characteristic bound- 
ary-value problem for (I 4.1), including zero-flux condi- 
tions on nonvolatiles and prescribed conditions on vola- 
tiles at the boundary of the system of interest, together 
with a set of stoichiometric restrictions on the kinetic 
function r(C) and an associated set of volume-integral 
constraints for system-composition invariants. 

The purpose here in Part I1 is to provide a somewhat 
unified approach to the mathematical treatment of such 
problems. 

After a brief discussion in Section 1 of the possible 
reductions of the problem based on stoichiometric consid- 
erations, a detailed review is given, together with exten- 
sions, of what the authors judge to be the most promising 
technique for attacking such problems, based on a com- 
bination of asymptotic and approximate solutions appro- 

* Errata for Part I appear on page 831. 
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priate to the various regimes of membrane diffusion. 
Section 2 provides a general solution for linearized 

kinetics, appropriate to weakly-perturbed systems or small 
driving forces, and the relation to linear-thermodyiiamic 
analyses is established, Permeant-flux computations are 
reduced here to the algebraic task of determining the 
relevant membrane resistance tensor or matrix. 

Section 3 deals briefly with the regular-perturbation 
analysis appropriate to small Daml(6hler numbers or slow 
reactions and the near-diffusion regime. Then, an exposi- 
tion is given of the asymptotic boundary-layer or singular- 
perturbation analysis for large Damkiihler numbers or 
rapid reactions and the near equilibrium regime. A de- 
tailed discussion is devoted to a strong boundary-layer 
analysis applicable to the singular regime of rapid, nearly- 
irreversible reaction or carrier-dominated diffusion where 
shock-like reaction layers occur. A t  the same time, a 
general extension of a previous approximate technique 
for solution to this problem is presented since it has been 
found to give remarkably accurate and rapid predictions 
well into the nonequilibrium regime for several systems. 
The computation of permeant fluxes reduces, then, to 
one of solving a nonlinear equilibrium problem for con- 
centration distributions in the core of the membrane, 
coupled with the computation of boundary-layer resist- 
ance tensors or matrices, for determining reaction-layer 
discontinuities at the membrane boundaries. 

Together with a review of the above techniques, their 
most direct extensions are given, as new results, for 
application to complex problems involving multiple com- 
peting permeants and carriers with multiple reaction path- 
ways. 

Some outstanding problems in the theory of facilitated 
transport phenomena are identified and some directions 
are suggested for further work. 
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CONCLUSIONS AND SIGNIFICANCE 

In the absence of convection and electric-field effects, 
it appears possible now to estimate mathematically, with 
some confidence, the steady state performance character- 
istics of highly complex carrier-mediated membranes, 
given the requisite kinetic, equilibrium, and diffusion con- 
stants. In many cases, predictions can be obtained by 
relatively straightforward and rapid analytical methods, 
based on asymptotic or approximate formulae. 

The most useful and generally applicable results appear 
to be, roughly in the order of complexity and applicability, 

1. The classical type of reaction-equilibrium approxi- 
mation for investigating nonlinearities in the driving force 
or concentration gradients and the effects of transport 
parameters and binding constants, 

2. The linearized-kinetic formulae for investigating re- 
action-rate limitations and nonequilibrium departures 
from l,.provided the linear approximation is valid in the 
equilibrium regime, that is, provided it gives reasonably 
accurate prediction of equilibrium fluxes under the im- 

posed driving force, and, if not, 
3. A strong boundary-layer analysis, based on exten- 

sions proposed here of an approximate method due to 
Kreuzer and Hoofd (1972) and Smith et al. (1973), to 
replace 2, together with 

4. Near-diffusion or slow-reaction, perturbation formu- 
lae to determine the approximate lower limits of validity 
of 3. 

At the very least, it appears that such formulae can 
provide useful information about the likely operational 
regimes and some valuable guidelines for the application 
of more difficult, numerical methods or the development 
of special approximate methods. 

In the summary, suggestions are made for some further 
theoretical work, including extensions to other interesting 
geometric configurations and to unsteady operation, as 
well as to systems with electric-field and convection 
effects. 

1. REDUCTION OF THE BASIC EQUATIONS AND 
APPLICATION TO ONE DIMENSION 

Here, we wish to review and extend, in a formal way, 
the most important mathematical methods that have been 
used to analyze (steady state) carrier-mediated diffusion 
in membranes. As indicated in Part I,* and here in Ap- 
pendix 1, we shall assume for our discussion an elementary 
model of multicomponent diffusion in which diffusive cou- 
pling is admitted (Dsm not necessarily zero for m # s, in 
Equation (I 3.45)), but where the diffusivities D," are 
treated as constants and forced-diffusion or migration ef- 
fects are not explicitly considered. These assumptions allow 
for some immediate reduction of the relevant field equa- 
tions through direct application of the reaction-invariance 
established in Part I. 

As a first step in this reduction and by way of establish- 
ing a connection between the general problem and the 
special case of linear kinetics to be discussed below, we 
employ the transformation of variables suggested by 
(I 3.32). Specifically we use the transformation to effect 
a change of basis by introducing a set of basis vectors Ei, 
i = 1, 2, . . ., S with components EiS chosen as in (I 3.32), 
such that the first R' of these (i  = 1, . . . , R') correspond 
to reaction invariants, Given any such basis, it is well 
known that there exists a reciprocal basis, say Ei, i = 1, 
. . ., S, such that 

(1.1) 
where the components, (E-l)si, of Ei define of course the 
inverse transformation (matrix) for (I  3.39). Since the last 
R vectors of the reciprocal basis, Ei, i = R' + 1, . . . S are 
orthogonal to the first R' stoichiometric invariants Ei, i = 
1, . . . , R', in the original basis, their components ( l 3 - l ) :  
are seen by ( I  3.24) to represent an admissible set of stoi- 
chiometric coefficients for the (R)  independent reactions. 

In the notation of (I 3.30) and ( I  3.31), the species 
concentration and diffusion flux are expressible then as 

Ei * Ej = ( E - l ) , i E j S  = 6ji, for i, j = 1, . . ., S 

- f - f  

C = f i E i  and J = i iEi  (1.2) 

We can express the product D * C as 

such that 
D * C = XiEi (1.3) 

Xi = E~'D,"C, and C, = ( P I )  sm (E-I) miXi 

(which corresponds formally to the introduction of a yet 
another basis, D-' * Ei, vide infra) .* Equations (I 4.1) 
and ( I  4.2), when expressed in terms of the components 
Xi, take on the simpler forms 

+ + 
j i  = - vxi (1.4) 

VZX, = - Oi (1.5) 
and 

for i = 1, . . . , S. Since the first R' components of the reac- 
tion term vanish identically, in (1.5) as in (I 3.33), some 
reductions are immediately possible. In Appendix 2, this 
reduction is used to show that the specification of I' inte- 
grals invariants of the type ( I  3.38) is necessary for unique 
solution to a general problem in three spatial dimensions. 
However, we are mainly interested here in the application 
to membranes where further simplifications are in order. 

If we restrict our discussion to the usual steady state ex- 
periment on membranes, conditions are such that one- 
dimensional diffusion results, and the corresponding forms 
of the field equations ( I  4.1) with Vz = ( d / d ~ ) ~  are ap- 
plicable. Here, x measures normal distance through the 
membrane, from one of its interfaces x = 0 to the other 
x = L, both of which then serve as system boundaries. In 
this situation, further integrations of the reaction-free equa- 
tions in (1.5) are possible, and one obtains the following 
as the R integrals: 

X i  = - (jix + b,) , with ii, bi constants for 0 6 x 4 L, 
i = l ,  ...,Fi', 

and 
ii = 0, for i = F + 1, 

The constants i i  which vanish follow 
era1 results established in Appendix 2, 

. . ., R' (1.6) - 

from the more gen- 
whereas the remain- 

O Part I of this review, Schultz et al., AIChE I., 20, 417 (1947). Equa- 
tions of Part I are cited herein with Roman Numeral I as prefix. 
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ing nonzero i s  are given by 

i i  = EiSIs(x), for i = 1, . . ., F, (1.7) 
and are simply the constant diffusional fluxes of the reac- 
tion invariants or radicals associated with the volatile spe- 
cies. 

Thus, the mathematical problem reduces to that of solv- 
ing the R simultaneous second-order differential equations 
remaining in (1.5),  the number R being equal to the 
number of stoichiometrically-independent reactions. The 
solution must satisfy the one-dimensional form of the 
boundary conditions (I 4.2) on the nonvolatile species and 
the conditions 

Cu at x = O 

C, at x = L for v = 1, . . .,F, C+{ (1.8) 

or some other appropriate conditions on the volatiles, at 
x = 0, L. 

Because of (1.6),  both sets of boundary conditions 
( I  4.2) and (1.8), as well as the nonzero reaction rate 
terms oi in (1,5), will generally involve implicitly the 
constants of integration ii and bi. These constants are of 
course unknowns ultimately to be determined through the 
boundary conditions and the I' integral constraints of 
( I  3.38), which can be expressed as 

L 
= -Eim 1 ( D - ~ ) , , , S ( E - - ~ ) , ~ I  Xjdx (1.9) 

L 

for i = F + 1, . . . , R', where Ctot{Ei} is some prescribed, 
mean initial concentration of a composition invariant Ei in 
the system. 

The determination of the ii, i = 1, . . . , F, is an essential 
part of the problem, since these constants determine the 
flux of the volatiles through the membrane. Thus, from the 
form of the transformation (I 3.32) and its inverse, one 
concludes immediately that the desired fluxes are given in 
terms of the j's by 

F 

N ,  =.lv(0) r J , , ( L )  = 21 (E-l),i i i  

where, as before, v = 1, 2, . . ., F, refers to the volatiles. 

membrane flux can be put into the form 

(1.10) 
i= l  

By means of ( I  3-31), the preceding relation for trans- 

Nu = Z v m  lm(x) ,  
F 

Zum = 2 (E-')viEim, m = 1 , .  . .,S, (1.11) 
i= l  

where the 2," are the transport numbers previously de- 
fined in ( I  3.43). Hence, upon application of (1.8) and 
( I  3.44) with constant D," the flux relation cited previ- 
ously, (I 3.47), follows: 

N u  = ZvmDms [Cs(O) - C s ( L ) ] / L  (1.13) 
The above reductions can be useful for theoretical pur- 

poses, for example, as used in Appendix 2, or for practical 
purposes, such as numerical solution of the differential 
equations. However, in the analysis to follow, it will not 
be necessary to make explicit use of such reduction be- 
cause it is already implicit in the various (linear-algebraic) 
formulae involved. 

Thus, unburdened by the explicit notational apparatus 
for invariants, the results of the analysis become easier 
both to state and to comprehend. Nevertheless, in Ap- 
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pendix 1 it is shown how the basic transport equations can 
be cast in terms of invariants and extents of reaction for 
purposes of relating the present treatment to other works 
on the subject, particularly the linearized thermodynamic 
analyses. 

2. LINEAR KINETICS 

Generol Solutions for Steady Membrane Diffusion with 
Constant Diffusivity 

In terms of a dimensionless distance coordinate x/L, 
which we shall also denote by x ,  Equation (I  4.1) reduces 
for constant D to 

(2.1) 
d2C 
dx2 
- = r - c  ( o < x < i )  

r = ( L I Z  D-' - K with 

It is possible to write down immediately the appropriate 
formal solution to (2.1) which, as a generalization of the 
equivalent scalar equation, is 

1 
C - < C > = h  A,---%) .C (2.2) 

( 2  
where 

and h ( A ,  2) is the tensor" (or matrix) generalization of 
the scalar function 

( = A - A = (2.3) 

(2.4) 
1 
2 

h (k, 2 )  = - sinh ( kZ) /sinh (X/2) 

defined on scalar variables (real or complex) X and (real) 
Z .  Also, the vectors 

<c> = ( E  + - C)/2 
- (2.5) 
.Ac=e-c 

appearing in (2.2), are related to the (mean and differ- 
ence of), as yet unassigned boundary values for C, say 

C = c  at x =  0, and C = C at x =  1 (2.6) 

In this way, one obtains formally the transmembrane 

- 

- 

flux as 

with 

where, again, a generalized scalar function is implied. 
Equation (2.7) gives the flux N in terms of the driving 

force ZC and a (symmetric or self-adjoint) permeability 
tensor P, that is, 

N ,  = P s m 4  C ,  ( 2.9 1 
for s = 1, . . ., S. There are several standard matrix theo- 
retic methods by which the tensor P can be made explicit 
as discussed below. First, however, one may put (2.7) into 
a form appropriate to carrier-medated diffusion, where 
we have as prescribed conditions: 

We have chosen to use the designation tensor (as opposed to 
matrix) for the various linear transformations discussed here. We feel 
this is justified by the invariance (under affine transformations) of the 
basic equations and the considerations of Appendix 1 .  In the present 
context no confusion with physical-space tensors is likely to occur. 
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- 
Wn = 0; with %,., C, - and, hence, AC, = C, - C, given 

- (2.10) 

where, in the notation of Part I, v = 1, . . ., F, refers to 
volatiles and n = F + 1, . . ., S, to nonvolatiles. 

Then one can verify that the partition referred to in Part 
I, Section 3, is realized explicitly in the linear analysis at 
hand. Here the problem is evidently similar to one involv- 
ing two species in which the components in (2.10) are 
g'ven while N u ,  26, are ,,-garded as unknowns. The formal 
solution is therefore obvious, when stated in terms of the 
corresponding partition (for the matrices) of the perme- 
ability tensor P and its inverse, the resistance tensor a, 
say, 

forv,  t = 1,2,  . . ., F, a n d n , p  = F + 1, . . ., S, where 

(2.12) def a = P-1 

The desired relation between the transmembrane flux of 
volatiles N ,  and their driving force ZC, is readily found, 
then, by application of (2.7), (2.10) and (2.11) to be 

- 
AC, = n u t  Nt 

that is, 
F 

xCs = c aSmNm, for s = 1, . . . ,F  (2.13) 

where asm denotes, of course, the components of a. The 
inverse form of (2.13), giving flux in terms of driving 
force can, in principle, be obtained by matrix inversion. 

At any rate, the problem of finding the flux of volatiles 
is reduced to the purely algebraic task of determining the 
relevant components of the resistance tensor, which, in 
turn, can be carried out formally by means of the eigen- 
value problem for the tensor r of (2.1).  This problem has 
received numerous applications in related works (see 
Ulanowicz and Frazier, 1968) but most often it is used in 
treating the differential equations themselves. In some cases 
this tends to obscure the formal simplicity of the resultant 
solutions. 

In the problem at hand, one has simply to choose the 
last R, otherwise arbitrary basis vectors Ei, i = R' + 1, 
. . ., S, and the R eIements of the reciprocal basis E', i = 
R' + 1, . . ., S, to be related, respectively, to the R, pre- 
sumably distinct eigenvectors of rT and II', correspond- 
ing to nonzero eigenvalues, say xi2 = (Xi)2, as follows: 

Ei = D-I * ui, that is Eis = (D-i)mSuim 
and (2.14) 

Ei = D * ui, that is (E- l )8(  = Dsmhi  
where 

m = l  

r . ui = Xihi, and I'T * ui = Xi%+ (no sum) (2.15) 

and the X,Z are the nonzero roots of the characteristic equa- 
tion 

det (F - X21) = 0 (2.16) 

In this way, one can identify the R' basis vectors corre- 
sponding to reaction invariants Ei, i = 1, . . ., R', and the 
elements of the reciprocal basis Ei, i = 1 . . ., R', with the 
respective eigenvectors of rT and I?, corresponding to R' 
zero eigenvahes, say = 0, for i = 1, 2, . . ., R'. (If we 
assume K to be symmetric, then the Ei, as defined in 
(2.14), %?re seen to be proportional t o  the eigenvectors of 
F. This corresponds to the case of an orthogonal basis.) 
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If K is also taken to be positive (u - K - u 0), then the 
square root implied in (2.3) is well defined and the X i  can 
be identified with (nonnegative, real) eigenvalues for A 
(Appendix 3). 

With this interpretation of the basis elements, one finds 
readily that the permeability tensor of (2.8) and its in- 
verse take on (as sums of dyads; see Appendix 3) the 
forms 

P = { 2 EiEi/wi 1- D/L, 

a = m-1 .  { 2 wi mi} 
and 

(2.17) 

in (2.13) are given so that the desired components of 
explicitly by 

S 

asm = L(D-')> 2 wi(E-')tEim (2.18) 
i= l  

where, in both (2.17) and (2.18),' 

wi = w(hJ and w ( k )  = - 2 tanh 
X 

Since Xi  0 for i = 1, . . ., R', the corresponding R' terms 
in (2.18) have w = 1 (see Appendix 3) .  

The actual evaluation of (2.18) would require the com- 
putation of eigenvectors of r or some alternative matrix 
algebraic manipulations, as discussed in Appendix 3, which 
is a more or less complex task depending on the complexity 
and number of reactions treated. Irrespective of the actual 
practical complexity of such computation, the expressions 
(2.17) and (2.18) provide, as they stand, some valuable 
theoretical insight into the problem. This is best appreci- 
ated by considering the reduced form of (2.17) for a single 
chemical reaction, a problem already treated by Fried- 
lander and Keller (1965). 
Single Reaction with Linear Kinetics 

In the case where there is only one stoichiometrically 
independent reaction, R = 1, the rate constant K in (2.1) 
takes on the dyad form 

K = - cllk (or Ksm = - askm) (2.20) 

where the vector a represents the stoichiometric coeffi- 
cients for the reaction, related to the (last element of the) 
basis introduced above, ES, by a, 3 (E-l)ss, s = 1, . . ., S. 
Therefore, the tensor r reduces also to a dyad 

B? = - L2 u k, with u = D-1 - a (2.21) 

having eigenvector u, for the nonzero eigenvalue 

A2 ( X ) Z  = - L2 (u * k) - L2 [as(D- l )mSkm] 
(2.22) 

Thus, the corresponding reduced forms of (2.17) are 

and 

where w is given by (2.19), and 

P = { (1 - U P )  $. & P / w }  * D/L 

st 1 L D-l * { (1  - U P )  + W U ~ )  (2.23) 

f3 Es = - L2 (D-1 * k)/Xz (2.24) 

is the eigenvector of rT, with eigenvalue 12 given by 
( 2 . 2 2 ) ,  and normalized such that f3 . a = 1 (that is, for- 

* The function -(A)  is a familiar one in diffusion-reaction tbeoly and. 
as pointed out by Perelson and Katchalsky (1972), A is analogous to 
the Thiele modulus of diffusion-limited catalytic reaction. 
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mally, ES * Es = 1, no sum implied). 
The forms of the permeability tensor and its inverse 

given in (2.23) have a somewhat transparent interpreta- 
tion. The dyad ap (with components a,/?') represents an 
oblique projection onto the reaction path defined by the 
vector of stoichiometric coefficients a ( as) ,  whereas the 
term ( 1  - up) is a projection onto the linear space, or 
hyperplane, orthogonal to u, which represents the space 
of reaction invariants. Hence, the interpretation of the cor- 
responding forms in (2.17) appropriate to multiple reac- 
tions becomes more evident: 'I he sum over terms i = 1, 2, 
. . ., R' (with wi = 1) in (2.17) represents, again, a pro- 
jection onto the space of reaction invariants, while the R 
remaining individual terms i = R' + 1, . . ., S represent 
projections onto special reaction paths, defining the normal 
or uncoupled modes of the diffusion-reaction system. Ac- 
cordingly, one has generally a discrete spectrum of R finite 
relaxation lengths ( L / k i ) ,  i = R' + 1, . . . S, as pointed 
out by Ulanowicz and Frazier (1970) in a related context 
(see Appendix 3 here). 

Returning to the case of a single reaction, we can rather 
easily derive explicit expressions for the flux of volatiles by 
means of the relations (2.13) and (2.23) even for the 
situation where there are several volatile species. In the 
simplest example, where no diffusive coupling exists be- 
tween different species, that is, where ( I  3.45) holds, the 
flux Nu of euery volatile species through the membrane can 
be expressed in terms of a single number p as 

where 
Nu = ( N u ) o  + ' ~ o p  ( V  = 1, . . ., F )  (2.25) 

. .  
with 

F 

P f f u  = 2 Pas (2.26) 
s=l 

F 
and 

P(Nu)o = c: PS(Ns)o 
s = 1  

denoting sunis over uolatiles. In these relations, 

(2.27) 

denotes the Fick's law or purely diffusive 0ux of species s, 
while the as are stoichiometric coefficients. Also, the ,Bs are 
the components of the vector defined by (2.24), and w (X) 
is the quantity defined by (2.19) and (2.22). In the pres- 
ent example, where there is no coupling of diffusion, the 
quantities ,Bs and X take on the simple forms 

and (2.28) 
ksas 

S (t>* = - c - 
s=1 Ds 

which are seen to involve relaxation or reaction-layer 
lengths for the individual species,+ say 

8, = V'T-T, (no sum (2.29) 

The relation (2.25) then provides a generalization of a 
result first given by Friedlander and Keller" for the case 

* Thus, the quantity X/L as defined here is the reciprocal of the 
quantity denoted by the same symbol in Friedlander and Keller (1965) 
or Ulanowicz and Frazier (1968). 

of a single volatile species. 
I t  is interesting to consider the limiting form of (2.25) 

for the case of infinitely rapid reaction where formally 
A + co in (2.28). In this case, a state of complete reaction 
equilibrium obtains in the membrane, and the correspond- 
ing fluxes of (2.25) reduce to the equilibrium fluxes 

( N s ) e q  = ( N s ) o  + a s  Peq, s = 1, . * * >  F (2.30) 

where 

with 
S 

p a n  3 1 - pff u = - c 8"s (2.32) 
s = F + l  

denoting a sum over the nonvolatiles. 
Then, for any finite A, Equation (2.25) can be expressed 

in a form which gives the absolute mediation (or, when 
positive, the facilitation or enhancement) of flux N s  - 
(N,) for any volatile species in terms' of the equilibrium 
mediation [N, - ( N , )  Jeq for that species, as 

where 

f = P/Peq 

( 1  - w )  P a n  ~ - 1 - - 
1 + ( w  - 1)Pau / P a n  ( l / w  - 1) + 1 

(2.34) 

is the fractional mediation relative to equilibrium which, 
accordingly, is seen to be the same for all volatile species. 

In the case of several transferred species, the forms of 
Equations (2.25) or (2.33) suggest that they might be 
useful for testing consistency of experimentally measured 
volatile fluxes or permselectivity in the limit of small con- 
centration differences across a membrane. 

To summarize then, we have shown here how the linear- 
ized analysis for weakly perturbed or nearly uniform films 
can be extended to problems of arbitrary complexity, in- 
volving multiple permeants, coupled diffusion, and multi- 
ple chemical reactions. The evaluation of permeant fluxes 
requires the evaluation of the relevant permeability tensor 
from the various kinetic constants and dsusivities, and 
the partition of its inverse, the resistance tensor, by fairly 
standard linear algebraic methods (see Appendix 3) .  

3. ASYMPTOTIC AND APPROXIMATE ASYM,PTOTlC 
SOLUTIONS 

As indicated in Part I, we wish here to review and ex- 
tend the analytical methods available for treating the 
asymptotic regimes of carrier-mediated diffusion in mem- 
branes corresponding to the limits ( I  4.11) of slow and 
fast reaction. In extending previous results to cover the 
case of multiple reactions, we shall consider the most ele- 
mentary mathematical idealization of the asymptotic re- 
gimes, wherein all reaction rates are either rapid or slow 
compared to intrinsic diffusion rates. 

To date, no one has apparently given any systematic 
theoretical treatment of multiple reactions with greatly dif- 
ferent intrinsic rates in the presence of diffusion. Rather, 
it appears that in most instances one is forced to ignore 
diffusion and to fall back onto assumptions such as the 
classical quasi steady state approximation of chemical ki- 
netics in order to eliminate certain presumably rapid reac- 
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tions, together with the associated reaction intermediates, 
from a complex kinetic scheme.' It is, of course, not clear 
that this approximation would always be tenable whenever 
there are diffusion limitations on the intermediate species 
involved. Therefore, an analysis of such phenomena would 
be most valuable in this regard, both for theoretical un- 
derstanding and for any practical guidance it might provide 
in the simplification of otherwise complex kinetic schemes. 
Lacking that, however, the following discussion is devoted 
to the highly idealized but nevertheless conceptually valu- 
able case of uniformly rapid reactions. 

Slow Reactions-the Near-diffusion Regime 

If all quantities are rendered dimensionless by the re- 
spective characteristic magnitudes, T', C", Do, L as in 
( I  4-11), the dimensionless form of (I 4.1) becomes 

(3.1) 

where y is a Damkohler number, as defined in (I 4.11). 
For small y it is appropriate to put (3.1) in the form 

of an implicit integral equation, obtained by a double 
integration: 

D C(x)  = - y f  (x - y)r CC(y)l dy 

- J ( O ) X  + D * C(0)  (3.2) 
Then, by means of the condition of global nonreactivity, 

r[C(x)] dx = 0 (3.3) 

Equation (3.2) gives the transmembrane flux (in h e n -  
sionless form) as 

where ZC is the dimensionless form of the quantity defined 
in (2.5).  The boundary conditions of the type (2.10) ap- 
ply here and, of course, the components of flux and con- 
centration N,, Cn, for volatiles and nonvolatiles, respec- 
tively, are quantities to be determined. 

An obvious perturbation series in the parameter y for 
y = 0 is, then, 

C(y, x) = Co(x) + YCl(X) + O(?) 
CO(X) 3 - D-' * Nox + Co(0) 

(3.5) 

(3.6) 
where 

the zeroth perturbation or the pure-diffusion limit, must 
satisfy the exact boundary conditions, while C1( y ), the 
first perturbation due to reaction, is to satisfy homogeneous 
boundary conditions on N,, C,. 

Substitution of (3.5) together with a similar series for 
the diffusion flux J ( 0 )  into (3.2) provides a recursive 
scheme for calculation of higher-order terms. However, to 
terms O ( y )  the transmembrane flux can be obtained from 
(3.4) as 

1 
N = J ( O )  = D . x c ~ + ~ ~  x r [ c O ( x ) ] d x + 0 ( y 2 )  

(3.7) 
once Co(x) is known. 

In order to determine Co(x) one must, in general, em- 
ploy the appropriate (Z') integral constraints, Equation 
(I 3.38), on system invariants plus ( R )  conditions of 
global nonreactivity of the form (3.3). In  this respect, the 

This has, in effect, been done for the rather complex system fur 
bicarbonate facilitation of COn transport (Part I, Example 6,  Table 1) 
by Otto and Quinn (1971) and Suchdeo and Schultz (1974). 
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effect of chemical reaction enters the picture even in the 
zeroth perturbation. The said relations together with (3.6) 
and the boundary conditions, then suffice to specify com- 
pletely the unperturbed (linear) concentration fields of 
volatiles and nonvolatiles. 

As mentioned earlier, Smith et al. (1973), as well as 
Suchdeo and Schultz (1974) have carried out such per- 
turbation analyses to higher-order terms in y; in the latter 
case for the reaction system 

AT + nB*mC 
with kinetics 

r A  = - ~ ( C B ,  c,) [ C A C B ~  - Ccm/K] (3.8) 
The main conclusion to be drawn from their work is that 
such perturbation series have a very limited range of util- 
ity in the parameter y. 

Moreover, it might be noted here that even were one 
so fortunate as to be able to generate as many terms as 
desired, the unqualified convergence of such a series would 
not be guaranteed even though the concentration field 
C(7, x )  may be analytic in y for some range of parameter 
values y > 0. (This can most simply be illustrated by con- 
sidering the case of linear kinetics, where it is not too diffi- 
cult to show that the expression of (2.8) has a sequence of 
simple-pole singularities at imaginary points in the complex 
plane, the first of which limits the radius of convergence of 
any Taylor series in y . )  

Finally, since the main interest here is in reaction en- 
hancement or facilitation of diffusion, the case of slow 
reaction, or near-diffusion systems, is inherently of less 
interest than the other limit, systems near-reaction-equi- 
librium,* where in general one expects to achieve the 
extremes of flux. 

Multiple Reactions-The Equilibrium Approximation 

In the general case of multiple, equally rapid reactions, 
one has to consider the asymptotic solutions of (3.1) for 
7 -+ co. It  is somewhat more convenient in this case to 
employ the related, small parameter 

(3.9) 
1 

E = - = 6'/L 

where S " / L  is defined in (14.11). Then, (3.1) assumes 
the form 

47 

(3.10) 

and the physical limit of infinitely fast reaction corresponds 
formally then to the mathematical limit E -+ 0. On neglect- 
ing the term in c2 from (3.10) one obtains, as an approxi- 
mation to the concentration field C ( x )  for Q << 1, a func- 

tion C (n) , say, which must satisfy the equilibrium condi- 
tion 

r{C} = 0 ,  for O < x <  1 (3.11) 

everywhere in the interior of the membrane.f Since Equa- 

A 

A 

The term near-equilibrium has been used (in particular by the 
present authors) to refer to this limit of rapid, reversible reactions, for 
which a condition of reaction equilibrium is achieved almost every- 
where on the concentration fields. In view of the possibilities for con- 
fusion, it wou!d perhaps have been preferable to reserve the term near- 
equilibrium for systems near thermodynamic equilibrium, as discussed 
in Section 2 above, where all driving forces (affinities) and affinity gra- 
dients) are small (Coddard et al., 1970). 

t There is, in the older literature, a frequent recurrence of logical 
fallacy in conjunction with the assumption of reaction equilibrium, where 
several authors set r = 0 and then proceed to obtain the solution to 
the resultant diffusion equation in (3.10) (See Enns 1964). 
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tion (3.11) will generally admit a family of solutions, some 
further restrictions on the concentration field are necessary. 

As the primary restrictions, C must satisfy the flux condi- 
tions and integral constraints on radicals and system in- 
variants which, it will be recalled, from (1.7) to (1.9) are 

J {E i }  = Ei * J = - Ei * D* - = ii (3.12) 

with ii  constant, independent of x for i = 1, . . .) R’, and 
with 

1 4  = 0, and f Ei - C(x)& = Ctot{Ei}, given (3.13) 

A 

dC 
dx 

for (the I’ values) i = F + 1, . . ., R’. 
We note then that within the accuracy of any such equi- 

librium approximation C, the corresponding (dimension- 
less) flux of volatiles through the membrane, Nu say, is 
given by 

A 

(3.14) 

Then, Equations (3.11) to (3.14) are merely generaliza- 
tions of equations which have often been used to describe 
carrier-mediated diffusion for a single reaction, in the limit 
of reaction equilibrium. 

By inspection of these equations, one surmises that they 
are still not complete and that, in general, a number 2F 
of additional conditions will be necessary to determine a 

unique equilibrium concentration field C, and, hence to 

permit specification of the boundary concentrations C (0), 

C ( 1) in the expression of (3.14) for the desired fluxes. At 
the same time, it becomes evident that, with only 2F con- 
ditions at our disposal, it will not be possible, in general, 
to satisfy simultaneously the 2F’ flux conditions of (2.10) 
on the nonvolatiles, together with a set of 2F boundary 
conditions on the volatiles. 

This situation of indeterminancy can be attributed to 
the neglect of the x-derivatives from the differential Equa- 
tion (3.10) to obtain an essentially algebraic equation, 
(3.11), which results in an approximation of the so-called 
“singular-perturbation” variety. 

The consequences of this approximation in the present 
realm have been emphasized recently by Goddard, Schultz, 
and Basset (1970) in a fairly general discussion of the 
case of a single reaction and also by Murray (1971) for 
some special applications. 

As indicated in these works, a solution to the equilib- 
rium equation of (3.11) will, in general, provide a valid 

approximation C(x) to the actual concentration distribution 
for 0 6 x 6 1 only in some central interior region or core 
of the membrane; but, for any L + 0, however small, the 
approximation will fail in boundary-layer regions of width 
O ( r )  near x = 0, 1. This boundary layer structure, com- 
mon to other physical problems, can in the present context 
be associated with the physical occurrence of reaction 
layers or transition zones of intense chemical reaction near 
the membrane boundaries which are necessary to the estab- 
lishment of the state of reaction equilibrium in the core. 

While the asymptotic flux for e + 0 can in principle 
be calculated by (3.11) to (3.13), once the correct set of 
2F boundary conditions are specified on the equilibrium 

approximation C(x),  for x + O+ or 1-, these conditions 
can be obtained rigorously only by a detailed consideration 

A 

A 

A 

A 

A 

of the boundary-layer structure, which is the principal 
theme of the works cited immediately above. 

However, in the usual less rigorous mathematical treat- 
ments of carrier-mediated diffusion, one customaril ob- 
tains the necessary boundary conditions on the equili i: rium 

concentration field C (x) by requiring that it match exactly 
with the (usually prescribed) interfacial concentration of 
volatiles at the membrane boundaries. On the other hand, 

one does not usually require that C(x) satisfy the zero-flux 
conditions on nonvolatiles at x = 0, 1, which is justified, at 
least intuitively, by the implicit presupposition of reaction 
zones at the boundaries. 

The latter, intuitive approach is reinforced by previous 
theoretical studies of diffusion with rapid chemical reac- 
tion, such as the work of Olander ( 1960) ; and, thus guided 
by a combination of physical insight and mathematical rea- 
soning, one arrives at what appears to be an altogether 
reasonable requirement of mathematical continuity of con- 
centration fields at the membrane boundary, while at the 
same time admitting the possibility of discontinuities in 
the associated fluxes. 

The validity of these notions is to some extent borne out 
by a detailed singular perturbation analysis for small e 
based on the method of matched asymptotic expansions 
(Goddard, Schultz, and Basset, 1970). This analysis is also 
used to formulate a power series of correction terms in e 
for the equilibrium concentration field of (3.11) and for 
the corresponding fluxes in (3.14) as well. 

Although the above perturbation analysis is restricted to 
the case of a single reaction, an important inference can 
be drawn from it, based on a number of example reactions. 
In particular, one is led to the tentative conclusion that 
the first-order correction term, accounting for departure 
from reaction equilibrium, will tend to be large whenever 
the computed equilibrium fluxes are large relative to those 
obtained for pure diffusion. 

Otherwise stated, the chemical reactions must then be 
exceedingly rapid, hence the parameter e extremely small, 
to achieve the asymptotic state of complete reaction equi- 
librium. From a practical point of view this means, roughly 
speaking, that any prediction of large flux based on the 
assumption of complete reaction equilibrium is all the more 
likely to be inaccurate. This important point has apparently 
not been adequately appreciated or, if so, has not been 
sufficiently emphasized in much of the literature on carrier- 
mediated diffusion, where the assumption of reaction equi- 
librium often has been routinely invoked. A further impli- 
cation is that perturbation analyses of the type referred to 
above will mainly be useful for estimating nearness to equi- 
librium, as illustrated in Part I, Section 4, but they will be 
of little value in actual computations when the equilibrium 
flux is large, a point already suggested by Goddard et al. 
( 1970). 

A 

A 

Failure of the Equilibrium Approximotion-Carrier-Dominated 
Diffusion ond Boundary-Loyer Shocks 

Some insight as to the nature of the singular limit, char- 
acterized by rapid reaction with large equilibrium flux, can 
be gained by a consideration of the simple example of a 
single reaction with linear kinetics, 

AT* B (3.15) 

rA = - k(CA - 1/K cg) 
and with simple diffusivities DA, Dg, for the case of no dif- 
fusive coupling. The exact solution to this problem can 
be derived directly or by use of the general results given 
in Section 2. Thus, if the characteristic Damkohler number 
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is chosen to be 
y = kL2/DA 3 l/$ (3.16) 

where k is the forward-rate constant in (3.15), the results 
(2.26) and (2.30) can be expressed in terms of the facilita- 
tion @ and its equilibrium limit Qeq for e = 0 as 

where, it will be recalled, w ( n )  is defined by (2.19), and 
where 

in which K is the equilibrium or binding constant of 
(3.15). 

Then, in the limit of interest, where e << 1 and the 
hyperbolic tangent in (2.19) becomes essentially unity, we 
have 

@ E L  @eg (3.19) 

It becomes evident from (3.19) that, when regarded as a 
function of Qeq and C ,  the facilitation @ exhibits singular 
behavior in the double limit c 3 0 and Qeq + 00. In par- 
ticular, the asymptotic forms in the respective limits are 
evidently given by 

@ N Qeq, for c + 0 (with aeq fixed) (3.20) 

1 + 2 e [ ( ~ . e q - l ) ~ / ~ e q +  11” 

and 
1 

2c 
cp N -, for Qeq+ 00 (withe fixed) (3.21) 

That is to say, the limits are not formally interchangeable 
and, moreover, it is evident from (3.19) that for c << 1, 
@ can be well approximated by its equilibrium limit aeq for 
6 = 0, only if the product cQeq << 1. One sees, by means 
of the expression for aeq in (3.18), that this is equivalent 
to the requirement 

[-].<<1 KDB 
D A  

(3.22) 

which, roughly speaking, will fail to be satisfied whenever 
either the carrier-permeant diffusivity ratio DB/DA or the 
binding constant K are excessively large, the latter situa- 
tion being more often pertinent to the usual physical exam- 
ples. 

At first glance, (3.22) might seem to indicate that the 
failure of the equilibrium approximation (3.20) could be 
attributed to a small Damkohler number for the reverse 
reaction in (3.15), say 

(3.23) 

which, if small, could imply a breakdown of the rapid- 
reaction approximation for the reverse step in (3.15). How- 
ever, it is evident that (3.20) and (3.22) can fail to apply 
even if y’ >> 1 (for example, for c + 0 with Kc fixed). 
The singularity appears, then, to be of a more subtle, if 
related variety, and it can perhaps be best understood by 
consideration of the membrane concentration profiles for 
the example system under consideration. 

Thus, from the appropriate form of the general result 
(2.2),  one finds that the concentration fields C A ( x )  and 
CB (x )  take on radically different forms for E 3 0, depend- 
ing on whether DBKc/DA << 1 or DBKc/DA = O ( 1 ) .  
Specifically, for c + 0, one has in the core of the mem- 
brane 

for O < x < l  

(3.24) 
if DBKc/DA << 1, where the notation is the same as in 
( 2 5 ) ,  and both <CA> and <CB> = K<CA> are con- 
stants. On the other hand, for DBKc/DA = 0 (1)  or greater, 

(3.25) 

CA N < C A >  + 4 C A  ( 1/2 - x) + 0 ( C )  

C B  
_ N  - CA -k o ( C )  
K 

CA N <CA> + 0 ( e - l / < )  

for O < x < l  

Of course, in the neighborhoods of either membrane bound- 
ary there exist boundary-layer correction terms to (3.24) 
and (3.25) which involve exponentials of the type e-hz, 
near x = 0, or e -A( l - s )  near x = 1 (Figure 1) .  

The important points to be made here, however, are as 
follows: while the equilibrium core profile of CA(Z) in 
(3.24) satisfies the imposed boundary conditions on 
CA ( x ) ,  the profile in (3 .25 )  does not. Furthermore, it can 
be seen that the linear term in the core profile (3.25) for 
the carrier B accounts for effectively all the transmembrane 
flux of the volatile A and, hence, for the limiting form of 
the facilitation @ in (3.21). This limiting flux, incidentally, 
is also derivable from the asymptotic form of the boundary- 
layer concentration profile CA near x = 0, namely 

- 
(3.26) 

f o r d €  = O(1). 
Thus, it is seen that (3.25) reflects a situation which 

might generally be termed carried-dominated equilibrium 
transport. In this regime, a type of strong boundary-layer 
structure emerges in the limit of fast reaction, l 3 0, in 
which there is a virtual discontinuity in the concentration 
field of the permeant species A between core and bound- 
ary. The boundary layer can be interpreted then as a shock- 
like transition zone of exceedingly intense reaction arising 
from either a large carrier/permeant diffusivity ratio or a 
nearly irreversible reaction wherein the permeant and car- 
rier undergo virtually complete interconversion over a dis- 
tance 0 ( E )  . In this case, the asymptotic form of the facilita- 
tion @ in (3.21) suggests that one may consider the volatile 
flux to be controlled solely by diffusion of the volatile A 
across boundary layers of thickness 

ACA 
C A  N < C A >  + - e-=” 

2 

( a )  ( b l  

Fig. 1. Qualitative sketch of concentration profiles in the reaction 
of (3.15) for -0, with (a) moderate K, and (b) the carrier dom- 
inated regime of large K, KE = O(1) .  The boundary-layer regions are 

shaded. 
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(3.27) 

which is a special case of the relaxation layer thickness in 
(2.29) for species A. 

For the more general case of a (hypothetical) single re- 
action with linear kinetics, but with an arbitrary number 
of volatiles and nonvolatiles, the same type of singular phe- 
nomenon is evident. Indeed, one sees that the fractional 
mediation f defined in (2.34) exhibits the behavior 

1 
for c + 0 (3.28) f -  

u3 
1 + 2r 

d n - 7  
where now e is defined in terms of the relaxation lengths 
of all the volatile species by 

and 0-2 is the ratio of such quantities, for volatiles relative 
to nonvolatiles: 

The singular, carrier-dominated limit arises whenever f e  
O (  1) for c + 0, and the transmembrane flux of volatiles 

again governed by boundary-layers of thickness e, given 
by (3.29) and therefore determined solely by relaxation 
lengths associated with the volatiles. 

In the case of several reactions, one might anticipate this 
same type of singularity although the kinetic constants 
would have to be attributed to the various normal reaction 
modes. This point will not be pursued further in the pres- 
ent context since, apart from its conceptual value in help- 
ing to understand the nature of the carrier-dominated 
singularity for rapid reactions, the strictly linear kinetic 
model has limited applicability to real systems. 

The limitations of the h e a r  model notwithstanding, one 
is led to expect, from the examples just considered, that 
generally even though a boundary layer structure may 
evolve for c << 1 consisting of type of equilibrium-core 
region bounded by thin reaction layers of thickness 0 ( e ) ,  
the core concentration profiles do not necessarily take on 
the exact or true boundary values at x = 0, 1. Furthermore, 
one sees by (3.21) or (3.28) that when (3.22) fails, the 
facilitation or mediation can exhibit a simple-pole type of 
singularity in 6, with singular point very near to c = 0. 
One would therefore not expect the kind of weak-bound- 
ary-layer analysis given by Goddard et al. ( 1970) ,* which 
proceeds by a perturbation expansion about the state of 
complete reaction equilibrium, E = 0, to be uniformly valid 
in the parametric limit of carrier-dominated equilibrium 
discussed above. 

For this carrier-dominated limit, another approach is 
desirable, and such a method was originally suggested by 
Kreuzer and Hoofd (1970) for the approximate treatment 
of a specific reaction of the type (3 .8) ,  with n = m = 1, 
k const. This approach, which in light of the above re- 
marks may be termed a shock-layer or strong-boundury- 
layer analysis, was further improved upon by Kreuzer and 
Hoofd (1972) and by Smith et al. (1973). More recently, 
the same type of method has been applied by Suchdeo 

*This kind of parametric nonuniformity, as opposed to the usual 
spatial nonuniformity associated with singular perturbations, was antici- 
pated in the article cited but no explanations of its origins, nor remedies 
for it, were evident at the time. 
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and Schultz (1974b) to analyze a single-reaction model for 
the bicarbonate-facilitated transport of carbon dioxide, in 
which the assumed kinetics are somewhat more compli- 
cated than those in (3.8). 

Most of the applications reported to date have dealt with 
the case of a single reaction, involving a single volatile 
species, uncoupled diffusion, and equal diffusivities of 
nonvolatiles. Since the method appears to give excellent 
agreement with existing numerical finite-difference solu- 
tions, Smith et al. ( 1973), Suchdeo et al. ( 1973), Goddard 
et al. (1974), well into the near-diffusion range, E >> 1, 
it appears worthy of generalization as an analytical method, 
for potential application to carrier-mediated systems with 
multiple reactions and several volatile species, or, to re- 
lated problems, involving ionic transport or heat transport 
in chemically reacting media. 

Boundary-Layer Analysis and Solution 

In the spirit of the boundary-layer analysis based on 
matched asymptotic expansions in Goddard et al. ( 1970), 
the solution to (3.10) for c + 0 is represented by an equi- 
librium-core approximation of the form 

A 
C(e,x) =C(e ,x )  + o ( c ) ,  for O < x < l  (3.31) 

where C satisfies (3,11), (3.12) and (3.13) and where 
o(e) is the standard notation for quantities of order less 
than one in E, that is O ( C ) / E  3 0 for c + 0. On the othef 
hand, in the neighborhood of the membrane boundaries, 
x = 0, 1, the concentration field C ( C, x )  is represented, re- 
spectively, by 

C(€, x) = E ( c , X )  + O ( E )  (3.32) 

near the left-hand boundary, where, in terms of a stretched 
coordinate, 

and by 

A 

- 
x = x / e  = O(1) 

C(€,X) = C ( € ,  x) + O ( E )  

x = ( 1  - x)/e = O(1) 

(3.33) 

(3.34) 

(3.35) 

- -  
near the right-hand boundary, where 

- 
The (left-hand) boundary-layer function c( e, x) in 

(3.32) must be chosen, then, to satisfy the stretched CO- 
ordinate form of (%lo) ,  

(3.36) 

on the semi-infinite interval 0 6; < 00 and subject to the 
exact boundary conditions at x = 0 on both volatiles and 
nonvolatiles. Furthermore, the limiting form of this func- 
tion is to match asymptotically with the limiting form of 
the core approximation of (3.11) for x + 0, to terms o (6).  

This requires that 

(3.37) 
A similar set of relations also holds at the right-hand 
boundary. 

The relations (3.36) et seq. define a complete boundary- 
layer problem, to which it is presumably possible to obtain 
solutions satisfying the requisite boundary conditions at x = 0 and exhibiting the linear behavior for 7 3 co im- 
plied by (3.37).  These requirements, together with similar 
relations for the right-hand boundary, should in turn serve 
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to determine the correct forms of boundary conditions on 

the core approximation C at x = 0, 1 and, thereby, to 
provide for the calculation of permeant flux with an ac- 
curacy O (  c )  . In its present general form the complete prob- 
lem is clearly not tractable by analytical methods, and, 
while a solution might be effected b numerical methods, 

Fortunately, however, one has recourse to the above- 
mentioned approximation technique suggested by the pre- 
vious work of Kreuzer and Ho0fd.O In particular, one as- 
sumes that the boundary-layer function can be expressed as 

A 

it is not fully obvious how one wou r d proceed. 

A - A - dC 
C(€,X) =C(c ,O)  +rx- ( c , O )  + c W ( c , 3 C )  + o ( c )  

dx 
(3.38) 

where E(l)( c, F) is O (  1) and where, because of (3.37), 

W(c,a + o for Z+ CQ (3.39) 

Next, the rate term r ( c )  in (3.36) is formally linearized, 
in the explicit first-order terms in e, about the zeroth-order 

term C(  c, 0 ) .  Then, because of the equilibrium condition 

(3.11) on C (c, x),  one obtains the following (set of) linear 
differential equations with constant coefficients for @): 

A 

A 

(3.40) 

where 

and of course another such equation is involved at the 
right-hand boundary involving a matrix r, say. 

The differential equation (3.40) willbe recognized as 
the formal equivalent of (2.1),  corresponding to linear 
kinetics, but in the case at hand there are two distinct 
equations which apply to the respective boundary-layer 
functions (at x = 0, l ) ,  and their domain of application is 
the semi-infinite intervals of the stretched coordinates x 
and x. Accordingly, the appropriate formal solution to 
(3.407 is+ 

C(1)( T )  = exp( - xx) * G(l)(O) (3.42) 

where R is formally to be determined from the analogue 
of (2.3) : 

- 

(K)2 = r (3.43) 

and where the vector C(l) (0) in (3.42) in the (as yet un- 
specified) boundary value of Cc1) at x = 0. 

For later reference, we note that (3.39) and (3.42) im- 
ply that cci)(O) is contained in the range of r, regarded 
as a linear transformation on C(l). Since, however, the set 
of vectors D * Ei found from the R' reaction invariants Ei 
of (1.1) must lie in the null space of ST, that is 

- 

( D - E t )  *F=  ( F ) T * ( D * E i )  =0, for i = l ,  ..., R' 
(3.44) 

0 In the works of Kreuzer and Hoofd (1972) and the related work of 
Smith et al. (1973) a somewhat different approach is used for only a 
single reaction. The general version given here is thought to be a suc- 
cinct statement of the underlying logic, which accounts for the order 
in c of the terms involved, allows for extension to multiple reactions, 
and leads basically to the same results for a single reaction. 

f The dependence on E of the quantities involved is not indicated ex- 
plicitly in (3.41) or in the relations following. 
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it follows that 

E i .  [D *z(i)(0)] = 0, for i = 1, . . .,R' (3.45) 

and, hence that the projection (see Section 2) of D - 
f i l l  (0) onto the space of reaction invariants must vanish: 

[ $ EiEi] * [D -c(l)(O)] = 0 (3.46) 

Now, we derive the result of primary interest here. By 
application of Equation (3.38) at 7 = 0 and its x-deriva- 
tive for x += co, one obtains a single relation connecting 

and C(O), A the boundary value of the core function C(x),  A 

A 
the boundary diffusion flux derived from C(x), say 

(3.47) 

with the actual concentration and flux J(0)  at x = 0. 
This relation, which is the desired result, can be cast into 
the form 

A A 
N J ( 0 )  = J ( 0 )  + P * [ E  - C(O)] + ~ ( e )  (3.48) 

where, in analogy with the (dimensionless) limiting form 
of the permeability tensor in (2.8) and (2.17), for rapid 
reaction or large A, the tensor P is a boundary-layer per- 
meability defined by 

i J = D * K / ,  (3.49) 

As a further result of the relations (3.38), (3.44), and 
(3.47), one finds that 

R' 

2 EiEi . [J(O) - !(O)] = 0 (3.50) 

This merely indicates that the actual flux of reaction invari- 
ants is equal to their boundary flux derived from the core 

profile C,  which is in accordance with the condition that 
this flux be spatially constant and locally unaltered by 
chemical reaction.' It is therefore apparent that (3.48) 
involves, so to speak, only the reactive components, that 
is, the projections onto the space of chemical reactions, of 
the species fluxes and concentrations (see Appendix 3 ) .  

A relation similar to (3.48) is also found to apply at the 
right-hand boundary x = 1, namely 

i = l  

A 

A A 
N J( l )  = J(l)  - P [C - C ( l ) ]  + O(E)  (3.51) - -  

where C represents the actual boundary value of the con- 
centration field at x = 1, and P_ is defined by the analogue 
of (3.48) for the right-hand boundary. In both (3.48) and 
(3.51), the vector N denotes the net transmembrane flux, 
which, of course, must be identical with the respective 
boundary flux because the nonvolatile flux components 
vanish and the volatile flux components are the same at 
x = O a s a t x =  1. 

By a formal inversion of (3.48) and (3.51), one obtains 
a type of boundary-layer resistance formula which gives 
the discontinuity of concentration, between the core and 
membrane boundaries, in terms of the transmembrane flux. 

0 In essence, this is the only type of continuity that one can rigor- 
ously demand, a fact which elucidates the shortcomings of the equi- 
librium approximation discussed above. 
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A A 
In fact, the core-flux terms J(0) and J(1) effectively do 
not enter into the relations (3.48) and (3.51) as can be 
seen by the equilibrium condition in (3.11) which requires 
that, for 0 < x < 1, 

0 = ar(C)/dx = D - r - D-l - J(x) 
A A A 

(3.52) 
where 

A 

- I' = D-l - [ar(C)/aC] A 
C=C(z) 

Therefore, for the limiting value x = 0, one has 
A - D-' * J(0) = 0 (3.53) 

together with a similar relation at x = 1. That is to say, 

the vector D-l J(0) lies in the null space of r and, 
presumably, also in the null space of K, as formally de- 
fined in (3.43). 

As a consequence, the inverse relations for (3.48) and 
(3.51) can be expressed formally, as 

A 

- A  A 
C - C(0) =F-' * [N - J(O)] dZ * N + O ( C )  

and (3.54) 
A A 

C _ - C ( l )  = - P - ~ . [ N - J ( ~ ) ] E - ~ & * N + o ( ~ )  - 

where z, a (left-hand) boundary-layer resistance tensor, 
is the inverseQ of D regarded as a linear transforma- 
tion restricted to the range of (or of F); and, && is de- 
fined similarly in terms of A (or X'). In this regard, it 
will be noted that the relations (3.54) are analogous to 
Equation (2.13) obtained for strictly linear kinetics. 

Apart from the linear-algebraic task of rendering (3.54) 
explicit, which will be discussed in Appendix 3, one is now 
in a position to determine the transmembrane flux N, up 
to terms o ( c )  . In particular, one has in addition to the re- 
lations (3.54), equations of the type ( I  3.47) relating flux 
to overall concentration differences across the membrane. 
However, by (3.54) these differences can be expressed as 

- A  
ZC = AC - 2r<&&> * N + ~ ( c )  (3.55) 

Here, ZC, is the actual difference in the (appropriately di- 
mensionless) boundary concentrations, as defined in (2.5), 

(3.56) 

is the corresponding Werence in core concentrations, and 

<a> = 1/2 (3i + n) - (3.57) 

is the arithmetic mean of the boundary-layer resistance 
tensors occumng in (3.54). 

For the boundary-value problem of main interest here, 
defined by (2.10), one is now able in principle to deter- 
mine the transmembrane flux Nu up to terms o(c). By 
means of (I 3.47) and (3.55), together with relations of 
the form (3.44), the flux can be expressed in a number of 
alternate forms: 

NU = GmDmS XC, (N,)o + ZVmDmn ZCn 
h A 

= z u m J m ( 0 )  + O ( C )  = Z u m J m ( l )  + o ( ~ )  

= ZumDmS z ts  + o ( c )  (3.58) 

These relations involve the driving forces derived from the 
actual boundary values on all species. [from which the 

0 Sometimes refened to as a pseudo-inverse. See Appendix 3. 

contribution of the volatiles could be expressed, as shown, 
in terms of the (known) purely diffusive flux of volatiles 
( N u )  01, or else they involve quantities that can be derived 
directly from the boundary values for the core distribution 

No matter which expression for Nu in (3.58) is chosep, 
the quantities appearing there can in principle be deter- 
mined with an accuracy O ( c )  from a knowledge of the 

core-concentration field C(x).  The latter, we recall, is 
governed by Equations (3.11) to (3.13), together with 
boundary conditions (on the volatiles), given by (2.10) 
and (3.54) as 

&). 

A 

A 
Cu(0) = F, - ZutNt + ~ ( c )  

and 
A 
C,(1) = - -  C, + aotNt + o(e) ,  for v = 1,2, . . . ,F  

(3.59) 

In addition to the boundary values cu, C, - on the volatiles, 

the preceding boundary conditions on C,(x) involve con- 
tributions from what may be regarded as flux-induced dis- 
continuities at the boundaries. Since the latter are seen to 
depend on the volatile fluxes Nu, and on certain com- 
ponents of the resistance tensors which involve quantities 
defined in equations of the form (3.41) and (3.43), the set 
of Equations (3.11) to (3.13) plus (3.58) to (3.59) is 
obviously of the implicit variety. 

This implicitness is characteristic of the technique of 
Kreuzer and Hoofd (1972) and Smith et al. (1973), and 
in practice it necessitates some type of iterative computa- 
tion.* 

Application to a Single Reaction and Relation to Other 
Perturbation Analyses 

The structure of Equations (3.58) to (3.59) is perhaps 
best illustrated by considering the special case of a single 
reaction with an arbitrary number of volatiles. Here, the 
reaction rate is expressible in terms of the stoichiometric 
coefficient (vector) u and a (scalar) rate function r as r = 
ur ( C )  . Thus, the resistance tensors of (3.58) and (3.59) 
take on dimensionless forms that can be deduced directly 
from the formula (2.20) to (2.24) derived for the case of 
linear kinetics: 

A 

- 
(3.60) 

- 1 -  1 
&& =--u p 3 -U (D-1. k) 

x A3 

where (again in terms of dimensionless quantities) 

(3.61) - 
k = [ar/acIc=~,,,, 

and - - 
A2= - k . u  

with similar equations for - SZ at the right-hand boundary. 
The vector H (or ,k) represents, of course, the linear-re- 
sponse coefficients of reaction rate or pseudo first-order 

*For example, given any initial estimat of thg boundary values on 
the core concentration field for volatiles 8,(0), Cu(l ) ,  one obtains an 
approximation for the core concentration field and its boundary values 
(for nonvolatiles) from (3.11) to (3.13), thence, for the volatile flux, 
from the last expression in (3.58), and, finally, for the relevant com- 
ponents of the resistance,,tensors Then, Equations (3.59) provide a sec- 
ond approximation for C b ( O ) ,  C"(l), and so forth. It might be noted 
that other computational schemes can be envisioned, based on alternate 
expressions for Nu in (3.58). For example, the term KCn in the second 
expression of (3.58) can be related to core quantities and volatile flux 
by means of (3.55). 
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A 
rate constants evaluated at the equilibrium state C (0) [or 

The form of (3.58) can also be appropriately simplified, 
and, in particular, one has, in terms of core fluxes and 
stoichiometric coefficients, and with an error o ( B )  , that 

&1)1. 

A A A A 
N u  = J U ( 0 )  - %P(O) = Ju(1) - % P ( l )  

with (3.62) 

In(()) =anP(O) ,  and In(1) = Q n P ( l )  

Here, the quantities P (  0) and p (  1) represent reaction- 
layer contributions to flux, and, in this respect, are the 
boundary-layer analogues of (2.25). 

From the correspondingly simple forms of (3.59) one 
obtaim, then, the following set of equations: 

A A A A 

A A 

A 
~ ( 0 )  = N d ”  ( k ( 0 )  p ) / ( a a )  

(3.63) 
A 
P ( 1 )  = Nus” = ( f U ( 1 )  pJ> / (a@ 

and 
A P A  
C,(O) = cu - =u,p(O) x 

(3.64) 

for the boundary conditions on the equilibrium-core field. 
I t  is evident, then, that (3.63) and (3.64) serve as implicit 
relations for the boundary-values on the core field, which, 
once determined, rovide the desired volatile flux, as would 
be given by (3.6.27. 

From the form of (3.63), which is seen to be the 
analogue of (2.31), it is moreover apparent that in the 
carrier dominated limit, where 

an p+ 0, and/or amp+ 0, 

one or more components of the volatile flux Nu, as well as 
the boundary discontinuity in concentration defined by 
(3.64), can become relatively large quantities. That is, of 
course, precisely where the weak boundary-layer analysis 
referred to above becomes invalid. 

As a final consideration here, the relation of the weak 
boundary-layer perturbation scheme to the strong bound- 
ary-layer analysis can now be exhibited in a fairly lucid 
and general way. In particular, for a state of complete equi- 
librium, P E 0, one has by (3.64) that 

A 
~ ( 0 )  = ~cu(0) l e q  E Eu, 

(3.65) 
A 
Cu(1) = [ C u ( l ) ] e q  =_Cu, 

that is, the core distribution takes on the true boundary 
values of C,, and the corresponding equilibrium flux of 
volatile, ( N u )  eq say, is then determined by (3.62). HOW- 
ever, for any small P > 0 we may write formally 

A 
where the derivatives [: aN,/ac,]., represent the response 
of flux to the core-distribution boundary values (for vola- 
tiles) at E = 0. By regarding these quantities and the con- 

centration differences in (3.66) as functions of e, the latter 
being given generally by (3.59), we have that 

a(NU), 
[a;:;) Ieq =[%Ieq =ac”, 

(t, v = 1,2, . . ., F) (3.67) 

together with a similar result for the remaining derivative 
in (3.66). As a consequence, Equation (3.66) can be ex- 
pressed in a linear form for Nu: 

N u  = (Nu) eq - 2~ <Gut>eq N t  + * - * (3.68) 
where, of course, the repeated index ( t )  denotes a sum 
over volatiles, arid where 

for s = 1, . . ., F (3.69) 

In (3.69), the quantities in the square brackets are all 
to be evaluated at E = 0, in which case Equation (3.65) 
is also applicable. Thus, for small C, Equation (3.68) pro- 
vides a first approximation to Nu,  involving quantities that 
are derivable from the limiting core solution for complete 
equilibrium, c E 0. It is obvious, then, that the magnitudes 
of the derivatives appearing (3.69) will play a crucial role 
in determining the nature of this approximation for Nu. 

Specifically, if it is assumed” that the (components of 
the) resistance tensors nus in (3.59) are O (  1) for c + 0, 
then two different types of approximation for Nu arise, 
depending on whether the products 

are small or large in some sense. If they are both small, that 
is, 0 ( E )  , then it is appropriate to replace Nu on the right- 
hand side of (3.68) by (Nu)eq, which yields the explicit 
expression for Nu:  

N u  = ( N u l e q  - 2~ <Gut>eq (Nt)eq + O ( C )  (3.71) 

This expression is, in fact, identical with the first-order ap- 
proximation (in C )  that one would obtain by a weak bound- 
ary-layer analysis of the type proposed by Goddard et al. 
(1970) for a single reaction.+ 

On the other hand, if at least one of the quantities 
(3.70) is large, that is, 0 ( 1)  or larger for E + 0, then the 
expression in (3.71) will no longer provide a valid ap- 
proximation to Nu. In this case, which corresponds essen- 
tially to the carrier-dominated equilibrium regime dis- 
cussed above, the correct approximation for Nu should 
instead be obtained by inversion of the linear equation 
implied in (3.68), that is, formally by 

N u  = [8ut + 2~ <GUt>eq]-’ ( N t ) e q  + . (3.72) 

where SUt is the Kronecker delta. Then, whenever the term 
€<Gut>,, is small compared to unity, the expression in 
(3.72) can be well approximated by (3.71). Otherwise, 
(3.72) provides only a rough first approximation for flux of 
volatiles, an approximation which may involve errors larger 
than 0 ( E )  for P + 0, because of the approximate nature 
of (3.66). 

Again, for purposes of illustration, we consider the case 

*This assumption can always be realized through the apgropLate 
choice of the somewhat arbitrary parameter B .  

t Equation (3.72) is thought to represent a significant generalization 
of the results provided by Smith et al. (1973) and, at the same time, is 
strikingly simple to interpret in its general form. 
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of a single reaction, where Equation (3.72) can be solved 
explicitly to give 

+ . . . (3.73) N, = (Nu)eq - 5 (B& + 
B = ( 1  + € Z ) ( l +  €2) - 2’bb - 

IT= 1 + c - (&-EN) - 
- -  - 

W=D(Nu)eq, T=P’&, b =PO, 
with overbars and underbars interchanged in the corre- 
sponding definition of - - -  H, N, a, and b, - and with (&=q!q &=-+I aNu 

act , a_ct ep 

Here, in accordance with our previous convention, the re- 
peated index ( t )  denotes a summation over volatiles. 

In the practically important case where there is only one 
volatile species, the above relation can be further simplified 
to give 

2 
~u = (Nu)eq - (i) (Nt)eq + * * * 

(3.74) 
E (N , ) , /B  

where now 
B = 1 + 2 a  <d& 

(3.75) 
1 - -  <Apt> = (&Bt + hi?) 

Here, the free index v and the summation index t have es- 
sentially only one value, say t = v = 1, whence follows the 
second equality in (3.74). Nevertheless, the quantity imme- 
diately following the first equality in (3.74) has been left 
in a general form since it suggests a useful approximation 
to be employed in lieu of the correct but more complex 
form (3.72) for situations involving more than a single 
volatile species. 

Equation (3.74) is a general form of the so-called ‘‘first- 
order approximation” proposed by Smith et al., for n = m 
= 1, k = constant, in the reaction model of (3.8). In the 
special case which they treat, involving uncoupled ddfusion 
and equal diffusivities (DB E Dc)  of the carrier species B 
and C, the equilibrium core solution can be obtained by 
straightforward algebraic methods and, consequently, 
Equation (3.74) can be reduced to the following explicit 
expression for the facilitation @: 

where 

Z =  U = [ Kcto::} D B  1” 
- ~ + K _ c A ’  

- and 
@ell = z z .  - (3.77) 

The notation for the quantities S@), 6(Z) is intended to 
suggest a boundary-layer thickness or equivalently, a mass 
transfer resistance. Accordingly, ( 3.76) can be rearranged 
into an inverse form, suggestive of a sum of mass transfer 
resistances arising from the core and boundary layers. 
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As pointed out by Smith et a]. (1972), the expression 
for @ in (3.76) becomes identical with that of (3.71), for 
E + 0, namely 

( 1 + @ )  = ( 1 + @ , )  

(1  - [Z22(Z) + - -  Z2 8(Z)] + O ( e 2 ) }  (3.78) 

which, in different notation, is the perturbation formula 
given previously by Goddard et a]. (1970), as a first-order 
correction in c to account for departure from reaction equi- 
librium. As indicated by the latter work, and in line with 
the remarks made earlier in the present review, this for- 
mula is generally useful only if the equilibrium facilitation 
@‘ep is small relative to unity. Otherwise, the first-order cor- 
rection term in (3.78) is large for all but exceedingly small 

For large aeq, even the relatively more accurate formula 
(3.76) provides only a rough first approximation to flux, 
and to obtain a better approximation to @ one should em- 
ploy the implicit relations derived from (3.64). For the 
present example, these can be reduced to 

€. 

A 
CA(0) = c A  - H ( z )  ( C A  - CA) + o(C) - 

(3.79) 

?A(1) = C A  + H ( z )  ( F A  - 5 A )  + o ( a )  
and 

with 

and 
B = 1 + H(Z) + H ( Z )  

Here the function 6 ( Z )  is defined as in (3.77) but, in con- 
trast to (3.77), the arguments z, - Z are now to be based 
on boundary values associated with the core distribution: 

- 

Thus, Equations (3.79) to (3.81) provide an implicit 

or iterative scheme for determination of CA(O), cA(1), 
and the facilitation @, to terms o(c ) .  We recall that such 
a calculation has been applied in a somewhat different form 
by Kreuzer (1972) as a model for hemoglobin- and myo- 
globin-facilitated ddfusion of oxygen. Also, Smith et al. 
(1973) have made similar computations for the same 
model and give detailed comparisons with numerical and 
other solutions. More recently, Suchdeo and SchuItz 
(1974) have applied this method, but with a different reac- 
tion model, to the bicarbonate-facilitated diffusion of car- 
bon dioxide (see Figure 9 of Part I).  

In closing here, we should perhaps re-emphasize that, 
whenever conditions are such as to necessitate the strong 
boundary-layer analysis elaborated on here, the formal 
linearization used in arriving at (3.38) and, hence, the 
results of (3.54) appear to give only an approximate solu- 
tion to a nonlinear boundary-layer problem [see the re- 
marks preceding (3.38) and those of Kreuzer and Hoofd 
(1970, 1972)l. This approximation has the virtues of re- 
moving the singularity associated with the carrier-domi- 
nated limit, of being exact for strictly linear kinetics, and, 
finally, of being accurate to terms 0 ( C)  for c + 0 (as of 
course is the weak boundary-layer analysis). 

Although Smith et al. (1973) have proposed a method 

A A 
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of deriving higher-order correction terms, these appear to 
constitute nothing more than the type of formal series de- 
velopment in integral powers of e (or, as they put it, 
powers of 1/L) employed in the weak boundary-layer 
analysis. That such series expansions can fail, owing to 
nonlinear kinetics, has already been illustrated by the ex- 
ample of second-order boundary layers discussed by 
Goddard et al. (1970) where the correct expansion is 
shown to proceed in powers of P3 (that is, L-'I3). 

4. SUMMARY 

In this review we have focused our attention on camer- 
mediated transport in simple membranes and, to some ex- 
tent, feel we have merely scratched the surface of the vari- 
ety of phenomena that may occur, even in globally nonre- 
active systems. Our emphasis has been on presenting a gen- 
eral basis for the understanding of these problems and, 
also, in suggesting some approaches for obtaining analyti- 
cal-type solutions valid for limiting or otherwise restricted 
conditions (as, for example, our assumption of uniformly 
rapid reactions). 

One might expect that exact solutions are always possi- 
ble through the use of numerical methods. However, in 
these 2-point boundary problems, numerical methods have 
also met with limitations. For example, Kutchai et al. 
(1970) showed that the technique of quasilinearization 
can be used successfully to calculate concentration profiles 
and fluxes for various cases. However, it has been our ex- 
perience (Suchdeo and Schultz, 1971) that this method 
becomes awkward, that is, it requires extremely small step 
sizes, as the Damkohler number increases and the system 
approaches the equilibrium regime. Bassett and Schultz 
(1970) used a Runge-Kutta technique but found that con- 
vergence was difficult to realize even in the near-diffusion, 
nonequilibrium regime. Ward (1970) and Smith et al. 
( 1973) have presented numerical solutions, but their al- 
gorithms were not given in detail. Recently Yung and 
Probstein (1973) have suggested a method of formulating 
the differential equations for the particular case At + B = 
C in dimensionless form so as to make convergence of the 
numerical solution somewhat more direct. 

The availability of analytical solutions is even more re- 
strictive than that of numerical solutions. As shown in 
several places in this review, exact analytical solutions for 
simple membranes have been derived only for reactions 
with linear kinetics. Another approach that has been taken 
is to obtain an analytical solution for a particular set of 
restrictive conditions and then attempt to extend the range 
of validity by incorporating an interpolation factor. 

Thus, Brian and Bodman (1964) showed that a linear- 
ized solution for facilitated heat transfer could be extended 
over a wide parametic range by incorporating a factor to 
make the solution correct in the extremes of equilibrium 
and frozen conditions. 

A similar device was used by Yung and Probstein (1973) 
for the example cited above, with the restrictions of equal 
carrier diffusivity ( D s  = Dc) and zero downstream con- 
centration for the permeant species A. An analytical solu- 
tion was obtained for the limit of small upstream concen- 
trations of A, -dAK + 0, and then extended to finite up- 
stream concentration of A by an interpolation formula, to 
give the following: 

Fig. 2. Representation of the eigenvalues or spectrum of I' in the 

complex plane, the contours G and G, and the branch cut associated 
with z'la a t  z = 0. 

- 

and 

(1 - 2d;tanh (2&)-l) K cA 
1 + - K Ctot { B }  2d; tanh ( 2 T r ) - l  

(4.2) - - 
DB 
DA 

where 

This solution works well for moderate values of the parame- 
ters LAK and DB/DA K Ctot (€3). 

In view of the fact that only a very few of the many pos- 
sible types of carrier-mediated transport systems have been 
studied in detail, we have thought it useful to suggest a 
systematic approach for analyzing new systems of interest, 
as follows: 

Based on the results already obtained for various systems 
and reported in the literature, it appears that if the facili- 
tation factors calculated for linear kinetics are approxi- 
mately equal to those calculated assuming complete chemi- 
cal reaction equilibrium, then the linearized equations pro- 
vide the easiest and most direct path to an overall descrip- 
tion of the system. In terms of the development outlined 
here, one first estimates the expected fluxes for the specific 
physical conditions but assuming reaction equilibrium as 
outlined in Section 3, Equations (3.11) to (3.14). Then, 
similar calculations are made by linearizing the kinetic 
expression as outlined in Part I, Section 4, and Part 11, 
Section 2, Equations (2.14) to (2.19). If the facilitation 
factors estimated by these two techniques are similar in 
the reaction equilibrium regime, then the facilitation esti- 
mated by the linearized technique would be expected to 
be valid over the entire range of Damkohler numbers, all 
the way from the near-diffusion to the near-equilibrium 
regime. 

If, on the contrary, the results of the linear analysis are 
not valid in the near equilibrium regime, then one can use 
the strong boundary-layer analysis as outlined in Section 3. 
Although one is not completely sure of the range of 
of these approximate equations in terms of Darnkohler 
numbers one can augment this calculation with the near- 
diffusion, regular perturbation scheme as discussed in 
Equations (3.4) to (3.7). 

If these approximate analytical techniques do not pro- 
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vide reasonably consistent estimates of fluxes, then one 
ma be forced to explore direct numerical solutions of the 
d r e n t i a l  equations. 

While not stated above in explicit mathematical terms, 
we should point out in concluding here that our assumption 
of prescribed concentration on permeant species at the 
membrane interfaces does not preclude treatment of other 
situations such as heterogeneous reactions at the interfaces 
or hydrodynamic (unstirred layer) resistances external to 
the membrane phase. With such effects (as with the Don- 
nan effects mentioned in Part I, Section 4) one has simply 
to couple the membrane equations with the other relevant 
governing equations (which in some cases might even in- 
volve the boundary concentrations of nonvolatile species). 
In this case, equations identical in form with (2.13) and 
(3.59) also a ply to nonvolatiles with v replaced by n. For 

resistances these may be added, a priori, to the membrane 
resistance of (2.13) or the boundary-layer resistances of 
(2.13) and (3.59). 

example, in t K e relatively simple case of (linear) external 

Arws Which Deserve Further Attention 
In the course of writing this review, several areas have 

emerged which, in our view, are not well understood and 
merit attention. We list them here, with some brief com- 
mentary, in the hope of kindling interest in the questions: 

1 .  Rational Correction to Linear Theory. We have de- 
rived some general results for linearized kinetics in Section 
2. However, these results suffer, as do those of irreversible 
thermodynamics, from the fact that no criteria for the range 
of validity of the solutions are available. There is a need 
for the development of rational correction terms to indicate 
the range of validity of the results. 

2. Exact Treatment of the Boundary-Layer Problem and 
Derivation of Rational, Higher Order Correction Terms. As 
pointed out in the concluding remarks of Section 3, the 
boundary-layer method discussed there must be regard4 
as a proximate since it involves linearization in terms that, 

the carrier-dominated regime. Until the nature of this ap- 
proximation is further elucidated, there is some doubt as 
to the meaning of the type of higher-order ex ansion pro- 
posed for a special case by Smith et al. (19737. 

While the method as it stands appears to give excellent 
results in several applications, even without higher-order 
corrections, we feel it would be desirable to study the ini- 
tial, linear approximation further in order to derive cor- 
rection term in a rational way. 

3. Other Geometries. Almost all the results given here 
are for simple planar geometries. Yet, in the application of 
carrier-mediated transport, it is quite likely that spherical 
shapes (for example, cells) and cylindrical forms (for ex- 
ample, tubular membranes), as well as heterogeneous me- 
dia, will often be of more interest. Stroeve et al. (1972) 
have attacked this kind of problem within the framework 
of the linearized analysis, and extensions to the nonlinear 
regime would be of interest. Not the least problem in this 
regard is the development of a general method for calculat- 
ing reaction-equilibrium fluxes in these systems. 

4.  Multiple Reactions with Vastly Different Reaction 
Rates. In all but the linear analyses, we have restricted 
ourselves to reactions which can all be assumed slow or 
fast relative to diffusion. Clearly, in many situations some 
reactions will be virtually instantaneous in comparison with 
other coexistant steps. The transport of COZ through bi- 
carbonate solutions is a case in point. The analysis is sim- 
plified enormously if some of the reactions can be assumed 
to be at equilibrium; however, there is no method available 
now to make this assessment objectively. 
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whi f e nominally O (  c ) ,  may actually be O (  1)  for e + 0 in 

5. Unsteady and Cyclic Operation. We have restricted 
ourselves here mainly to steady state operation, but it is 
clear that rather different behavior would be expected in 
the unsteady state. There has been virtually no analysis of 
these effects, apart from some numerical studies for oxy- 
gen diffusion into hemoglobin solutions of finite thickness, 
see Spaan ( 1973). 

6. Electrical Field and Charge Eflects. As mentioned in 
Part I, most of the theoretical work on electrical field and 
charge effects has been directed toward the study of lipid- 
bilayer membranes. In these studies, homogeneous chemi- 
cal reaction rates are usually assumed to be instantaneous. 
However, it is precisely in the case of extremely thin films, 
with low Damkohler numbers, that reaction-rate limitations 
may severely decrease the carried-mediated flux. 

7. Forced, Natural Convection, and Marangoni Effects. 
One can expect increased transport rates when bulk flows 
occur to supplement the rates of diffusion of carriers and 
other species. Such convection, due to coupling, might 
even occur in natural membranes, owing to the mobility of 
surface layers. 

8. Thermodynamics and Eficiency of Membrane Separa- 
tions. One of the important questions in biological mem- 
brane transport relates to the energetic requirements for 
solute transport since a large part of the metabolic load 
on a cell may be attributed to the work of transport. Here 
not only must one consider the coupling of passive mech- 
anisms but also, and perhaps more importantly, the cou- 
pling of irreversible reactions with carrier-mediated trans- 
port. As a prelude to such questions there is a brief dis- 
cussion of energetics in Appendix 4. 
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NOTATION 

u = Helmholtz free energy/vol. of mixture (Appendix 

aij = metric tensor, derived from a at an equilibrium 

AiS = coefficients of transformation 
bi = constants of integration, (1.6) and (A2.1) 
C{  } = concentration of a species, mole/cm3 
C ,  ( C , )  = vector of concentrations (and components), 

D, ( Dms, D,) = diffusivity, tensor (and components), 

Deff = effective or apparent diffusivity, cm2/s 
E, Ei ( Es, E iS)  = reaction invariants (and components) or 

& = chemical species 
f = fractional mediation, relative to equilibrium, 

(2.33) 

f = diffusion plus migration force, (A1.4) 
f ( z )  = function of a complex variable (Appendix 3)  
F = number of free or permeant species 
F' = number of nonvolatile or trapped species 

g = migration force, (A1.5) 
<Gut>,, = matrix in (3.69) 
Is, l i s  = components of composition invariants 

1) 

state 

mole/cm3 

cm2/s 

basis vectors 

+ 

+ 
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Z’ 
2i = system composition invariant 

t i ,  ti 
J, ( Js) = diffusion flux vector (and components), mole/ 

k, (ks) = vector of reaction rate constants (and compo- 

K, (ksm) = tensor of kinetic constants (and components) 
K = equilibrium constant 
L = membrane thickness, cm 
Li, 
n = surface normal 

N, ( N , )  = flux vector (and components), mole/cm2-s 
N {  }, N ,  = total molar flux or transmembrane flux of a 

n{ } = amount (species, or entity), moles 
P, ( P m s )  = permeability tensor (and components) 
R = number of independent chemical reactions 
R’ = number of reaction invariants or radicals 
r, ( r s )  = vector of species reaction rates (and compo- 

nents) 
S 
8 
T = absolute temperature 
t = time,s 
ui, ui = right and left eigenve.ctors of r (Appendix 3) 
V 

= number of fixed stoichiometric invariants 

= general diffusion-flux, moles i/cm2-s 
-D 

4 - 3  

cm2-s 

nents) 

= Onsager coefficients for diffusion (Appendix 1)  
-D 

- + - +  

species, mole/cm2-s 

= number of chemical species 
= linear space of chemical species 

= volume, cm3, or region in space; aV = boundary 

= molar average velocity, Equation (A1.3), cm/s 

of v 
+ 
u 
w(h)  = function defined by Equation (2.19) 
x = distance, cm 
Xi 

Z 
tion (3.81) 

ZSm = transport numbers 
z 

= com onents of concentration on basis of Equation 

= parameters defined in Equation (3.77) or Equa- 
(1.47 

= (complex) variable (Appendix 3)  

Greek Letters 
a, (as) = vector of stoichiometric coefficients (and com- 

P, (&) = vector [and components of Equations (2.24) 

y = a Damkohler number defined by Equation (I 4.11) 
yi = eigenvalues of I? (Appendix 3)  Damkohler num- 

I‘ = diffusion-reaction tensors of Equations (2.1) and 

S(Z) = reaction-layer dimension defined by Equations 

Sit = Kronecker delta 

ponents) 

and (3.60)] 

bers for reaction modes 

(3.41). 

(3.77) 

8; = reaction-layer thickness for species s, Equation 
(2.29) 

r{ } = {-} - {-}, decrement across membrane, Equation 

a = y-I l2, perturbation parameter for rapid reactions 
Kji ,  ~ i j  = Onsager coefficients for reaction (Appendix 1 )  
A =positive square root of r, Equations (2.3) and 

= inverse reaction-layer thickness 
X,  = 6 eigenvalues of A 
& = composition coordinate 
p = reaction contribution to flux, Equations (2.25), 

(3.62) 
CP = facilitation factor 

(2.5) 

(3.43) 

p* 

vi = general flux vector 
nci) = oblique projections onto the respective eigen- 

u 
oi 
Sa, ( ams) = resistance tensors (and components), Equa- 

Superscripts 

i, j ,  k = co-variant components (contrary to the usual ten- 
sor convention), or enumerative indices, for reac- 
tion invariants or reaction paths 

= chemical potential, Equation (A1.6) 
--* 

spaces of r 
= parameter, Equations (3.30) and (3.76) 
= general reaction rate coordinate 

tions (2.12), (3.54), and (A3.19) 

n, p = nonvolatile or permanent species 
s, 1, m = species 
0, t = volatile species 

-1 = inverse of tensors (or matrices); for example, 
( E - l ) m i  are the components of the inverse for 
Ei“; D-I is the inverse of D, etc. 

Subscripts 

A, B, C = value for species A, B, C . . . 
eq 
0 
i, i, k = contravariant components (cide supra. under 

Superscripts), or enumerative indices, for reac- 
tion invariants or reaction paths 

0 = typical or equilibrium value 

= value evaluated at chemical-reaction equilibrium 
= value in the absence of chemical reactions 

n, p = nonvolatile or ‘‘permanent’’ species 
s, 1, m = chemical species 
u, t = volatile species 
tot 

Overbar indicates value evaluated at left boundary (or 
on the boundary aV of a three dimension region) and un- 
derbar indicates value evaluated at right boundary. Carets 
denote equilibrium-core values. Brackets < > denote arith- 
metic average of boundary values. For “direct” vector and 
tensor notational convention, see Part I, Notation, and Ap- 
pendix 1 here.’ 

= initial amount added to membrane 
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APPENDIX 1. A NOTE ON RATE EQUATIONS 

Apart from the somewhat speculative considerations of un- 
usual transport mechanisms discussed above in Part I, most of 
the past mathematical treatments of carrier-mediated transport 
have proceeded from the suppositions that the relative mobility 
of each chemical species can be attributed solely to molecular 
(o r  else, Brownian) diffusion and that the classical linear laws 
of diffusion in a mixture are adequate to describe this phenome- 
non. The relevant theory of diffusion is well established and dis- 
cussed in several textbooks (for example, DeGroot and Mazur, 
1962; Bird, Stewart, and Lightfoot, 1960; Katchalsky and Cur- 
ran, 1967; Lightfoot, 1974). Here, we wish merely to sum- 
marize a few key relationships that establish the connection 
between the form of the rate laws for diffusion and reaction 
adopted here and those employed elsewhere, especially in the 
treatments based on linear nonequilibrium thermodynamics 
( Friedlander and Keller, 1965; Blumenthal and Katchalsky, 
1969; Katchalsky and Curran, 1967). 

In terms of general composition coordinates related to actual 
(molar) concentration and flux fields by a (constant) transfor- 
mation of the form ( I  3.31), we may define a general diffusional 
flux (with units of Ai per unit area per unit time) by 

+ +  + 
ii = J {Ai} = Ais J, ( A M )  

Here, J, is the diffusional (plus migrational) species flux rela- 
tive to the mixture, as defined by 

-3 

- + +  -* 
JS = N s  - Cs , S = 1,. . ., S (A1.2) 

-+ 
where o is the (molar average) mixture velocity 

r s  

Then, the general (isothermal) form of the linear diffusion law 
is taken to be 

(A1.4) 
+ 

where Lire is an Onsager coefficient and f ”  is the diffusional 
plus migrational force (per unit AT,). The force is understood 
here to be 

f i  = - V p i +  g i  (A1.5) 

the first term of which represents the chemico-diffusional force, 
as derived from the chemical potential; that is, in terms of the 
variables adopted here, the partial derivatives (a t  constant tem- 
nerature) 

+ + +  

k # i  
/Li = (A1.6) 

where a represents the local Helmholtz free energy per unit 
volume of mixture. ( In  the case where the variables corre- 
spond to actual species concentrations Cs, the corresponding 
derivatives ps can of course be equated to the partial molar 
Gibbs free energy.) The second term of (A1.5) represents, then, 
the migrational force due to all other force fields. (Any physical 
units for ti allowed by a transformation of the type ( I  3.31) 
are permissible. The- units of other quantities follow then from 
the requirements that Equations (A1.4) and (A1.5)  be term- 

wise dimensionally consistent and that f i  . ji represent a dissi- 
pation rate with dimensions energy/volume/time. ) 

- + +  
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AS in most of the existing treatments of carrier-mediated 
transport, we have restricted our attention to systems that are 
presumably uniform in temperature (and pressure) and there- 
fore we have excluded the type of terms from (Al .1)  that are 
often used to describe effects such as thermo- (and pressure) 
diffusion. Moreover, we have adopted a form of (Al .1)  that is, 
strictly speaking, appropriate only to isotropic media, an as- 
sumption which appears to be typical of most analyses on the 
present subject. Even though some biological and artificial 
media may not possess this character, manifestations to the 
contrary would often be concealed especially in the usual ex- 
periments on membranes where only unidirection gradients and 
fluxes come into play.’ 

On the other hand through the term g i in (A1.5) such effects 
as forced migration, most importantly electro-migration may be 
considered. These arise generally in connection with the pres- 
ence of char ed or ionic species. However, in the mathematical 
analysis of t b s  review no explicit account is made of electro- 
diffusion effects or of other force fields, nor is convection in the 

medium considered, so that in effect we have set u = 0 and g i 
= 0 in (A1.5). 

As is done in thermodynamic treatments of multicomponent 
diffusion, we have adopted here the chemical potential as the 
progenitor of the compositional driving force for diffusion. For 
the purposes of establishing a complete correspondence with 
linear-thermodynamic treatments, it is convenient to pursue this 
formalism further. In particular, we may now set down a formal 
transformation rule, based on the use of general tensor notation, 
which allows for a rather direct connection with the linear- 
irreversible thermodynamic approaches that have been exploited 
in several instances to treat reaction-coupled transport. In par- 
ticular, we have anticipated the desirability of distinguishing 
between contravariant and covariant quantities (superscripted 
and subscripted ) respectively, for the present purposes, to be 
related through a suitable metric tensor uij, say, with metric 
having dimensions of energy density. Whatever the (positive- 
definite, nonsingular ) metric tensor adopted, we stipulate that 
it reduce in the near-equilibrium limit 

-b 

-3 -3 

(A1.10) 

In this case, the requirement of positive-definiteness will be 
recognized as the restriction on the convexity of a, that is, the 
restriction on the Hessian form (with units of energy per unit 
volume ) , 

imposed by the classical condition of stability of an (isothermal) 
equilibrium state where 

Then, we may raise and lower indices in accordance with the 

~~ ~ 

0 As discussed in Part I, it would appear that the character of an 
asymmetric membrane, with apparent directional anisotropy in the nor- 
mal direction to its plane, could often be more plausibly explained as 
a gross manifestation of a corresponding directional nonhomogeneity, 
arising from structural gradients, as in stratified membranes, or from 
property gradients, owing possibly to gradients in temperature or activity 
(such as might be induced by pH in the latter case). Some workers 
have at least broached the theoretical question, for example, Katchalsky 
and Oster (1968), who point out that anisotropy introduces the possi- 
bility (or perhaps one should say “raises the specter”) of such complex 
phenomena as linear coupling between reaction kinetics and diffusion. 

O 0  The introduction of a metric is implicit in the thermodynamic treat- 
ment presented in other works, for example, DeGroot and Mazur (1962). 
Under large departures from local thermodynamic equilibrium, the formal 
adherence to a metric derived from the chemical potential must be 
regarded as a tenuous procedure. In this case, the metric must be re- 
garded as somewhat arbitrary although it might be made to correspond 
to the notion of a pseudo-free-energy discussed by Feinberg (1972). 

t Thus, with our previous interpretation of certain of the 5r as ex- 
tents of reaction, Equation (A1.12) will he recognized as the usual con- 
dition for chemical equilibrium in terms of these coordinates, which 
express the degrees of freedom in a closed system, subject to the con- 
stancy of the reaction invariants. 

usual tensor formalism. For example, if the variables ti are 
taken to be the actual molar concentrations Cs, we denote Lij 
by L,,, and, to relate those to a set of multicomponent diffusiv- 
ities often used in the literature on diffusion (see Bird et al., 
1960, Lightfoot, 1974) we take 

(A1.15) 

In terms of these quantities, then, the molar diffusion fluxes, Is 
( moles/area-time ) are derived from the concentration fields 
( moles/volume) by 

+ + 
Is = - Dsm VCm (A1.14) 

With the notational convention adopted above, we can ex- 
press the various balance and rate equations used here in an 
unambiguous direct notation. Thus we have, for total flux: 

+ - +  + 
N = J + C u  

and for the diffusion plus migration flux: 
+ + +  
J = D * ( - V C + g )  

and species balance: 

ac 
at  

+ +  
V . N = r - -  

where any set of independent coordinates of the type (1 .2)  may 
he used to express the components involved. 

One is now in a position to establish a direct connection with 
the linearized thermodynamic analyses of previous works. Thus, 
in terms of general composition coordinates, the linearized rate 
expression ( I  4.3) becomes 

Wi = - K$ ( ( j  - &j” ) (A1.16) 

For the special choice of coordinates in ( I  3.32) and ( I  3.39), 
the only nonzero reaction rates wi are those corresponding to the 
R extents of reaction ti, i = R’ + 1, . . . , S; and, therefore, 
the chemical potential pi is the affinity for the associated ti. 
Thus, at equilibrium where ti = ti4, 

(KLi)eq = 0; (A1.17) 

whereas, in a state near to equilibrium, Equation (A1.16) is 
equivalent to 

wi = - Kij8pj (A1.18) 
with 

and with 

Spj = pj - ( pj)eq &j = &( ti - ti0 ) 

Kij = dk K k i  

Having established the above formal correspondence with 
near-equilibrium thermodynamic theories, we shall also adopt 
certain of the (constitutive) restrictions on the various kinetic 
coefficients which are usually imposed in these theories (De- 
Groot and Mazur, 1962; Katchalsky and Curran, 1967). In par- 
ticular, we shall adopt the usual symmetry requirement for the 
Onsager coefficients: 

L. .  11 - - L.. 11, Kij = K j i  (A1.19) 

i, j = 1, . . ., S, and assume the positive-definiteness (and, 
hence, invertibility ) of Lij: 

Lijb‘bj > O (A1.20) 
for (real) bi + 0, i = 1 , .  . ., S. 

In general ternis, this implies that the tensors (matrices) D 
and K are real and self-adjoint (that is, similar to symmetric 
matrices) and that D is positive definite (and nonsingular). 
Siniilarly, if one rules out near-equilibrium kinetics of the un- 
stable (in time) type, one has the further requirement that K 
be nonnegative ( Higgens, 1967) : 

b * K . b l O  (A1.21) 
for real b # 0. This assumption appears to be crucial to the 
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boundary-layer analysis of Section 3, since it ensures an expo- 
nential spatial decay to equilibrium (see Goddard et al., 1970). 

As a final note here, we should, of course, acknowledge that 
the assumption of constant diffusivity D, used as a simplifica- 
tion in most of the analysis of this review, cannot generally be 
correct. As usual in diffusion problems, a correct accounting for 
the variation of D with concentration (were one so fortunate 
as to know it! ), would lead to greater mathematical complexity 
(nonlinearity) without substantially altering, it is felt, the most 
important conclusions of the analysis. 

At any rate, it is possible to account for variable D within 
the framework of the boundary-layer treatment given in Section 
3 above (and to the order O(E) of terms retained), by simply 
employing values appropriate to the local equilibrium concen- 

tration C. This has also been discussed for a related heat transfer 
problem ( Goddard et al., 1974 ). 

A 

APPENDIX 2. NECESSITY OF INTEGRAL CONSTRAINTS 

Here we wish to show briefly that the specification of integral 
constraints or system invariants is necessary for uniqueness of 
solutions to the steady state diffusion-reaction problem governed 
by (1.5), in some bounded three-dimensional region V and 
subject to F’ no-flux conditions on nonvolatiles together with 
an appropriate set of F conditions on the volatile species, on 
the boundary av of V. 

We have recourse to the general integral anticipated in 

( I  3.40), with j i  = pi ,  to which there corresponds the I’ inte- 
grals for ( 1.4) : 

+ - b  

Xi = bi (acons tan t inv)  for i = F + 1,. . . ,R’ 

(A2.1) 

Thus, we are left with the I’ constants of integration bi and 
a number S - I‘ = F + R of equations in (1.5), F of which 
are of the harmonic type ( w  = 0),  and R of which, having 
nonvanishing reaction terms, will generally involve the above 
constants bi through the kinetic dependence of wi.  The solution 
of these remaining equations must satisfy the F’ flux conditions 

(A2.2) 

where I’ terms, i = F + 1, . . ., R’, corresponding to the con- 
stants bi of (A2.1) vanish from the sum in (A2.2). However, 
at most R of the F’ relations in (A2.2) are linearly independent, 
because the linear transformation, represented there by an F’ x 
I‘ matrix, is of rank R at most. This follows directly from the 
fact that the matrix ( E - l ) s i  must have a form identical with 
that of its inverse EiS, displayed in ( I  3.39)* so that the non- 
zero elements of the above F’ x I’ subinatrix (E-l) , i ,  s = F + 1, . . ., S, i = 1, . . ., F, R’ + 1, . . ., S )  are seen to consist 
simply of an F’ x R’ matrix. The latter is of maximal rank R, 
since here F’ - R = I’ 10. 

Then, given any set of F independent boundary conditions 
imposed on volatiles, for example, prescribed interfacial con- 
centrations: 

Cs = (D-l) , ’”  Emi X i  = cs, on aV (A2.3) 

where the cs are given functions on the points of av, for s = 
1, . . ., F, we shall have F + R equations of the type (1.5), 
together with a total of F + R boundary conditions in (A2.2) 
and (A2.3) and with I’, as yet arbitrary constants that are gen- 
erally involved in both (1.5) and (A2.3). 

Therefore, in general, it appears that I’ further conditions are 
necessary to eliminate the arbitrary constants and, thereby, to 
allow for a unique solution of the problem at  hand. The physi- 
cally obvious choice lies in the specification of volume integrals 
of the type ( I  3.38), which in turn are seen to be intimately 

connected with the general flux integrals of ( I  3.40) and their 
consequents, (A2.1), for problems involving only diffusive 
transport. 

APPENDIX 3. REPRESENTATIONS FOR MEMBRANE AND 
BOUNDARY-LAYER RESISTANCES 

We present here some formulae that are valuable for the 
representation and calculation of the various resistance tensors 
discussed in Sections 2 and 3 above. 

We make use of some results from the spectral theory of 
linear operators on finite-dimensional linear vector spaces ( see 
Friedman, 1956) or, equivalently, the theory of matrices (see 
Amundson, 1966; or Lancaster, 1969). In the present case, we 
are of course interested in the tensor r defined by (2.1), in a 
space of S dimensions.6 In particular, given a linear transforma- 
tion r or its matrix representation together with a function 
f ( z )  defined on complex variables z, the linear operator or 
matrix function f (  r), analytic on the spectrum of r, is de- 
fined by the Cauchy integral: 

(A3.1) 

where G is a contour in the complex z-plane enclosing the spec- 
trum (eigenvalues) of r, and f ( z )  is any (scalar) function 
analytic on the closed region bounded by G (Friedman, 1956; 
Lancaster, 1969). The spectrum of 1” is of course determined 
by the roots 71, 7 2 ,  . ., ys of the characteristic equation 

det (r - r l )  = p ( r )  = yS + p s - i ~ s - l  + p s - 2 ~ s - 2  

+.. .+ p o = O  (A3.2) 

whose coefficients p k  can be computed directly from traces of 
the matrices for I?, k = 1, 2, . . ., S (see Amundson, 1966). 
In the case of a discrete (or nondegenerate) spectrum of dis- 
tinct eigenvalues, ( ys # ym for s # m )  Equation (A3.1) leads, 
by means of the residue theorem, to the usual form of Sylvester’s 
Theorem: 

f(r) = 2 i ( ~ )  n(o 
S 

(A3.3) 
i=l  

(Amundson, 1966), for i = 1, 2, . . ., S. Here, 

. -  
with parentheses ( i )  denoting exclusion from the product of 
the indicia1 value i = i. The products n(i) represent oblique 
projections onto the invariant subspaces associated with the 
eigenvalues y i  [and are called components in other contexts 
(Lancaster, 1969)I. Alternatively, and in terms of the corre- 
sponding, appropriately normalized right- and left-eigenvectors, 
say ui and ui, respectively, the projection I I ( i )  can be repre- 
sented as the dyad 

n(i) = ui  ui, (no sum) (A3.5) 

where ui and ui  satisfy equations of the type (2.15), and 

u i .  u. 1 -  - 6.i 3 (A3.6) 

for i, j = 1, 2, . . ., S. Also one has the further relaitons 

for i, j = 1, 2, . . ., S (Lancaster, 1969). 
In the present context, the ui represent reaction rate constants 

(vectors) associated with the individual reaction modes, whose 

*As Table 6, Part 1. 
*Moreover, can be assumed simple (Lancaster, 1969) because of 

the restrictions of Appendix 1. 
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respective stoichiometric coefficients are given by D - 1  - E* in 
(2 .14) .  

However, in practice it is not expeditious to actually deter- 
mine eigenvectors. Furthermore, because of stoichiometric de- 
pendence amongst reactions, the null space of r can have di- 
mension S - R = R' > 1, corresponding to a number of re- 
peated null roots, 7 = 0, of (A3.2) and to a range of r having 
dimension R < S - 1, with nonzero (real, positive) eigenval- 
ues,' say, 0 L Y R . + ~  . . . 6 ys as depicted in Figure 2. Thus, 
for the purposes of the actual computations required in Sections 
2 and 3 above, some qualification and modification of the result 
(A3.3) is necessary. 

Membrane Resistance for Linearized Kinetics 

of interest: 
In  the case of the resistance tensor S& of (2 .12) ,  the function 

f(z) = w ( z % )  = (G) tanh(?) (A3.8) 

implied formally by (2 .8)  and (2.12),  that is, 
r% a = [  -coth- rs]-l * D-1, (A3.9) 

2 2 

is indeed analytic on the spectrum of r and, in particular, at 
2; = 0, even though zsz is not. As a consequence, the contour 
integral of (A3.1) can be reduced, as already anticipated in 
(2.17),  to the form: 

R 

(A3.10) 
where 

and 

R 

with Z representing the sum over the R, presumably dis- 
i 

R(i )  

Crete, nonzero eigenvalues yi and denoting a product with 

the factor for i = i excluded. (The present discussion is limited 
to the case where the nonzero yi are distinct: yi # Tj for i # i 
and i, j = R' + 1, . . ., S. vide infra.) The projections IIci) 

have the same interpretation as above, and 1 represents the 

projection onto the range of r (hence, 0 the projection onto 
the null space of r, which can be represented, as in (2.17),  
by any suitable orthonormal basis). 

For purposes of computation, (A3.12) and, hence (A3.10),  
can be further simplified by means of the decomposition of the 
characteristic equation for r: 

II j 

- 
- 

w 

( r ) R ' . p ( r )  E p ( r )  ~ 0 ,  (A3.13) 
where 

S 
I p ( r ) =  IT ( r - Y r i i ) = r R  

j = R ' + l  - - - -  + P R - 1  rR-' + P R - 2  l"R-2 + , . + PO 1 E 0 (A3.14) 

is the characteristic equation of 1: restricted to the range of 

0 For brevity in other formulae, we have written Xt for fi in the 
text. Also, we assume there is no null eigenvalue associated with a 
reaction-equilibrium point. Otherwise, R + 1 would have to be inter- 
preted as the actual number of stoichiometrically independent reactions. 

- 
J?, the latter equation serving as well as (A3.11) to define 1. 
Then, the product appearing in (A3.12) becomes, by (A3.11) 
and (A3.14),  

- 
However, since X' * 0 = 0 and because of (A3.7),  it follows 
that 

N 

r - yjl 

Ti - Y j  
(A3.15) 

This relation,together with (A3.14), as a defining equation for 

1, leads directly to the polynomial in r of degree R for I W :  
- 

x 
n(i) = C n j ( i )  rj = nl(i) r + b ( i )  ~2 

j = 1  + . . . + IW) r R  ( ~ 3 . 1 6 )  

n ~ ( ~ )  = - 1 fl (7) 1 = [ Z- dP ( z )  I-' (A3.17) 
T i J  i - 7 j  dz z=yi 

k = j  

IIR'~' [pj + p j + ~  Ti + . a a + (7iIR-'1 
- -  

(A3.18) - 
for j = 1, . . ., R - 1, i = R' + 1, . . ., S. Here, p ( z )  repre- 

sents the reduced polynomial in (A3.14),  and p k  ( p~ = 1 )  its 

coefficients. Equations (A3.10) ,  (A3.11) for 0, and (A3.16) 
can obviously be combined, then, to give a polynomial of maxi- 
mal degree R 6 S - 1 for f( I-). 

Boundory-Layer Resistances 

In the case of the boundary-layer resistance tensors % and 
=of Section 3, we are confronted with formal operations of 
the type 

S& = ( D A ) - l  (A3.19) 
where, formally, 

(the positive square root) which, together with the inverse 
A-1 implied in (A3.19),  are restricted to the ran e of F, 

distinguish right- and left-hand boundaries. 
In terms of a contour integral, the operation in question can 

simply be defined by substituting for the contour G in (A3.1) 

a contour G, illustrated in Figure 2, which excludes the singu- 
lar point z = 0 of the function f (  z )  = z - %  and encloses only 
the positive spectrum of r. Then, with a suitably chosen branch 
cut, say the negative real axis, as shown in Figure 2, the func- 
tions 2% and z-% can be rendered analytic in the region 

bounded by G. Therefore, for the case of a nondegenerate posi- 
tive spectrum (ri # yj for i # i and i, j = R' + 1, . . ., S) ,  
one has 

- -  
- 

A = @  

Here, as in the following, we drop overbars and un 2 erbars to 

- 

- 

Again, a polynomial in I? can be obtained from (A3.16) and 
(A3.20).' 

*Furthermore, the polynomial now has r as lowest-order term and 
is therefore factorizable. 
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Such polynomial forms are especially convenient for the com- 
putation involved in Section 2 and 3 and, indeed, have received 
application to the case of two independent reactions ( R  = 2, 
S = 4 )  by Suchdeo et al. (1973). 

The exceptional case of degenerate eigenvalues, that is, re- 
peated positive roots of (A3.2), can also be treated by contour 
integrals (involving multipole singularities ), or equivalent de- 
vices (Friedman, 1956). However, we shall not attempt here 
to explicitly set down any of the details. [Because r is as- 
sumed to be simple, the relevant polynomial forms for (A3.10) 
and ( A320 ) can in principle always be derived from the mini- 
mal polynomial for r, as, incidentally and alternatively, could 
the expressions roposed here for distinct nonzero roots. (See 
Lancaster, 1969j1 

APPENDIX 4. ENERGETIC ASPECTS OF 

PASSIVE VS. ACTIVE PROCESSES 
CARRIER-MEDIATED TRANSPORT: 

In much of the literature on membrane transport processes, 
it has become the custom to categorize these as either passive 
or active, depending on the apparent energetics of the processes 
involved, and there have been various attempts to give precise 
definitions to these notions (see Katchalsky and Curran, 1967). 
Roughly speaking, one may say that passive transport is charac- 
terized by a net loss or dissipation of chemical potential en- 
gendered by the flux of volatile or itinerant species through 
the system, whereas an active transport process can exhibit an 
apparent dissipation rate of zero or even a net gain in chemical 
potential of the transported species, a t  least if attention is 
focused on some experimentally observed or otherwise select 
set of such species. In this context, the words apparent and 
select are crucial since it is imminently plausible that in all 
nominally active transport systems the necessary chemical or 
electrochemical energy supply can be attributed to chemical 
species which are inherent to, or transported into, a system and 
not accounted for. 

It is beyond the scope of this review to dwell at length on 
such speculations and their implications for biological or arti- 
ficial transport systems. Nevertheless, some further brief remarks 
are perhaps warranted in view of the numerous literature ref- 
erences to the role of carrier-mediation in nominally active proc- 
esses (Schultz and Curran, 1970) and the frequent attributions 
of active character to carrier-mediated systems (Cussler, 1971). 

In order to provide some rational basis for categorizing 
carrier-mediated transport according to energetics, a definition 
of passive (and, by exclusion, active) transport is offered here. 
For this purpose it is necessary to identify some select set of 
chemical pecies. In addition, attention will be restricted to sys- 
tems which are in a steady state, or an apparent steady state 
with respect to the concentration fields of these selected sub- 
stances. 

As before, we suppose then, that, of.the select set of species 
in question, some of them, the volatile or itinerant species, s = 
1, . . ., F, may be transported across the system boundary, and 
that the respective chemical ( or electrochemical) potentials of 
the volatiles ps, say, are controllable, that is, may be adjusted 
or specified at will' on the boundary av. Then, we define the 
system as chemically passive if in the steady state, with respect 
to the select set of species (and possibly, in some restricted 
domain of variation of the ps, s = 1, . . ., F ) ,  the following in- 
equality holds for all distributions of 11s (in the domain of varia- 
tion) on the boundary av: 

(A4.1) 

where T is the (presumably assignable) absolute temperature 

on the boundary and where pv Nu = 2 ps N,. Otherwise, the 

system might be interpreted to be active with respect to the 
given set of chemical species. 

F 
-3 + 

s = 1  

More generally, one could allow for the specification of joint con- 
ditions on the boundary flux and potential of the volatiles. 
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For a steady state system the integral in (A4.1) is seen to 
represent the chemical ( or electrochemical) dissipation rate 
associated with a given set of volatile species, as reckoned by 
the effect on the immediately adjacent surroundings. By con- 
trast, the total dissipation rate would have to involve additional 
entropy-flux terms associated with supply to the system of heat, 
or entropy in all forms other than that accounted for in (A4.1). 
Hence, in a system which is thermally, electrically and me- 
chanically at steady state, and in the absence of heating and 
mechanical or electrical work by the surroundings, the necessary 
positivity of total dissipation requires that some chemical enti- 
ties, other than those accounted for explicitly, be exchanged 
with the surroundings or undergo accumulation (and/or deple- 
tion) in the interior of the system. 

While again the intent here is not to explore the ramifications 
in great detail, it is worth noting that, if all chemical species 
were accounted for, the carrier-mediated transport system, as 
defined in Part I, would probably not qualify as producing an 
active transport process of the steady state' variety, as just de- 
fined here. Without pursuing a fully rigorous demonstration of 
this postulate, we merely recall that the carrier-mediated trans- 
port systems under discussion here are globally nonreactive in 
the steady state. Hence, the gradual (as opposed to total) de- 
pletion of certain species and the accumulation of others due to 
irreversible chemical reaction is effectively ruled out. 

Also, if all volatile or itinerant species (as opposed to a spe- 
cially selected set) are to be included in (A4.1), then that the 
validity of (A4.1) would be ensured by the usual thermody- 
namic restrictions on chemical reactions and transport proc- 
ejses so that all membranes would have to be considered pas- 
sive. 

In the case of isothermal, unidirectional membrane transport, 
(A4.1) reduces to the elementary form 

F 

Nu&" G N,&s k 0 (A4.2) 

where N u  is the transmembrane flux, in a given direction, of 
volatile species u and zpv is its transmembrane decrement of 
chemical potential, in the same direction. 

Now, the operation and conceptual value of the above gen- 
eral definition becomes simpler. To evaluate the summation in 
(A4.2), a knowledge of the transport rates (fluxes) and chemi- 
cal potentials of each member of the select set of volatile species 
must be known at both membrane surfaces. Whereas in the 
study of transport across the biological membranes, one is often 
not in a position to determine all these parameters but, rather, 
only has ready access to one side of the membrane. Under these 
circumstances one cannot correctly characterize the membrane 
as passive or otherwise. 

Also, it is all the more evident from (A4.2) that an arbitrarily 
selected subset of the volatile species may fail to satisfy the 
dissipation inequality, as, for example, in the uphill transport of 
a single species, provided there is a sufficient compensating or 
pumping effect caused by the downhill transport of other vola- 
tile species not included in the summation. 

Realistically speaking, our definition of passive transport has 
value primarily in a negative sense. That is, if for the select set 
of species the inequality (A4.2) is not satisfied, then one is as- 
sured that all the pertinent species transfers and/or other en- 
ergetic processes involved in the transport have not been identi- 
fied. On the other hand, a nonnegative value for the summation 
indicates passive transport but not necessarily the condition of 
global nonreactivity that is associated with our particular defini- 
tion of carrier transport. For example, consider the simple reac- 
tion At + B t  @ Ct, which may occur in a membrane. Al- 
though the flux of species A into the membrane will be accel- 
erated by the presence of B on the other side of the film and, 
also, the inequality (A4.2) would necessarily be satisfied, one 
would probably not characterize this system as being one of 
passive carrier transport; the point being that the system is 
globally reactive. 

s=1 

0 An extension of (A4.1) to periodic processes in time would doubt- 
less exclude active transport of a cyclic variety as well. 
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