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The shapes of Newtonian jets emerging from a long die 
depend only on two dimensionless parameters, the Reynolds and 
capillary numbers (Re and Cu), for negligible gravity and with 
no axial tension. It is known from experimental data that the 
extrudate swell for Newtonian creeping flow without surface 
tension is approximately 1.19 for a plane and 1.13 for an axi- 
symmetric jet (Goren and Wronski, 1966; Nickell et al., 1974). 
In general, the die-swell ratio decreases as the Reynolds number 
increases. The jet expands monotonically at low Re, contracts 
monotonically at high Reynolds numbers, and at some interme- 
diate critical range it first contracts and then expands to its final 
dimension (Goren and Wronski, 1966; Reddy and Tanner, 
1978). The limit of the extrudate swell at  infinite Reynolds 
number without surface tension is 0.8660 for the round jet 
(Harmon, 1955) and 0.8333 for the planar jet (Tillet, 1968). 

Surface tension is also important; in general it tends to reduce 
either expansion or contraction of the jet. For infinite surface 
tension (Cu = 0) neither expansion nor contraction is expected 
over the entire Reynolds number range. However, at high Rey- 
nolds numbers the effect of finite surface tension on the jet pro- 
file is less profound than at low Reynolds numbers. The stick- 
slip problem is equivalent to the plane Newtonian creeping flow 
with infinite surface tension. Richardson (1970), presented an 
exact analytic solution to this problem that is often used as a 
check to the various proposed methods for extrudate-swell com- 
putations (Nickell et al., 1974; Ruschak, 1980). 

In most cases, the extrudate-swell problem is solved by means 
of Picard iteration schemes. According to the boundary condi- 
tion that is used for the relocation of the free surface profile, 
these iterative procedures are classified as: kinematic iteration, 
normal-stress iteration, and shear-stress iteration schemes. The 
kinematic iteration scheme was used by Nickell et al. to solve 
the creeping axisymmetric Newtonian jet with no surface ten- 
sion, and by Reddy and Tanner to extend the computations to 
higher Reynolds numbers and to include the effect of surface 
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tension. The convergence for high Re, up to 50, was slow and for 
Cu < 1 convergence could not be achieved. Omodei, (1979, 
1980) used the same method to analyze both planar and axisyrn- 
metric Newtonian jets at Re up to 500 and Cu down to 0.2. The 
convergence at high Re was again slow and at  Cu c 0.5 the com- 
puted free-surface profiles were characterized by severe oscilla- 
tions. Silliman and Scriven (1980) showed that at low surface 
tension, Cu z 1, the kinematic iteration scheme converged very 
rapidly compared to the normal-stress iteration scheme; how- 
ever, for high surface tension, Cu < l ,  the opposite was true. The 
iterative schemes, based on successive approximations to the 
free-surface profile, exhibit linear convergence at best (Silliman 
and Scriven, 1980). 

Full Newton iteration is the alternative to the Picard iteration 
schemes. The free-surface profile is computed simultaneously 
with the velocities and pressures, and the mesh is updated at 
each iteration step. The method for nonaxisyrnmetric two- 
dimensional flows is described elsewhere (Kistler and Scriven, 
1984; Khesghi and Scriven, 1984). 

In the present paper, full Newton iteration is used to analyze 
both axisymmetric and planar jets with surface tension at sev- 
eral Reynolds numbers. In addition, gravity in the direction of 
flow is included. The method converges quadratically within 
three to five iterations in wider ranges of Reynolds and capillary 
numbers than those reported elsewhere. 

Formulation 
The mathematical formulation of the problem is adequately 

described elsewhere (Kistler and Scriven, 1984; Kheshgi and 
Scriven, 1984), and only the final residual equations are pre- 
sented here. The flow is steady and incompressible and is gov- 
erned by the momentum and continuity equations along with the 
boundary conditions of no slip at the wall and no stress at  the 
free surface. The inflow and outflow boundaries are taken at fin- 
ite distances L,,  L2, sufficiently far from the exit so that the flow 
can be considered fully developed at the inlet, and uniform at the 
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outflow plane. Thus the boundary conditions a t  the outlet are 

where TN is the total normal stress, u is the radial velocity, 
Cu = pU/u,  and h,is the final jet dimension. 

Biquadratic, @, bilinear, qi, and quadratic, @ I  rl- ,r basis func- 
tions are used to expand the unknowns u, p ,  h and weight the 
momentum, continuity, and kinematic equations, respectively. 
The final form of the residuals on the computational isopara- 
metric domain are: 

i = l , 2 ,  . . . ,  A4 (2) 

Rk = jL*  (-uhE + v ~ ~ ) @ l , _ ~ h "  d( ,  i = 1, 2,. . . , S (5) 
0 

Here, I JI is the Jacobian of the isoparametric transformation, 
St = pgR2/pUis  the Stokes number, and cr is a constant utilized 
to include the planar case in the final equations. For the planar 
jet r is substituted by y and 01 = 0, whereas cr = 1 for the axisym- 
metric jet. The nonlinear system of Eqs. 2, 3,  4, and 5 is solved 
by Newton iteration employing Hood's (1976) frontal tech- 
nique. 

Results 
In this section we present results for both planar and axisym- 

metric jets a t  Reynolds numbers from 0 to 2,000, and capillary 
numbers from 10' to The results reported by Omodei 
(1979, 1980) are restricted to Re zs 500 and Ca > 0.2. The val- 
ues of L,  and L2 were chosen so that the solution was insensitive 

to increments to these two lengths. L1 = 4.0 was found to be ade- 
quate for all Re and St, whereas L, had to be increased as Re 
and St increased. For zero St, L2 = 25 was adequate for Re 5 20, 
L2 = 100 for Re I 200, and L2 = 500 for Re 5 2,000; for nonzero 
St, L, had to be increased further. The number of elements 
ranged from 150 to 222, and the number of unknowns from 
1,541 to 2,273. 

To  check the accuracy of the finite-element predictions we 
first compared the centerline and free-surface velocities, and the 
free-surface elevation of the planar jet a t  Re = 0 and Ca = lo-' 
to the analytic solution for the stick-slip problem (Richardson, 
1970). The predictions agreed with theory to within 0.1%. The 
predictions here were obtained as a limiting case, a t  Re = 0 and 
Ca = lo-', of the general solution, i.e., the location of the free 
surface was not fixed u priori; the expected planar interface in 
this limiting case was predicted to within 0.01%. 

The computed surface profiles of a round jet, without gravity 
and surface tension a t  several Re are shown in Figure 1. The 
surface tension effects a t  Reynolds numbers 0, 8, 10, and 100 
are shown in Figure 2. Compared to earlier analyses (Omodei, 
1980), no oscillations are observed as Ca decreases. The surface 
tension reduces either expansion or contraction of the jet; a t  infi- 
nitely large surface tension (Cu - 0), there is no swelling at  all, 
as expected. At moderate Reynolds numbers, from 5 to 15, the 
surface profile is characterized by a necking. In this critical 
range, as surface tension increases the die-swell first increases 
but then starts to decrease, as shown in Figure 2b. Our results 
are identical to those of Omodei (1979, 1980) for Cu > 0.5. At 
lower capillary numbers his results exhibit oscillations and are 
limited to Ca > 0.2. 

As shown in Figure 3, the axisymmetric jet swells less than its 
planar counterpart a t  low Reynolds number. At high Reynolds 
number the opposite is observed. For the planar jet, the die-swell 
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Figure 1. Predicted free-surface profiles of a round jet. 
Various Re = pUR/p, zero surface tension 
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Figure 2. Predicted free-surface profiles of a round jet. 
Various Re - pURfp, Ca - pU/a 

ratio is 1 .I86 for Re = 0, 1 for approximately Re = 9, and 0.835 
for Re = 2,000, approaching the theoretical limit 0.8333 a t  infi- 
nite Re (Tillet, 1968); for the axisymmetric jet it is 1.128 for 
Re = 0, 1 for approximately Re = 7 ,  and 0.867 for Re = 2,000, 
approaching the theoretical limit 0.8660 for infinite Re 
(Harmon, 1955). 

The predictions were tested against the data of Gear et al. 
(1982) a t  several Reynolds and capillary numbers. The pre- 
dicted surface profiles are compared with the data in Figure 4. 
The computed and experimental final diameters agree to within 
1%. An additional feature of this work is that gravity can easily 

R - 
Ca=100000 

be included. No difficulty was found in solving the gravity- 
drawn jet on a finite, two-dimensional domain. The boundary 
condition u = 0 at  the outflow plane was adequate for nonzero 
St,  inasmuch as the outflow plane was taken sufficiently far 
from the domain of interest. In Figure 5, we compare our predic- 
tions with data taken from Trang and Yeow (1986) and Adachi 
and Yoshioka (1984). The two agree to within less than 3%. 

Conclusions 
Finite elements with full Newton iteration have been used to 

analyze round and planar Newtonian jets. The method con- 
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Figure 3. Predicted extrudates-swell ratio vs. Reynolds 
number at zero surface tension, for both planar 
and round jets. without gravity. 

Figure 4. Predicted free-surface profiles of a round jet 

----- Asymptotic values at infinite Reynolds number Comparison with data from Gear et al. (1982) 
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Figure 5. Predicted free-surface profiles of a round jet 
with gravity. 
Comparison with data from Trang and Yeow (1986; topcurve), and 
Adachi and Yoshioka (1984) 

verges fast in practically any range of dimensionless numbers 
examined. Reynolds numbers from zero to transition to turbu- 
lence, capillary numbers from zero to infinity, and Stokes num- 
bers from zero to 10. The predictions agree with the analytic 
solution of the stick-slip problem in the limiting case of zero 
Reynolds number and infinite surface tension, approach the 
asymptotic values of the extrudate swelling at infinitely large 
Reynolds numbers, and compare well with experimental data at 
several Reynolds, capillary, and Stokes numbers. The advan- 
tages of full Newton iteration compared to other methods are: 

Calculations at wider ranges of Reynolds and capillary 
numbers 

Solution of the gravity-drawn-jet problem on a finite two- 
dimensional domain 

Fast convergence with the Jacobian for information of 
linear stability analysis. 
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Notation 
Ca = capillary number, p U / a  

g = gravitational acceleration 
h - elevation of free surface 
h = final jet dimension 

1 J f  - Jacobian of isoparametric transformation 
L,, L2 - distances of inlet and outlet from exit 

M ,  N ,  S = numbers of pressure, velocity, and free-sur- 
face elevation unknowns 

p = dimensionless pressure 
R = radius 

siduals 
Pc, R i ,  R!,, Ri = continuity, kinematic, and momentum re- 

Re I Reynolds number, p U R / p  
St = Stokes number, pgR1/lrU 

T”- ,  T “ - ,  T” 

Greek letters 

7‘”- - rr, rz, zz, and 88 components of stress ten- 
sor 

T, = normal stress 
u = axial velocity component 
U = mean velocity 
v = radial velocity component 

(Y = Parameter, Eqs. 2, 3 ,4 ,5  
p = viscosity 

[, q = isoparametric coordinates 
p = density 
u = surface tension 

a‘, qi = biquadratic, bilinear basis functions 
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