
Synthesis of Multivariable Nonlinear 
Controllers by Input /Output Linearization 

This work concerns the synthesis of nonlinear controllers for multi- 
variable nonlinear processes that make the closed-loop system linear in 
an input / output sense. Necessary and sufficient conditions for input / 
output linearizability via static state feedback are derived as well as 
formulas for the feedback law. Once such a static state feedback is 
applied to the process, an external multivariable linear controller with 
integral action can control it to set point. The proposed control method- 
ology is tested through simulations in a semibatch copolymerization 
reactor example. 

Introduction 
The nonlinear, strongly interacting nature of multivariable 

chemical processes necessitates the development of solid control 
methodologies that are capable of coping with both nonlineari- 
ties and interactions. However, in the process control field, the 
customary approach has been to neglect the nonlinearities by 
approximating the nonlinear model by a linear one and to apply 
linear theory to design linear controllers. In the case of processes 
with significant nonlinearities, the linear analysis is valid only in 
an infinitesimally small neighborhood of the operating point. 

Recently. there has been considerable effort to design con- 
trollers so that the closed-loop response is exactly linear in a 
global sense. Input/output linearization involves finding nonlin- 
ear state feedback laws so that the input/output behavior of the 
closed-loop system is exactly linear. In the case of single-input/ 
single-output (SISO) systems, the problem is completely solved 
and explicit formulas for the input/output linearizing state feed- 
back laws are available (Kravaris and Chung, 1987). Once such 
a state feedback law is applied to a nonlinear process, one can 
use an external linear controller with integral action for set point 
tracking and rejection of disturbances. The resulting control 
structure is called the Globally Linearizing Contol (GLC) 
structure (Kravaris and Chung, 1987). 

In this paper, this methodology is extended to multi-input/ 
multi-output (MIMO) systems. In particular, we consider 
M l M O  nonlinear systems with equal number of inputs and out- 
puts of the form 
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where 

E Iw", 

f ( x )  is a smooth vector field on IR", gl(x), . . . , gm(x)  are 
smooth vector fields on IR", h , ( x ) ,  . . . , hm( x) are smooth 
scalar fields on IR" and m I n. 

We start with a brief necessary review of the concepts of rela- 
tive order and characteristic matrix in MIMO nonlinear sys- 
tems. These concepts are used to derive necessary and sufficient 
conditions for existence of a state feedback that linearizes a 
MIMO nonlinear system in an input/output sense and also to 
provide explicit formulas for the control law. Stability issues 
arising in connection with input/output linearization are subse- 
quently addressed. The special case where input/output decou- 
pling is obtained together with input/output linearity is consid- 
ered next. This is followed by a comparison of input/output 
linearization to linearization by immersion and to Volterra 
linearization. The theoretical results on input/output lineariza- 
tion lead to the Globally Linearizing Control (GLC) structure 
for the control of MIMO nonlinear systems. Finally, the GLC 
methodology is illustrated through a polymerization example. In 
this example, copolymer composition and number average mo- 
lecular weight are controlled by manipulating the heat input and 
the rate of addition of one of the monomers in a semibatch reac- 
tor. Simulation results verify the theoretically-predicted linear 
closed-loop response and demonstrate the successful perfor- 
mance of the proposed control methodology. 
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Relative Orders and Characteristic Matrix 
This section reviews basic definitions that will be necessary 

for the development of our main results in the following sec- 
tion. 

The concept of relative order of multivariable nonlinear sys- 
tems has been introduced in the systems theory literature with a 
variety of names and in a variety of contexts [invertibility (Hir- 
schorn, 1979), decoupling (Ha and Gilbert, 1986) and structure 
a t  infinity (Moog, 1988)]. 

Definition 1 .  Given a multivariable nonlinear system of the 
form of Eq. I ,  we say that the ith output yi has relative order ri 
if 

Lg,L$i(x) = 0, j = 1,. . . , m, k = 0, . . . , r i  - 2 (2) 

and the row vector 

is nonzero. Alternatively stated, ri is the smallest integer for 
which 

Remark I .  There may be singular points P E Iw" such that 

At these points, the relative orders r i  are not defined. Singulari- 
ties of this nature will not be considered here. 

An immediate consequence of Definition 1 is the following 
formulas for the derivatives of the system outputs. 

12 = L;h,(x), k = 1 , .  . . , ri - 1 

Therefore, ri is the smallest order of derivative of yi  that explic- 
itly depends on the vector u. 

If a system output y i  does not have a relative order, this means 
that y, and all its derivatives are not explicitly dependent on u ; 
consequently, y i  is not affected by u. In every well-formulated 
control problem, all outputs yi must possess a relative order. 
Otherwise, the system will not be output-controllable. 

Relative orders depend only on the input/output behavior of 
the system as a result of the invariance of the quantities 
Lg, L&(x) under coordinate change. Consequently, in the case 
of linear systems, the ri)s will depend on the transfer function 
matrix C(s) only and not on the particular state space realiza- 
tion. In particular, if G(s) is in matrix fraction form 

where N ( s )  and D ( s )  are polynomial matrices and D ( s )  is col- 
umn reduced, then 

r ,  = [Column Degree of the ith Column of D(s) ]  

- [Column Degree of the ith Column of N ( s ) ]  

Definition 2 (Claude, 1 9 8 6 ~ ) .  Consider a system of the form of 
Eq. 1 and assume that each output yi  possesses a relative order 
r , .  The matrix 

I :  C ( x )  = 

is called the characteristic matrix of the system of Eq. 1. 
Remark 2. The characteristic matrix is also referred to as the 

decoupling matrix (Ha and Gilbert, 1986) due to its significance 
to the nonlinear decoupling problem. We prefer the terminology 
characteristic matrix because C(x) plays a much more funda- 
mental role in multivariable control systems than just decou- 
piing. 

Remark 3. Because of the invariance of the quantities 
L ,  L7hi(x) under coordinate change, the characteristic matrix 
depends only on the input/output properties of the system. 

Input/Output Linearization 
This section contains our main theoretical results which 

extend the SISO input/output linearization method (Kravaris 
and Chung, 1987) to MIMO systems. 

Definition 3. A multivariable nonlinear system of the form of 
Eq. 1 is called input/output linearizable if there exists a static 
state feedback of the form 

with Q(x) nonsingular and linear vector differential operators of 
the form 

with constant coefficients p ; k  = [@:k ,B:k . . . /3:Ir E IW" satisfy- 
ing &, # 0 and 

such that 

Lp,y;  = v 
i- I 

Remark 4.  If a system gets inputfoutput linearized by state 
feedback in the sense of the above definition, it may be conve- 
nient to think of the closed-loop system in the Laplace domain. 
From Eqs. 8 and 10 we immediately obtain the matrix fraction 
description of the closed-loop system: 
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where 

and y(s)  and u ( s )  denote the Laplace transforms of y(f) and 
v(r),  respectively. An immediate implication of Eq. 1 1  is that 
the requested closed-loop system does not have any finite zeros; 
this is in complete analogy with the SISO input/output lineari- 
zation problem as formulated in Kravaris and Chung (1987). 
Also, Eqs. 1 1 and 12 provide a clear justification of the condition 
Eq. 9 in the definition of input/output linearizability: if Eq. 9 is 
not satisfied, the linear closed-loop system will be singular and 
this is definitely an undesirable situation. 

Theorem I. A necessary condition for a system of the form of 
Eq. 1 to be input/output linearizable is that each output y, pos- 
sesses a relative order. Furthermore, if pi are the orders of the 
linear operators in the closed-loop response (Eq. 10) and r, are 
the relative orders of the outputs of Eq. 1, then 

p i z r i ,  i -  I ,  ..., m (13) 

The following theorem will provide a static-state feedback 
that makes the orders of the linear operators minimal, equal to 
r,. We will see that, to be able to do that, we will need nonsingu- 
larity of the characteristic matrix. If this nonsingularity condi- 
tion is violated, then a linearizing feedback will have to give 
orders of the linear operators in the closed-loop response larger 
than ri. 

Theorem 2. The following conditions are sufficient for a sys- 
tem of the form of Eq. 1 to be input/output linearizable: 

i. Each output y, possesses a relative order r,. 
ii. Its characteristic matrix is nonsingular for all x. 

Furthermore, if the above conditions hold, then for any arbitrary 
E R" ( k  - 0,. . . , r, and i - 1 , .  . . , m )  that satisfy Eq. 9 

and 

the state feedback 

produces the closed-loop response 

Remark 5. The condition of Eq. 14 can be equivalently stated 
as follows: The matrix 
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is column-reduced with column degrees rlr r,, . . . , r,, respec- 
tively. This implies that the determinantal degree of the matrix 
of Eq. 17 is equal to r, + r, + . . . + r,,,. Hence, the order of the 
closed-loop system is equal to r ,  + rz + . . . + r,. 

Remark 6. The state feedback law of Eq. 15 is a direct gener- 
alization of the input/output linearizing state feedback law for 
SlSO nonlinear systems (Kravaris and Chung, 1987): 

Theorem 1 gives us a necessary condition for input/output 
linearizability: all outputs must have relative orders. Theorem 2 
gives us a sufficient condition for input/output linearizability: it 
is enough that the system possesses relative orders and nonsin- 
gular characteristic matrix. To be able to characterize the class 
of input/output linearizable systems, we need conditions which 
are both necessary and sufficient. 

In case that all outputs possess relative orders but the charac- 
teristic matrix is singular, it may be possible to modify the sys- 
tem by applying an invertible linear matrix differential operator 
to the system outputs, so that the modified system possesses a 
nonsingular characteristic matrix. One can then use an input/ 
output linearizing state feedback for the modified system to gen- 
erate an input/output linearizing state feedback for the original 
system. These considerations lead to Theorem 3 which states the 
necessary and sufficient conditions for existence of an input/ 
output linearizing static feedback. 

Theorem 3. A system of the form of Eq. 1 is input/output 
linearizable if and only if the following conditions are met 

a. All the outputs have relative orders Ti, i - 1, . . . , m 
b. There exists an invertible linear matrix differential opera- 

tor 'W with constant coefficients such that 

W I  I 

is a function of x only (independent of u ) and the auxiliary sys- 
tem 

possess relative orders and a nonsingular characteristic matrix 
for all x. 

Remark 7. The operator W is not, in general, unique. One 
could request, for example, the operator W to be a unimodular 
linear operator (i.e., its Laplace transform to be a unimodular 
matrix) or to provide relative orders 1, 1, . . . , 1 to the auxiliary 
system of Eq. 19. 
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Remark 8. If the system of Eq. 1 possesses a nonsingular 
characteristic matrix, then for every W = constant nonsingular 
m x m matrix (zero-order linear matrix differential operator), 
condition ( b )  is automatically satisfied. 

From a practical standpoint, the question is how such a W can 
be found and how can it be used to calculate a control law that 
induces linear input/output behavior. In this direction, one can 
use Hirschorn's inversion algorithm, since it tries to find a dif- 
ferential operator (in general state-dependent) such that, when 
applied to the outputs, it will provide a set of algebraic expres- 
sions in x and u that are solvable for u. If this operator turns out 
to have constant coefficients, it will automatically provide a W .  
Hirschorn's algorithm will have to be started from 

instead of the original outputs, in order to conform with the for- 
mulation of Theorem 3. For reasons of notational consistency 
and readability of the paper, Hirschorn's algorithm is outlined 
in Appendix A. 

Theorem 4. If in Hirschorn's algorithm 

then the system Eq. 1 is input/output linearizable. Furthermore, 
given 

rn x 1 matrices &, i = 0, .  . . , rn, k = 0,. . . , ri - 1 

m x (rn - p'"), rn x ( m  - p")) ,  . . . , m x ( m  - P ' ~ * - ' )  1 
matrices yo, yI ,  . . . , yk*-l and an rn x rn invertible matrix r, 

the state feedback 

m r,-l 

= [ r q f ' k ' ' ( x ) i - '  u - 1 1 PikLjhi(x) 
i-1 k-0  

P-0 I 

produces the closed-loop response 

where W'O', W'", . . . , W'k') are linear matrix differential oper- 
ators defined by 

W'O) = identity 
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Stability of the Input/Output-Linearized System 
Consider first the case of a system of the form of Eq. 1 that 

possesses a nonsingular characteristic matrix: the state feedback 
of Eq. 15 will produce a linear input/output behavior governed 
by Eq. 16. The bounded input/bounded output (BIBO) stability 
characteristics of the u - y system will then depend on the roots 
of the characteristic equation 

Since the parameters p , k  are adjustable, they can always be 
chosen for closed-loop stability and fast dynamics. 

In  addition to input/output stability, it is important to obtain 
conditions for internal stability of the u - y system, i.e., asymp- 
totic stability of the states with respect to perturbations in the 
initial conditions under no external input (v = 0). When the sys- 
tem of Eq. 1 is subject to the state feedback of Eq. 15, the output 
dynamics of the unforced system is governed by 

under appropriate initial conditions. Therefore, in view of Re- 
mark 5 ,  by choosing the adjustable parameters p , k  for BIBO 
stability, any initial conditions of the states will generate ex- 
ponentially decaying signals for the outputs y ,  and their time 
derivatives (dy,)/(dt), . . . , (d" 1y8)/(dtr,-'). Moreover, the out- 
puts and their derivatives will get arbitrarily close to zero in fin- 
ite time. Consequently, the asymptotic stability of the states 
(i.e., the stability as t - m) of the unforced system will depend, 
for all practical purposes, on the asymptotic stability character- 
istics of the dynamical system resulting when 

8- Iy, ( t )  ~. . . =-- dtr , - l  - 0, i = I , .  . . , m. 
dY,(t) y i ( t )  = - ~ 

dt 

But this is exactly the zero dynamics of the system of Eq. 1 in  the 
sense of lsidori and Moog (1988). 

The foregoing considerations indicate that the input/output 
linearized system will be internally stable if the zero dynamics of 
the system of Eq. I (in the sense of lsidori and Moog) is stable. 
This is in  complete analogy with the SISO results (Kravaris, 
1988). 

The case of an input/output linearizable system of the form of 
Eq. 1 with singular characteristic matrix can be treated similar- 
ly. The BIB0 stability characteristics equation of the u -- y sys- 
tem will depend on the characteristic of Eq. 22. The internal sta- 
bility characteristics will depend on the zero dynamics of the 
auxiliary system (Eq. 19) with W = Wtk".  

An in-depth treatment of the internal stability issue is post- 
poned to a future communication; it will provide precise stability 
conditions on the zero dynamics that guarantee internal stability 
of the input/output linearized system. 

Input/Output Linearization vs. Input/Output 
Decoupling 

Freund (1975), Claude (1983b), and Ha and Gilbert (1986) 
considered the problem of finding a static state feedback such 
that, when applied to the system of Eq. 1, the closed-loop system 
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becomes input/output decoupled, i.e., the ith output depends on 
the ith external input only: 

- 
0 

1 

0 

0 
- 

for some Bik scalar and pi positive integer. They showed: 
(a) A system of the form of Eq. 1 is decouplable under static 

state feedback if, and only if, all its outputs possess relative 
orders and its characteristic matrix is nonsingular for all x. 

(b) The required static state feedback for decoupled closed- 
loop input/output behavior is given by 

( .  

u = l  I 

- 
0 

0 

0 

1 
A 

L 

where ri are the relative orders of the outputsy, and bik are scalar 
parameters. Clearly, the decoupled closed-loop system (Eq. 23) 
and the corresponding static state feedback (Eq. 24) are a spe- 
cial case of Eqs. 16 and 15, respectively, for 

Pik = Pikei, i = 1, .  . . , m, k = 0,. . . , ri (25) 

where 

el = , e2 - . .  

and, for satisying the condition of EQ. 14, 

em = 

j i , r ~ ~ ,  i = l ,  . . . ,  m 

even though the design of a SISO linear controller is much eas- 
ier than the design of a MIMO one, decoupled closed-loop 
response is not necessarily the best. In particular, in the case of 
ill-conditioned plants like high-purity distillation columns, de- 
coupling is not a good choice (Skogestad et al., 1988). Disadvan- 
tages of decoupling arise from the fact that enforcement of 
structural constraints on the closed-loop dynamics (choosing 
Bik's such that Eqs. 25 and 27 hold) may cause the closed-loop 
performance to deteriorate. Garcia and Morari (1983,  in 
applying the internal model control (IMC) methodology to a 
hydrogen oxidation fixed-bed reactor model, have shown that it 
is impossible to obtain a perfectly decoupled response without 
loosing optimality of the closed-loop response. In addition to the 
above difficulties, a decoupling controller may demand larger 
values of the manipulated inputs in its attempt to modify the 
structural characteristics of the system. 

b) The class of systems that are input/output-linearizable is 
significantly larger than the class of decouplable systems, with 
input/output linearizing state feedback. 

0 A decouplable nonlinear system is transformed into a 
decouplable (but not necessarily decoupled! ) linear system. 

A nondecouplable nonlinear system is transformed into a 
nondecouplable linear system. 

The control law (Eq. 15 or 21) allows controlling linear sys- 
tems without having to impose any structural constraints on the 
closed-loop dynamics of the system. The control designer has, 
therefore, the flexibility to adjust the parameters &k'S for fast 
closed-loop dynamics and desirable level of coupling. 

Comparison with Other Approaches for 
Linearizing the Input/Output Behavior 

In the previous sections we have formulated and solved the 
input/output linearization problem as a synthesis problem: 
given a postulated linear closed-loop input/output behavior de- 
pending on a number of adjustable parameters, we calculated 
the necessary feedback law. In this way, we obtained an explicit 
relationship between the control law and the achievable closed- 
loop response. 

On the other hand, recent work in the theoretical literature on 
Linearization by Immersion (Claude et al., 1983a; Claude, 
1986b) and on Volterra Linearization (Isidori and Ruberti, 
1984) formulated problems which are mathematically different 
from our synthesis problem but have a conceptual similarity: 
linear input/output behavior is sought in some sense. 

In what follows we will provide a brief review of the above 
theoretical approaches and a comparison to our approach. 

Linearization by immersion 
Claude et al. (1983a) and Claude (1986b) used the abstract 

concept of immersion in order to mathematically define the situ- 
ation where a system of the form of Eq. 1 has linear input/ 
output behavior. A nonlinear system of the form of Eq. 1 is said 
to be immersed into a linear system 

Input/output linearization generalizes input/output decoupling 
in two important ways: 

a )  It allows obtaining an arbitrary linear input/output behav- 
ior. This is important because we know from linear systems that 
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(y ,  = tic, i = 1,. . . , m 

if there exists an analytic mapping 9 such that for every xoEBB", 
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the system of Eq. I initialized at  x,  and the system of Eq. 28 
initilized at 3(x0)  have the same generating series. 

It is only an extremely restricted subclass of systems of the 
form of Eq. 1 that are immersable into a linear system. For this 
reason, one can try to find a static state feedback u = P(x)  + 
Q(x)v  with Q(x)  nonsingular so that the resulting closed-loop 
system is immersable into a linear system of the form of Eq. 28. 
This is the problem of linearization by immersion. Claude et al. 
( 1  983a) solved the problem of linearization by immersion under 
the following restriction on Eq. 28: 

the space of unobservable states of Eq. 28 must be the 
same with the maximal (A, B) invariant subspare con- 
tained in the intersection of Kerci, i - 1, * - - , m. 

They showed that the system of Eq. 1 can be immersed into Eq. 
28 by the state feedback if, and only if, the feedback functions 
P(x)  and Q(x)  satisfy 

[L?-'h,(x) + Ls L? h,(x)P(x)] E R-span {L$h,(x), 

a) For every i - 1, . - . , m, 

k - 0 ,  - .  . . r l -  1 . i -  I ,  - - - , m ]  

Note that an immediate consequence of the last condition and 
the nonsingularity of Q ( x )  is that the system of Eq. 1 must have 
nonsingular characteristic matrix. 

It is not difficult to show that the state feedback law of Eq. 15, 
which was derived under the assumption of nonsingular charac- 
teristic matrix, satisfies conditions a and band that the resulting 
linear input/output system (Eq. 16) admits a realization of the 
form of Eq. 28 that satisfies the previously stated restriction. 

In summary, although linearization by immersion appears to 
be a more general concept than the concept of input/output 
linearization, the imposed restriction on Eq. 28 limits it to sys- 
tems with nonsingular characteristic matrix. In this case, it is 
possible to interpret the state feedback of Theorem 2 as provid- 
ing a linearization by immersion. 

b) C(x)Q(x)  - constant. 

Yolterru lineurizurion 
Isidori and Ruberti (1 984) used the Volterra series expansion 

in order to mathematically define the situation where a system 
of the form of Eq. 1 has linear input/output behavior. In partic- 
ular, they requested the input-dependent part of the Volterra 
series expansion to be identical to the one of an autonomous 
linear system. 

It is only an extremely restricted subclass of systems of the 
form of Eq. 1 that are linear in the above sense of Volterra series. 
For this reason, one can try to find a static state feedback u - 
P(x)  + Q(x)v with Q ( x )  nonsingular so that the resulting 
closed-loop system is linear in the sense of Volterra series. This 
is the problem of Volterra linearization (Claude, 1986b). Isidori 
and Ruberti (1984) considered the following sequence of Toe- 
pliz matrices 

where 

7',(x)=L81 1, k - 0 , 1 , 2 , . .  

L J 

and denoted by u[O,(x)] the rank of Ok(x) for a fixed x and by 
p[B, (x) ]  the rank of O,(x) as a matrix function [i.e., the number 
of R-linearly independent rows of Ok(x)]. They showed that a 
necessary and sufficient condition for the system of Eq. 1 to be 
Volterra linearizable under static state feedback is that 

u[O,(x)] = p[O,(x)], for all k 2 0. 

To be able to check the above rank condition, Isidori and 
Ruberti (1 984) suggested Silverman's structure algorithm for 
search and isolation of independent rows of each of the Toeplitz 
matrices O,(x). If the rank condition is met, the structure algo- 
rithm will also yield a set of equations for P(x)  and Q(x)  that 
provide one Volterra-linearizing state feedback. 

The Volterra linearization concept is more general than the 
concept of input/output linearization we defined earlier, since 
the latter is restricted to a linear input-output behavior which is 
finite-dimensional, nonsingular, and without zeros. However, 
developing precise connections between the results of Theorem 3 
and the Isidori-Ruberti rank condition is an open research prob- 
lem. 

Considering the particular state feedback generated by Sil- 
verman's algorithm in Isidori and Ruberti (1984). it is possible 
to show that it yields a linear finite-dimensional input-output 
behavior with no zeros. Consequently, it will belong to the class 
of state feedback laws of Theorem 4 if, and only if, it leads to a 
nonsingular closed-loop system. 

Globally Linearizing Controllers for Muitivariable 
Nonlinear Systems 

system of the form of Eq. 1 is subject to the state feedback 
We saw earlier that if an input/output-linearizable MIMO 

u - *(x, u )  

where 
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in case the sytem of Eq. 1 has a nonsingular characteristic 
matrix, and 

to obtain the overall closed-loop dynamics 

in case it does not, the resulting input/output behavior of the 
u - y system is exactly linear, given by Eq. 16 or 22, respec- 
tively. 

Once such a state feedback is applied to a MIMO nonlinear 
process, the problem of controlling .the outputs to set point 
reduces to a linear multivariable control problem. The latter can 
be solved by using the already mature linear multivariable con- 
trol theory. This motivates the control structure of Figure 1, 
which we call the Multiinput/Multioutput Globally Linearizing 
Control (MIMO GLC) structure. 

In the special case where input/output decoupling is mean- 
ingful and desirable, one can use 

* ( x ,  u )  = 

U -  

In  this case, the external multivariable linear controller will con- 
sist of SISO linear controllers, one for each input/output pair 
(vi - y , ) .  For example, one can use PI 

i ~ ...... --..: 

Figure 1. MIMO GLC structure. 

and the tuning of the controller parameters K ,  and T,, becomes 
straightforward. 

In summary, the MIMO GLC design procedure involves the 
following steps: 

1.  Compute the input/output linearizing state feedback. 
2. Select the &’s so that the resulting linear v - y system is 

B I B 0  stable, and has reasonably fast dynamics and desirable 
level of coupling. 

3. Design an external linear multivariable controller for the 
u - y system. 

Application to a Semibatch 
Copolymerization Reactor 

Tight control of polymer properties is one of the major prob- 
lems in polymerization processes. In free radical copolymeriza- 
tion processes, controlling both copolymer composition and 
molecular weight is of primary importance. The control of com- 
position and molecular weight in a free-radical solution copoly- 
merization reactor by manipulating the heat input and 
monomer Row rate into the reactor is studied to illustrate the 
MIMO GLC methodology. 

Diluted monomer A and pure monomer B are fed into the 
reactor, as shown in Figure 2, while the sum F,  of the two flow 
rates of the two streams is kept constant. The manipulated vari- 
ables are the flow rate FA of the diluted monomer A and the rate 
of heat exchange between the reactor and the jacket. Initially, 
the reactor is filled with the proper amount of monomers, initia- 
tor and solvent. In this example, the particular monomers are 
methyl methacrylate ( A )  and vinyl acetate (B), the initiator is 
azobisisobutyronitrile (AIBN) and the solvent is benzene. 

Under the following assumptions: 
All the reactions are homogeneous. 
The reactor contents are perfectly mixed. 
Gel-effect is absent. 
The volume of the reacting mixture is changed due to the 

There is no polymer in the fluids entering the reactor. 
inflow of the monomers only. 

The appropriate mass, mole and energy balances give a set of 

Monomer A + Solvent Monomer B 

Figure 2. Semibatch reactor. 

B i n  Tin  
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ordinary differential equations (Ray et al., 1971b; Ray, 1972; 
Richards and Congalidis, 1987; Tsoukas et al., 1982), which can 
be represented in vector form as 

The model is clearly of the form of Eq. 1 with 

+ I  

d 
dt 
- 

- 
0 

0 

0 

0 

0 

0 

0 

-0, 

UI + uz (33) 

X X 8  

x6 xs + x9 
where the functions RA, Rgr RI, RT, R,, and RD, are known 
kinetic rate and heat of reaction expressions (see Appendix C for 

h , ( x )  = 2, h2(X) = -. 

details). In the above equations, ul and u2 are the manipulated 
inputs, the rate of heat exchange between the reactor, and the 
jacket [US(T,  - T ) ] / ( p C V )  and the flow rate of the diluted 
monomer A into the reactor FA, respectively. The controlled out- 

y2 - Y,, the mole fraction of A-units in the dead copolymer, 
given by: 

. 

We follow the procedure given previously to find the relative 
puts are YI - MII, the number average molecular weight and orders of this system and then apply MIMO GLC. Since 

L,,h,(x) = 0, L,,h,(x) = 0, Lg,h2(x) = 0, 

L,h*(x) = 0, [Lg,L,h,(x) Lg,Lfhl(X) * 10 01, (34) 
C" 

Yz = - Dl 
Y l  - -  

[ L g , L f h 2 ( x )  L g , L , f h 2 ( x ) l  * [O O1, Do' CA f c g '  

Equations 33 and 34 provide a state-space model of the polymer- 
ization reactor with n = 9 states and m = 2 inputs and outputs. both outputs possess relative order 2 (i.e., r l  = 2, r2 = 2). Also, 
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the characteristic matrix where 

where 

i = 2, 3, 4, 5 

is nonsingular. Therefore, Eq. 29 gives the static state feedback 
that makes the system linear in an input/output sense. In partic- 
ular, for input/output-decoupled linear response, the necessary 
state feedback is given by Eq. 3 1, i.e. 

and fiik’s are scalar tunable parameters. The resulting u - y sys- 
tem is described by 

In  the external loop, two PI controllers (one for each output) are 
used, given by: 

UI = B,oY;P(f) + K,, ( Y 3 f )  - Y l ( t ) )  

where yip and y:p are the set points. 

Table 1. Kinetic and Physical Parameters 

Zl = 4.47 x 1OI4 I/s 
ZCaa = 4.21 x 10” m’/kmol * s 
‘Cbh = 1.61 x 109m1/kmol s 
=Po# = 3.21 x IO6m’/kmol . s 

ZPbb = 6.3 I x lo6 m’/kmol . s 
Z P d  = 1.23 x 10’ m’/kmol . s 
Zpb = 2.10 x 1O8m3/kmo1~ s 
-%a = 3.21 x 10’ m’/kmol . s 

Z,,, = 1.58 x lo’ ml/kmol . s 
Z/d = 1.23 x 10°m’/kmol . s 
Zfb = 5.26 x IO‘m’/kmol . s 

-AHpnn = 5.78 x 10‘ kJ/kmol 
-AHpbo = 5.78 x lo4 kJ/kmol 

P = 8.80 x 10’ kg/m’ 
U = 5.00 x kJ/m’ . s . K 
S = 1.00 x lo-’ m2 

R = 8.31 x 10°kJ/kmol . K 
A,” = 2.00 x 10°kmol/m’ 
B,. = 1.08 x 10’ kmol/m’ 

El = 1.27 x 10’ kJ/mol 
Era# = 2.69 x lo4 kJ/kmol 
E,, = 4.00 x lo3 kJ/kmol 
EP*< = 2.42 x lo4 kJ/kmol 

EPb, = 1.80 x lo4 kJ/kmol 
EP‘., = 2.42 x lo4 kJ/kmol 
E P h  = 1.80 x lo4 kJ/kmol 
E,** = 2.42 x IO‘kJ/kmol 

E,,, = 1.80 x lo4 kJ/kmol 
Efo, = 2.42 x lo4 kJ/kmol 
E,,* = 1.80 x lo4 kJ/kmol 

-AH, ,  = 8.75 x lo4 kJ/kmol 
-AH,, = 8.75 x lo4 kJ/kmol 

T!“ = 3.40 x 102K 
FT 

MA 
M ,  

C = 2.01 x 10°kJ/kg . K 

= 1.00 x IO-’ m’/s 

= 1.00 x 10’ kg/kmol 
= 8.61 x 10’ kg/kmol 

f = 1.00 x loo 
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Table 2. Initial Conditions 

v(o) = 1.00 10-I m3 A ( 0 )  = 8.00 x kmol/m' 
B(0)  = 4.00 x lo-'  kmol/m' I (0 )  = 1.00 x kmol/m' 
T ( 0 )  = 3.15 x I 0 2 K  Do(0)  = 0.00 x 10' kmol/m' 
C,(O) = 0.00 x 10' kmol/m' Dl(0) = 0.00 x 10' kmol/m' 
C,(O) = 0.00 x 10°kmol/m' 

The performance of the proposed algorithm was evaluated by 
extensive numerical simulations. A standard Runge-Kutta-Gill 
algorithm was used for the numerical integration of the set of 
ordinary diKerential equations. In  order to prevent numerical 
conditioning problems, all equations were first appropriately 
nondimensionalized. The kinetic data, physical parameters, ini- 
tial conditions and design parameters used are given in Tables 1, 
2 and 3; the kinetic data and physical properties were obtained 
from Brandrup and Immergut (1975). 

A series of runs were performed to test the MIMO GLC 
structure in terms of 

Rejection of error in the initial conditions 
Tracking of set points 
Whether decoupling is indeed achieved 
Rejection of step disturbances and noise 

We observed that y ,  and y 2  stay at the set points when y,(O') 
and y2(O+) are a t  the set points. On the other hand, deviations of 
y,(O+) and y,(O+) from their set points are rejected by the con- 
trol system. Figure 3 shows the effect of error in the initial con- 
ditions. It is observed that y ,  and y ,  reach the constant set point 
values as predicted by Eqs. 36, 37 and 38. We have tried other 
sets of initial conditions and observed that the MIMO GLC 
structure rejected the errors in the initial conditions. 

Figure 4 shows that although y ,  and y 2  reach constant values 
and remain at these values, the corresponding jacket tempera- 
ture and diluted monomer flow rate vary with time. This is a 
manifestation of the transient nature of the semibatch process. 

Remark 9.  To make the simulations more realistic, we tried 
imposing constraints on the manipulated inputs. We observed 
that a start-up loading error y,(O+) ~ ysp of any size could be 
successfully rejected as long as the manipulated input did not hit 
constraints. Otherwise, the system became unstable. An obvious 
remedy to this problem is, of course, to adjust the tunable 
parameters so that the closed-loop poles are not too fast and 
therefore the input will not be forced to hit constraints. It must 
be emphasized, however, that the observed behavior on imposing 
constraints is not general; the effect of constraints in  GLC is not 
well-understood at  this point. 

The servo behavior of the control system for the set point 
changes of Figure 5 is depicted in Figures 6 and 8. We see that 
when bothy, andy, are initally a t  set points, a step change iny;P 
only affects y ,  and a step change in y:p only y,. This demon- 

Table 3. Controller Design Parameters and Set Points 

so, = 1.00 x loo 
= 1.001 loss  

PI2 = 1.00 x lo8 s2 
K,, = 5.00 x lo- '  
T!, = 1.25 x lo- '  s 
y ip  = 5.00 x 10' 

&, = 1.00 x loo 
p21 = 1.001 x los s 
p22 = 1.00 x IO8s2 
K,, = 5.00 x lo- '  
T~~ = 1.25 x lo-'  s 
vf = 5.00 x 10.' 

I I 

- -. -.. -.. -. . - - - - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L P +! A .-I _ _ - -  

" I  E, It I=" 
I Molecular Weiqht 

z 1. Go. ~ s ; t i  on-.... JI 
0.0 1 , ' I '  , 0.2 

0 1 2 3 4 5 
Time, hr 

Figure 3. Output response for rejection of the effect of 
error in the initial conditions. 

300 f , I I I ! 0.0 
0 1 2 3 4 5 

Time, hr 

Figure 4. Variations of jacket temperature and flow rate 
of inlet monomer A stream corresponding to 
Figure 3. 

0.506 
I w 
u) 0.505 

0 4 8 16 12 

Time. hr 

Figure 5. Changes in the set points. 
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350 

5 6 7 8 9 10 

Time, hr 

Figure 6. Variations of outputs resulting from the change 
in y:" introduced at t = 5.0 h. (Continuation of 
Figure 3). 

Time, hr 

Figure 7. Variation of jacket temperature and flow rate of 
inlet monomer A stream, corresponding to Fig- 
ure 6. 

Time, hr 

Figure 8. Variations of outputs resulting from the change 
in fl introduced at t = 10.0 h. (Continuation of 
Figure 6). 

AIChE Journal February 1990 

Time, hr 

Figure 9. Variation of jacket temperature and flow rate of 
the diluted monomer A, corresponding to Fig- 
ure 8. 

strates that the system is indeed decoupled. Figures 7 and 9 
depict the corresponding variations in TJ and FA. 

It is interesting to note that the control system's action to 
achieve decoupling can be interpreted physically. A comparison 
of the values of the activation energies E,, E,,, Epha, E,,, Efa+ 
EfOh, E,be and Ehh for our copolymerization system shows that the 
instantaneous copolymer composition (RA)/(RA + R,) is al- 
most independent of temperature. This independency can also 
be observed from Figures 6 and 7. We further observe from 
these figures that a demand for a higher number average molec- 
ular weight (a step change in yTp) causes a decrease in jacket 
temperature. This agrees with the known fact that the lower 
temperature, the higher the number average molecular weight. 
Since this reduction in temperature has no significant effect on 
FA, no major change in FA is observed. Figure 9 shows the 
responses of FA and TJ for a step change in the copolymer com- 
position set point J$'. This necessitates an increase i n  the flow 
rate of monomer A, which increases the concentration of mon- 
omer A in the reactor. It can be deduced from a comparison of 
values of the rate constants k , ,  with kL,, that due to the increase 
in the concentration of monomer A, the increase in the rate of 
incorporation of monomer A in the copolymer is larger than the 
rate of chain transfer to monomer reactions. This would tend to 
increase the number average molecular weight. But since the 
input/output linearized system is decoupled, M ,  should be unaf- 
fected. Consequently, the jacket temperature has to increase to 
compensate for the effect of increasing concentration of A. 

Remnrk 10. The intuitive physical arguments of the previous 
paragraph indicate that the open-loop system is essentially one- 
way coupled: the second output y 2  = Y, is affected only by u2 = 

FA whereas the first output y ,  = M ,  is affected by both manipu- 
lated inputs. Furthermore, the reactor temperature (which is 
directly affected by heat input u , )  has a much stronger effect on 
y ,  = M. than the concentration of monomer A (which is directly 
affected by u2 = F A ) .  I n  other words, the inherent coupling of 
the process is rather weak and this makes decoupling meaning- 
ful and feasible on intuitive grounds. 

The effect of disturbances on the closed-loop response has 
also been studied. Simulations results indicated excellent distur- 
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bance rejection ability of t h e  control system when F ,  and T,, 
undergo s tep  or sinusoidal changes.  Detailed description of t h e  
results is omit ted for brevity. 

Notation 
A = monomer A,  concentration of monomer 

A,, = inlet concentration of monomer A ,  

5 = monomer 5, concentration of monomer 

5,. = inlet concentration of monomer 5, 

A,  kmol/m3 

kmol/m3 

5, kmol/ m3 

kmol/m’ 
C = heat capacity, kJ/kg . K 

C,, C, = molar concentration A and 5 units in the 
dead copolymer, kmol/m3 

C(x) = characteristic matrix of the system (Eq. 
1 )  

Do = molar concentration of the dead co- 
polymer chains, kmol/m’ 

D, = mass concentration of the dead copoly- 
mer chains, kg/m’ 

E,, E,, E , ,  E,. = activation energies for initiation, chain 
transfer to monomer, propagation and 
termination reactions, kJ/kmol 

f =  initiator efficiency 
f ( x )  = vector field in the state model (Eq. 1) 

FA = inlet flow rate of monomer A, m3/s 
F, = inlet flow rate of monomer 5, m3/s 
F ,  = total inlet flow rate, m’/s 

g,(x) = vector field in the state model (Eq. I )  
g(x)  = n x m matrix formed by g,(x) ,  . . . , 
h,(x) = scalar field in the state model (Eq. 1 )  

g A x )  

AH,”, A H p o h ,  AH,,#, AHpbb = heats of propagation reactions, kJ/kmol 
I = initiator, concentration of initiator, 

kmol/m’ 
k ,  k ,  , k, = reaction rate constants for chain transfer 

to monomer, propagation and termina- 
tion reactions, m’/kmol . s 

k ,  = reaction rateconstant for initiation reac- 
tion, l / s  

K<, = gain of the ith external controller 
L,h, (x)  = Lie derivative of the scalar field h,(x) 

with respect to the vector fieldf(x) 
L;h,(x) = kth order Lie derivative of the scalar 

field h,(x) with respect to the vector field 

L,  = intermediate variable in the calculation 
of the moments 

MA,  M E  = molecular weight of monomer A and 
monomer 5, kg/kmol 

M ,  = number average molecular weight of 
dead copolymer, kg/kmol 

Po = molar concentration of live copolymer 
chains with terminal A, kmol/m3 

P ,  = mass concentration of live copolymer 
chains with terminal A,  kg/m3 

Qo = molar concentration of live copolymer 
chains with terminal B, kmol/m3 

Q, = mass concentration of live copolymer 
chains with terminal 5, kg/m’ 

r, = relative order of ith output 
R = universal gas constant, kJ/kmol . K 

R,, RE, R,, R,, = rate of production of A,  5, I ,  Do, kmol/ 

R,, = rate of production of dead copolymer, 

f ( x )  

m 3 .  s 

kg/m’ . s 
[w = set of real numbers 
s = Laplace transform variable 

T = temperature, K 
S = heat transfer area, mZ 

T,, = inlet temperature, K 

T, =jacket temperature, K 

I/ = overall heat transfer coefficient, kJ/mZ . 
u = manipulated input vector 

u, = j t h  manipulated input 
u = external input vector of the linear closed- 

V = volume of the reacting mixture, m3 
V,, Vb = intermediate variables in the calculation 

t = time, s 

s . K  

loop system 

of the moments 

Y,  ~ mole fraction of A units in dead co- 
polymer chain 

y ,  = ith output variable 
yi” = set point of ith output variable 

x = vector of state variables 

y = vector of output variables 

Z,, Z,, Z,. = frequency factors for chain transfer to 
monomer, propagation and termination 
reactions, m’/kmol . s 

Z ,  = frequency factor for initiation reaction, 
I I s  

Greek letters 
p,, = tunable parameters of the input/output 

linearized system 
p = density, kg/m3 

p ,  ~ orders of the linear operators defined in  

T / ,  = integral time constant of the ith external 

= static state feedback in the MIMO GLC 

the closed-loop response (Eq. 10) 

controller, s 

Structure 
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Appendix A: Hirschorn’s Algorithm 

Set 

p(O) = Rank [ L $ I ( 0 ) ( x ) ] .  

Then, follow the sequence of steps, k = 0, 1, 2, . . . 
Srep k .  Rearrange the rows of L $ I ( k ) ( ~ )  so that the first p(k)  

rows are linearly independent and denote by Ek the correspond- 
ing elementary matrix that performs this row rearrangement. 
Find a ( m  - p ( k ) )  x p(k)  matrix F,(x)  such that 

[Fk(x),i f,-,,kl]EkLgH(k)(X) = 0 

where I ,  pihi denotes the ( m  - p‘”) x ( m  - p ( k ) )  identity ma- 
trix. Define 

1 .  First p(k)  Rows of E,H‘”(x)  

[ [ Fk ( X )  f , - , i i i ]EkL/f (k) (X)  
H ‘ “ ’ ) ( x )  = -~ _ _ _ _ _ _ _ _ _ _ _ _ _  ~ 

p ‘ ” ’ ”  = Rank[L$(‘+”(x)]. 

Following the steps of the algorithm, a sequence of nonnegative 
integers p“), p(I ’ ,  p(*) ,  . . . p ( k ) ,  . . . is produced such that 

Thus, there IS a least positive integer k* such that p‘“) is maxi- 
mal. I n  other words, the algorithm will always terminate after a 
finite number of steps, equal to k* .  At the last step, we will 
cither have 

or none of the elements of 

[ F k .  (X)l f,_,~X*,]Ek.L,H‘lr*)(X) 

will possess ;I finite relative order. 

Appendix B: Proofs of Theorems 

have a relative order; this means that 
Proof of  Theorem 1 .  Suppose that some output y ,  does not 

dkY,  1: = independent of u, 
dt 

for all k 

Hence, after the state feedback u = P ( x )  + Q ( x ) v  is applied, 

d k y i  . 
d t k  
~- 

~ independent of u, for all k 

But then, the ith row of the matrix 

must be identically zero. This leads to contradiction with Eq. 9. 
The same argument can be used to show that if we assume that 
pI < r ,  for some outputs, this also leads to contradiction. 

Proof of Theorem 2. Consider a system of the form of Eq. 1 
with relative orders r , ,  r2,  . . . , r,. Then, using Eq. 5 for the time 
derivatives of the outputs y , ,  we obtain 

m r  

(BI )  

The nonsingularity of the characteristic matrix together with 
Eq. 14 guarantee that the matrix 

LLy-lhm (XI] 

is nonsingular. Thus, the state feedback (Eq. 15) is well-defined 
and will make the righthand side of Eq. BI equal to u. Hence, it 
will make the system input/output linear in the sense of Defini- 
tion 3 and in particular it will produce the closed-loop response 
of Eq. 16. 

Proof of  Theorem 3. Necessity: Suppose that there exists a 
static state feedback 

u = P ( x )  + Q ( x ) u  
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with Q(x) nonsingular such that 

d kY m pi 

P i k  -$! = u. 
!=I k - 0  

Denoting by r,  the relative orders of the outputs y ,  and defining 
the linear matrix differential operator 

I- - 
L?"h, (x) 

W 

LF- I h,  (x) 

w = 

we can rewrite the closed-loop response as 

L L  

or, since u = [Q(x)] - I {  - P ( x )  + u } ,  

= 21. 

Thus, we conclude that 

is a vector function of x only because otherwise its time deriva- 
tive would depend on derivatives of u. Moreover, we will have 

Hence, the auxiliary system 

has relative orders I ,  1. . . . , 1 and a nonsingular characteristic 
matrix. 

Sufficiency: Set 

and denote by R , ,  R2,  . . . , R,  the relative orders of the auxiliary 
system 

Then from Theorem 2 the state feedback 

where [ P I R ,  PZR2 . . . PmR,] is nonsingular, will produce the 
closed-loop response 

or 

0 

0 

. . .  

. . .  

. . .  

0 1  

Hence, it will linearize the system in an input/output sense. 
Proof of Theorem 4 .  One can easily see by induction that 

L y -  h ,  (x) 

= H'*'(x) ,  P = 0, I , .  . . , k* CW (PI 
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On the other hand, since p'"' = m, All reactions are elementary except for the initiation reac- 
tion. 
And considering the standard reaction mechanism for homoge- 
neous solution free-radical copolymerization (see steps a 4  be- 
low), one can obtain the rates of consumption and/or production 
of each species (Ray et al., 1971; Ray, 1972; Tsoukas et al., 
1982; Richards and Congalidis, 1987). In  this mechanism, P,,m, 
Q",,, and D , ,  represent polymer chains containing n units of 
monomer A and m units of monomer B. The letter P denotes live 

L , H ' ~ " ( X )  = nonsingular 

Thus, setting W = ' ~ ( k * ) ,  condition b of Theorem 3 is satisfied; 
the resulting auxiliary system has relative orders 1, 1,. . ., 1 and 
nonsingular characteristic matrix. Hence, the system of Eq. 1 is 
input/output linearizable. Furthermore, one can also show by 
induction that 

and 

Thus. 

, k* ~ I 

k *  I 

m r , - l  

The control law of Eq. 21 will make the righthand side of the 
above expression equal to u and, therefore, will produce the 
closed-loop response of Eq. 22. 

Appendix C: Kinetic Mechanism and Rate Laws 
for Free Radical Copolymerization 

Making the following assumptions: 
0 Chain transfer to dead polymer does not occur. 

Inhibition, chain transfer to solvent, and termination by dis- 

The raw of reaction depends only on the free radical end 

Quasisteady-state approximation and long chain hypothesis 

proportionation reactions are neglected. 

group (independent of chain length). 

are used. 

polymer chains with terminal A, Q live polymer chains with ter- 
minal B and D dead polymer chains. 

a. Initiation Reactions 

KL 
I + A - P l 0  

b. Propagation Reactions 

c. Termination by Coupling Reactions 
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Reaction rate expressions where 

Applying the method of generating functions described by Ray 
et al. (1971a), Ray et al. (1971b), Ray (1972), and Tsoukas et 
al. ( 1  982), we can calculate the molecular weight distribution of 
the free radical and dead copolymer molecules. Thus, the rate of 
production of zeroth and first moments of the molecular weight 
distribution of the dead copolymer (molar and mass concentra- 
tion, respectively) are given by 

k,  = Z,  exp ($1, 
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