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This work concerns the synthesis of discrete-time nonlinear controllers for  non- 
linear processes that make the closed-loop system linear in an input/output sense. 
The synthesis of state feedback controllers is studied first, followed b.y the synthesis 
of dynamic output feedback controllers. Both problems are solved within the globally 
linearizing control ( GLC) framework. Precise theoretical connections between the 
derived controllers and model algorithmic control (MAC)  are established. The 
theory is illustrated by a chemical reactor example. 

Introduction 
The area of nonlinear process control has received consid- 

erable attention during the past five years because of the re- 
alization that linear controllers are inadequate even for 
moderately nonlinear processes and the availability of new 
powerful tools. There have been several recent review articles 
aiming at giving a perspective on the present status of the area 
and trace further directions (McLellan et al., 1990; Kravaris 
and Kantor, 1990a,b; Bequette, 1991 ; Biegler and Rawlings, 
1991; Kravaris and Arkun, 1991). So far, the two major re- 
search directions have been the model-predictive approach and 
the geometric approach. The key advantage of model-predic- 
tive control (MPC) has been its appealing intuitive interpre- 
tation, whereas the key advantage of the geometric approach 
has been its solid theoretical justification. 

MPC algorithms have been used in industry since the late 
70s [model algorithmic control (Richalet et al., 1978; Mehra 
and Rouhani, 1980; and Mehra et al., 1980) and dynamic 
matrix control (Cutler and Ramaker, 1979; Prett and Gillette, 
1979)]. Garcia and Morari (1982) reviewed different versions 
of MPC, put them into perspective and connected them with 
theoretical z-domain methods via the internal model control 
(IMC) structure. At the same time, a continuous-time linear 
IMC structure was developed, which possessed all the theo- 
retical properties of the discrete one, without any model-pre- 
dictive algorithms being available in continuous time along the 
same lines. Later, the continuous-time version of the IMC was 
extended to nonlinear systems using an input/output operator 
formalism and numerical techniques for operator inversion 
(Economou et al., 1986; Li et al., 1990). In the past six years, 
there has been a growing research activity aiming at developing 
nonlinear MPC methods, primarily through direct nonlinear 
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extension of the linear MPC techniques (Biegler and Rawlings, 
1991; Hensonand Seborg, 1991b; Hernandez and Arkun, 1991; 
Hidalgo and Brosilow, 1990; Pathwardhan et al., 1990; Sistu 
and Bequette, 1991). 

Geometric process control methods have evolved after about 
a decade of research on the mathematical characteristics of 
continuous-time nonlinear systems, using techniques from dif- 
ferential geometry. The system theoretic properties of contin- 
uous-time nonlinear systems are now well-understood (Isidori, 
1989; Nijmeijer and van der Schaft, 1990), and they provide 
the theoretical foundations for nonlinear controller design. 
Based on the mathematical tools and concepts from the dif- 
ferential geometric framework, the globally linearized control 
(GLC) method (Kravaris and Chung, 1987; Kravaris and So- 
roush, 1990) was developed as a nonlinear controller synthesis 
method in a continuous-time setting. The GLC was interpreted 
from the point of view of input/output operators and IMC 
(Daoutidis and Kravaris, 1992; Henson and Seborg, 1991a), 
and recently was implemented experimentally to control 
polymerization reactors (Soroush and Kravaris, 1992a,b). 

In the late 80s, a major research effort was started extending 
the continuous-time geometric notions and results to discrete- 
time nonlinear systems, and thus developing a discrete-time 
analog of geometric nonlinear systems theory. For instance, 
Grizzle (1986) studied the local input-output decoupling prob- 
lem for discrete-time nonlinear systems, by employing invar- 
iant and locally-controlled invariant distributions. Monaco and 
Normand-Cyrot (1988) investigated the behavior of the zero 
dynamics of discrete-time nonlinear systems. Glad (1988) also 
studied the zero dynamics of discrete-time nonlinear systems 
and developed connections between the minimum-phase prop- 
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erties of a discrete system and the internal stability of an output 
dead-beat controller. Monaco et al. (1989) addressed the prob- 
lem of input-output decoupling in discrete time via static and 
dynamic feedback and gave necessary and sufficient conditions 
which ensure static decoupling and left invertibility of each 
input-output channel. A review of available results in discrete- 
time nonlinear systems theory can be found in the recent mon- 
ograph by Nijmeijer and van der Schaft (1990). 

In the process control literature, a discrete-time GLC method 
was developed by Stubbs and Svoronos (1989) for discrete- 
time input/output models expressed in terms of a single dif- 
ference equation which is affine in the input. Similar results 
were presented very recently (Hernandez and Arkun, 1991) for 
polynomial ARMA models. 

The scope of this article is twofold: 
(1) Develop nonlinear geometric process control methods 

for general discrete-time state-space models within the con- 
ceptual and methodological framework of GLC (Kravaris and 
Chung, 1987; Daoutidis and Kravaris, 1992). 

(2) Develop concrete theoretical connections between geo- 
metric and model-predictive approaches. In particular, we show 
that the discrete-time GLC-error feedback controller is a direct 
conceptual generalization of linear model algorithmic control 
(Richalet et al., 1978; Mehra et al., 1980; Mehra and Rouhani, 
1980). 

An earlier version of our discrete-time GLC results was 
presented at the AIChE meeting (Daoutidis et al., 1991). 

In this article, some mathematical preliminaries are re- 
viewed, including the definition of relative order and the con- 
cepts of minimum-phase behavior and zero dynamics. Then, 
formulas for input/output linearizing state feedback are de- 
rived, and the discrete-time GLC methodology is introduced. 
Three controllers within the GLC framework are formulated 
depending on the availability of process state measurements. 
The general nonlinear results are applied to linear systems, 
followed by a state-space reformulation of MAC. The linear 
controller (derived from the application of the GLC-error feed- 
back structure to linear systems) and the state-space MAC are 
shown to be equivalent. A nonlinear model algorithmic con- 
troller is then developed and is shown to be identical to the 
GLC-error feedback controller. Finally, the three GLC struc- 
tures are illustrated by a reactor example. 

Mathematical Preliminaries 

Consider SISO nonlinear processes described by a discrete- 
time state-space model of the form: 

where x denotes the vector of state variables, u denotes the 
manipulated input, and y represents an output (to be con- 
trolled), all in the form of deviation variables. It is assumed 
that x € X C IR", and u E U C IR, where X and U are open- 
connected sets that contain the origin (that is, the nominal 
equilibrium point). 9(x, u) is an analytic vector function on 
X x U,  and h(x)  is an analytic scalar function on X .  

The model of Eq. 1 can be viewed as the sampled-data 
representation of the continuous-time model: 

that i s ,x (k+ 1)=9[x(k) ,  u ( k ) ]  represents thesolutionat time 
(k + 1)At of the differential equations in Eq. 2 starting at time 
kAt in X(kAt)=x(k) and with a constant Z ( t ) = u ( k ) ,  where 
At is the sampling period. 

The model of Eq. 1 is not affine in u,  unlike the continuous- 
time model of Eq. 2. The sampled-data representation of an 
affine continuous-time model is nonaffine in general. Fur- 
thermore, as will be seen, even when the discrete-time model 
is affine, the input/output linearizing state feedback will be, 
in general, a nonaffine function of the external input (unlike 
in continuous-time case). Moreover, if a continuous-time non- 
linear model has time delay, its sampled-data representation 
will still be in the form of Eq. 12. 

A brief review of the notion of relative order (see Nijmeijer 
and van der Schaft, 1990 and references therein), which will 
be necessary for the subsequent developments, is given here. 

For a system of the form of Eq. 1, the relative 
order of the output y with respect to the manipulated input u 
is the smallest integer r for which 

Definition 1. 

[?I [-&-I M ( x ,  u )  ' - I  [ y ] * o .  

I f  such an integer does not exist, we say that r = = .  
Definition 1 implies that: 

If  the relative order r =  1. then 

a 
--ho9+0, au 

where o denotes composition of functions that is, 
h 0 94h[rp(x, u ) ] .  

I f  the relative order r = 2. then 

a 
au 
-ho@=O 

that is, h o 9 is a function of x only, but 

a 
au - h o 9 0 9 * 0  

I f  the relative order r =  3,  then 

a a 
au a u  
-ho9=0, -ho*o*=O 

that is, both h o * and h o 9 o are functions of x only, but 

a 
au 
- h 0 9 0 9 0 + s o .  

In general, the relative order r is the smallest integer for 
which 
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ho*  o. . .o*  

r times 
c- 

depends on u. 

the following notation will be used: 
In view of this equivalent definition of the relative order r ,  

In this notation, 

Furthermore, the following relations will hold: 

Therefore, r is the smallest number of sampling periods after 
which the manipulated input move u ( k )  affects the output y .  

If the system output y does not have a finite relative order 
( r=  m), this means that the manipulated input u never affects 
the output y .  In every well formulated control problem, the 
output y must possess a finite relative order r .  

In analogy to linear systems it is straightforward to show 
that the exact sampled-data representation of a dead-time-free 
SISO continuous-time system of the form of Eq. 2 with finite 
relative order T. always has r =  1 (Nijmeijer and van der Schaft, 
1990). Thus, if a discrete-time nonlinear system of the form 
of Eq. 1 has r >  1 ,  ( r -  1)At represents the plant dead-time, 
whereas the additional delay At is the delay due to sampling. 
Because in discrete time, time delays simply increase the relative 
order, in this setting, time delay compensation is much easier 
than in continuous time. 

Example 1 .  Consider the SISO discrete-time nonlinear sys- 
tem 

For this system 

L _1 

and, 

Therefore, r = 2, and 

which means that the present control move u ( k )  affects the 
output after two sampling periods: the plant dead time is At 
for this process. 

For a process of the form of Eq. 1 with a finite relative 
order r ,  Eq. 3 implies that the algebraic equation 

is locally solvable in u (via the implicit function theorem). The 
corresponding implicit function will be denoted by: 

= ' k o  ( x ,  Y ) ,  (6) 
and will be assumed to be well-defined and unique on 
x x h ( X ) .  

Minimum.-phase behavior and zero dynamics 
The definition and interpretation of the relative order r mo- 

tivate the decomposition of the dynamic system of Eq. 1 into 
the subsystems in series: (i) a delay-free subsystem and (ii) a 
pure delay subsystem: 

x ( k +  l ) = * [ x ( k ) ,  u ( k ) l  
y * ( k )  = h ' - ' { * [ x ( k ) ,  u ( k ) ] )  (delay-free) (7) 

Y ( k  + r )  =y*  ( k )  (pure delay) (8) 

I 
This decomposition is a direct generalization of the standard 
factorization of linear discrete-time systems into an invertible 
part (whose inverse is causal) and a pure delay. Furthermore, 
because of the solvability of Eq. 5 ,  an inverse to the delay- 
free subsystem (Eq. 7) can be constructed: 
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In the case of a linear system, the inverse system described by 
Eq. 9, has (n - r )  poles at the process zeros and ( r )  poles at 
the origin. Consequently, stability of the inverse system is 
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equivalent to finite process zeros being inside the unit circle. 
This motivates the following definition. 

Definition 2.  Given a discrete-time nonlinear system of the 
form of Eq. 1, its delay-free part is said to be minimum phase, 
if the dynamics 

is locally asymptotically-stable. Otherwise, we will say that it 
is nonminimum phase. 

The local asymptotic stability of the system of Eq. 10 can 
be checked, for example, via Lyapunov’s first method, by 
calculating the eigenvalues of the Jacobian of the system eval- 
uated at the equilibrium point. Using the definition of 3, (Eqs. 
5 and 6)  and the implicit function theorem, one can see that 
the Jacobian of the system of Eq. 10 at (xo, yo)  = (0,O) is equal 
to: 

evaluated at (x, u) = (0,O). If all the eigenvalues of the Jacobian 
9,(x, u)  are in the interior of the unit circle, the dynamics of 
Eq. 10 is guaranteed to be locally asymptotically-stable around 
the origin. 

Given a discrete-time nonlinear system of the 
form Eq. 1, its delay-free part is said to be hyperbolically 
minimum phase, if all the eigenvalues of the Jacobian matrix 
9,(x, u), evaluated at the equilibrium point, are in the interior 
of the unit circle. 

If the delay-free part of a discrete-time nonlin- 
ear system of the form of Eq. 1 is hyperbolically minimum 
phase, then it will also be minimum phase. However, the con- 
verse may not hold. The dynamics of Eq. 10 can have some 
eigenvalues on the unit circle and still be asymptotically-stable. 

It is important to mention at this point that, in the systems 
theory literature (see, for example, Monaco and Normand- 
Cyrot, 1988), the notion of minimum-phase behavior, is de- 
fined via a notion of zero dynamics, which tries to generalize 
the continuous-time notion of zero dynamics of Byrnes and 
Isidori (1985). Note, however, that the associated normal form 
of discrete-time systems is built on the manifold: 

Definition 3. 

Remark 1. 

L* = ( x E XI ho (x) = h’ (x) = ... = h‘- (x) = 0 j 

rather than the entire state space X .  Consequently, the normal 
form of Monaco and Normand-Cyrot is not connected with 
the (forced) inverse dynamics, and its importance is mainly 
theoretical. 

To obtain a discrete-time SISO analog of Byrnes-Isidori 
normal form, the following additional assumption must be 
made: 

The vector fields in R“” 
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are involutive. 

find scalar functions tJ ( x )  , J = 1, . . . , n - r such that: 
Under the above involutivity assumption, it is possible to 

and the coordinate transformation 

= T ( x )  = 

is locally invertible. 

Eq. 1 takes the normal form: 
Under the above coordinate transformation, the system of 

(13) 

where 

Remark 2. The previously mentioned involutivity condi- 
tion is necessary and sufficient for the existence of ( n -  1) 
linearly-independent solutions to the system of partial differ- 
ential equations: 

Alternatively stated, it is necessary and sufficient for the ex- 
istence of (n - 1) linearly-independent functions of x only, 
whose gradients are orthogonal to [a+(x, u)]/au for every u. 
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Consequently, it is necessary and sufficient for the existence 
of ( n  - 1 )  linearly-independent functions of x ,  whose compo- 
sition with 9(x, u) does not depend on u. If one denotes by 
t, ( x ) ,  i = 1, . . . , n - 1 such functions, they will all be automat- 
ically linearly independent of /I+’ (x). Furthermore, it is always 
possible to select (n - r )  t,(x)’s so that they are also linearly- 
independent of ho(x) ,  ..., W2(x); these will form the coor- 
dinate transformation of Eq. 12. 

It is straightforward to show that the previously 
stated involutivity condition is equivalent to the following con- 
dition: 
There exists a scalar function S(x,u) such that; 

Remark3. 

This is automatically satisfied for all 9 which are affine in u. 
For a system in the above normal form (Eq. 13), the fol- 

lowing relations hold: 

and 

1 (14) 

The normal form of Eq. 13, as well as its properties (Eqs. 
14 and 15), are in complete analogy with the continuous-time 
normal form, where the time derivative operator d /d t  is now 
replaced by the forward shift operator. Thus, in analogy to 
the continuous-time case (see Kravaris, 1988), it is possible to 
define notions of both forced and unforced zero dynamics by 
considering the first (n  - r) equations of Eq. 13 as follows. 

Consider a discrete-time nonlinear system of 
the form of Eq. 1 which has been transformed into the normal 
form of Eq. 13 via the coordinate transformation of Eq. 12. 
The dynamic system 

Definition 1. 

with input f ”  (k)  is called the forced zero dynamics of the 
system described by Eq. 1. The dynamic system 

is called the unforced zero dynamics or, simply, the zero dy- 
namics of the system described by Eq. 1 .  

The significance of the forced zero dynamics arises in con- 
nection with the inverse dynamics. The notion of (unforced) 
zero dynamics provides a nonlinear analog of the notion of 
zeros in linear systems. As mentioned earlier, the normal form 
of Monaco and Normand-Cyrot leads to a notion of unforced 
zero dynamics (which is, of course, equivalent to the one given 
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in the above definition), but not to a notion of forced zero 
dynamics. On the other hand, the normal form of Eq. 13 is 
restricted to dynamic systems that satisfy the appropriate in- 
volutivity condition stated earlier. 

A final comment must be made comparing the dynamics of 
the inverse of the delay-free part of the system (Eq. 9) to the 
zero dynamics. The poles of the linear approximation of the 
zero dynamics are exactly the ( n - r )  zeros of the linear ap- 
proximation of the process, whereas the linear approximation 
of Eq. 10 has (r) additional poles at the origin. The latter do 
not affect the stability properties of Eq. 10 and, for this reason, 
the system of Eq. 10 is suitable for defining minimum-phase 
behavior. However, it is not appropriate to refer to the dy- 
namics of Eq. 10 as the “zero dynamics” because of its ad- 
ditional poles at the origin. 

To illustrate the above concepts, the system 
described by Eq. 4 is considered. For this example, the delay- 
free and pure delay subsystems are: 

Example 2. 

y ( k  + 2) = y* ( k )  (pure delay) 

The inverse of the delay-free subsystem is: 

The Jacobian of the closed-loop system, evaluated at the equi- 
librium point (xe, uJ = (0, 0, 0, 0), is: 

which has three eigenvalues at the origin (h,=O, i =  1 ,  2 ,  3 ) ,  
therefore, the delay-free part of the system is hyperbolically 
minimum phase. Furthermore, the locally invertible coordinate 
transformation 

transforms the system of Eq. 4 into normal form 
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The corresponding forced and unforced zero dynamics, rep- 
spectively, are given by: 

and 

Clearly, the zero dynamics is locally stable (its linear approx- 
imation around the origin has a pole at zero), which confirm 
the previous results obtained from the eigenvalues of the Ja- 
cobian matrix 9,(x, u). 

Inputloutput Linearizing Feedback 
In this section, a discrete-time analog of input/output 

linearizing feedback is developed by extending available the- 
oretical results on output dead-beat control of nonlinear sys- 
tems (Glad, 1987; Monaco et al., 1989). 

The results of this section will play an instrumental role in 
the development of general controller synthesis strategies for 
discrete-time nonlinear systems. 

In analogy to continuous-time nonlinear systems, one can 
pose the problem of synthesizing a static state feedback of the 
form: 

which has r poles at the roots of the characteristic equation: 

and no zeros. Therefore, the order of the closed-loop system 
is r. 

The necessary static state feedback that induces the closed- 
loop input/output dynamics of Eq. 19 can be calculated from 
the definition and properties of the relative order r. It is the 
implicit function defined as the solution for u ( k )  of the al- 
gebraic equation: 

Recalling the definition of the function q,, (Eqs. 5 and 6) ,  this 
can be written as: 

Note that in the special case Po = 1, Pr= 0, I= 1, . . ., r, the 
state feedback of Eq. 22 becomes: 

and the resulting input/output behavior is: 
with ( N [ x ( k ) ,  v(k)])/au # 0, which, when applied to a 
dynamic system of the form of Eq. 1, induces a linear closed- 
loop input/output behavior. 

It is straightforward to show that the closed-loop system 
resulting from the feedback of Eq. 18: 

has the same relative order as the open-loop system (Eq. 1). 
Consequently, if r is the relative order of the open-loop system, 
a closed-loop dynamics with relative order r must be requested. 
If linear closed-loop input/output dynamics of minimal order 
is desirable, this has the general form: 

where Pr, f = 0,  . . . , r are constant scalars with Po # 0. Equiva- 
lently, the input/output dynamics (Eq. 19) can be represented 
by a z-domain transfer function as: 

where 

P O  

= z'+ pIz'-l + . . . + P,- 1z + P, 

which is an output dead-beat response. Although from prac- 
tical standpoint, the dead-beat response is not a good choice 
(in terms of its robustness properties), dead-beat control has 
considerable theoretical importance, which attracted a lot of 
attention in the systems theory literature (for example, O'Reilly, 
1981; Glad, 1987; Isermann, 1989). The closed-loop response 
of Eq. 24 is the fastest achievable closed-loop response in terms 
of tracking the reference input u. Also, the closed-loop dy- 
namics arising from the feedback of Eq. 23: 

is identical to the dynamics of the inverse of the delay-free 
part of the process (cf. Eq. 9). Therefore, the delay-free part 
of a system of the form of Eq. 1 is minimum-phase if and 
only if the closed-loop dynamics associated with output dead- 
beat response is asymptotically stable (Glad, 1987; Monaco 
and Normand-Cyrot, 1988). 

For practical purposes, one must use Pr#O to obtain a suf- 
ficiently robust response. For this reason, one must analyze 
the closed-loop system arising from the general state feedback 
law of Eq. 22: 

The input/output behavior of Eq. 25 is, of course, governed 
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by the transfer function of Eq. 20, and therefore, the input/ 
output closed-loop stability and performance characteristics 
are determined by the roots of the characteristic equation (Eq. 
21). The asymptotic stability characteristics of the dynamics 
of Eq. 25 depend on the eigenvalues of the Jacobian of the 
system, evaluated at the equilibrium point. Using the definition 
of 9, (Eqs. 5 and 6) and the implicit function theorem, the 
Jacobian of the system of Eq. 25 is given by: 

Thus, if the eigenvalues of gs(0,O) are in the interior of the 
unit circle, the closed-loop system of Eq. 25 is guaranteed to 
be locally internally-stable. Precise conditions are given in the 
proposition that follows: 

Proposition 1. Consider a system of the form of Eq. 1 with 
finite relative order r, which is subject to a state feedback of 
the form of Eq. 22, where the parameters PP, t?= I ,  ..., r are 
chosen so that the roots of the characteristic equation (Eq.  
21 ) are in the interior of the unit circle. If the delay-free part 
of the system of Eq. 1 is hyperbolically minimum phase, then 
the closed-loop system (Eq. 25) is locally asymptotically sta- 
ble. 

As a consequence of the above proposition, the input/output 
linearizing state feedback (Eq. 22) can form the basis for con- 
troller design for all hyperbolically minimum-phase systems 
of the general form of Eq. 1. 

Consider the system given in Example 1 (Eq. 
4). The corresponding input/output linearizing feedback is: 

(The proof is given in the Appendix.) 

Example 3. 

which induces the closed-loop response 

with P O # O ,  or, in the z-domain, 

State feedback simplifications 
The number of adjustable parameters can be reduced by 

making decisions on the form of the desirable input/output 
behavior of the closed-loop system, particularly unity static 
gain in the v-y system and the first-order-plus-deadtime re- 
sponse. 

The requirement of 
unity static gain in the closed-loop v-y system translates into: 

Unity Static Gain in the v-y System. 

G,(l) = 1 

or equivalently, 

AIChE Journal 

Controller State Feedback 

! 

Figure 1. GLC structure. 

1 t- c Pp=Po 
Y =  I 

As will be seen later, this condition does not need to be imposed 
at this stage, because the external controller, which will be 
synthesized later, guarantees offsetless tracking of the set point. 

First-Order-Plus-Dead-time Response. A popular type of 
requested closed-loop response is one of the "first-order-plus- 
deadtime." This can be achieved by setting: 

&=O,  P=2, . . ., r 

In this case, the closed-loop response further simplifies into: 

or in the z-domain, 

If, in addition, unity static gain is desirable, the condition 

must hold, leading to: 

Globally Linearizing Control Structure 

Once a nonlinear system is linearized in an input/output 
sense via the state feedback. of Eq. 22, one can place a linear 
controller with integral action around the linear v-y system for 
offsetless tracking of set points in the presence of modeling 
errors and process disturbances. This leads to the GLC struc- 
ture, which is depicted in Figure 1. The GLC design meth- 
odology was developed for continuous-time systems in Kravaris 
and Chung (1987) and Kravaris and Soroush (1990). In this 
and subsequent sections, the development will be completely 
parallel to the continuous-time GLC, considering general state- 
space discrete-time models of the form of Eq. 1, which are 
input/output linearized by lhe static state feedback of Eq. 22. 

External controller 
As shown earlier, under the state feedback of Eq. 22, the 

closed-loop input/output behavior of the system is linear and 
is given by: 
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where 

Y ( Z )  = G , ( z ) v ( z )  (even for r> I), although in general, one must sacrifice per- 
formance for the sake of simplicity of the external controller. 

For the purpose of on-line implementation of the external 
controller G,(z) defined by Eqs. 29 and 30, a state space 
realization must be constructed. One can readily obtain a min- 
imal-order state-space realization (Isermann, 1989): 

P o  
G , ( Z ) = z ' + P l i - l + .  . . + P , - ( Z + P ,  

Once an overall closed-loop behavior of the general form 

u(z )=Go(z )y , ( z ) ,  such that G,(l)= 1 (27) 

where ysp is the output set point, is specified, and then the 
problem of synthesizing the necessary linear external controller 
of the GLC structure G,(z) becomes straightforward: 

Note that the condition Go(l) = 1 (in Eq. 27), which guarantees 
the offsetless tracking of the set point, induces integral action 
in the synthesized external controller G,(z).  

In particular, if an overall closed-loop behavior of the form: 

is desirable, where R ( z )  is a polynomial in z with R( 1) nonzero 
and finite, the external linear controller G,(z) is given by: 

Causality of the external controller G,(z) is guaranteed as long 
as the polynomial R ( z )  is chosen to be of degree r :  

where yp, f =  1, . . ., r are adjustable scalar parameters. 
It is interesting to observe that for a dead-time- 

free process ( r=  l), the external controller G,(z),  defined by 
Eqs. 29 and 30, becomes: 

Remark 4. 

which is exactly a digital PI controller. The use of PI controllers 
to control a u-y system may be sufficient in many applications 

where 

and 

A ,  = 

1 +o . . 1 

Dc= I + 71 + . * . + yr- I + y, 

Note that both the order of the external controller transfer 
function and the order of its state-space realization (Eq. 31) 
are r ;  hence, the realization of Eq. 31 is minimal. 

When r =  1 (dead-time-free process), the real- 
ization of Eq. 31 simplifies into: 

Remark 5. 
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Figure 2a. GLC-state-and-error-feedback structure 
(“basic” G LC). 

which is a realization of a digital PI controller. This corre- 
sponds to A,= 1, B,= 1 + yl, C,= 1 + P I ,  D,= 1 + yI  (all scalar). 

Overall controller (mixed error and state feedback) 
In the case that all the process state variables are measured 

on-line, the state feedback (Eq. 22) and the external controller 
(Eq. 31) are implemented to induce a desired linear overall 
closed-loop response. 

Theorem I. Consider the nonlinear process described by Eq. 
I with finite relative order r .  Then the dynamic system 

where *,( .,. ) is defined by Eqs. 5 and 6, and A ,  Bc, C, and 
D, are the system matrices of the realization of Eq. 31, rep- 
resents an rth order state-space realization of a mixed error- 
and state- feedback controller that induces the closed-loop in- 
put/output behavior described by Eqs. 29 and 30: 

where ye, P= I ,  ..., r are adjustable parameters and y ,  is the 
output set point. (The proof is given in the Appendix.) 

The block diagram of the mixed error- and state-feedback 
controller (Eq. 32) is depicted in Figure 2a. This controller 
structure will be referred to as the “Basic” GLC structure. 

Dynamic Output Feedback Synthesis via GLC 
Formulation of the dynamic output feedback synthesis 
problem 

The GLC structure presented in the previous section results 

in an overall feedback controller which is mixed error and state 
feedback. In many practical cases, on-line measurement of all 
the states is either infeasible or too expensive. In a typical 
situation, only the output is measured on-line, and this mo- 
tivates the problem of synthesizing nonlinear output feedback 
control laws for accurate tracking of set points and effective 
rejection of disturbances and modeling errors. 

Unlike the state feedback law of Eq. 22, which was static, 
in an output feedback setting one must seek for a dynamic 
feedback law to achieve satisfactory servo and regulatory be- 
havior in the closed loop. Furthermore, because there is no 
nonlinear analog of a transfer function to represent the input/ 
output dynamics of a nonlinear system, the dynamic output 
feedback controller must be represented in terms of a state- 
space realization. For this reason, the formulation and solution 
of the controller synthesis problem must be done in state space. 

In view of the above considerations, the following synthesis 
problem is posed: Given a nonlinear process described by a 
state-space model of the form of Eq. I ,  calculate a state-space 
realization of a nonlinear dynamic output feedback controller 
which induces a closed-loop input/output behavior of the form 
of Eq. 33. 

The posed synthesis problem can be conveniently attacked 
within the GLC framework, if the inputloutput linearizing 
feedback is combined with an appropriate state observer. Since 
there is no separation principle in nonlinear control, the state 
feedback/state observer combination will be used in deriving 
synthesis formulas (state-space controller realizations), al- 
though the analysis of the closed-loop behavior must be per- 
formed by viewing the resulting controller as one entity, without 
attempting to “superimpose” the behavior of the state feed- 
back and the state observer. The approach, which is followed 
in this section, is completely parallel to the continuous-time 
output feedback synthesis approach in Daoutidis and Kravaris 
(1992). 

Synthesis of error- feedback controllers: GLC-error feed- 
back structure 

When the process model of Eq. 1 is open-loop-stable, one 
can use an open-loop observer to reconstruct the process states; 
this motivates on-line simulation of the process model: 

w ( k +  l ) = * [ w ( k ) ,  u ( k ) ]  (34) 

The state estimates w can be used in the input/output li- 
nearizing state feedback: 

where v is obtained from the external controller of Eq. 31. 
Combining Eqs. 31, 34 and 35, we obtain a state-space real- 
ization of a controller, which induces the requested closed- 
loop dynamics (Eq. 33). This is established in the theorem that 
follows. 

Theorem 2. Consider the nonlinear process described by Eq. 
I with finite relative order r. Then the dynamic system: 
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where Po (. , . ) is defined by Eqs. 5 and 6, and A ,  B ,  C, and 
D, are the system matrices of the realization of Eq. 31, rep- 
resents an ( n  + r)th order state-space realization of a dynamic 
output feedback controller that induces the closed-loop input/ 
error behavior of Eq. 33. (The proof is given in the Appendix.) 

Corollary ( Reduced-Order Realization ). Under the as- 
sumptions of Theorem 2, the dynamic system: 

i 
represents an nth order state-space realization of a dynamic 
error feedback controller that induces the closed-loop input/ 
output behavior of Eq. 33. (The proof is given in the Ap- 
pendix.) 

The controller realizations (Eqs. 36 and 37) 
represent a dynamic error-feedback controller (the only input 
to the controller is the error) with integral action. The overall 
control structure as well as the various parts of the controller 
(Eq. 36) are shown in Figure 2b. This controller structure will 
be referred to as the GLC-error-feedback structure. 

The controller realization of Eq. 37 can be 
interpreted as a feedforward controller that induces the error- 
to-output dynamics: 

Remark 6. 

Remark 7. 

This interpretation suggests an alternative way of deriving the 
controller of Eq. 37. 

Some practical considerations: controller simplification 
From a design point of view, it makes sense to try to reduce 

the number of adjustable parameters as long as it gives enough 

~ 

Pruccss 

Observer 

I 

Figure 2b. GLC-error feedback structure. 

flexibility to "shape" the closed-loop response. One way of 
doing this is by placing (r-  1) poles at the origin and leaving 
the remaining pole adjustable. This corresponds to choosing: 

YI = -a ,  O<a<l 

Y2 = 0 
(38) L Y r  = 0 

that is, a desirable closed-loop input/output behavior 

y ( k + r )  - a y ( k + r -  I ) = ( ]  -a)y,(k) 

or 

which is first-order-plus-dead-time. This makes intuitive sense, 
because the dead time is preserved in the closed loop, and also 
the first order is the simplest type of response. Furthermore, 

1-a 
1 -az-l 

is the transfer function of a first-order filter; therefore, the 
controller that leads to such a response can find a nice IMC 
interpretation in linear systems (see original IMC article by 
Garcia and Morari, 1982). Finally, practical experience from 
linear systems has shown that although this kind of response 
has only one tunable parameter, it gives enough flexibility to 
the designer. 

When the parameters Ye are chosen according to Eq. 38, the 
controller of Eq. 37 simplifies into: 

w ( k +  1 )  = * [ w ( k ) ,  *(, [ w ( k ) ,  CYh'-I [ w ( k ) l  
+ ( l - a ) h I w ( k ) l + ( 1 - ~ ) e ( k ) l I  

+ ( I - a ) e ( k ) l  
~ ( k )  =Po [ ~ ( k ) ,  ah'-' [ w ( k ) ] + ( l - a ) h  [ ~ ( k ) ]  

(39) 

It is straightforward to derive a Smith predictor 
interpretation/implementation of the controller of Eq. 39 when 
r > 1 ,  along the lines of the linear discrete-time Smith predictor 

Remark 8. 
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of Alevisakis and Seborg (1973). The Smith predictor will try 
to predict the auxiliary output y@ = hr-’(x), which represents 
the process output when the process dead time (r-  1)At is 
“factored out.” This can be done by simulating: 

X ( k +  l ) = * [ X ( k ) ,  u ( k ) l ,  (Process model) 
Syo ( k )  = hr-’ [X(k)l - h [ X ( k ) ] ,  
P ( k )  = y ( k )  + S Y @ W ,  (Prediction of dead-time- 

(Corrective Signal) 

free output) 

The prediction is compared to the set point and the error: 

is fed to a GLC-error-feedback controller, synthesized for the 
dead-time-free output y @  = h ’ - l  (x): 

It is understood that the states 3c of the Smith predictor and 
the states w of the above GLC controller will be consistently 
initialized [%LO) = w(O)], in which case X(k )  = w ( k )  for all k; 
this makes the Smith predictor structure implementation equiv- 
alent to the implementation suggested by Eq. 39. It must be 
noted, however, that in discrete time, the motivation/mean- 
ingfulness of the Smith predictor concept is not as strong as 
in continuous time. 

Synthesis of output feedback controllers for  dead-time- 
free processes: GLC-two degree of freedom output feed- 
back structure 

The approach developed in the previous subsection can be 
applied only to open-loop stable processes whose delay-free 
part is minimum phase. In the case of open-loop instability, 
any error in the observer initialization would grow indefinitely, 
leading to obvious internal stability problems. However, for 
the case of dead-time-free minimum-phase processes, the nor- 
mal form representation (Eq. 13) suggests an alternative way 
of state reconstruction, valid even in the presence of possible 
open-loop instability. 

Consider the normal form representation (Eq. 13) for r = 1 
(dead-time-free process): 

f f ( k +  1) =Fi[Slo)(k), . . ., .EoLi(k)> hYW1 

We see from (Eq. 40) that the last state is exactly the measured 
output whereas the first (n - 1 )  states can be reconstructed by 
simulating the first (n - 1 )  state equations (the forced zero 
dynamics), driven by the output measurement. This leads to 
the following reduced-order observer: 

vdk+ 1 )  =F,[v(k) ,  Y ( k ) l  

s,-,(k+ I)=F,-lt?(k), Y t k ) l  
(41) 

Controller 

I I 
Y 

Figure 2c. GLC-two degree of freedom output feedback 
structure. 

where v =  fa), or, in a compact form v(k+ l ) = F [ q ( k ) ,  y ( k ) ] .  
The state estimates 9 can now be used in the input/output 
linearizing feedback (Eq. 22) which, combined with an external 
controller, leads to an overall output feedback controller for 
the process. This is established in the theorem that follows: 

Theorem 3. Consider the nonlinear process described by Eq. 
40. Then the dynamic system: 

(42) 

represents an nth order state-space realization of a dynamic 
output feedback controller that induces the closed-loop input/ 
output dynamics: 

(The proof is given in the A.ppendix.) 
The controller realization of Eq. 42 is a non- 

linear analog of a two-degree-of-freedom controller: a mixed 
error- and output-feedback controller. This is consistent with 
the intuition from linear systems theory where a two-degree- 
of-freedom controller is usually employed for open-loop un- 
stable systems, with the output feedback having a stabilizing 
effect on the overall control action. The overall control struc- 
ture and the various components of the controller are shown 
in Figure 2c. This control structure will be referred to as the 
GLC-two degree of freedom output feedback structure. 

Remark 9. 

Closed-loop stabiZity 
The input/output stability of the 

overall closed-loop system is guaranteed as long as the param- 
eters yp, P= 1 ,  . . . , r are chosen so that the roots of the char- 
acteristic equation: 

Input/Output Stability. 

lie inside the unit circle. 
In addition to the input/output stability, 

one must assure that the overall closed-loop system is internally 
stable: the state variables always remain bounded. If the overall 

Internal Stability. 

AIChE Journal December 1992 Vol. 38, No. 12 1933 



closed-loop system is input/output-stable, and the conditions, 
(i) the delay-free part of the process is hyperbolically min- 

imum-phase 
(ii) the roots of the characteristic equation 

Using the algebraic identity: 

Equation 44 can be equivalently rewritten in the form: 
i + p 1 i - l + .  . . + p r - g + p r = 0  

lie inside the the unit circle, are satisfied, then the local internal 
stability of the closed-loop system under the controller of Theo- 
rem 3 will be guaranteed. For local internal stability of the 
closed-loop system under the controller of Theorem 2, in ad- 
dition to the conditions i and ii, the following condition, 

must hold. 
The tuning parameters 04s in the controllers 

of Theorems 1 ,  2, and 3 do not affect the input/output dy- 
namics of the overall closed-loop system; they characterize the 
hidden modes of the closed-loop dynamics. Apart from the 
requirement that the roots of z'+@,.z-'+ ... +@,- l z+@,  lie in- 
side the unit circle, the choice of 0;s seems completely arbi- 
trary. Note, however, that for robustness of the closed-loop 
dynamics, care must be taken so that the hidden modes are 
slower than the unmodeled dynamics. 

(iii) the open-loop process is locally stable, 

Remark 10. 

Error Feedback Control of Linear Systems 
Consider SISO discrete-time linear systems described by a 

state space model of the form: 

(43) 

where A,  B, and C are matrices of appropriate dimensions. 
This is a special case of Eq. 1 for: 

9 [ x ( k ) ,  u ( k ) ] = A x ( k )  + B u ( k )  
h [ x ( k ) ]  = C x ( k )  

Applying Definition 1 to the system of Eq. 43, we immediately 
see that the relative order r of this system is the smallest integer 
for which 

CA'-~B+O 

and this is in complete agreement with the linear notion of 
relative order (Chen, 1984). Furthermore, 

h'(x) =CAk f = O , .  . . , r - 1  
h ' - ' [@(x ,  u)] = CA'X+ CA'-'Bu 

and the function qo, which was defined implicitly as the so- 
lution of Eq. 5 has the simple closed-form expression: 

The input/output behavior of the system of Eq. 43 can be 
represented by the z-domain transfer function: 

(44) 

which provides a factorization of the transfer function of Eq. 
44 into a pure delay, z - ~ ,  and a delay-free part: 

in terms of the system matrices A, B and C. 
The simplicity of the expressions for a, he and \k, in linear 

systems significantly simplifies the expressions for the derived 
control laws. In partticular, the error-feedback controller of 
Corollary to Theorem 2 becomes: 

7 -  1 

(CAP- C) + yp (CA'-'- C )  

CA'-' I= I B ) w ( k )  

r -  I 

(CA'- c) t c yp (CAr-P- C )  
I= I 

CA'-' B 
u ( k )  = -  

In particular, under the choice 

(which corresponds to requesting first-order-plus-dead-time re- 
sponse), the controller further simplifies into (see also Eq. 39): 

CA'-aCA'-'- 
CA'-' B 

J 

It is straightforward to verify that Eq. 46 is a minimal state- 
space realization of the z-domain transfer function: 
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where H ( z )  is given by Eq. 45. The transfer function of Eq. 
47 is exactly the controller derived from standard synthesis 
methods (for example, IMC) for a requested closed-loop re- 
sponse of the form: 

A similar development can be followed along the lines of the 
results of Theorem 3 for dead-time-free processes, resulting in 
a linear two-degree-of-freedom controller. Details are omitted 
for brevity. 

Model Algorithmic Control 
Model algorithmic control (MAC) is a one-step-ahead pre- 

dictive controller, in which the control law is obtained from 
the minimization of the output error at time k + r. It uses an 
impulse response model to predict the future behavior of the 
process. MAC was developed in France in the late 70s within 
the chemical process industry. The original concept was es- 
tablished by Richalet et al. (1978), and later the theory was 
further advanced by Mehra et al. (1980) and Mehra and Rou- 
hani (1980). This MPC technique has been implemented in 
many industrial processes such as PVC plant and distillation 
column (Richalet et al., 1978), steam generator (Lecrique et 
al., 1978), electric power plant (Mehra and Eterno, 1980), and 
flight control (Mehra et al., 1978). 

In the work of Garcia and Morari (1982), a comprehensive 
review of MAC is provided and, more importantly, MAC is 
put into perspective and compared with theoretical controller 
synthesis methods. In particular, it is shown that the model 
algorithmic controller is essentially identical to the one arising 
from IMC. 

The development of the MAC methodology is in terms of 
an input/output process model (in particular an impulse re- 
sponse model) although this is by no means a limitation. A 
state-space model could have been used following the concep- 
tual steps of the methodology, leading to identical results. In 
what follows, we will develop a state-space reformulation of 
MAC for unconstrained linear processes whose delay-free part 
is minimum phase and then develop, for the first time, a non- 
linear generalization of MAC. The nonlinear MAC will turn 
out to be identical to the GLC-error-feedback controller which 
was developed in the previous sections. 

State-space reformulation of MA C for  unconstrained 
minimum-phase linear processes 

Consider linear processes described by a discrete-time state 
space model of the form of Eq. 43: 

where the subscript m has been added to explicitly indicate 
that xm and y,,, represent estimates of x and y obtained by 

simulating the model, given the manipulated input move u ( k ) .  
This notation will help differentiate y ,  from the measured 
output, which will still be denoted by y .  The model of Eq. 48 
can be simulated on-line to predict the future behavior of the 
process. In particular, from the model described by Eq. 48, 
we obtain: 

Ym ( k  + r -  1) -Ym ( k )  = 

Yrn(k+  r) -Ym(k)  = (ar- C)X, ( k )  + CA'-IBu ( k )  
- C)X, ( k )  

When these predicted changes are added to the measured out- 
put signal y ( k ) ,  one obtains future predictions of the output: 

(49) 

where the superscript * is used to indicate that y  ̂ represents a 
prediction of the output. It is interesting to observe that the 
output predictions in Eq. 49 are "closed-loop" predictions in 
the sense that they make use of the measured output signal. 
Also that the manipulated input move u ( k )  affects the output 
after r sampling periods, and this conforms with the interpre- 
tation of rAt as the overall delay of the system [(r- 1)At is the 
process dead time, and At is the sampling delay]. 

At every time step, the control computer can calculate the 
output predictions (Eq. 49), driven by u ( k )  and y ( k ) ,  where 
x,,,(k) is obtained by on-line simulation of the state equations 
of Eq. 48: 

x m ( k +  l ) = A x m ( k )  + B u ( k )  

The question that arises then is what should be the choice of 
u ( k )  to obtain a desirable output response after r time steps. 
If u ( k )  is chosen so that 9 (k + r) is exactly the set-point value, 
this would clearly create a nonrobust situation. Instead, one 
can request P (k+r )  to be in the right direction and cover a 
fraction of the "distance" between j ( k + r -  1) and the set- 
point value. In other words, one can define a desirable value 
of the output at the (k+r)th time step by: 

Y d  ( k  + r )  = ( 1  -- C r ) U ,  + a!? ( k  + r -  1) (50) 
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where a is a tunable filter parameter such that 0 < a  < 1. Clearly, 
a-0 corresponds to y d ( k + r ) - y s p  and, therefore, will try to 
force the output to go to set point as soon as possible, whereas 
a-1 corresponds toyd(k+r)--y^(k+r- l), leaving theoutput 
unaffected. An intermediate choice of a corresponds to a de- 
sirable value of the output in between ysp and P(k + r -  1) that 
tries to bridge the gap to a certain extent. Equation 50 is 
referred to as the "reference trajectory" in the MAC literature. 

Once the reference trajectory has been specified, the question 
then becomes how to choose the control move u ( k )  so that 
$ ( k + r )  will match y , ( k + r ) .  This can be formulated as an 
optimization problem: 

or, equivalently, in view of Eqs. 49 and 50: 

min[(l - a ) e ( k )  - [ (CA'- C) 
U(k) 

- a ( C A ' - ' - C ) ] x , ( k )  -CA'*'Bu(k)]' 

In the absence of the input constraints, this minimization prob- 
lem is trivially solvable leading to the following control law: 

where x, ( k )  is obtained by simulating: 

x,(k+ l)=Ax,(k) + B u ( k )  

This is identical to the controller realization of Eq. 46 with x, 
replacing w. 

Nonlinear MAC for unconstrained nonlinear processes 
The steps of the state-space linear MAC of the previous 

subsection can be extended "word by word" to nonlinear 
processes described by discrete-time models of the form of Eq. 
1: 

where again the subscript rn is added to indicate estimates of 
x and y obtained by model simulation and differentiate the 
simulated y from the measured y .  

On-line simulation of the model described by Eq. 52 can be 
used to predict the future changes in the output y as follows: 

When these predicted changes are added to the measured out- 
put signal y ( k ) ,  one obtains the following "closed-loop'' pre- 
dictions of the output: 

Defining a linear reference trajectory as same as in the linear 
case (Eq. 50): 

one can derive a nonlinear MAC controller by requesting the 
output prediction to match the reference trajectory in the sense 
of minimizing the performance index of Eq. 51: 

In view of Eqs. 50 and 53, this becomes: 

In the absence of the input constraints, this minimization 
problem is trivially solvable. Minimizing u ( k )  is the solution 
of the nonlinear algebraic equation: 

Remembering the definition of qo (Eqs. 5 and 6 ) ,  the solution 
can be represented as: 

Thus, the derived control law is given by: 

which is identical to the controller realization of Eq. 39 with 
x, replacing w. 

Remark I l .  In the derivation of a MAC controller, it is 
conceivable to penalize the input by including an additional 
term in the performance index: 
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Table 1. Parameters of the CSTR Model 

/ Q  

I 

Figure 3. Simulated CSTR. 

min ( b d ( k + r )  - p ( k + r ) ] 2 + p [ ~ ( k ) ] 2 )  
u ( k )  

where p is a positive tunable parameter (Mehra and Rouhani, 
1980; see also Henson and Seborg, 1991b in a nonlinear MPC 
context). Minimization of such a performance index under no 
input constraints leads to a controller whose move u ( k )  is the 
solution of the nonlinear algebraic equation: 

where x,(k) is obtained by simulating: 

The above control law is not a GLC controller (does not 
induce a linear input/output behavior to the closed-loop sys- 
tem), and its theoretical properties are unknown at this point. 

Example: Application to a CSTR 
To study the performance of the proposed nonlinear control 

methodology, it is applied to a reactor system. The reactor is 
a CSTR (shown in Figure 3), in which the following parallel 
reactions 

take place. U, and U2 are undesired side products, and D is 
the desired product. The feed to the reactor does not contain 
U, ,  U2, or D. The dependence of the reaction rate constants 
k, ,  k2, and kd on temperature is given by ki=Zi exp 
( - E , / R T ) ,  i = I ,  2 and kd=Zdexp (-E,,/R7). 

Mathematical model and control problem 
Energy and species mass balances for the reactor (under 

R = 8.345 x 10' 

2, = 3 . 4 0 ~ 1 0 ~  
z, = 2 . 0 0 ~  10' 

z, = 2.63 x 1oS 
E,, = 4 . 9 0 ~  lo4 

E,, = 5 . 7 0 ~  104 
-AH, = 4 . 5 0 ~  lo4 
- A H ,  = 5.00x 104 

Ea2 = 6 . 5 0 ~  lo4 

-AHd = 6 . 0 0 ~ 1 0 ~  
n, = 3.00x 10' 
n2 = 5.00x10-' 
nd = 1.00x 10' 

= 1 . 0 0 ~ 1 0 ~  
c = 4 . 2 0 ~  10' 

standard assumptions) give the reactor model, which is of the 
form 

7 

where the rate expressions RA,  RH,  and RD are given by: 
RA = - klC2 - k2CZ- kdcz 
RH= ( - AH,)k,C? + ( - A H Z )  k2CZ + ( - M d )  kdC2 
RD = kdC2 

(54) 

The parameters of the reactor model are given in Table 1. 

sired product (CDJ given by: 
Figure 4a depicts the steady-state concentration of the de- 

c D , 4  = Tk&zsi 

5 

0 
Temperature, K 

Figure 4a. Steady-state concentration of ~(CD,,) vs. 
steady-state temperature (TJ. 
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Figure 4b. Steady-state concentration of A(CnSs) VS. 
steadystate heat input (us&. 

where CAGq is the solution of: 

vs. the steady-state temperature T,. As Figure 4 shows, the 
steady-state concentration of the desired product has a global 
maximum at Ts3 = 400 K, and this is independent of the inlet 
temperature Ti. 

The control problem is to maintain the reactor temperature 
Tat  400 K, which corresponds to maximum steady-state con- 
centration of the desired product (CD, = 4.0 kmol/m3), in the 
presence of process disturbances and modeling errors, by ma- 
nipulating the heat input to the reactor (Q). For the controller 
design, since C, does not affect T, only the first two differential 
equations of Eq. 54 are needed. Therefore, the process model, 
in standard state-space form, can be written as: 

\ y = T  

Here, x =  [CA r]", u = Q, and 

[r 
An interesting feature of this control problem is the presence 

of steady-state multiplicities. Figures 4b and 4c depict the 
steady-state concentration of A ( CAJ and the steady-state tem- 
perature (T,) vs. steady-state heat input (u,). As shown in 
these figures, for us= - 1.030 k J - s - '  there are three steady- 
state operating points (SS1, SS2, and SS3); it is at the high- 
conversion, high-temperature, steady-state operating point 
(SS3) that the reactor must operate. The presence of steady- 

I V??!?!i?...-- 11 m, 
270 I ' I ' I ' I . I  

-1.5 -1.3 -1.1 -0.9 -0.7 -05 
Heat hput, kJ/s 

Figure 4c. Steadystate temperature ( TsA vs. steadystate 
heat input (uss). 

state multiplicities makes the reactor start-up a true control 
problem; if the necessary steady-state heat input ( -  1.030 
kJ . s - ' )  is applied to the reactor in an open-loop fashion, the 
process will go to SSl and not to SS3. Also the regulation 
problem is very important because process disturbances could 
potentially drive the reactor to the low-conversion, stable, 
steady-state operating point (SS1). 

Discrete-time model through forward difference ap- 
proximation 

For the discretization of the above continuous-time model, 
a simple forward difference method (Euler's method) is used, 
which can provide a good approximate discrete model under 
fast sampling. The resulting discrete-time model is: 

~ ( k )  = T ( k )  

( 5 5 )  

where At  is the sampling period, which is in the form of Eq. 
1. The nonlinear controllers will be synthesized on the basis 
of the discrete-time model of Eq. 5 5 .  

Controller synthesis and implementation 

of Eq. 55 according to Definition 1. Since 
The first step is to calculate the relative order of the model 
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Table 2. Operating Conditions with the nominal initial conditions: 

CA, = 1.oox lo1 

C,(O) = 0 . m x  loo 
CA(0) = 1 . m x  lo-’ 

T(0) = 2.952~10 ’  
T, = 4.OOX 10’ 
Q, = - 1.0303 x 10’ 

CASr = 1 .3204~  10’ 
CDS = 4 . 0 0 0 ~  10’ 
v = 1.00x10-* 
7 = 3.00X lo2 

T, = 2.952~10 ’  

km01.m-~ 
kmol .m-3 
kmol .m-3  
K 
K 
kJ.s-l 
kmol .m-3  
kmof .m-3 
m3 

K 
S 

and therefore 

the relative order is r =  1 .  

example, are as follows: 

controller of Theorem 1 (Eq. 32) becomes: 

The controllers of Theorems 1 ,  2 and 3,  for this specific 

(A)  “Basic” GLC: Full State Measurement. The feedback 

with the initial condition 

( B )  GLC-Error Feedback. The error-feedback controller 
of Theorem 2 (Eq. 36) takes the form: 

with the nominal initial conditions (see Table 2): 

Since l (0)  = w2(0), the above controller realization has one re- 
dundant state; c(k) = w2( k )  for all k.  Elimination of the re- 
dundant state leads to the reduced realization of the Corollary 
to Theorem 2 (Eq. 37): 

( C )  GLC-Two Degree of Freedom Output Feedback. The 
two-degree-of-freedom controller of Theorem 3 (Eq. 42) takes 
the form (note that the system of Eq. 55 is already in normal 
form): 

with the nominal initial conditions (see Table 2): 

The above three controllers induce the same linear input/ 
output behavior: 

to the overall closed-loop system. 
Some comments must be made here with regard to the nature 

of the derived controllers: 
All three controllers possess integral action: the state 5 

represents the integral of the error multiplied by ( 1  + y l ) /A t .  
The origin of the integral of the error could be seen from 

the nature of the requested closed-loop response (Eq. 60). 
Rearranging terms in Eq. 60, we see that all three controllers 
are trying to enforce the error-to-output relationship 

that is, they are trying to match the system output with the 
integral of the error multiplied by (1 +?! ) /A t .  Each controller 
uses a different strategy to enforce this matching, but in all 
three cases, the integral of the error arises in the control law. 

In the derivation of the realization of Eq. 57, an open- 
loop observer was used: wI and w2 represent the estimates of 
the concentration C, and temperature T, respectively, via open- 
loop simulation of the process model. Once the input/output 
linearizing state feedback has been substituted under t (0 )  = w2 
(0), w2 becomes the integral of the error multiplied by (1 + yl)/ 
At, and this gives rise to the reduction of the order of the 
realization (Eq. 58). This observation indicates that although 
the output feedback controller was derived via brute force state 
feedback/state observer combination, the interpretation of the 
controller states is much more subtle. 

Controller A uses an on-line measurement of the concen- 
tration of A whereas controllers B and C both simulate the 
A-balance equation on-line in order to obtain an estimate of 
CA.  In particular, the q-equation of controller C is exactly the 
A-balance equation and is driven by the on-line measurement 
of the reactor temperature. In controller B (Eq. 58) ,  the wI- 
equation is exactly the A-balance equation and is driven by w2 
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Table 3. List of the Simulation Cases 

Actual El2 

Estimoted.B? 

Es!!?!oted 83 

\\ ................. ...- ._- _ _ _ - - -  

Nominal Modeling Initialization 
GLC Structure Model Error Error 

- "Basic" A1 A2 
Error-Feedback B1 B2 B3 

Two-Degree-of-Freedom C1 c 2  c3 

[integral of the error multiplied by (1 + yl)/At] rather than the 
on-line measurement of the reactor temperature. Although w, 
is supposed to match the reactor temperature in closed-loop, 
disturbances and modeling errors will create a mismatch, which 
will impact upon the quality of the concentration estimate. 

Simulation Results 
Using the operating conditions given in Table 2, numerical 

simulations are performed to examine the servo and regulatory 
performance of the three controllers A, B and C. In particular, 
the objective is to investigate the ability of the three controllers 
in: 

Performing a smooth and fast reactor start-up 
Rejecting the effect of a step change (20 K increase) in 

the inlet temperature Tj. 
To simulate the reactor process, the standard software pack- 

age ODEPACK is used to integrate numerically the ordinary 
differential equations in Eq. 54. Every 2.5 s (the sampling 
period At), the value(s) of C, and/or Tcalculated by the ODE 
solver are used in the discrete-time controllers as on-line process 
measurements. 

In what follows, the servo and regulatory performance of 
the three controllers A, B and C are investigated under: (1) 
perfect model (nominal case); (2) modeling errors (20% error 
in the frequency factors of all the reactions); and (3) observer 
initialization errors [w,(O)=C,(O)+ 1 for Case B3, and 
~ ( 0 )  = C,(O) + 1 for Case C3]. A list of the simulation cases is 
provided in Table 3. The tunable parameters of the controllers 
are chosen to be p1 = yl  = - 0.96. 

Y / 

........................................ ............. .. . . . . . . . . . .  
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I 

Figure 5a. Profiles of the output during start-up period. 

0 200 400 600 800 
Time, s 

Figure 5b. Profiles of the manipulated input corre- 
sponding to Figure 5a. 

Start-up Performance 

Figure 5a depicts the start-up profiles of the output under 
the three controllers and different conditions. The output pro- 
files in Cases Al ,  A2, B1, C1, C2 and C3 are almost identical 
and follow the requested first-order closed-loop response. The 
slight loss in performance in Case B2 (controller B with the 
modeling errors) and in Case B3 (controller B with the observer 
initialization errors) is insignificant relative to the magnitude 
of these errors. Overall, Figure 5a demonstrates the robustness 
of the controllers to the modeling and observer initialization 
errors. Figure 5b shows the corresponding manipulated input 
profiles for the start-up period. 

Figures 5c and 5d compare the variations of actual and 
estimated values of the state variable CA during the period of 
start-up for Cases B2, B3, C2 and C3. (In Cases B1 and C1, 
which are not shown, CA is perfectly estimated.) As expected, 
in the absence of modeling errors (Cases B3 and C3), the 

I * . 1 ' ~ 1 ' * I ' ' J . '  
300 600 900 QOO EOO iaoo 

Time, s 
Figure 5c. Actual and estimated values of concentration 

of A corresponding to Figure 5a (Controller 
B). 
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Figure 5d. Actual and estimated values of concentration 
of A corresponding to Figure 5a (Controller 
C). 

estimation error goes asymptotically to zero. However, in Cases 
B2 and C2 (controllers B and C with modeling errors), there 
is a permanent mismatch between the actual and estimated 
values of C,. This does not affect controller performance; the 
offset of the state estimate is rejected in the overall control 
structure. 

Regulatory Performance 
Figure 6a (which is a continuation of Figure 5a) depicts the 

regulatory performance of the controllers in rejecting the effect 
of an unmeasurable step disturbance in Ti (20 degrees increase, 
from 22°C to 42"C, at r=2,000 s). The output profiles in 
Cases Al ,  A2, C1 and C2 are almost identical and correspond 
to almost perfect rejection of the disturbance. In Cases B1 and 
B2, the rejection of the disturbance is significantly slower, but 
still satisfactory relative to the magnitude of the applied dis- 

395 f i l  
1800 2300 2800 3300 3800 

Time, s 

Figure 6a. Profiles of the output when there is a step 
change in Ti at f = 2,000 s. 
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-4.5 b - 1  
1800 2300 2800 3300 3800 

Time, s 

sponding to Figure 6a. 
Figure 6b. Profiles of the manipulated input corre- 

turbance. Figure 6b (which is a continuation of Figure 5b) 
shows the corresponding manipulated input profiles. The ma- 
nipulated input profiles for Cases B1 and B2 are less aggressive 
compared to the other cases. It should be noted that the output 
and manipulated input profiles for Cases B3 and C3 (which 
are not shown here) are identical to ones for Cases B1 and C1, 
respectively, since the initialization errors have already been 
rejected. 

Figures 6c and 6d (which are continuations of Figures 5c 
and 5d, respectively) compare the variations of the actual and 
estimated values of the state variable C, for the period 1,800 
5 ?< 3,800 s. In Cases B2 and B3, the step change in T, creates 
a huge difference between actual and estimated values of C, 
for t>2,000 s. This estimation error is responsible for the 
sluggish regulatory behavior shown in Figure 6a. Despite the 
large estimation error, controller B is capable of rejecting the 
disturbance eventually. On the other hand, in Cases C2 and 
C3, the step change in T, at ?=2,000 s does not deteriorate 
the observer performance, because the reduced-order observer 

, .. , 
, ...... . .. __.. _ _ - -  

1800 2200 2600 3000 3400 2 
Time, s 

00 

Figure 6c. Actual and estimated values of concentration 
of A corresponding to Figure 6a (Controller 
B). 
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R, = overall rate of heat production by chemical reactions, 
kJ . kmol-l 

t = time, s 
T = reactor temperature, K 

T, = steady-state reactor temperature, K 
T, = temperature of inlet stream, K 
u = manipulated input 

Ul, U2 = undesired products 
V = volume of the reacting mixture, m3 
x = vector of state variables 
y = output variable 

yd = reference trajectory 
.Y, = output set point 
Zd = frequency factor for desirable reaction, s - ’  
2, = frequency factor for reaction 1, m6 krnol-*.s-’ 
2, = frequency factor for reaction 2, k m ~ l ~ . ~ . m - ’ . ~  .s-I 

Greek letters iabo 2200 2600 3ooo MOO 3800 
Time. s 

Figure 6d. Actual and estimated values of concentration 
of A corresponding to Figure 6a (Controller 
C). 

uses the on-line measurement of the reactor temperature to 
estimate C,. Despite the discrepancy between actual and es- 
timated CA in Case C2, the controller shows the same per- 
formance as in Cases C1 and C3. Overall, controller C (with 
reduced-observer) is more effective than controller B (with full- 
order observer) in rejecting the particular disturbance. 

The above simulation results show the satisfactory perform- 
ance of the three controllers under the large observer initial- 
ization and modeling errors. They also confirm that the best 
controller performance can be achieved when all the states are 
measured on-line. In this specific example, the adverse effect 
of the unmeasurable disturbance on the observer performance 
is more significant than the effects of modeling and observer 
initialization errors. 

Acknowledgment 
Financial support from the National Science Foundation through 

the grant CTS-8912836 is gratefully acknowledged. 

Notation 
A = reactant 
c = heat capacity of reacting mixture, kJ.kg-’.K-’ 

C, = concentration of reactant A,  k ~ n o l . m - ~  
CAs = steady state concentration of reactant A ,  kmol.m-’ 
C,, = inlet concentration of reactant, A ,  k m ~ l . m - ~  
C, = concentration of desired product, k m ~ l . m - ~  

DDs = steady state concentration of desired product, 
kmol . m - 3  

D = desired product 
C,  = concentration of undesired product Up, kmol-m-3 

EOd = activation energy for desirable reaction, kJ .kmol-’ 
Eat = activation energy for undesirable reaction f, kJ . kmol- I 

nd = order of the desirable reaction 
nf = order of the undesirable reaction e 
Q = rate of heat input to reactor, kJ.s-’ 

r = relative order of controlled output y 
R = universal gas constant, kJ.kmol-l.K-’ 

Q, = steady-state rate of heat input to reactor, kJ.s-’  

RA, R, = rate of production of A and D ,  respectively, 
kmol . m - 3  . s -  

p, = tunable parameters of inner loop 
- AHd = heat of desirable reaction, kJ . kmol- ’ 
- AHf = heat of undesirable reaction P, kJ . kmol-l 

At = sampling period, s 
-y, = tunable parameters of overall closed-loop system 
CP = state vector function 
p = density of reacting mixture, kg.m-’ 
\k = state feedback 
7 = CSTR residence time 

Math symbols 
4 - = is defined 
E = belong to 

R = real line 
o = composition of functions 

Acronyms 
CSTR = continuous stirred tank reactor 
GLC = globally linearizing control 
IMC = internal model control 

MAC = model algorithmic control 
MPC = model predictive control 

PI = proportional integral 
SISO = single-input single-output 
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Appendix: Proofs 
Proof of Proposition I .  Since the delay-free part of the 

system of Eq. 1 is hyperbolically minimum phase, this means 
(by Definition 3) that all the eigenvalues of the matrix 9,(0,0), 
where J, is given by Eq. 11, are in the interior of the unit 
circle. Using the definition of relative order and standard ma- 
trix identities, one finds the characteristic polynomial of the 
matrix 4,(0,0) to be: 

Therefore, the roots of the polynomial: 

a h o a d j  ( ~ 1 - y )  a y o  0) __ aqo,o) 
ax au 

all lie in the interior of the unit circle. 
On the other hand, the local asymptotic stability character- 

istics of the closed-loop system of Eq. 25 are determined by 
the eigenvalues of the matrix gp(0,O), where go is given by Eq. 
26. Using the definition of relative order and standard matrix 
identities, one finds the characteristic polynomial of the matrix 

(0,O) to be: 

Because the roots of 

are assumed to be all in the interior of the unit circle, it follows 
that all the eigenvalues of the matrix g8(0 ,O)  will be in the 
interior of the unit circle and therefore the closed-loop system 
of Eq. 25 will be locally asymptotically stable. 

Proof of Theorem 1. Define the auxiliary variable: 
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Then, Eq. 32 can be viewed as being composed of two sub- 
systems: 

and 
The subsystem of Eq. A5 is the realization of external controller 
of Eq. 31,  whose input/output behavior can be described by 
the difference operator representation: 

The subsystem of Eq. A1 is the realization of the external 
controller of Eq. 31 ,  whose input/output behavior can be 
described by the difference operator representation: 

On the other hand, the subsystem of Eq. A6 consists of an 
input/output linearizing feedback law, with the states being 
reconstructed via the open-loop observer of Eq. 34. Hence, 
under consistent initialization of wand x [w(O)=x(O)], we will 
have w(k) = x ( k )  for all k ,  and therefore, Eq. A6 induces the 
dynamics: 

where q is the forward shift operator. On the other hand, the 
subsystem of Eq. A2 is the input/output linearizing feedback 
law of Eq. 22, which induces the closed-loop response: 

or, equivalently, or, equivalently, 

Combining Eqs. A7 and A8, we obtain the desired closed-loop 
input/output dynamics: Combining Eqs. A3 and A4, we obtain the desired closed-loop 

input/output dynamics: 

that is, Eq. 33. Q.E.D. that is, Eq. 33. Q.E.D. 
Proof of Theorem 2. Define the auxiliary variable: 

Proof of Corollary. At first observe that, from the state- 
space realization of Eq. 31 of the external controller: 

r 1 
Then, Eq. 36 can be viewed as being composed of two sub- 
systems: 

On the other hand, from Eqs. 34 and 35, we see that 

and Combining Eqs. A9 and A10, we conclude that: 
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Consequently, if the external controller and the observer are 
consistently initialized according to: 

that is, 

Er(r-P)=h(w(r-P)), P = l ,  ..-, r 

we will have: 

and therefore, 

t&)=h ' - ' (w(k ) ) ,  vk,  Q = l ,  . . a ,  r (All)  

Substituting this into the controller of Eq. 36, we obtain Eq. 
37. Q.E.D. 

For the dead-time free process of 
Eq. 40, the state feedback of Eq. 22 takes the form: 

Proof of Theorem 3. 

or 

where the external input v ( k )  in Eq. A12 is obtained from the 
external controller (Eq. 3 11, which for the case r = 1 ,  simplifies 
into: 

The state feedback of Eq. A12 with n- 1 states to' recon- 
structed from the reduced observer (Eq. 41) induces the closed- 
loop response: 

On the other hand, the external controller (Eq. A13) can be 
equivalently written as: 

Combining Eqs. A14 and A15, we obtain the requested closed- 
loop input/output dynamics in Theorem 3. Q.E.D. 
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