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The design of controllers for nonlinear, nonminimum-phase processes is one of 
the most difficult control problems currently faced. Current available control al- 
gorithms for nonlinear processes rely implicitly or explicitly on an inverse of the 
process. Linear control methods for nonminimum-phase processes are based on a 
decomposition of the process into a minimum-phase and a nonminimum-phase part. 
Such a decomposition is an open problem for  nonlinear systems. 

In this work, a control structure called the minimum-phase output predictor for 
nonlinear, nonminimum-phase processes is developed. The structure is based on the 
notion of statically equivalent outputs; a minimum-phase, statically equivalent out- 
put is estimated on-line and then an available nonlinear control algorithm is used 
to control it to set point. The advantage of the proposed formulation is that it is 
based on the calculation of an output function, not on a decomposition of the 
process dynamics. The proposed control methodology is applied and its performance 
is evaluated for a chemical engineering example. 

Introduction 
The problem of constructing control algorithms for proc- 

esses with unstable inverses is a key issue in nonlinear process 
control, since the available control algorithms rely either im- 
plicitly (Kravaris and Chung, 1987) or explicitly (Economou 
et al., 1986) on generating an inverse of the process. Methods 
are available for linear systems with unstable inverses, which 
are modeled with a transfer function. They are all based on a 
factorization of the process transfer function, G, (s) , of the 
formG,,(s) = G,, (s) .Gp- (s) whereG,- (s) isminimumphase 
and G,+(O) = 1. Available methods include the internal model 
control of Garcia and Morari (1982) and the generalized Smith 
predictor (Rarnanathan et al., 1989). Under the assumption of 
a perfect model, these approaches are equivalent to controlling 
the corresponding minimum-phase system, leaving the non- 
minimum-phase component in open loop. One assumption is 
central in all predictor-type approaches and will also be nec- 
essary in this work. The system under consideration is assumed 
to be open-loop stable. The general structures lead to a control 
law that preserves the stability of the system and regulates the 
output to set point. In addition to these requirements, it is 
also desirable to select the controller so that it also optimizes 
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a certain performance criterion, such as the integral square 
error (ISE). The factorization given above, with Gp+ (s) being 
an all-pass, for internal model control or the generalized Smith 
predictor has been shown to lead to ISE-optimal control with 
respect to step changes. 

For nonlinear systems, results on decomposition into min- 
imum-phase and nonminimum-phase subsystems are available 
only for second-order systems in Kravaris and Daoutidis (1990), 
who also developed ISE-optimal decomposition and derived 
static state feedback synthesis formulas. For general nonlinear 
systems, decomposition of the dynamics into a minimum-phase 
and a nonminimurn-phase part is an open problem. This work 
will introduce the notion of statically equivalent outputs; this 
notion will be used to develop an output feedback control 
structure called the minimum-phase output predictor to esti- 
mate a statically equivalent, minimum-phase output on-line 
and to control it to set point. The control of the statically- 
equivalent, minimum-phase output is based on the input/out- 
put linearization method of Kravaris and Chung (1987). The 
advantage of the proposed formulation is that it is based on 
the calculation of an output function and not on a decom- 
position of the dynamics, as is typically done in linear control 
methods. The issue of optimal choice of statically equivalent, 
minimum-phase output is also addressed in this article in terms 
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of the ISE criterion. Results that characterize the ISE-optimal 
output are obtained as well as specific formulas in special cases. 

In the first section, the generalized Smith predictor for linear 
systems is reviewed in transfer function form. The second 
section develops a state space version using an on-line esti- 
mation of an output function, instead of a decomposition. 
The notion of statically equivalent outputs is then defined. 
The minimum-phase output predictor for nonlinear systems is 
then developed in terms of an arbitrary, statically equivalent, 
minimum-phase output. The following section gives rigorous 
mathematical results on the ISE-optimization problem for the 
class of nonlinear systems that can be described in natural 
coordinates. In particular, the notion of ISE-optimal output 
is defined, and necessary conditions for ISE-optimality are 
derived. The final section illustrates the application of the 
proposed control methodology and evaluates its performance 
in a chemical engineering example. 

Generalized Smith Predictor for Linear Processes 
Consider a SISO open-loop stable linear process with trans- 

fer function G,(s). G,(s) can then be factored into 
Gp(s) = G,, (s) .G,- (s), where Gp- (s) is stable and minimum 
phase and Gp+(0)= 1. The generalized Smith predictor (GSP) 
(Ramanathan et al., 1989) simulates the difference between 
the process transfer function with and without the nonmini- 
mum-phase factor. The corrective signal, Sy, is added to the 
measured output to predict what the output would have been 
if there were no nonminimum-phase factor present. This pre- 
diction, y* ,  is fed to the controller G,(s). The GSP structure 
is shown in Figure la. 

A straightforward calculation gives the closed-loop transfer 
function: 

The form of the closed-loop transfer function and the inter- 
pretation of the feedback signal y* indicate that, under the 
assumption of a perfect model, the GSP scheme is equivalent 
to controlling the corresponding minimum-phase system, 

Figure la. Generalized Smith predictor structure. 

Figure Ib. Equivalent structure for thegeneralized Smith 
predictor. 

Gp- (s), as shown in Figure lb ,  while G,, (s) is left in open 
loop. Thus, the controller, G,(s), will be parameterized on 
the basis of the minimum-phase part of the model via a stand- 
ard synthesis formula. It is important to observe here that the 
properties of the factorization of Gp(s) imply the following 
very important properties for the corrected feedback signal y* : 

y*  goes to y, if, and only if, y goes to ysp. 
The transfer function between u andy* is minimum phase. 

The given factorization is clearly not unique. The particular 
factorization, where Gp+ (s) i s  chosen to be an all-pass, results 
in an ISE-optimal response of y for step changes in y, in the 
limit as perfect control of y* to set point is achieved (Newton 
et al., 1957). 

State-Space Calculation and Interpretation of the 
Minimum-Phase Output for Linear Systems 

In this section, y* will be given a state space interpretation 
for linear systems as an auxiliary output, which has the same 
static gain as y and makes the system minimum phase. This 
interpretation will naturally carry over to nonlinear systems. 
Additionally, the specific auxiliary output y', which leads to 
the ISE-optimal response for set point changes, will be ob- 
tained. 

Consider a controllable SlSO nth-order linear system of 
relative order r with state space description: 

x = A x  + bu 

y=cx  (2) 

and transfer function description: 

(3) y ( s )  
u ( s )  C X , + C Y ~ S +  . . . + o r , ~ ' - ~ + S " -  det(sZ-A) 

yI +yzs+ . . . + Y ~ - ~ + ~ J C I - ~  - cAdj(sZ-A)b -= 

and assume that A is Hurwitz and cAdj ( s l - A ) b  has at least 
one RHP (right-half-plane) zero. Now consider an auxiliary 
output for the system (Eq. 2): 

y* = c*x 

which leads to the transfer function description: 

* *  
y * ( s )  -- - yI +yzs+ . . . + ~ : - , * + ~ S l f - ~ *  - - c*Adj(sZ-A)b 
u ( s )  al+ol$+ . . . +a,,s'-'+Y det(sZ-A) 

If Eq. 5 has all zeros in the LHP (left-half plane) and 

* 
YI = ? I  

then defining 

cAdj ( s l - A ) b  
det(sZ-A) G,(s) = 

cf Adj (sl - A ) b 
det (sZ- A ) G,- (s) = 
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c Adj ( s l - A ) b  
c*Adj ( s l - A ) b  Gp+ (s) = (9) 

exactly the same decomposition is obtained as in the previous 
section. The u - y*  system is stable and minimum phase, and 
the static gain between y and y* is 1. From Eq. 4, it becomes 
clear that y',  which appears as an intermediate variable in 
Figure lb, is actually an output to the process. 

The parameterization of the controller may now be based 
on the minimum-phase u - y* system. For linear systems, a 
plethora of methods are available in the literature. One general 
method is the synthesis formula (see, for example, Smith and 
Corripio, 1985). If F ( s )  is the desired closed transfer function 
between ysp and y * ,  then the controller is given by: 

(10) 
det(sZ-A) F ( s )  .- 

Gc(S)=c*Adj(sZ-A)b 1 -F(s) 

To complete the structure, a corrective signal must be added 
in the feedback path to the measured nonminimum-phase out- 
put resulting in the minimum-phase output. This is necessary 
since the error given to the controller must be the difference 
between the minimum-phase output and the set point. The 
necessary corrective signal, Sy, consists of the difference be- 
tween the minimum-phase output map and the nonminimum- 
phase output map based on values for the states obtained from 
a state observer: 

Since the process is open-loop stable, the states can be es- 
timated on-line by an open-loop observer. The presence of an 
open-loop observer does not alter the closed-loop behavior of 
the system, under the assumption, of course, of a perfect 
model. The resulting controller structure is shown in Figure 
2. 

Compare Figure 2 with Figure la. It is exactly the snme 
structure: 
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The prediction of y*  is exactly the same. 
The controller is synthesized for the u - y* system. 

The structure in Figure 2 is more explicit in showing the various 
pieces and is expressed in terms of the state-space parameters, 
A ,  b, c, and c*. Furthermore, as we will see in the next section, 
this structure allows a direct generalization to nonlinear sys- 
tems. 

The previously mentioned conditions on y* do not, however, 
result in a unique y*. It is desirable to find the specific y* 
which results in the ISE optimal response for y for set point 
changes. Through an appropriate change of coordinates, a 
companion form realization of Eq. 3 may be obtained: 

This realization is convenient for two reasons: 
All information about the process zeros (number and lo- 

cation) is encoded in the output map. 
Problems of optimal regulation (in terms of an output 

error criterion) associated with Eq. 12 are of reduced dimen- 
sionality, n - r, and can be formulated as calculus of variations 
problems. 

By definition, the integral square error (ISE) criterion is 
given by: 

ISE=- joa [ u - ~ ( t ) l ~ d t  (13) 

where u is a constant reference input. For the linear system of 
Eq. 12, the ISE criterion may be written equivalently as: 
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The problem of minimizing the ISE subject to the dynamics 
(Eq. 12) has been solved for linear systems by Wonham and 
Johnson (1964); they showed that Cl(t), {,(f), . . . are ISE 
optimal-state trajectories if and only if they satisfy: 

where the coefficients ul, . . . , unn-r+l are such that the roots 
of the polynomial 

are exactly the (n - r )  left-half-plane roots of the 2(n - r )  degree 
polynomial 

and 

01 'YI 

Consider now the auxiliary output: 

Clearly, the zeros of the u-y*  system are the roots of the 
polynomial of Eq. 16. By the above conditions, these are lo- 
cated at the left-half-plane zeros of the original system and 
the mirror images of the right-half-plane zeros with respect to 
the imaginary axis. Furthermore, since u1 = yl, y = y* at steady 
state. The solution of the ISE optimization problem in the 
form of Eq. 15 implies that the ISE-optimal controi of y to u 
is equivalent to the perfect control of y* to v.  Back-trans- 
forming the expression of Eq. 19 to the original coordinates 
gives y* as a function of x: 

y* = c*x 

The transfer function between y and y* is given by: 

(21) 
y ( s )  cAdj(sZ-A)b - yl+yzs+ . . . +~,,-,+~4-' 

y'(s)-c*Adj(sZ-A)b-u,+u,s+ . . . +unn-r+lJ"-r 
-- 

which, because of the choice of q's which leads to a cancel- 
lation of the left-half-plane zeros, reduces to an all-pass of 
order equal to the number of right-half-plane zeros in the 
original process. Clearly, the transfer function in Eq. 21 is 
exactly the ISE-optimal choice of Gp+ (s) given in the previous 
section. Thus, this y' is an auxiliary output whose perfect 
control will result in ISE-optimal control of y .  

Example I 
To clarify the approach of this section, a second-order sys- 

tem with a RHP zero will be used as an example. Consider 
the following augmented system: 

XI =x, 

x ,  = - ayIx1- a,x* + u 

y = ClXl+  c,x, 

y =c,x,-c,x, * 
(22) 

where aI >O, a2>0, cl/c2<0 and y* has been constructed by 
the method detailed in this section. The transfer function for 
the u - y system is given by: 

This system has a zero at z= -c,/c,, which is in the RHP. 
The transfer function for the u-y*  system is: 

which has a zero at - z ,  which is in the LHP since z>O, and 
is the mirror image of the zero in the u -y system. The transfer 
function between y and y* is given by: 

which is an all-pass. The corrective signal that must be added 
to the output measurement in the feedback path to obtain the 
minimum-phase output is: 

sy = c*x - cx = - 2c,x,. (26) 

Choosing the desired closed-loop transfer function, F ( s )  , be- 
tween y * ( ~ )  and y , ( ~ )  as: 

1 
F ( s )  =- 

€S+ 1 

where E is a tunable parameter, results in the following transfer 
function from y ,  to y :  

which is a first-order lag plus an all-pass. 
In conclusion, the steps outlined in this section are: 

Define an auxiliary output, y * ,  which has the same static 
gain as y ,  and the u - y*  system is stable and minimum phase. 
In particular, choose the auxiliary output y*  such that the 
solution of the ISE-optimal control problem can be expressed 
as the perfect control in y * .  

Parameterize a controller based on the minimum-phase 
u-y*  system. 

Add the necessary corrective signal in the feedback path 
to obtain an on-line estimate of y * .  
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These steps will be addressed in the next sections for nonlinear 
systems. 

Statically Equivalent Outputs 
The auxiliary output, y * ,  of the previous section made the 

u - y* system minimum phase and had the same static gain as 
the system with the original output, y .  In a linear setting, two 
outputs y and y* can be called statically equivalent, if they 
have the same static gain. The system with y as the output will 
automatically have the same poles as the system with y*  as the 
output, but the zeros will be different. This notion will now 
be introduced for the first time in a general nonlinear setting. 
In the next section, the minimum-phase output predictor struc- 
ture for nonlinear systems will be developed based on this 
notion. Rigorous mathematical formulations of the following 
concept of static equivalence are available in Wright (1990). 

Definition 1 
Consider the SISO nonlinear system: 

X = f ( x )  + g ( x ) u  

y = h ( X )  

y*  = h* ( x )  

and denote by E its equilibrium set: 

E= (xc3"Ithere is hER such thatf(x) + h g ( x )  = 0 ]  

The outputs y and y *  are called statically equivalent if 

h ( x )  = h* ( x )  for every X E E  

Since the equilibrium set E is unaffected by the choice of 
output, an immediate consequence of the definition is that the 
input/output relationships at equilibrium of the two statically- 
equivalent outputs are the same. Consequently, the static gains 
of the two statically-equivalent outputs are the same. From 
the previous discussion, it is clear that the y* defined in the 
linear case is a statically-equivalent output. This concept will 
be useful in developing a control structure for nonlinear, non- 
minimum-phase systems. 

Minimum-Phase Output Predictor for Nonlinear 
Sy s tern s 

A general control structure for nonminimum-phase com- 
pensation of nonlinear systems will now be developed con- 
taining the components shown in Figure 3, which is completely 
analogous to the linear control structure of Figure 2. The 
structure is based on an a priori choice of a statically-equiv- 
alent, minimum-phase output, y * ,  which is estimated on-line 
and controlled to set point. Because of static equivalence, y 
and y*  have the same set point and, therefore, y is also con- 
trolled to set point. The performance characteristics of the 
closed-loop response of y will, of course, depend on the choice 
of y * .  Whenever ISE optimization results are available (in 
terms of the output y )  , it is possible to appropriately choose 
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Process 

Y. 

Figure 3. General structure of minimum-phase output 
predictor. 

y* so that the closed-loop response in y asymptotically ap- 
proaches the ISE optimal response. 

Consider a general open-loop stable SISO nonlinear system: 

with relative order r .  It is assumed that the system (Eq. 29) is 
nonminimum phase (that is, it has unstable zero dynamics in 
the sense of Byrnes and Isidori, 1985). Consider also an aux- 
iliary output 

y*  = h* ( x )  (30) 

which, when combined with the state equations of Eq. 29: is 
statically equivalent toy= h (x), induces asymptotically stable 
zero dynamics (the u - y*  system is minimum-phase), and has 
relative order r*.  A controller for the minimum-phase u - y*  
system can be easily synthesized using state space methods. In 
particular, consider the input/output linearizing state feedback 
(Kravaris and Chung, 1987): 

v - h * ( X ) - P , L f h * ( X ) -  . . . -P,*L;*h*(X) 

P,*L&-lh*(x) 
U =  (31) 

where P I ,  . . . , P,* are scalar parameters. The closed-loop re- 
sponse will then satisfy: 

v (32) 
y * + P I  z+ dy* . . . +P,* r+= d'*y* 

dt 

This controller will provide closed-loop internal asymptotic 
stability and asymptotic tracking of y' = u, as long as the roots 
of the polynomial 

B ( E ) = l + P , E +  ... +Pr*E" (33) 

are in the left-half plane (Kravaris, 1988). This static feedback, 
when combined with an open-loop observer 

a = f ( a )  + g ( f ) u  (34) 

and an external linear controller, yields an output feedback 
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Figure 4. Complete minimum-phase output predictor structure for nonlinear systems. 

controller for the u -y* system (GLC controller). To complete 
the control structure, it is necessary to add a corrective signal 
to the measured nonminimum-phase output, y ,  of the process, 
resulting in an on-line estimate of y*.  This corrective signal is 
given by: 

Sy = h* (a )  - h (2)  (35) 

where the state values are obtained from the open-loop ob- 
server (Eq. 34). The complete control structure is shown in 
Figure 4. 

Note that the control structure in Figure 4 is a direct gen- 
eralization of the one in Figure 2 to nonlinear systems. Also, 
it must be emphasized that the choice of the auxiliary output, 
y* = h* ( x ) ,  is completely arbitrary, as long as it is minimum- 
phase and statically-equivalent. However, the performance 
characteristics of the control system will depend strongly on 
the choice of y* ,  and this motivates searching for the particular 
choice of y* which provides optimal response in y when per- 
fectly controlled to set point. In the next section, this problem 
will be addressed in the context of the ISE performance cri- 
terion; the appropriate necessary condition for ISE optimality 
will be derived as well as closed-form expressions for the ISE- 
optimal output in special cases. 

The proposed control structure provides a closed-loop input/ 
output behavior which is linear in y* ,  but generally nonlinear 
in y .  This is in agreement with the intuitive expectation that 
the closed-loop response must inherit the right-half-plane zeros 
of the process, and since these will be generally nonlinear, the 
closed-loop response will have to be nonlinear as well. There 
are, of course, special cases of nonlinear systems with linear 
right-half-plane zeros (Nikolaou and Manousiouthakis, 1990); 
for these it is possible to obtain a linear closed-loop response 
in y by appropriate choice of h*.  

Formulation of the ISE Optimization Problem for 
Nonlinear Systems in Natural Coordinates: Prop- 
erties of the Optimal Response 

The generalization of linear ISE optimization results to non- 
linear systems is not a trivial task. A general solution is not 
yet available in the literature for systems of order higher than 
2. However, for the class of nonlinear systems which may be 
described in natural coordinates, it is possible to obtain specific 
results. The properties of the natural coordinate description 
of nonlinear systems, which is the nonlinear analog of the 
realization of Eq. 12, are reviewed in Appendix A. In this 
section, general ISE optimization results will be derived for 
nonlinear systems in natural coordinates. These will generalize 
the linear state-space results given in a previous section. 

Consider a nonlinear system of relative order, r, in natural 
coordinates. This is of the form (see Appendix A): 

where 

(37) 

As shown in Appendix A (Proposition Al), the system of Eq. 
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36 is locally minimum phase if and only if the roots of the 
polynomial in I ,  

are in the open left half plane for every r in a neighborhood 
of the equilibrium point. 

The problem of minimizing the ISE criterion (Eq. 13) subject 
to the dynamics of Eq. 36 is a singular optimal control problem, 
because its Hamiltonian is linear in u. Moreover, in the absence 
of constraints on u,  it is not a well-posed problem [the optimal 
u (  t )  must have impulsive behavior at t = 01. Although tech- 
niques are available to approach singular optimal control prob- 
lems (Johnson and Gibson, 1963; Johnson, 1965), it is much 
more convenient to transform it to a nonsingular problem 
following the method of Kelley (1964). The natural coordinate 
system provides exactly the appropriate dynamic description 
for this purpose. 

Since the output is a function of tl, . . . , ln-r+I only and, 
therefore, only the first n - r  state equations are relevant in 
calculating the optimal solution, the remaining states represent 
ignorable coordinates. Consequently, the dimensionality of the 
ISE-optimal control problem can be reduced and it can be 
formulated as follows: 

Minimize 

ISE = 1 [v - h ( rI, . . . , { n - r +  
2 0  

subject to the dynamics 

< I  = l-2 l-I (0) = (1 ,o 

This is a nonsingular optimal control problem with S ; I - r + l  
as the input and {,, . . . , <n-r  as states. Its solution will provide 
the optimal path that takes the system from a given initial 
point (with coordinates . . . , 5;1-,,o) to a given final equi- 
librium point (the one that corresponds to y = v )  . 

Motivated from the discussion on linear systems, it is not 
the ISE-optimal trajectories that are sought. What is desired 
to calculate is an auxiliary output, 

whose perfect control to 0 induces the ISE-optimal state tra- 
jectories. This leads to the following definition. 

Definition 2 
Consider a system of the form of Eq. 36 and let 

be an auxiliary output with 

Furthermore, let 

be the implicit function defined locally as the solution of Eq. 
38 for 

The output y* = h*(<) will be said to be ZSE-optimal, if for 
every . . , {n-r ,o  and every v ,  the trajectories obtained as 
the solution of \ 

s-1= 5; rm = P l , O  

are exactly the ISE-optimal trajectories. 

Remark I 
A similar notion of ISE-optimal outputs could be defined 

for general nonlinear systems which are not in natural coor- 
dinates. The natural coordinate description and the resulting 
order reduction of the ISE-optimization problem makes the 
formulation of the notion much more explicit. 

Theorem 1 
Consider a dynamic system of the form of Eq. 36. If the 

auxiliary outputy* = h*(r,, tZ, . . . , <n-r, fn-r+l)is ISE-optimal, 
then it is statically equivalent t o y =  h({,, tz, . . . , 5n-r, { n - r + l )  

and it induces asymptotically stable zero dynamics, that is, the 
dynamic system 

5 2 =  53 

is minimum phase. 
The proof of Theorem 1 is in Appendix B. Theorem 1 es- 

tablishes the intuitively expected result that an ISE-optimal 
output will automatically be statically equivalent and minimum 
phase. Thus, it can be used in the minimum-phase output 
predictor structure of the previous section leading to ISE- 
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optimal, closed-loop dynamics in the limit of perfect control 
of y* to set point. 

The key question is, of course, how to find an ISE-optimal 
output. It is known from optimal control theory that Pontry- 
agin's theorem offers a set of necessary conditions that the 
optimal control trajectories must satisfy. These conditions will 
now be recast in terms of an output function in the following 
theorem. 

Theorem 2: necessary condition for ISE optimality 
Consider a dynamic system of the form of Eq. 36. If the 

output y*=h*(SI, f,, .. ., { n - r + l )  is ISE-optimal, then the 
expression, 

is an (n - r)th integral of the 2(n - r )  order Euler-Lagrange 
equation 

;:::)] ] = 0, (40) 

that meets the (n - r )  terminal time conditions: 

The proof of Theorem 2 is in Appendix B. The result of 
Theorem 2 establishes that the calculation of an ISE-optimal 
output (assuming that it exists) reduces to the calculation of 
an (n - r)th integral of the Euler-Lagrange equation (Eq. 40), 
whose (n-r)  arbitrary constants are fixed via the terminal 
conditions (Eq. 41). Analytical calculation of this integral is 
possible only in special cases, leading to analytical expressions 
for the ISE-optimal output; these are given in the corollary 
that follows. 

Corollary 

optimal output is given by: 
a) If the system of Eq. 36 is minimum phase, then the ISE- 

b) If  the system of Eq. 36 has relative order r=  n - 1 and it 
is nonminimum phase, 

then the ISE-optimal output is given by: 

The proof of the corollary is in Appendix B. 

Remark 2 
The case n = 2, r = 1, which is a special case of the one in 

part b of the Corollary, has been studied by Kravaris and 
Daoutidis (1990) in the framework of singular optimal control 
theory. It was shown that the ISE-optimal trajectories must 
lie on the singular arc: 

This is, of course, consistent with the result of the Corollary 
and at the same time indicates an intrinsic connection between 
the notion of ISE-optimal output and the notion of singular 
surface in singular optimal control theory. 

Remark 3 
The results of Theorems 1 and 2 are entirely consistent with 

the results for linear systems presented earlier. For a linear 
system, the ISE-optimal output (Eq. 38) can be calculated 
analytically and is given by Eq. 19. The characteristic equation 
of the Euler-Lagrange equation (Eq. 40) is the polynomial of 
degree 2n-2r given in Eq. 17. The ISE-optimal output must 
be minimum phase in the sense that the roots of Eq. 16 lie in 
the left-half plane, must satisfy the static equivalence property 
(Eq. 18) and at the same time generate a (n - r)th integral of 
the Euler-Lagrange equation (Eq. 40). 

In the general (nonlinear) case, the appropriate (n - r )  th 
integral of the Euler-Lagrange equation must be determined 
numerically. Finally, it should be pointed out that for the 
general case where analytical solutions are not available, there 
are mathematical questions of existence and uniqueness of the 
sought for integral of the Euler-Lagrange equation, for which 
answers are not available at the moment. 

Example 2 
To clarify the entire approach for nonlinear systems, a non- 

linear, second-order , nonminimum-phase system will be used 
as an example. Consider first the following augmented system: 

where it is assumed that 

(44) 
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The relative order of this system is then r = n - 1 = 1 ,  and it 
will be nonminimum phase if, and only if, (53) 

(54) 

From this it is easy to verify that: 

(45) * dY' y +p1-=v 
dt 

or 
From the solution for systems of relative order r = n - 1, Eq. 
43, the ISE-optimal output for the system may be determined: 

(55) 

which implies that the response will be ISE-optimal in the limit 
as P I - O .  

The GLC state feedback (Eq. 31) is then given by 

Computer Simulations 
The utility of the minimum-phase output predictor structure 

will now be illustrated using a chemical engineering example. 
Consider a stirred tank reactor, where the isothermal series/ 
parallel Van de Vusse reaction (Van de Vusse, 1964; Kantor, 
1986; Kravaris and Daoutidis, 1990) is taking place: 

and the corrective signal which must be added to  the nonmin- 
imum-phase output to get the minimum-phase output is: A-B-C 

2A-D 

The rates of formation of A and B are: 

Consider now the specific output map 

h ( X I  ,xZ) = x1 - 3x2 - X :  

which leads to a nonminimum-phase system because 

(49) 

where k l  =SO h-', k2= 100 h-I, and k3 = 10 L/mol.h are the 
reaction rate constants. The feed stream consists of pure A .  
The mass balances for A and B are given by: 

The ISE-optimal, statically-equivalent, minimum-phase out- 
put of the system is found from Eq. 46: 

y* = h' ( x I , x 2 )  = X I  + 3x2 + 5 ~ : .  ( 5  1 )  where F is the inlet flow rate of A, V is the reactor volume, 
which is kept constant during the operation, and C, and cB are 
the concentrations of A and B inside the reactor, respectively. 
The concentration of A in the feed stream is given by c,, and 
is equal to 10 mol/L. It is desired to maintain c, at a constant 
value by manipulating the dilution rate, F/V. Initially, the 
system is at steady state with c,, = 3 .O mol/L and cBs = 1.117 
mol/L. The system may be put into standard state space form 
by letting: 

The GLC state feedback is then calculated from Eq. 47: 

. (52) 
v - (XI + 3x2 + sx:) -PI (x2 +f (x1 , x2 ) (3  + 1 5 X t )  ) 

P1g(x,,x2)(3+ 15x3 
U =  

The resulting closed-loop system is then given by: 
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XI = c, 

L 8  - 

F 
V 

u=-  

Lm - 

19 
0.m 0.m 0.01 o m  0.- 

, E3 ,  E . . .. ... .. .. 

where 

0.0 

which results in 

This particular system is not globally nonminimum phase. The 
sign of 

locally around the steady state will determine whether the sys- 
tem is minimum or nonminimum phase (Daoutidis and Kra- 
varis, 1990). For the parameters and steady-state values used 
in this example, the system is in the nonminimum-phase region. 

The coordinate transformation 

puts the original system into natural coordinate form. Applying 
Eq. 46 to calculate y* and back-transforming into the original 
coordinates yields: 

where 

~ I X I  +&:+ ( X I  - c A O )  (kixl -k2~2) 
D(Xl,X*) = 

x2 x: 

The GLC state feedback can then be computed for the u-y* 
system using Eq. 47: 

For this example, a PI controller is used for the linear external 
controller in the GLC structure for y* .  The corrective signal 
that must be added to the measured output to complete the 
minimum-phase output predictor structure is given by Eq. 48, 
which for the present system becomes: 

I 20. II I 0. 

.O 
.( 

0. .Ot .04 .M .08 .I0 
Time (hr) 

(b) 

Figure 5. Closed-loop response (a) calculated values of 
manipulated input (b) in response to a step 
disturbance in the inlet concentration. 
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.O 4 

0. .02 .a .06 .a .I0 
Time (hr) 

(b) 

Figure 6. Closed-loop response (a) calculated values of 
manipulated input (b) in response to a step 
change in the set point value of the output. 

where A ,  B, and D are the same as given above, but uses state 
estimates obtained from: 

The response of the closed-loop system was simulated for three 
different situations. The gains of the external PI controller are 
given as K,  and 7,. First, a step disturbance in c,, from its 
steady-state value of 10 mol/L to 9 mol/L was examined. The 
closed-loop response for both y and y* is shown in Figure 5a, 
for p, =0.01, K,=5.0,  and T,= 10.0. Note the difference in 
dynamics of y and y * .  The required change in the manipulated 
variable is shown in Figure 5b. Figure 6a shows the closed- 
loop response, and Figure 6b shows the corresponding function 
of the manipulated variable for a negative step change in the 
set point value in the output, from 1.117 to 1.050, and the 
same controller gains. The closed-loop response to errors in 
the initial conditions of the state estimators is shown in Figure 
7a, and the corresponding response of the manipulated variable 
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Figure 7. Closed-loop response (a) calculated values of 
manipulated input (b) in response to errors in 
the initial conditions of the state estimators. 

is shown in Figure 7b. Both states were given initial values 
equal to 90% of their true values. The same controller gains 
were used. These simulations show the ability of the minimum- 
phase output predictor structure to reject disturbances and 
errors in the initial conditions of the state estimator and to 
track set point changes for a nonlinear, nonminimum-phase 
system. 

Conclusions 
A complete control structure for nonlinear systems with 

unstable zero dynamics has been developed. The minimum- 
phase output predictor structure is based on using a statically 
equivalent, minimum-phase output for the process. A GLC 
feedback control law is used for the resulting system, which 
is minimum phase. A corrective signal consisting of the dif- 
ference between the minimum-phase output and the nonmi- 
nimum-phase output, based on state estimates, is added to the 
measured output signal, and the result is compared to the set 
point value with the error fed to the GLC controller. This 
completes the control structure. The choice of statically equiv- 
alent, minimum-phase output is completely arbitrary when 
defining the control structure, although the performance char- 
acteristics will depend strongly on this choice. The notion of 
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ISE-optimal output for a nonlinear system was defined, and 
necessary conditions for ISE optimality for a limited class of 
nonlinear systems were given. Computer simulations for a 
chemical reactor system show the ability of the control struc- 
ture to reject disturbances, errors in the initial conditions of 
the state estimator, and to track set point changes. 

In this work, analytical ISE optimality results have been 
derived for a limited class of nonlinear systems. Future work 
will address the problem of numerical calculation of the ISE- 
optimal output; the minimum-phase output predictor structure 
will then apply unchanged. 
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Notation 
Adj M = adjugate of the matrix M 

ad$,p = kth Lie bracket off and g 
A ,  b, c = matrices in standard state space description of a linear 

system 
c* = row vector that defines the minimum-phase output for 

a linear system 
c, = concentration of A in the effluent stream 

cAo = inlet concentration of A 
c, = concentration of B in the effluent stream 

F = flow rate through CSTR 
F ( s )  = desired transfer function between minimum-phase out- 

put and set point for a linear system 
f ( x ) ,  g ( x )  = vector fields that characterize the state model of a 

nonlinear process 
G,(s) = controller transfer function 
G,(s) = process transfer function 

det M = determinant of the matrix M 

Gp- (s) = minimum-phase part of factorization of process trans- 

G,+(s) = all-pass part of factorization of process transfer func- 
fer function 

tion 
h ( x )  = scalar field that determines the process output map 
h*(x) = scalar field that determines the process minimum-phase 

output map 
k, = reaction rate constants in simulation example 

K, = external PI controller gain in simulation example 
L;h(x)  = kth-order Lie derivative of h with respect to  f 

n = order of system 
q ( x )  = nontrivial solution to set of partial differential equa- 

tions used in obtaining a natural coordinate represen- 
tation of a nonlinear system 

r = relative order 
r, = reaction rate in simulation example 
s = Laplace transform variable 
t = time 
u = manipulated input 
u = reference input in ISE criterion and GLC transformed 

control variable 
V = volume of CSTR in simulation example 
x = vector of state variables 
y = process output 

z = state variables of zero dynamics of a nonlinear system 
y*  = statically equivalent, minimum-phase output 

Greek letters 
a, = coefficients of characteristic equation of a linear system 
& = coefficients of characteristic equation in GLC linear- 

ized v-y system 
E = design parameter 

AIChE Journal January 1992 

y, = coefficients of numerator polynomial in u-y transfer 
function of a linear system 

q (0 = scalar field of state variables in last state equation of 
nonlinear system in natural coordinate form 

u, = coefficients of natural coordinate state variables in 
minimum phase output of a linear system 

7, = external PI controller reset time in simulation example 
0 = implicit function defined as the solution of the state 

output map, in natural coordinates, for the n-r+ 1 
state variable 

$ (0 = scalar field of state variables multiplied by the manip- 
ulated input in last state equation of nonlinear system 
in natural coordinate form 

.f = state variables of a system in natural coordinate form 

Other symbols 
E = belongs to 
R = real line 
R” = n-dimensional Euclidean space 

Superscripts 
e = equilibrium value 
* = estimated value 

Subscripts 
s = steady-state value 

sp = set point value 
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Appendix A Nonlinear Systems in Natural Coor- 
dinates 

Consider a nonlinear system of the form of Eq. 29 such 
that: (i) the vector fields g ( x ) ,  ad )g (x ) ,  . . . , a d ; - l g ( x )  are 
linearly independent; (ii) the set of vector fields ( g ( x ) ,  adjg(x) ,  
. . . , ad;-'g(x) ) is involutive. Then, the system of partial 
differential equations, 

admits a nontrivial solution w = q ( x )  and the transformation, 

is invertible and transforms Eq. 29 into 
(Hunt et al., 1983): 

('41) 

iatural coordinates 

t 2 =  3; 

where 

If the system of Eq. 29 has relative order r ,  this easily translates 
into 

- (<)=O, fork=O, ... r - 2  
ah 

643) 
a r n - k  

Consequently, the system may be more precisely represented 
in natural coordinates as Eq. 36. 

Proposition A1 
The local asymptotic stability characteristics of the zero dy- 

namics of the system of Eq. 36 depend on the location of the 
roots of the polynomial in E :  

ah ah +- ( r ) [n - r - l+ -  ( i-) E n  - r  ('44) 
ai-n-r ai-"-r+l 

In particular, the zero dynamics of the system of Eq. 36 will 
be locally asymptotically-stable if and only if the roots of the 
polynomial (Eq. A4) are in the left half-plane in a neighbor- 
hood of the equilibrium point. 

Pro0 f 

(1 985), the coordinate transformation 
Applying the general construction in Byrnes and Isidori 

ZI = i-1 

z n = L j - ' h ( { I ,  * c -  7 i - n - n  t - r + l )  (-45) 

defined locally around an equilibrium point of the system of 
Eq. 36 transforms it into 

i1=z2 

('46) 
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where 

t - n - r + I = W t - I ,  * * * 9 t-n-n Y )  ('47) 

is the implicit function defined as the solution of: 

h(t-19 . . . 9 I n - r ,  t -n - r+ l )=Y (A81 

Consequently, the zero dynamics of the system of Eq. 36 is 
given by: 

ZI =z2 

From the form of the zero dynamics (Eq. A9), it can imme- 
diately be concluded that the local internal stability charac- 
teristics of the system of Eq. A9 depend on the location of the 
roots of the polynomial in E :  

(A101 
an 

l - .  . . -- l n - ' - I  + t"-' an an 
az, az2 a z n  - r 

Due to how Q was defined, the partial derivatives of Q can be 
obtained from the implicit function theorem: 

ah - 
, i= 1, . . . , n - r  an a 5;. 

azi ah 
_=  -- 

Hence, the result. 

Corollary 
If r = n,  the system (Eq. 36) is always minimum phase. If 

r =  n - 1, the system (Eq. 36) will be locally minimum phase 
if and only if 

ah 
- (t-) 
ah 
- (t-) 
at-2 

at-1 >o 

in a neighborhood of the equilibrium point. If r = n - 2 ,  the 
system (Eq. 36) will be locally minimum phase if and only if 

have the same sign in a neighborhood of the equilibrium point. 
In general, the system (Eq. 36) will be locally minimum phase 
if and only if the first column of the Routh array of the 
polynomial of Eq. A4 has all its elements positive in a neigh- 
borhood of the equilibrium point. 

Remark A1 
Note the similarity of the result of Proposition 1 to the linear 

case. The state space realization given by Eq. 12 is the linear 
analog of Eq. 36, and the zeros of the system of Eq. 12 are 
the roots of 

which is the linear analog of Eq. A4. 

Appendix B: Proof of Theorems and Corollary 
Proof of Theorem 1 

To prove (a), observe that for every final equilibrium point 
re= ( t - l ( a ) ,  0. . . . , Oh 

h(t- i (m),  0, . - 9  O)=v 

which is one of the terminal conditions of the 
trajectories. On the other hand, Q* must satisfy 

Q*(T1(OO), 0, . . . , 0, u )  =o 

(B1) 

ISE-optimal 

for every equilibrium point. Given the definition of Q', h* 
must then satisfy: 

h*( l l (a ) ,  0, . . . , 0)= u (B2) 

To prove (b), observe that from the definition of an ISE- 
optimal output, the ISE-optimal trajectories can be calculated 
by solving the set of ODE'S: 

rl = 5; 

t-2 = t-3 

with the given set of initial conditions and value of u. Since 
the function h* (and therefore Q * )  is independent of the initial 
conditions c,;,,, . . . , <,-,,,, this means that the response of Eq. 
B3 must satisfy h(r l (a) ,  0, . . . , 0) = u, l 2 ( a ) = O ,  . . . , 
s;1-,(m)=O for every set of initial conditions. In other words, 
the system of Eq. B3 is asymptotically stable. On the other 
hand, calculating the zero dynamics of the system of Eq. 39 
(see Proposition A1 of Appendix A) yields: 

ZI =z2 

i " - , - l  =z,-, 

i n - r = n * ( Z l ,  . . . , Zn-r, y * )  (B4) 

Comparing Eqs. B3 and B4, it is observed that they represent 
exactly the same system. Hence, the system of Eq. B4 is in- 
ternally asymptotically stable, that is, the system of Eq. 41 is 
minimum phase. 
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Proof of Theorem 2 

zation problem is a calculus of variations problem: 

Minimize 

Due to the special form of the dynamics, the ISE optimi- 

IS.=; lom [ v - h ( l l , $ ,  ...,- dd;"??)] 'dt (B5) 

subject to the boundary conditions 

dll - (m)=O 
dt 

Hence, the optimal trajectories must satisfy the Euler-La- 
grange equation, which for the above performance index is 
given by Eq. 40. 

Proof of corollary 
a) The expression, 

is a trivial (n - r)th integral of Eq. 40. Furthermore, when 
the above expression is viewed as a differential equation in l,, 
driven by arbitrary initial conditions, its solution always sat- 
isfies the terminal conditions (Eq. 41), as an immediate con- 
sequence of the minimum-phaseness of h. Hence, the choice 
h* = h satisfies the necessary conditions for optimality. Finally, 
it is clear that perfect control of h* to v leads to ISE=O. 

b) For a system of relative order r=  n - 1, the Euler-Lagrange 
equation (Eq. 40) becomes: 

The trivial first integral, 

u-h(f l ,  2) =0, 

fails to satisfy the terminal condition 

h ( l l  (03) ,O) = u 

because the resulting trajectory ll(t) is unstable due to the 
nonminimum-phaseness of h.  Using a standard result in the 
theory of calculus of variations (Gel'fand and Fomin, 1963) 
for the second-order Euler-Lagrange equation, it can easily be 
seen that the entire family of first integrals of Eq. B6 is given 
by 

where C is an arbitrary constant. To satisfy the terminal time 
condition, h ( ll (m), 0) = v ,  we must choose C= 0. Hence, 

1 2 [ V - h ( L ,  31' 

or equivalently 

is the required (nontrivial) first integral. Since the ISE-optimal 
output, h*, must match the above integral, which is unique, 
we will have: 

Hence, the result. 

Manuscript received Feb. 1.2, 1991, and revision received Oct. 14, 1991. 

40 January 1992 Vol. 38, No. 1 AIChE Journal 




