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Network models are an effective means of incorporatingpore-scale heterogeneity into 
flow models of porous materials. The drawback to these models used to be the inability 
to obtain quantitative macroscopic parameters representing larger (experimental-scale) 
media. However, recently developed modeling techniques, combined with more widely 
available computational resources, make the simulation of macroscopic parameters fiom 
a network approach viable. A network model for the slow flow of an incompressible 
fluid in disordered packed beds is presented. Fundamental fluid mechanics equations 
are solved at the pore scale and then translated to macroscopic behavior using a net- 
work approach. The results reproduce experimental permeabilities and show excellent 
quantitative fits to residence time distributions for mechanical dispersion in real beds. 
Simulations of the RTD are of special interest, because they are definitive links between 
pore-scale flow behavior and macroscopic responses. 

Introduction 
Models for flow in porous media occur over a vast range of 

length scales, and the appropriateness of any one usually de- 
pends on the length scale over which the phenomena of in- 
terest operate. Moving from large to small length scales, one 
can delineate three categories: models that account for 
macroscopic heterogeneity; continuum models of homoge- 
neous media; and at the smallest scale, pore-level models. 
Models of the first type account for the variation in physical 
properties on a scale much larger than the pore dimensions. 
They are used for studying oil production, groundwater 
transport, and contaminant migration, all of which are situa- 
tions where macroscopic heterogeneity contributes strongly 
to transport processes. On a smaller length scale, media are 
treated as a macroscopically uniform continuum. This as- 
sumption is often good, and it allows physical parameters such 
as permeability, saturation, capillary pressure, and superficial 
velocity to be written as smooth functions, even though at the 
pore level quantities such as saturation or capillary pressure 
are discrete, and the fluid velocity is highly variable. 
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Pore-level models include the smallest length scales that 
affect the morphology of a medium. They sometimes are lim- 
ited by their inability to effectively reproduce macroscopic 
quantities, but this limitation has not diminished their impor- 
tance. In certain situations, such as carbonate acidizing, 
macroscopic phenomena depend so strongly on microscopic 
effects that continuum models fail. Furthermore, although 
quantities such as permeability are highly effective in describ- 
ing flow in a homogeneous medium, they ultimately depend 
on fluid dynamics at the pore level. Hence, the desire to un- 
derstand underlying fundamentals dictates the need for mod- 
eling at this small scale. 

In this article we present a series of recent developments 
and new techniques that are combined into a quantitative 
model for flow through a packed bed. The model accounts 
for pore-scale heterogeneity using a network approach. How- 
ever, the network development includes both a complete 
description of the bed and a fundamental description of 
pore-scale fluid mechanics. The significance of the resulting 
model is its ability to generate quantitative macroscopic pa- 
rameters from the most basic knowledge of a medium’s mor- 
phology, thus allowing pore-scale and multiple-pore hetero- 
geneity to be accounted for automatically. 
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Pore-level Modeling 
Pore-level models include morphologic, chemical, or prob- 

abilistic parameters that are unique to this length scale. Cap- 
illary-bundle models are the simplest type. They incorporate 
flow variation, but in neglecting the effects of interconnectiv- 
ity and tortuosity they are useful primarily as conceptual tools. 
Volume averaging is a widely used technique in which a 
macroscopic momentum equation is derived from the 
Navier-Stokes equations averaged over a small representa- 
tive elementary volume. During the averaging process, hydro- 
dynamic information from the pore scale is retained, but it is 
reintroduced in the form of unknowns that must be deter- 
mined experimentally or derived for very simple pore struc- 
tures (e.g., Kaviany, 1991). Network models use a series of 
interconnected nodes and bonds with distributed sizes. By as- 
signing flow resistances to the bonds, a numerical solution for 
the pressures (and hence velocities) within the network is ob- 
tained. 

Network modeling techniques 
While the idealization of a pore space as a network of nodes 

and bonds requires simplifying assumptions, network models 
have the distinct advantage of accounting for pore-level het- 
erogeneity and interconnectivity. Traditionally, their limita- 
tions have been network size (controlled of course by com- 
puter speed and storage) and the inability to produce quanti- 
tative, dimensional results. Comparisons to data that do exist 
usually rely on arbitrary parameters or dimensional argu- 
ments to correlate the flow in individual bonds to a spatially 
averaged flux (or Darcy velocity). 

The distinction between various network models lies pri- 
marily in the choice of lattice arrangement, node and bond 
geometry, and in the specific solution algorithm used. The 
parameters that dictate a network's geometry are its spatial 
dimension (i.e., 2-D or 3-D), grid pattern (which may be reg- 
ular or irregular), bond-size distribution, and coordination 
number (the value and whether it is constant). The most 
common methods for introducing randomness into the lattice 
structure are to use Voronoi and Delaunay tessellations (e.g., 
Jerauld et al., 1984a,b; Mason and Mellor, 1991; Blunt and 
King, 1990), although other methods have also been pro- 
posed (Constantinides and Payatakes, 1989). Guidelines for 
network structure have been developed through comparisons 
of regular and irregular networks (Jerauld et al., 1984a,b) and 
by topology of actual media (Dullien, 1975; Koplik et al., 
1984). However, the use of an assumed pore-size distribution 
to decorate a regular network grid remains a common 
method. 

The solution method used most widely in petroleum-re- 
lated research was proposed originally by Fatt (1956) and 
consists of the numerical solution for fluid pressure at every 
node. To employ this method, one sets up a governing system 
of linear equations by applying a fluid-conservation equation 
around each node and assigning a flow conductivity to every 
bond in the network. Somewhat different methods are used 
for percolation theory, which lacks certain dynamic effects, 
but is a useful tool for relating network structure to conduc- 
tion and saturation. It has been used to study interconnectiv- 
ity and network geometry (Jerauld et al., 1984a,b), the physi- 
cal structure of real media (Mason and Mellor, 19911, and 

the origin of multiphase permeabilities (Heiba et al., 1992; 
Larson et al., 1981). Effective medium theory is also a 
lattice-based approach (Koplik, 1982), but the pore-scale de- 
scription of the network is lost during the averaging process. 

Fluid transport in network models 
Network modeling has been used consistently over the last 

three decades. Its evolution reflects advances in theory and 
techniques, but equally the vast changes in computational 
power. Early contributions by Dullien (1975) and later by Ko- 
plik et al. (1984) aimed to bring realistic pore structure into 
their models by using photomicrography of actual media to 
map out networks. Other efforts have resulted in more com- 
plex descriptions of fluid behavior, such as a creeping flow 
solution in circular pore bodies (Koplik, 1982) and the use of 
bonds with sinusoidally varying cross sections (Lin and Slat- 
tery, 1982; Dias and Payatakes, 1986; Hopkins and Ng, 1986). 
Mohanty and Salter (1982) used a relatively simple cubic net- 
work to reproduce a number of macroscopic experimental 
results and were the first to incorporate many detailed multi- 
phase effects. 

The dispersion of solute during flow in porous media is 
one of the topics to which network modeling has contributed 
most because it is a macroscopic phenomenon dominated by 
pore-scale effects. The methods for modeling dispersion are 
generally statistical; the convective and/or diffusive move- 
ment of a very large number of particles is analyzed in order 
to obtain information about either spatial displacements or 
particle transit times. Examples include the work of Sahimi 
et al. (1983, 1986), who used Monte Carlo simulations on 2- 
and 3-D lattices to demonstrate the macroscopically diffusive 
behavior of tracer dispersion, and Sorbie and Clifford (1991), 
who used network models to study dispersion over a wide 
range of Peclet numbers. Other important phenomena that 
have been explained using network modeling are the mass- 
transfer-limited dissolution of porous media (e.g., the acidiz- 
ing of carbonate formations for oil production) (Hoefner and 
Fogler, 1988) and the deep-bed filtration and straining of col- 
loidal particles in porous media (e.g., Rege and Fogler, 1988, 
1987). Both of these phenomena, while absolutely dependent 
on pore-level events, cause substantial macroscopic re- 
sponses. 

Despite the success of network models for describing 
pore-scale phenomena, a more elusive trait is the direct simu- 
lation of macroscopic or averaged parameters. This scale-up 
requires large enough networks to provide statistically signi- 
ficant information, and the simplifying assumptions inher- 
ent to any network are compatible with the simulated proc- 
ess. Blunt and King (1991) address the scale-up of macro- 
scopic parameters in 2- and 3-D network models, investigat- 
ing both capillary-dominated and viscous-dominated immisci- 
ble displacements in order to relate relative perme- 
ability and fractional flow to saturation. While large 
networks were used for these studies, topologic limitations 
are a problem. 

Physically representative network model 
The most significant recent advance in network modeling 

is the work of Bryant and Blunt (1992) and Bryant et al. 
(1993a,b), who developed a physically representative network 
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model. The flow distribution is obtained in a standard man- 
ner (solving a system of linear fluid-conservation equations), 
but the network development is unique. A 3-D packed bed 
(Bryant et al. use a real random packing with known sphere 
coordinates) is mapped onto a network using a Delaunay tes- 
sellation, which in three dimensions forms a space-filling (but 
with no overlap) array of tetrahedrons, each having four ver- 
tices at sphere centers. It enables a completely described 
continuum pore space to be discretized into a well-defined 
framework without sacrificing topographic information, and 
it lends easily to the summation of pore properties such as 
porosity, surface area, and saturation to obtain overall values 
for an entire packed bed. It should be noted that Delaunay 
tessellations were used previously for pore space analysis, but 
in applications different than those discussed in this article 
(Mason, 1967; Mellor, 1989; Chan and Ng, 1988). Bryant et 
al. (1993b) used an analysis of the random packing to show 
that the assumption of constant path length in a network is 
invalid, as is the assumption of randomly correlated conduc- 
tivities. The original packing was used to simulate a consoli- 
dated sandstone by introducing compaction in one direction 
(i.e., compression of one Cartesian axis) and cementation 
(achieved by increasing the radii of the spheres while main- 
taining the coordinates of their centers). Favorable agree- 
ment with permeability was found when compared to 
Fontainebleau sandstone, which has a narrow distribution of 
grain size, but a wide variation in the amount of cementation, 
resulting in permeabilities that range over three orders of 
magnitude. 

While the physically representative network model just dis- 
cussed is an important advance in network modeling technol- 
ogy, the network structure is limited by its connection to the 
single real packing, and significant assumptions are made re- 
garding pore-scale fluid conductivity. The work reported in 
this article was performed in order to develop a general model 
for fluid and solute transport in disordered packed beds. The 
goals included the following: the simulation of an arbitrary 
packing arrangement; the use of more rigorous fluid mechan- 
ics at the pore scale (thus lending credence to simulations of 
phenomena that depend on pore-scale events); the incorpo- 
ration of this information into a model capable of simulating 
macroscopic phenomena for beds with essentially unlimited 
heterogeneity. 

Model Development 
Overview 

The bed is created by a computer algorithm that simulates 
the random packing of spheres into a specified volume. A 
Delaunay tessellation is used to transform the bed into a net- 
work in the manner described by Bryant et al. (1993a,b). Al- 
though the resulting Delaunay tetrahedrons are used to set 
up the network fluid conservation equations, all microscopic 
fluid transport equations are solved by examining the locally 
bounding spheres. The result is a distinct link between pore- 
level phenomena and macroscopic behavior in the bed. Five 
steps in the modeling process are described in the following 
sections: 

1. Simulation of the packed bed 
2. Delaunay tessellation 
3. Solution of fluid transport equations at the pore level 
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4. Solution of the overall pressure and flow profile 
5. Modeling solute transport and residence time distribu- 

tions. 
As the model development will show, this methodology is 

superior to typical network modeling techniques because dis- 
order and heterogeneity are introduced into the structure of 
the packed bed rather than by randomly assigning sue distri- 
butions onto the network itself. Furthermore, the physical 
description of the bed is not compromised during the trans- 
formation into a network problem. 

Computer-simulated packed bed 
For the tessellation and the network algorithm to be imple- 

mented, a complete description of a packed bed is required 
(consisting of an array containing the x ,  y and z coordinates 
and the radius of every sphere in the pack). The quantity and 
detail of this information suggest the use of a computer- 
simulated packed bed so that one can quickly determine what 
is all but impossible to obtain experimentally. 

The input parameters dictating the physical properties of 
the simulated bed are chosen in a manner analogous to spec- 
ifying the dimensions of a real packing. The bed is initialized 
by selecting the mean sphere diameter, the size distribution 
(which in the simplest case requires the standard deviation 
from the mean diameter), the cross-sectional area of the pack 
(typically defined by either the dimensions of a rectangular 
base or the radius of a circular base), and finally the number 
of particles to be placed in the bed. The latter quantity can 
be replaced by the length of the pack, but the number of 
particles is often more desirable because it dictates the num- 
ber of pores and hence directly affects computation speed. 

The basic algorithm used to create a sphere pack is taken 
from the literature (Visscher and Bolsterli, 1972). It is a 
drop-and-roll-type algorithm that results in a pack being built 
sphere-by-sphere from the base. The base spheres are placed 
on a lattice of preset dimensions, and then disturbed spatially 
in order to prevent degeneracies from occurring during the 
tessellation process. The packing process proceeds by select- 
ing a sphere from the designated size distribution and select- 
ing a random x,y coordinate above the bed from which the 
sphere is released. The first point of contact with the bed is 
calculated based on a z-direction fall, from which a series of 
rolls are simulated, allowing the dropped sphere to settle onto 
the packed bed. The rolls are complete when the dropped 
sphere reaches a stable gravitational minimum, which means 
that it is in contact with at least three spheres and any fur- 
ther movement would first require an upward roll. Qualita- 
tively, this condition can be envisioned as the dropped sphere 
coming to rest on a triangle formed by three other spheres in 
the bed. In large beds, four-sphere contacts occur occasion- 
ally (within the accuracy of the real-number calculations). 

The porosity of the beds created by the computer simula- 
tion is fairly consistent, ranging from 0.38 to 0.42 for both 
uniform and nonuniform sphere distributions. The algorithm 
can be modified to obtain other porosities by performing a 
number of drops for each sphere and selecting the final re- 
sult that most closely conforms to the desired property (for 
instance, low porosity). Other constraints or additions to the 
algorithm can be used to create specific or unusual packing 
arrangements, as shown below. During the creation of mod- 

Vol. 43, No. 6 1379 



erate to large-sized packs, unusual geometric configurations 
can arise, which can be dealt with by modifications to the 
basic packing algorithm. These changes have been made so 
that the current program can rapidly create packs in excess 
of 20,000 spheres if the standard deviation in sphere diame- 
ter is less than 0.25 times the mean. Broader size distribu- 
tions can be obtained if one is willing to discard the drop 
attempts that cause problems. Also, other algorithms are 
available in the literature that can be incorporated into this 
section of the model (see, for instance, Yang et al., 1996). 

Delaunay tessellation 
A sphere-by-sphere ordering of a packed bed enables a 

complete physical description to be obtained for any local 
region of pore space. However, a network algorithm to simu- 
late flow through the pack requires that the pore space be 
divided into discrete elements (pores) connected to one an- 
other in a well-defined manner. The Delaunay tessellation is 
appropriate because it divides spheres into nearest-neighbor 
groups of four, and each Delaunay cell closely resembles the 
general description of a pore. 

The four vertices of a Delaunay tetrahedron are centers of 
spheres in the pack. A Delaunay cell can be defined uniquely 
by examining the circumsphere defined by the four vertices; 
the definition of a Delaunay tetrahedron requires that this 
circumsphere encompass no other sphere centers from the 
pack (Bowyer, 1981; Watson, 1981). A first-order degeneracy 
occurs when a fifth sphere center lies on the circumsphere. It 
is rare in a disordered pack, but it does occur and can be 
resolved by dividing the five spheres into two tetrahedrons 
that share a face. The dimensions of these two tetrahedrons 
typically dictate the way in which this division occurs (for in- 
stance, one may attempt to obtain faces similar to equilateral 
triangles). 

Figure 1 shows four spheres arranged to form a tetrahe- 
dron. Imagine, in Figure la, the bottom three spheres resting 
on a horizontal surface with the fourth sphere placed on this 
triangular base. From this mental picture, it should be evi- 
dent that a region of space exists in the center of this group 
of four spheres. Access to this space is through any of four 
constrictions that are created where three spheres meet. This 
picture leads naturally to the definition of a pore space: a 
central void with a number of distinct constrictions connect- 
ing the void to the remaining pore space. Figure l b  shows the 
tetrahedron that might be formed by these spheres, showing 
how the sphere surfaces cut through the tetrahedron faces. 

Figure 1. (a) Four-sphere pore; (b) network analog. 

Because the vertices are at sphere centers, the void projected 
onto each of the four faces is necessarily the smallest con- 
striction that will be encountered when traversing a passage 
into the central pore. Hence, the area projected onto a tetra- 
hedron’s face represents a pore throat in the network analog. 
It should be noted that despite a group of four spheres satis- 
fying the nearest-neighbor tessellation criterion, they do not 
necessarily touch (a result of contact with surrounding 
spheres). This fact introduces significant variability to the 
shape of a pore throat. 

The algorithm to perform a tessellation is, in principle, 
simple. A seed tetrahedron is found, the search for which 
need not be efficient because it occurs only once. This tetra- 
hedron has four faces, each of which must be shared with 
another tetrahedron (unless the face is a boundary). The al- 
gorithm proceeds from a seed face that has an unknown 
neighbor, searching to find a fourth vertex to complete a new 
tetrahedron. For a nondegenerate face, this fourth point is 
unique. As tetrahedrons are added to the tessellation, addi- 
tional seed faces are created. The search continues until no 
seed faces are available, which indicates a completed tessella- 
tion. During the tessellation process, the boundary for al- 
lowed tetrahedrons lies a few sphere layers inside the edge of 
the packed bed. This strategy ensures that the edge tessella- 
tions are uniform with respect to the rest of the bed. The 
nonconducting edge faces then define the final network 
boundary. It is of interest to note that the Delaunay tessella- 
tion is the geometric dual of the Voronoi tessellation (Wat- 
son, 1981). Each Voronoi polyhedron is associated with a sin- 
gle vertex (a sphere), and the volume within the polyhedron 
is nearer its associated vertex than any other. 

The Delaunay tessellation is used not only to define indi- 
vidual pores, but also for the equally important role of defin- 
ing pore interconnectivity. Because the tessellation results in 
a space-filling aggregate of tetrahedrons (Watson, 1981), any 
nonedge face must border a neighbor tetrahedron (further 
illustrating the role of the face as a connecting throat). When 
used in this way, the completed tessellation must provide the 
following information for each tetrahedron: its four vertex 
spheres and the four other tetrahedrons with which it shares 
a face. Total storage for the completed description of the bed 
requires a real-number array for the sphere positions and 
radii, which has dimensions (number of spheres X 4), plus an 
integer array (for the tessellation) containing the numbers of 
vertex spheres and neighboring pores, which has dimensions 
(number of tetrahedrons x 8). It is again emphasized that, be- 
cause the information from the tessellation points to sphere 
positions and radii, no morphologic information is lost during 
the network transformation. Two other notes are made here. 
First, the position array is stored in dimensionless form in 
order to allow a given arrangement of spheres to be used to 
simulate a pack of any mean sphere size. Second, because 
large packs are used in the simulations, wraparound bound- 
ary conditions are not used. Pores at the edge of the pack 
have at least one nonconductive face, which is representative 
of real packed beds. 

While the flow calculations within discrete pores are the 
most important aspect of the modeling, the Delaunay tessel- 
lation provides a rapid and simple means for calculating other 
physical quantities. Porosity is the most obvious: the porosity 
of the entire bed is calculated by summing the void volume 
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and total volume of each tetrahedron. Because spheres at the 
edge of the tessellated region are only partially contained 
within tetrahedrons, this method is superior to summing the 
volume of all spheres to calculate porosity. As shown in Eq. 
1, the summation also provides an accurate method for deter- 
mining the average cross-sectional area of the pack (area 
varies with bed length even for cylindrical beds because the 
network boundary is formed by irregular tetrahedrons): 

Similar summations give exact values for saturation, surface 
area, and concentration. 

In using the Delaunay tessellation, the network is automat- 
ically restricted to a coordination number of four. While this 
restriction affects the calculation of percolation properties, it 
does not adversely affect the simulation of single-phase fluid 
transport because the tessellation is primarily a tool to orga- 
nize the pore space into discrete elements. In situations where 
the local topology does not conform easily to single-pore divi- 
sions by the tessellation process, void spaces are defined us- 
ing more than one tetrahedron. An example is a situation 
where spheres from a bed are removed to create a single 
large void (a vug in petroleum literature). While this large 
void may be discretized by multiple tetrahedrons, their com- 
mon faces will contain unusually large projected voids, which 
will have low fluid resistances. Local transport will be domi- 
nated by these regions of high conductivity, as would be ex- 
pected in a true heterogeneity of this type. 

Single-phasejlow in the network 
The most significant challenge to modeling flow through 

the packed bed is to generate an accurate description of flow 
at the pore level and to scale-up this information to create a 
global picture of fluid and mass transport. We begin by exam- 
ining the system of equations to be solved for flow through 
the network. As discussed earlier, the final flow solution is 
obtained from a linear matrix equation representing fluid 
conservation at each pore. To obtain this equation one writes 
a balance on the net volumetric flow rate in each interior 
tetrahedron, i ,  

where gi, is a fluid conductivity term (equal to the ratio of 
volumetric flow rate and pressure drop across a pore throat). 
The subscript j ,  which denotes the four neighboring pores, 
illustrates the role of the tessellation in mapping out the in- 
terconnectivity of the pack. The matrix equation is obtained 
by rearranging Eq. 2 for pi ,  the pressure in each pore. The 
outlet pressure is typically set to zero, meaning that for pores 
bordering the outlet, the sum of the flow rates will have an 
unknown but nonzero value. The analogous situation is true 
if the inlet pressure is constant. Alternatively, a constant- 
injection-rate model is obtained by adding a single constrain- 
ing equation to the matrix that represents the sum over all 
inlet pores: 

The system of linear equations is large and sparse, hence is 
solved using the Gauss-Seidel method with overrelaxation. 
(Use of the tessellation eliminates the need to set up the en- 
tire coefficient matrix; only the nonzero terms are stored.) 

Pore-scale jluid mechanics 
When using Eq. 2, the Delaunay tessellation specifies the 

four pores j that neighbor a given pore i .  One still requires 
numerical values for the conductivities between any two pores 
(i.e., the elements gj,j in the coefficient matrix). These con- 
ductivities depend on local topography, so they are obtained 
by reverting back to the original sphere-pack coordinates in 
order to describe flow in the neighborhood of the bounding 
spheres. 

For single-phase laminar flow, a throat conductivity typi- 
cally depends on the fluid viscosity and throat geometry, and 
for simple geometries an equation can be derived analyti- 
cally. Figure 2, however, shows the cross sections of four dif- 
ferent types of throats taken from a computer-generated 
packed bed. The geometries of these pore channels present 
three distinct problems for modeling microscopic fluid flow. 
First, the cross sections of the ducts are somewhat arbitrary, 
defined by the dimensions of the triangular faces and the radii 
of the bounding spheres. Second, as discussed before, the 
spheres do not necessarily touch, meaning that the ducts may 
not be completely enclosed. Third, because the bounding sur- 
faces are spheres, the cross sections of the ducts converge 
and diverge (in a direction perpendicular to the page in Fig- 
ure 2). 

Figure 2. Typical tetrahedron-face geometries in a computer-generated random packing of spheres. 
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Since analytical solutions for the desired flow profiles are 
not available, the possible methods for obtaining the conduc- 
tivity matrix are to use a general approximation, an empirical 
formula, or a numerical solution. General approximations that 
use terms such as the wetted perimeter and effective radius 
do not have sufficient basis. Semiempirical equations are 
available in the literature for a number of situations, the most 
applicable being those by Yilmaz (1990), which give pressure 
drops for various duct geometries. However, these and other 
similar equations are valid for rather specific families of 
shapes and can give results that deviate significantly when 
duct cross sections do not conform to the required geometric 
family. In addition, neither of the preceding options can ef- 
fectively account for unbounded sections of the perimeter. 
Hence, the approach taken here is to perform a numerical 
solution for parallel flow through the appropriate cross sec- 
tion, and to correct the result using a solution for creeping 
flow through a converging-diverging-shaped channel. 

To obtain a relationship between flow rate and pressure 
drop for parallel flow through an arbitrary shaped duct, the 
Navier-Stokes equations are simplified to 

d2u d2u 1 dp 
- +2=-- (4) ax2 ay p dz' 

In this equation, u represents the t-component velocity, 
where the duct's cross section lies in the x-y plane. For paral- 
lel, incompressible flow, the righthand side of this equation is 
constant. It is desirable to obtain a dimensionless solution so 
that it can be applied to a throat of specified geometry re- 
gardless of its size. Dedimensionalization of Eq. 4 is per- 
formed by defining the following characteristic dimensions: 

length = r, 

force = (dp/dz)/r: 

time = p/[(dp/dz)r,]. 

The definition for length comes from the geometry of the 
system (it is the radius of one of the bounding spheres) while 
the definitions for force and time can be obtained by examin- 
ing Eq. 4. These definitions result in four dimensionless vari- 
ables. 

The dimensionless flow rate is used later. Substituting x, y ,  
and u into Eq. 4 gives 

This dimensionless form of Poisson's equation, like Eq. 4, de- 
scribes parallel flow through any arbitrary duct, such as those 
shown in Figure 2. Because of the unusual geometries of the 
cross sections, this equation must, in general, be solved nu- 
merically. 
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The equation is solved using the finite-element method. 
Due to the large number of solutions that must be obtained 
for a given bed, a general finite-element routine was adapted 
specifically for the tetrahedron geometries encountered and 
built directly into the overall code. Solution of Eq. 5 gives the 
velocity as a function of position on the face, as shown by the 
contours in Figure 3. Also shown in Figure 3 is the difference 
between assuming a zero-velocity vs. a zero-flux boundary 
condition at the gaps between spheres. It is apparent from 
Figure 3 and from the values of Q* that the zero-velocity 
assumption assigns an abnormally low conductivity to a long, 
thin pore throat bordering a'gap. 

The dimensionless velocity u* = f(x*, y * )  is integrated to 
determine the dimensionless flow rate defined previously: 

Q* = /,u* ak* dy*. (6) 

Finally, substituting the definition of Q* and assigning dp/& 
= A P / L ,  an expression for g is obtained for a given pore 
throat. 

rf A P  1 Q*rf 
(7) 

Q 
A P  A P  p L  

g = - = Q* ( I T) - = -, 

in which the i and j subscripts have been dropped for clarity. 
This equation transforms the dimensionless flow rate into the 
term gi, needed in Eqs. 2 and 3. For a given bed, it is advan- 
tageous to create a file of the dimensionless flow rates, Q*, 

symmetry B.C. 

/ 

Figure 3. Pore-throat velocity profiles for two different 
boundary conditions. 
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and the dimensionless sphere positions because this informa- 
tion is restricted to a specific bed structure but not to the 
mean diameter nor to fluid viscosity. 

The numerical solution just described provides a solution 
for parallel flow through an arbitrary duct that may or may 
not be enclosed by a zero-velocity perimeter, hence satisfying 
two of the requirements listed previously. The final problem 
in calculating the fluid resistance terms is that the flow con- 
verges and diverges as it passes through the constriction lead- 
ing into a Delaunay cell. A number of approximations for 
converging-diverging flow have been introduced into net- 
work models (e.g., Lin and Slattery, 1982; Bryant et al, 1993a). 
In the current work, a solution for creeping flow in a hyper- 
bolic Venturi is used to assess the effect of the converging- 
diverging geometry. It was chosen for convenience and be- 
cause of the appropriateness of its shape, and is introduced 
as a correction to Eq. 7. 

To map the actual pore throat geometry onto the Venturi, 
one determines the radius of a tube of circular cross section 
that has the same resistance to parallel laminar flow, as does 
the duct used in the finite-element method solution. This ef- 
fective radius, re,, becomes the radius of the Venturi's neck, 
while the length L of the Venturi is equal to the average 
diameter of the three bounding spheres (see Figure 5). The 
shape of the hyperbola is chosen to closely resemble the cur- 
vature of the bounding spheres. Comparison of the resistance 
to flow through the Venturi vs. the resistance to parallel flow 
through the tube of radius, re,, provides the correction factor 
to Eq. 7, as shown below. 

The solution for flow through a one-sheeted hyperboloid 
of revolution, as shown in Figure 4, is from Happel and Bren- 
ner (1973). It is an axisymmetric problem solved using the 
stream potential. In oblate spheroidal coordinates, the wall 
of the Venturi is defined by h = constant for a given c (the 
constant h,  representing the asymptotic angle between the 
axis of rotation and the wall, and c being the distance from 
the axis of rotation to the focal circle). The values of these 

t 

I 
Figure 4. Hyperbolic Venturi. 

Figure 5. Approximation of pore-throat geometry using 
the Venturi. 

two parameters are dictated by the mapping described in the 
previous paragraph; specifically, they are defined as 

and 

(8) 

(9) 

where Rave is the average radius of the bounding spheres 
(equal to L/2). Figure 5 depicts this mapping, comparing two 
half-circles representing a given Rave (equal to 1.0 in the 
graphic) and the hyperbola defined by Eqs. 8 and 9. 

The general equation for the pressure at a point in the 
Venturi is (Happel and Brenner, 1973) 

A 
P = P o -  

where the reference pressure is taken at the neck of the Ven- 
turi, and 6 and A represent the following change of variables 
from the oblate spheroidal coordinate system: A = sinh 6 and 
l =  cos q. The pressure drop through the entire Venturi is 
found by calculating the pressure drop between z = - Rave 
and z = + Rave on the axis of symmetry which, making the 
appropriate transformations, consists of evaluating Eq. 10 at 
6 = 1 and A = A, = RaVe/c. Rearranging, one can determine a 
value for the conductivity g of the Venturi, 
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The conductivity of a capillary having length L and radius 
reff is known from the Hagen-Poiseuille equation (see, for 
instance, Bird et al., 1960). The ratio of the two conductivi- 
ties results in the following dimensionless correction factor, 
which has a value greater than one according to the assump- 
tions made: 

Equation 12 can be used explicitly to adjust the conductivity 
of the pore throats. In the program, gventuri/gtube is calcu- 
lated only once for each throat and applied directly to the 
dimensionless flow rate (Eq. 7), which is then stored in the 
conductivity matrix. 

Solute dispersion and residence time distributions 
Solving the previous equations gives the pressure in every 

pore. From this information, both pore-scale and macro- 
scopic volumetric flow rates can be found. However, model- 
ing dispersion and residence time distributions (RTDs) re- 
quires additional assumptions regarding the specific paths and 
velocities of solute molecules (or tracer particles, in the case 
of RTDs). 

The path that a given tracer particle uses to traverse a 
model packed bed is determined from probabilistic argu- 
ments: once inside a given pore, the exit throat is chosen 
according to the fraction of flow leaving through that throat. 
These simple arguments define the overall path taken, but 
not the time taken to traverse this path. In order to trans- 
form microscale volumetric flow rates (which are known from 
the network solution) to pore residence times without intro- 
ducing arbitrary scaling parameters, a pore’s void space is di- 
vided into four weighted volumes. (A pore residence time is 
defined as the time a fluid element spends in that given pore 
during its journey through the bed.) Each of these volumes is 
associated with one of the four faces in the pore, the weights 
being determined by analyzing the tetrahedral geometry 
(Thompson, 1996). When both the volumetric flow rate 
through a face and that face’s associated volume are known, 
one can obtain the average pore residence time associated 
with face j (the total pore residence time for pore i is found 
by performing the calculation for the two faces through which 
the tracer element enters and exits): 

(13) 

where ui,] is the fraction of pore i’s volume that is associated 
with face j .  Subsequently, a probabilistic argument is used to 
introduce the variation in velocity caused by flow along dif- 
ferent streamlines. For an assumed parabolic velocity profile, 
the specific pore residence time associated with either the 
inlet or outlet face is 

or, combining Eq. 14 with the notation used 
equations, 

1 - U ‘ 4  

- K P j  - p ; ) g J  2J1-x . 

In Eqs. 14 and 15, x is a random variable 

in the network 

(15) 

chosen from a 
unifoim distribution between zero and one. The origin of this 
term is from the probabilistic velocity argument. A detailed 
derivation of both u,,] and T,,, can be found in Thompson 
(1996). 

From Eq. 15, the overall algorithm for simulating the RTD 
follows easily. Selection of the entrance throat is weighted in 
proportion to the fraction of the total injected flow rate. A 
tracer particle’s interior path is determined from flow propor- 
tionality arguments, and as a particle passes through each 
pore, the time contributed to the overall residence time is 
calculated. A new value for the random parameter x is found 
once per pore according to the assumption of mixing at the 
pore throat junctions. 

The external RTD is found by simulating the preceding 
process for 10,000 tracer elements. To obtain a dimensional 
outlet concentration, the expected range of transit times is 
divided into a number of discrete intervals. During the injec- 
tion process, the number of particles that exit during each 
interval is recorded, to be translated into an outlet concen- 
tration by determining the fraction of outlet volume repre- 
sented by the tracer. The output data from this simulation 
are recorded as a series of points showing concentration vs. 
time, as one would obtain from a tracer experiment if the 
effluent is analyzed as discrete samples. 

Additional notes 
First, in the development of the network and the solution 

for single-phase flow, all stochastic information used to ac- 
count for microscopic disorder is introduced in step 1: the 
points from which spheres are dropped into the bed are se- 
lected randomly from the cross section, and the diameter of 
the dropped spheres are selected randomly from a specified 
size distribution. The advantage of this procedure is that the 
disorder in the bed arises naturally from quantities that one 
would select for a real packed bed (bed dimensions, sphere 
sizes). This methodology is superior to introducing hetero- 
geneity directly into the pore structure by way of the lattice 
arrangement and pore-throat-size distribution (both of which 
must be inferred secondarily). 

Second, no restrictions exist concerning the morphology of 
the bed created in step 1 (it is limited only by the computer 
algorithm used). Hence, one can introduce heterogeneity of 
arbitrary scale and structure into step 2 and be assured that 
it is transferred into the network. 

Model Results 
Solution of the network equations provides the pressure in 

each pore of the packed bed, and hence the volumetric flow 
rate passing through each pore. This information, combined 
with known dimensional properties of the overall bed (length, 
porosity, cross-sectional area, etc.), is used to calculate aver- 
aged macroscopic parameters such as permeability. 
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While the quantitative prediction of these parameters is an 
effective means to demonstrate the scale-up of microscopic 
information, the significance of this model is for use in situa- 
tions where a medium's morphology or the quantity of inter- 
est precludes the use of empirical or other macroscopic rela- 
tions. Applications may include the modeling and design of 
processes that depend strongly on pore-scale heterogeneity 
(e.g., dispersion and chromatography), analysis of processes 
where generalized empirical correlations fail, and the estima- 
tion of interfacial areas and mass-transfer coefficients in mul- 
tiphase systems. The example below shows the prediction of 
macroscopic permeability. It is followed by three examples 
where a knowledge of microscale flow is required to repro- 
duce flow patterns from actual disordered and heteroge- 
neous beds. 

E 

Q 1 -  t 

0.1 

Macroscopic flow parameters 
Equation 7 makes all throat conductivities dimensional, so 

the inlet volumetric flow rate is calculated simply by summing 
the product of pressure drop and conductivity over all inlet 
faces in the bed: 

Erguo Equation (42%) . A 

0 

n data (Wyllie and Gregory, 1955) 1 x data (Ahmed and Sunada, 1969 
1 

Successful setup and solution of the model equations will en- 
sure that an outlet flow rate equal to the inlet flow rate is 
obtained using an analogous expression to Eq. 16. The bed 
dimensions used in the calculations are for the tessellated 
region only: the length of the bed is fixed by the limits im- 
posed during the tessellation process, while the average 
cross-sectional area is found from Eq. 1. Given Q, pinlet, and 
the bed dimensions, the Darcy velocity, permeability, pres- 
sure gradient, space time, and Reynolds number can be cal- 
culated from standard formulas. For example, the average 
permeability is calculated from the simple form of Darcy's 
law for macroscopically one-dimensional (1-D) flow, 

(17) 

The direct use of Darcy's law to calculate a quantitative per- 
meability is possible because the spatial dimensions of the 
packed bed are known (whereas, in a typical network of bonds 
and nodes, the relationship between volumetric flow rate and 
Darcy velocity is not well defined). Figure 6 is the program 
output showing predictions of a number of macroscopic 
quantities for a bed of nearly uniform 127-pm spheres (std. 
dev. = 1.27 pm). The quantities are given in actual dimen- 
sions, and were obtained solely from the detailed description 
of the packed bed. 

Because permeability is the most basic flow quantity used 
to study porous media, we investigate the permeability pre- 
dictions from the model over a large range of sphere diame- 
ters (the beds for each point were generated independently). 
A comparison to experimental data as well as the Ergun 
equation (Bird et al., 1960, p. 200) is shown in Figure 7. The 
values for permeability are 30% below predictions by the Er- 
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Computer Data 

Seed number used: 75 
Data stored in: aff95.01 
Base dimensions ( #  particles) 8 by 8 
# Particles requested dropped: 5000 
# Particles actually dropped: 5390 
Average particle diameter (cm): 1.27000E-02 
Deviation: 1.00000E-02 

# Particles used in bed: 2356 
# Pores tessellated: 11103 

Length (cm) : .32057 
# inlet : outlet faces: 
Porosity : .412073 

Cross-sectional area (cmA2): 9.911673-03 

98 : 116 

Pore volume (cm"3) : 1.309316-03 

Resistance type: 10 
Pressure drop (dynes/cm*2) : 1000.0 

Outlet Flowrate (cmA3/s) : 
Space time (sec): 2.92246 

Permeability (Darcys) : 14.68245 

Inlet Flowrate (cmA3/s) : 4.48018E-04 
4.47 6923-04 

Reynolds number: 9.764033-02 

Experimental Data (Wyllie and Gregory, 1955) 

particle diameter (microns) 127 

permeabillty (Darcys) 13.2 
poroslty 38 - 39% 

Figure 6. Results from packed bed model. 

gun equation; taking the Ergun equation to be correct, one 
could make reasonable physical arguments to adjust L in Eq. 
12 so that the permeabilities match. At the present time we 
have chosen not to adjust any parameters in order to fit data. 
The values for permeability do fall within the fairly wide range 
of various experimental results (Wyllie and Gregory, 1955; 
Ahmed and Sunada, 19691, and the permeability increases as 
the square of particle size, which is correct. 

Direct simulation of experimental data 
If the simulated packings are essentially identical (within 

the bounds of natural disorder and minor physical con- 
straints) in configuration to those used in experimental work, 
then the model output does not have to be scaled or be com- 
posed of intensive parameters. In fact, comparative quanti- 
ties used to test the model can indeed be scale-dependent. In 
this section, the model is used to recreate an external resi- 

100000 

I 3 10000 

2 m 1000 e. 
> 

A . 
0 

1 A simulation (4142% porosity) ' 

Vol. 43, No. 6 1385 



Table 1. Comparison of Real and Simulated Packed Beds 

Simulated Packed 
Bed Bed 

Particle diameter (cm) 
No. particles in packed bed 
cross-sectional area (cm’) 
Bed length (cm) 
Pore volume (cm3) 
Pulse volume (% pore vol.) 
Porosity (%) 
Permeability (Darcy) 

0.2 0.2 

5.18 5.07 
8.35 10.7 

0.015 0.015 

7,483 - 7,500 

17.85 24 

41.3 41-44 
4,126 

dence-time distribution for a packed bed of uniform-sized 
glass spheres. RTDs are commonly used in reaction engineer- 
ing to identify flow maldistribution and to quantify fluid resi- 
dence times (Robinson and Tester, 1986). In most applica- 
tions, the RTD is treated as a macroscopic parameter from 
which flow maldistribution can be evaluated using known 
correlations. However, an RTD originates at the pore level 
and is an excellent example demonstrating a scale-dependent 
macroscopic phenomenon. 

The bed used for the experimental results was made with a 
l-in.-ID (25.4-mm-ID) chromatography column and 0.2-cm 
glass spheres. Approximately 7,500 spheres were used, which 
provided a reasonably sized experimental bed while prevent- 
ing the network problem from becoming overly laborious. Di- 
mensions of the actual column vs. the simulated version are 
compared in Table 1. They are similar in most respects. The 
discrepancy in pore volume is attributed to a number of fac- 
tors: slightly more spheres were probably used in the real 
packing; a slightly higher internal porosity (away from the 
walls) may have been obtained for the real packing; edge ef- 
fects occur in the actual bed, thus increasing its overall poros- 
ity. The experimental setup did not allow accurate permeabil- 
ity measurement because of the very small pressure drop 
across the bed itself. 

The experimental RTD and the model results are shown 
together in Figure 8. The agreement is good, including the 
sharp rise in concentration along with the extended tail and 
the presence of a single peak shifted slightly to the left of 1 
PV. It should be noted that the use of pore volumes on the 
abscissa serves to align the curves each with their bed’s re- 
spective pore volume, but does not mask other differences 

0.04 

0.03 

0 
Q 0.02 
0 

0.01 

0 

Model Prediction 

A Beadpack Experiment * *  
A 

A 
a 

a A 

0 
a a 

a 

0 0 

0 0.5 1 1.5 2 2.5 
Pore volumes 

Figure 8. Residence time distribution in experimental 
vs. simulated packed beds. 

that may exist between the model and the actual RTD. In 
this regard, the slight difference between the curves is con- 
sistent with the actual bed being longer and having a slightly 
higher porosity. The model data shown in Figure 8 are signif- 
icant for two reasons. Not only do they demonstrate the 
scale-up of dimensional macroscopic quantities from a 
knowledge of pore-scale flow, but they show that flow analy- 
sis on a complete packed bed can be performed using a net- 
work approach. 

Larger-scale heterogeneity and flow maldistribution 
Flow maldistribution is of concern in reaction engineering 

and separations processes because flow channeling and by- 
passing translate to low reactant conversions or insufficient 
contacting time. Although macroscopic correlations can often 
be used to predict the effects of flow maldistribution, the 
phenomenon originates at the pore scale where packing het- 
erogeneity creates regions of high and low fluid conductivity. 
Connecting these pore-scale events to macroscopic responses 
requires a knowledge of the complex interactions within the 
interconnected pore space. 

Oliveros and Smith (1982) created unique, artificially 
nonuniform packing arrangements to study flow maldistribu- 
tion. These packed beds were each composed of a core re- 
gion containing smaller spheres and an annular region con- 
taining larger spheres. They observed that, despite channel- 
ing through the higher permeability annulus, the RTDs from 
their beds had only one peak unless fluid exchange between 
the core and annular regions was prevented. The merge of 
two peaks into one (when communication was allowed) clearly 
illustrates how pore-scale flow patterns interact to affect the 
overall process. Oliveros and Smith (1982) give only one re- 
sult that compares equivalent beds both with and without a 
barrier separating the annulus and core regions. The dimen- 
sions of their actual bed and the simulated version are given 
in Table 2. Although it is possible to model the entire bed, 
the simulated version was created to be approximately half 
the length of the actual in the interest of efficiency. When 
modeling the case where communication was allowed, the two 
simulated beds were placed end-to-end. 

With a barrier present between the core and annulus, flow 
through each region is independent. The model simulations 
were performed by setting a constant pressure drop across 

Table 2. Parameters Comparing Simulated Packed Bed to the 
Bed used by Oliveros and Smith (1992) 

Actual Simulated 
Bed Bed 

Radius (cm) 
Cross-sectional area (ern') 
Sphere diameter (cm) 
Porosity 

Width (cm) 
Cross-sectional area (cm’) 
Sphere diameter (cm) 
Porosity 

Length (cm) 
Porosity 
No. pores 

Annulus 

Bed 

2.91 
26.6 
0.5 
0.38 

1.26 
28.0 
0.6 
0.45 

59.4 
0.42 

2.87 
25.9 
0.5 
0.41 

1.34 
29.7 
0.6 
0.45 

24.2 
0.43 

58,108 
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Figure 9. RTDs from heterogeneous bed with separa- 
tion between zones. 
(a) Experimental data reproduced from Oliveros and Smith 
(1982). (b) Model prediction. 

the bed and sending a fraction of the tracer pulse through 
each region in proportion to its volumetric flow rate. Outlet 
tracer elements were combined to obtain the effluent con- 
centration profile. The experimental results with the separat- 
ing barrier are reproduced in Figure 9a, and data from the 
model are shown in Figure 9b. 

The more interesting phenomenon occurs when the sepa- 
ration between the core and annulus is removed. Without the 
barrier, it is possible for slower-moving fluid elements in the 
core to migrate into more rapidly flowing streamlines in the 
annulus, and vice versa. The frequency of these migrations 
depends largely on the geometry of the system (i.e., the 
amount of fluid interchange between regions). Hence, it be- 
comes apparent that any change from the RTD observed in 
Figure 9 could be predicted only with a knowledge of the 
pore flow patterns. The simulation without the barrier 
present is straightforward and performed as if the bed were 
homogeneous, which is possible because the fluid flow is 
based solely on the medium's microscopic structure. At this 
length scale, the presence of larger-scale heterogeneity can- 
not be detected, yet it is accounted for when the network 
equations are solved. The simulation shown in Figure lob 
reveals that when interaction between the annular and core 
zones is allowed, the residence time distribution is a single- 
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Figure 10. RTDs from heterogeneous bed with hy- 

(a) Experimental data reproduced from Oliveros and Smith 
(1982). (b) Model prediction. 

peaked function. This result agrees qualitatively with the ex- 
perimental results reproduced in Figure 10a. (The axis units 
used and the information given in the referenced work pre- 
cludes a quantitative comparison of the RTDs for the case 
with zone communication.) 

Dispersion and pore-scale heterogeneity 
Microscopic fluid velocities in a packed bed are highly vari- 

able because of the distribution of pore sues and local effects 
from the bounding solid. Furthermore, the path length re- 
quired for a solute molecule to traverse the bed varies be- 
cause of the continual splitting and rejoining of streamlines. 
The aggregate effect of these phenomena causes a distribu- 
tion of exit residence times and the dispersion of a solute 
pulse while it is in the medium. Network approaches provide 
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much of the information needed to model the effects of con- 
vective dispersion, although it is more difficult to account for 
the effect of molecular diffusion on dispersion (diffusion al- 
lows solute molecules to move between slow and fast stream- 
lines). This latter effect is particularly important at Peclet 
numbers less than 10 (Dullien, 1979), but also in cases where 
molecular diffusion can carry solute to regions of stagnation 
such as dead-end pores. Network models have been adapted 
to account for diffusivity (e.g., Sorbie and Clifford, 1991), but 
the inherent problem that cannot currently be addressed is 
that network models do not provide information about a 
solute’s path through a flow junction (meaning streamlines 
lose their identity at these points). The probabilistic argu- 
ments that are used to assign direction and velocity out of a 
pore are equivalent to introducing an arbitrary diffusivity. In 
this article we examine the effects of pore structure on solute 
transport, using the assumption of complete fluid mixing in 
pores. Hence, the simulations may be viewed as representing 
a constant, but unknown Peclet number. 

Nonuniform particle-size distribution is a common form of 
microscopic heterogeneity, yet its effects on phenomena such 
as dispersion are difficult to quantify in mathematical niod- 
els. Han et al. (1985) performed an experimental investiga- 
tion on the effects of particle size distribution and column 
length on dispersion. We use the packed bed model to repro- 
duce three packings from their study: a uniform packed bed; 
distribution 1, which consists of four sizes of particles be- 
tween 0.25 cm and 0.55 cm, and distribution 2, which consists 
of five particle sizes ranging from 0.25 cm to 1.58 cm. All 
three packed beds are designed to have a mean particle di- 
ameter of 0.35 cm. The experimental work demonstrates 
changes in longitudinal dispersion as measured at various ax- 
ial positions in the bed up to a dimensionless length L/dp = 
400 (the length over mean particle diameter). The values of 
L/dp for the computer-simulated beds ranged from 40 to 60, 
so beds were placed in series to obtain dispersion coefficients 
at larger lengths. This procedure may have caused some 
anomalous effects as discussed below, but other options are 
not currently viable. 

In the network model, dispersion coefficients were calcu- 
lated in a manner similar to that described elsewhere (Sahimi 
et al., 1986; Sorbie and Clifford, 1991). Han et al. (1985) re- 
port dispersivity as a dimensionless ratio of dispersion coeffi- 
cient to diffusion coefficient. The results presented here are 
for a dimensional dispersion coefficient because molecular 
diffusion is not included in the model for the reasons stated 
earlier. Figure 11 shows the dispersion coefficient as a func- 
tion of the dimensionless bed length for the three packed 
beds. The results agree with the experimental work in the 
following aspects: The uniform bed and distribution 1 have 
similar dispersion coefficients that become constant well be- 
fore L/dp = 400; the dispersion coefficient for distribution 2 
is higher, and increases over the entire length range, never 
reaching a final value; the value of the predicted dispersion 
coefficients for the uniform bed and distribution 1 agree with 
the high-Peclet-number experiments (Pe = 3400) in the refer- 
enced work. We note, as described before, that the last com- 
parison is not rigorous because an arbitrary diffusivity is in- 
troduced in network models by assuming complete mixing at 
nodes. The one significant difference between the model and 
the experimental work is the magnitude of the dispersion co- 
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Figure 11. Dispersion coefficient as a function of bed 
length for uniform and nonuniform beds. 

efficient for distribution 2, which is larger in the model. Ex- 
perimentally, the dispersion coefficient for distribution 2 
shows a monotonic increase over the range tested, but its 
magnitude is only slightly higher than for the other two beds. 
The discrepancy in the model result is probably a scaling 
problem, resulting from the bed length not being large enough 
to adequately represent the heterogeneity; the length of the 
repeated bed is 40 times average diameter, yet the large 
spheres are also large (4.5 X )  relative to the mean. Hence, a 
few large spheres that lie together could cause a significant 
flow maldistribution, and while a large bed (i.e., a bed used 
in an experiment) would damp this heterogeneity out, the pe- 
riodic nature of the model beds in series may instead magnify 
it. This issue illustrates problems to be addressed as pore- 
scale techniques become important for modeling larger-scale 
heterogeneity. 

Summary 
A model for flow through a disordered packed bed of 

spheres has been discussed. The modeling approach uses a 
network strategy, which takes advantage of the ability to in- 
corporate microscopic heterogeneity into the structure. How- 
ever, by including a rigorous description of the medium, the 
network structure arises directly from the medium’s morphol- 
ogy rather than by inferences from a secondary interpretation 
of the pore-space geometry. Furthermore, the analysis of the 
pore-scale fluid mechanics provides a quantitative match with 
known or experimental macroscopic transport parameters. 

The network originates from a complete description of a 
packed bed obtained from a computer simulation. Given the 
position and diameter of every sphere in the packed bed, a 
Delaunay tessellation is used to discretize the pore space into 
distinct tetrahedral elements representing individual pores. 
The tessellation also provides the interconnectivity of the sys- 
tem. From the microscale geometry within these discrete pore 
spaces, fluid conductivities are assigned by numerically solv- 
ing the Navier-Stokes equations for flow through the pore- 
throat cross sections. Finally, knowing the interconnectivity 
and the fluid conductivities in the tessellated network, the 
overall flow profile is solved using a network approach. 
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The permeabilities for uniform beds of various sphere di- 
ameters fall within the bounds of experimental results, and 
without the use of adjustable parameters, permeability pre- 
dictions are within 30% of empirical equations. A uniform 
bed used in experiments was modeled completely, to which 
scale-dependent quantities were compared. The external res- 
idence time was successfully modeled with excellent quantita- 
tive agreement. External RTDs from experiments on macro- 
scopically heterogeneous packed beds were reproduced, and 
dispersion coefficients from nonuniform beds were calculated 
correctly if the scale of the bed was large enough compared 
to the scale of the heterogeneity. The important aspect of the 
model is its ability to  incorporate arbitrary structural hetero- 
geneity. Heterogeneity can be  introduced at  any length scale, 
and the pore-scale analysis of the fluid mechanics will remain 
correct. Scale-up to macroscopic flow using the network ap- 
proach ensures that disorder a t  any length scale is included. 
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