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ABSTRACT

INTELLIGENT BEHAVIOR AS AN ADAPTATION
TO THE TASK ENVIRONMENT

by

Lashon Bernard Booker

Co-Chairmen: John H. Holland, Stephen Kaplan

As research in artificial intelligence focuses on
increasingly complex task domains, a key question to be
resolved is how to design a system that can efficiently
acquire knowledge and gracefully adapt its behavior in an
uncertain environment. This dissertation argues that
examining more closely the way animate systems cope with
real-world environments can provide valuable insights about
the structural requirements for intelligent behavior.

Accordingly, a class of simulated environments is
designed that embodies many of the important functional
properties characteristic of natural environments. A new
type of adaptive system is then defined that uses pattern-
directed, rule-based processing to cope with uncertain
information. As a rule-based system, the system presented
here is notable in that several rules can be active at once
and there are no fixed priorities determining the order in
which rules can be activated. Moreover, the syntax of each
rule is simple enough to make a powerful learning heuristic

applicable - one that is provably more efficient than the



techniques used in most other adaptive rule-based systems.

A simple version of the adaptive system is implemented
as a hypothetical organism having to locate resources and
avoid noxiocus stimuli by generating temporal sequences of
actions in a simulated environment. Simulation results show
that the naive organism quickly acguires the knowledge
required to function effectively. Further experiments show
that the system is capable of discriminating a large class
of schematic patterns; and, that prior learning experiences
transfer to novel situations.

The results presented here demonstrate that activity in
a collection of simple computational elements - operating in
parallel and activated stochastically - can be orchestrated
to produce reliable behavior in a challenging environment.
The system touches on several issues related to cognitive
functioning such as the generic representation of objects
and the management of limited processing resources. These
issues have been addressed in a way that is computationally

feasible and that allows for rigorous testing.
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CHAPTER I

INTRODUCTION

How can an artificial system be constructed so that it
exhibits intelligent behavior? If we assume that
"intelligent behavior is always manifest in performance as
successful, orderly, adaptive, problem-oriented transactions
with the environment"™ [Welker,1976, p. 270], then the
approach taken to this question will depend on how one
characterizes the transactions between a system and its
environment. The most widely accepted characterization is
embodied in work done in that domain of computer science
called artificial intelligence. Briefly, the idea is that
most of the transactions between a system and its

environment reqguire an ability to store and manipulate

symbols.

The central notion is that of the symbol, which is
taken to mean essentially what it does in computer
science, an entity with a certain functional
property, to wit: that when a process has a token
of a symbol it has access to information about
what the symbol designates (encoded in symbolic
expressions). The processes that can be performed
on symbols are their creation (and, possibly,
destruction), the obtaining of designated
information, the creation of symbolic expressions,
and the manipulation of these symbolic expressions
by insertion, deletion, replacement, and
reordering. [Newell, 1973, p. 27]



From this point of view, the way to build intelligent
systems is to find powerful ways to store, retrieve, and
manipulate symbolic expressions.

This paradigm emphasizes the similarities between the
processing capabilities of machines and humans. It is a
regearch strategy that has led to some impressive examples
of machine generated intelligent behavior. It has had,
moreover, a profound influence on the development of the
"information processing" approach to psychology
[McCorduck, 19791]. Névertheless, it is clear that the view
of man as an information processor - that is, as a symbol
manipulating device - is a very narrow point of view,
Animate information processing systems differ in rather
striking ways from their nonbiological imitators. While
considerable effort has been devoted to understanding the
similarities between men and machines, little has been done
to analyse the differences. Understanding those differences
might lead to new insights about the structural requirements
for intelligent behavior.

The most obvious difference between animate and
artificial systems is that the former have been designed to

survive and perform adaptively salient functions in real-

world environments. The transactions between an animate
system and its environment can therefore be characterized in
terms of their adaptive significance to the system. From
this point of view, intelligent behavior is a primary mode

of adaptation to the environment,



... Most major characteristics of animals,
behavioral as well as morphological, are products
of evolution and thereby represent the species'
latest attempt at adaptation to its environmental
niche. 1Intelligence can be viewed as representing
one such adaptation. [Charlesworth,1976, p. 148]
Understanding the structural requirements for intelligent
behavior in animate systems is aided enormously by an
understanding of the functional requirements of the system's
environmental ﬁiche. Can a similar perspective be helpful

in considering intelligent behavior in artificial systems?

Models of Biological Systems

The functional requirements of the environment are
clearly important when the artificial system in gQuestion is
proposed as a model of a biological system. Consider, fo;
instance, the task of designing an artificial system to
process visual information. Thoughtful consideration of the
kinds of information directly available in natural
environments [Gibson,1966] has caused many psychologists to
guestion the notion that experience of the visual world is
mediated by some internal representation, symbolic or
otherwise. It has been argued, for example, that the
continuous optical flow from a scene of objects is not
likely to be reconstructed from a series of discrete, static
representations [Turvey,1977]. Even those not willing to
deny a role for some kind of discrete representation
acknowledge the need to consider the salient aspects of a
natural visual environment. Haber [1978, p. 3], for

instance, has pointed out that "... the study of the



processing of impoverished scenes, such as simple line=-drawn
objects, may reveal a fundamentally different set of
processing strategies than those found for richly
informative natural scenes."” Though line drawings make
sense from the computational point of view as an obvious
special case, they may be misleading with regard tc the
functional roles of natural mechanisms. Similar concerns
have influenced Marr's [1979] research. He proposes
representations for visual information based on an analysis
of the functional structure of the human visual system and
the information it has to work with. Marr emphasizes that
any computational theory of vision should be constructed by
taking a problem faced by natural systems and applying real
world constraints to make the problem tractable.
Similar observations have been made regarding models of
human cognition. Lachman and Lachman [1979] point out that
... information processing thecries can and should
take into consideration the evoluticnary factors
that have impacted human cognition for the
following reasons. Pirst, it may be possible to
use evolutionary considerations to avoid dead ends
- to eliminate hypotheses that are clearly
implausible for an evolved organism even though
they make sense for artificial intelligences.
Second, attention to evolutionary factors may
suggest areas in which the information-processing
formalisms available from the computational
disciplines are patently inadequate. Third, the
evolutionary history of the human being may
contain the explanation of research results that
are puzzling for theories relying too heavily on
assumed parallels between human cognition and
machine intelligence. (p. 137)
This point of view was then shown to have practical

consequences for the implementation of various semantic



network models.

Knowledge Engineering

There is a sizable portion of the artificial
intelligence community, however, that is not necessarily
concerned with modeling human intelligence. Feigenbaum
[1977] calls these researchers "knowledge engineers" and
their research endeavors knowledge engineering. The goal of
artificial intelligence, from this point of view, is to
discover whatever techniques may be useful in the
construction of intelligent systems. Design efforts should
be focused on techniques that exploit specific knowledge
about the task domain. Indeed, the efficiency of any
particular system can be hampered by an emphasis on general
techniques and mechanisms.

The fundamental problem of understanding
intelligence is not the identification of a few
powerful techniques, but rather the guestion of
how to represent large amounts of knowledge in a
fashion that permits their effective use and
interaction.... The current point of view 1s that
the problem solver (whether man or machine) must
know explicitly how to use its knowledge - with
general technigues supplemented by domain specific

pragm?tic know-how. [Goldstein and Papert, 1977,
p. 85

In other words, the most important general principle
underlying intelligent behavior is the need for easy access
to as much relevant symbolic knowledge as possible. This
includes whatever heuristics, advice, intuitions, etc. that
an expert might bring to bear on the given task.

There is no doubt that the representation and use of



knowledge is central to any study of intelligent behavior.
Here too, though, it seems that there are valuable insights
to be derived from considering the way animate systems are
designed to manage these issues. Take, for example, the
"engineering” problems raised by the need to integrate
knowledge from many sources in a large system. There has
been some interest in viewing this problem in terms of the
interactions that take place among the constituent knowledge
modules or "experts"” [Lenat,1975],[Hewitt,1577]. This
perspective raises many interesting issues about the types
of communication mechanisms and control structures that
allow the interactions to result in intelligent behavior;
and, it is clear that many of these same issues are raised
when considering the brain as an interconnected set of
neural elements. The specification of a control structure
is also a problem during the design of a production system
architecture. MacLaren [1978] has shown how bioclogical
examples can suggest practical organizational and control
structures for production systems - structures that would
not be obvious from a nonbiological point of view.

One of the most important aspects of the way artificial
intelligence systems solve problems is that they rely
heavily, if not exclusively, on search.

Solutions are usually sought by creating symbolic
expregssions and medifying them sequentially until
they satisfy the conditions for a solution.
Hence, symbol systems solve problems by
searching.... They exercise intelligence by
extracting information from a problem domain and

using that information to guide their search,
avoiding wrong turns and circuitous bypaths.



[Newell and Simon, 1976, p. 126]
This description of the search process is analogous to the
way one might describe an animate system as it finds its way
through a complex environment - moving sequentially and
avoiding noxious stimulation as it seeks its goal. It has
been suggested that there is an important link between such
overt exploration of the environment and the "exploratory"

search process used in problem solving [Kaufmann,1979].

Functional Constraints on Processing

Thus it can be argued that even knowledge engineers can
profit from certain general considerations about natural
systems and their environments. But how can one begin to
formulate some of these general principles in ways amenable
to a computational implementation? Some have argued that
men and machines process information in ways that are so
fundamentally different, such a task is hopeless. Dreyfus
[1972], for example, argues that while machines deal with
discrete symbols and isolated facts, humans process
information in the context of a "situation"; in his words,

The basic insight dominates these discussions that
the situation is organized from the start in terms
of human needs and propensities which give the
facts meaning, make the facts what they are, so
that there is never a question of storing and

sorting through an enormous list of meaningless,
isolated data. (p. 174)

Humans have goals, experiences, and expectations that
continuously interact with and are modified by the current

stimulus configuration. 1In particular, humans can bring to



bear a seemingly endless amount of common sense know-how to
a problem, above and beyond whatever task-specific knowledge
is at their disposal. This constitutes a powerful context
that, according to Dreyfus, is not realizable by a system
using discrete symbolic representations.

The importance of such a context has not been ignored
by those working in artificial intelligence however, Minsky
[1975], for instance, observes

...that the ingredients of most theories both in
artificial intelligence and in psychology have
been on the whole too minute, local, and
unstructured to account - either practically or
phenomenologically - for the effectiveness of
common sense thought. The 'chunks' of r=asoning,
lanquage, memory, and 'perception' ocught to be
larger and more structured, and their factual and
procedural contents must be more intimately
connected in order to explain the apparent power
and speed of mental activities. (p. 211)
Minsky then proceeds to describe a frame, a type of data
structure that would be useful in maintaining information
about Dreyfus—like situations. There has also been work
trying to understand how knowledge about situations can be
used to plan actions and infer their conseguences.
Artificial intelligence researchers have recognized from the
beginning that human reasoning processes are not adeguately
expressed by simple logical formalisms. Winograd's [1980]
review of the work in this area shows that considerable
effort is being invested in capturing the common sense
aspects of human "logic”.
Attempts to incorporate information-rich contexts,

common sense knowledge, and common sense reasoning into



artificial intelligence systems have just bequn. The
progress to date seems to blunt Dreyfus' extreme claims
about what machines inherently can't do. Nevertheless, many
of Dreyfus' insights into human information processing ring
true. Generic, prototypical information about situations
helps to organize experience and generate efficient,
orderly, consistent behavior. Yet the idea of a structure
in which reality £fills in the blanks seems to overlook a
crucial point. Situations change and the system will qQuite
often be in need of a new and more appropriate frame. It is
not clear where new frames will come from, how they are
selected, or how the transition from one frame to another
takes place.

In the same way, it seems misleading to explain the
continuitf evident in human behavior by proposing that
successive frames share the same "terminals". Residual
elements of the previous situation certainly influence the
representation of the current one; however, they are not
the only elements that play a crucial role. Just as
important are the defeated remnants of unsuccessful
alternative representations and the hopeful precursors of
the next situation. The representation of the current
situation emerges as a variant of the previous one; yet it
is a variant tempered by competition with alternatives and
primed by vague expectations for the future. This ebb and
flow of constraints is what Dreyfus describes as the

influence of the "fringe". He indicates that this point of
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view is not a mere metaphor for what's going on., It is a
powerful, though little understoocd, strategy for processing
information. Moreover, it is a strategy that is difficult -
if not impossible - to realize using mechanisms that only
replace and reorder symbolic expressions.

These characterizations of human information processing
have not been overlooked by psychologists. They were
eloquently expressed long ago by William James [1892]:

It is, the reader will see, the reinstatement of
the vague and inarticulate to its proper place in
our mental life which I am so anxious to press on
the attention.... Every definite image in the
mind is steeped and dyed in the free water that
flows round it. With it goes the sense of its
relations, near and remote, the dying echo of
whence it came to us, the dawning sense of whither
it is to lead. The significance, the value, of
the image is all in this haloc or penumbra that
surrounds and escorts it, - or rather that is
fused into one with it... (p. 32)
James then proceeds to describe this "fringe"” in terms of
general mechanisms that determine how activity f£lows through
the brain. Lashley [1951] alsc points ocut the importance of
understanding information processing in the brain in terms
of widespread patterns of activity. These patterns are not
the result of activity in discretes, isolated circuits or
pathways. Instead, they arise as the statistical outcome of
many neurcnal interactions. While there is much that can be
explained by considering each circuit as a discrete entity,
there is also much to be learned by studying the emergent
properties of their interactions. Lashley concludes that

"only when we can state the general characteristics o¢f this

background of excitation, can we understand the effects of a
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given input."

Summary

If intelligent behavior is viewed as an adaptation to
the task environment, many of the issues in artificial
intelligence can be rephrased in terms of problems handled
routinely by animate systems in their ordinary commerce with
the real world. From this point of view, the functional
nature of a system's transactions with its environment are
more informative than the symbolic nature of those
transactions. The crucial point is the role of the
environment.

... It does not make sense to talk about
adaptation without something to adapt to. And if
one designates intelligence an an important mode
of adaptation, then intelligent behavior has to be
viewed in terms of environmentally posed problems.
[Charlesworth, 1976, p. 150]
Finding the structural requirements for intelligent behavior
regquires a clearer understanding of environmentally posed
problems and an understanding of how a system can be
organized to solve those problems.

This dissertation will develop these ideas into a
computational model of how knowledge can be usefully
acquired and represented in a complex and uncertain
environment. The mechanisms and overall architecture used
in the model will be derived by considering the functional
criteria for behaving in such an environment. It is hoped

that this enterprise will yield new insights about how to

construct artificial systemé that exhibit intelligent



behavior,
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CHAPTER II

RESEARCH STRATEGY AND SCOPE

The research issues to be dealt with in this thesis may
be restated as follows. Natural systems that generate
intelligent behavior are information processing devices
whose design reflects the influence of evolutionary
pressures. This means that the functional organization of a
natural system is intimately related to the demands and
constraints of the system's environment. It is the
environment that embodies the criteria for whether or not a
given system design is adequate. From the information
processing point of view, perhaps the most important design
criteria are those related to the informational aspects of
the environment; namely, what kinds of information are
available and what constraints there are on how it can be
processed. Natural environments are complex, diverse,
uncertain, and dangerous. These factors make information
processing in natural environments a very formidable
challenge. The problem is to understand how a system can
accumulate and use knowledge about such environments in a
way that makes efficient and prompt action - and hence

survival - possible.

13
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Approach to the Problem

Given that natural environments embody the desired
information processing design criteria, an obvious first
step is to determine what those criteria are., Natural
environments must somehow be characterized from an
information processing point of view. General
considerations like complexity and uncertainty must be
expressed more concretely. What is needed is a set of
dimensions that specify a broad range of hypothetical
environments and tasks domains; and, that moreover preserve
the relevant aspects of their natural counterparts. These
hypothetical environments can then serve as a test bed for
studying the behavior of proposed information processing
models

It is not enough, however, toc merely specify the
demands an environment makes on a given system. Kaplan
(1973, p. 64] points to the key issue with the observation
that, as human beings, "... we are profoundly influenced by
the environment, but in ways mediated by our sensitivities,
our structures, and our inherited initial condition." The
extent of the challenge faced by an information processing
system depends in large measure on the structures and
processes the system has to work with. The properties of a
system - what kinds of information it can detect, how the
informétion is represented, what it deems useful or
important, and how it can affect the environment - are

obvious constraints on its information processing
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capabilities,

It is therefore also necessary to characterize in some
way the functional mechanisms of an information processing
system. Once again, the goal is to find a set of dimensions
spanning a large class of diverse systems. Given
characterizations of the environments of interest and the
information processing models to be considered, it is
possible to study systematically the relationship of a
system with its environment. By judiciously changing the
parameters of an environment, the demands of that
environment can be adjusted to test the limitations of a
given information processing mechanism. The success or
failure of various mechanisms across the range of
environments might then provide some clues as to which
mechanisms are needed to function in a given type of
environment. By studying and understanding these
relationships, we can discern how environmental parameters
establish criteria for information processing and how

various mechanisms meet those criteria.

The Experimental Frame

Simulation is a useful tool for studying how a given
model behaves in a given environment. The commerce of a
system with its environment is complicated enough, however,
to preclude any manageable study of all the issues at once.
What is needed, in modeling terminology, is the

specification of an expenimental §rame [Zeigler,1976]. An
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experimental frame delineates the circumstances under which
a systam is to be observed. This means designating a subset
of all possible inputs from the environment as "relevant” to
the system; and, specifying the system components,
structural and procedural, that are under observation.
Processes and structures that are not relevant to a given
frame can be ignored. Parts that work together as a unit to
achieve a given function can be lumped together. The
resulting "lumped” model is simple and relatively easy to
simulate. Moreover, since the simplifications are made only
when they preserve behavior in the chosen frame, the lumped
model is a valid way to simulate the more complex system.
The task of the modeler is therefore to choose experimental
frames judiciously so that simplification is not only
possible but also informative.

Por this study, the first step in specifying an
experimental frame is to choose a task domain. There are
several criteria for deciding whether or not a given domain
is appropriate. First of all, the domain should be
extensive enough to encompass as many "intellectual”
functions as possible., It should also allow for tasks of
varying complexity that can be simplified or complicated as
needed. At the same time, the task domain should present
the model with as few distortions of a natural situation as
possible. Indeed, an underlying theme of this research is
to understand information processing "... as it occurs in

the ordinary environment and in the context of natural
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purposeful activity" [Neisser,1976, p. 7]. Finally, the
domain should allow for the testing of models that are
specified primarily in terms of their general architecture
rather than their structural details. It is important that
the models emphasize "... control structure and data flow
rather than data structure" [Minsky, 1979, p. 18, Note 4].
The hope is, after all, to bring together organization and
control principles that are applicable to both natural and
artificial systems.

One task domain that satisfies all these criteria is
the locating of resources in an environment by generating
temporal sequences of actions. This is a domain that can
require information processing capabilities ranging from
simple reflexive behavior to sophisticated knowledge based
problem solving. Consequently, it has the flexibility
needed for a systematic study of environmental parameters
and information processing mechanisms. The tasks are,
moreover, clearly salient in terms of adaptation. An
organism searching for resources must manage information
about its environment, its needs, and its capabilities. It
is in a Dreyfus-like "situation” in every sense of the word.
Just as important is the fact that temporal integration is a
crucial aspect of many intellectual functions. Planning,
the use of language, and motor coordination are all examples
of activities requiring some kind of serial ordering
capability. Lashley [1951] has pointed out that "temporally

integrated actions do occur even among insects, but they do
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not reach any degree of complexity until the appearance of
the cerebral cortex. They are especially characteristic of
human behavior and contribute as much as does any single

factor to the superiority of man's intelligence.”

The approach taken here is therefores to design a
computational model of a simple hypothetical organism, cne
that must find resources and avoid noxious stimuli in a
carefully chosen simulated environment. Research on this
and related problems has been done before. It is
instructive to examine these past attempts, both to consider
the merits of other approaches to the problem and to
understanﬁ why the research has not sparked further

interest,

Review of Related Studies

Much of the work on mechanical devices and robotics is
not directly relevant to this study. Research in these
areas has been concerned primarily with engineering problems
as opposed to general issues related to intelligent
behavior, There is one device, however, that does seem
relevant here., It is one of the earliest and simplest of
the robots; namely, Grey Walter's [1953] mechanical
tortoise. In this system there are only two discernable
stimuli: 1light sources and physical contact. These stimuli
are used by a feedback mechanism that controls in which
direction the device will move, The tortoise sustains

itself by recharging its batteries when necessary;
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therefore, the power level of the batteries is also
monitored by the control mechanism. In spite of this very
simple architecture, the tortoise is capable of generating
very sophisticated looking behavior. It pushes small
obstacles out of the way, finds its way around heavy ones,
and avoids bright lights - approaching light, however, when
its batteries need charging. Signals from the environment,
together with the system's needs, serve as modulators of the
internal state of the system.

What is so interesting about this device is its
simplicity. 1Its knowledge of the environment is not stored
symbolically in a data base; instead, it is embodied in the
pre-wired structuring of the constituent parts. The
behavior of such a system "... for an observen can be
described in terms of representations, but ... can also be
understood as the activity of a structure-determined system
with no mechanism corresponding to a representation”
[Winograd, 1981, p. 249]. There is no doubt that under more
demanding circumstances, an information processing system
cannot get by with this kind of inflexible, built-in
structure. Yet the fact that such a simple mechanism
generates such impressive behavior suggests that, even in a
complex task domain, much of a system's knowledge can be
stored implicitly in its initial structure.

There have been several studies about an organism's
interaction with its environment that fall within the symbol

manipulation paradigm. One such effort is described by
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Doran [1968]. His work considers an automaton that must
plan sequences of behavior in a very simple environment to
travel from a given point back to a "nest". The motivation
to return to the nest is provided by a "desirability"
factor, directly perceived at each location, that the
automaton tries to optimize. The environments under
consideration are simple square areas with boundary and

interior "walls"” (see Figure 1).
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Figure 2.1, The environment for Doran's [1968]
automaton, shown on the left as a sat of
barriers and on the right in tarms of stimulus
information. The automaton is in its "nest”
when it is facing and against the lettar A. The
desirability of any location is given by the
formula 50 - (4 + 3»w) where d is the distancs
to the wall being faced and w is 1 if the wall
is A, 2 if B, etc. (Adapted with the permission
of the publisher)

Each wall is identified by a letter of the alphabet. 1In
fact, all the automaton can detect is the letter identifying
the wall it is facing, how far away that wall is, and the

desirability of the location. The automaton deals with its
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environment in terms of state transitions; that is, in terms
of the changes observed in what it detects after applying a
particular action. As it interacts with the environment,
the automaton stores these transitions in a limited capacity
memory. When a perceived state is "recognized" as something
previously encountered, a plan of action is formulated.
This means a "lookahead tree" of possibilities is
constructed and a path through the tree is selected that
optimizes desirability. When the automaton has no memory of
a given perceived state or the planning process does not
generate anything promising, an action is chosen at random.
Several "incarnations" of the automaton were tested
repeatedly in the environment shown in Figure 1. Doran
reports that "the automaton successfully uses its record of
its past explorations to form and implement plans. These
plans enable it to find its way to its nest by a much more
direct route on the second or subsequent trials than that
followed on the first trial" (p. 209). Moreover, the
improved routes often included locations the automaton had
never visited before. Experiments with the automatoﬁ model
may therefore be deemed successful. It must be pointed out,
however, that the environment is structured to make things
easy for the automaton in at least two ways. First of'all,
the identifiers for the walls in the environment are a small
set of discrete symbols. The symbols have no underlying
structure or information useful for generalization and

abstraction. The automaton is accordingly not eqQuipped to
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handle environments having countless numbers of unique
states but a manageable number of meaningful patterns that
can be inferred from experience. Because the number of
symbols is small, the automaton can afford to store a fairly
detailed state transition history of its experience.
Secondly, each location in the environment provides the
automaton with an explicit indication of its desirability.
This means the automaton can do a calculation of expected
desirability to help choose among prospective plans.

Naturél environments are not so cooperative. Midgley [1978]
argues persuasively that it is very difficult to know what
"really pays"” in a natural environment. While humans
certainly can and- do perform payoff calculations, such
calculations are not as important in making a choice as a
genuine motivation to do one thing instead of ancther.

These considerations raise Questions about whether or not
Doran's environment has what Brunswik [1956] calls
"ecological validity”.

Jacob's [1972] simulated creature PERCY is another
example of the symbol manipulation approcach. PERCY's task
is to build nests in an two dimensional environment that
contains food, barriers, landmarks, and nest building
materials. PERCY is motivated by an internal satisfaction
measure. Satisfaction decreases whenever PERCY is hungry or
the nest building is progressing tco slowly. The system
makes decisions so as to keep its satisfaction at acceptable

levels. PERCY's behavior is controlled by a hierarchically
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arranged set of task oriented components. The top level
component establishes a goal for the system. This triggers
a sequence of plans to be activated that help to attain the
goal. Each plan in turn gpecifies a sequence of behavioral
situations it expects to occur and each situation influences
what the system actually perceives. Jacobs claims that the
organization of these components is a model useful for
describing all kinds of purposive behavior.

PERCY's elaborate knowledge structure is curious
because i£ does not contain any details about the structure
of its environment. What it contains, instead, is an
exhaustive account of every task related goal, plan,
behavioral situation, and object that PERCY will ever need
to know about. At each peoint in its behavioral cycle, PERCY
essentially retrieves a description of what to do and what
to look for and then follows directions. 1In this sense,
PERCY is little more than an elaborate mechanism for
generating instinctive behavior. It has been noted earlier
that initial structure is an important influence on the
behavior of this kind of system. It must be emphasized,
however, that flexibility is a key aspect of the intelligent
behavior of natural systems; and, such flexibility cannot be
realized by a system that does not use information about the
structure of its environment.

The most comprehensive simulation to date is probably
the system described by Findler and Allan [1973]. 1In their

environment objects are characterized by features. These
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features include visual and auditory stimuli, as well as
certain motivationally coded information such as the
potential of an object as food, shelter, or a source of
danger. Some of this information is transient; that is,
objects may suddenly appear or disappear and food sources
eventually become exhausted. The impact of any given object
on the organism is determined by the results of a feature
analysis. An attention-scanning heuristic selects one of
the detected objects to focus on, transfers certain
information to long term memory, and modifies the overall
"goal-state"” of the organism. A planning mechanism
generates the organism's behavior so as to attain the
indicated goal.

The memory structure for this organism is a dynamic
network of nodes and arcs. Each node represents a
previously encountered object and contains the results of
the feature analysis. A node may also contain a detailed
list of the properties of the object. Such detail, however,
is obtained only via physical contact with the object. Bach
arc represents the plans and actions previously used to
travel from one object to another. 1In this way memory
contains a practical map of the known terrain. The map is
improved under the guidance of several learning schemes
which decide when a new node is added, when an arc can be
made more efficient, and when the potential exists for
adding a useful new arc.

Overall, the behavior of the organism is very
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impressive. In two test environments it exhibited an
ability to explore and become familiar with the terrain,
find food when necessary, avoid obstacles or dangers, and
improve its efficiency as it gains experience. Yet there is
much about the approach to designing the system that seems
ad hoc. Consider, for example, the way the environment
provides information about objects and their properties.
When the organism detects an unfamiliar stimulus pattern, it
searches its memory of previously encountered patterns for
one that is similar. The organism infers, reasonably
enough, that the current object has properties similar to
those associated with the pattern stored in memory. There
is no meaningful relationship, however, between a stimulus
pattern and the properties of an object. Only by direct
physical contact with an object are its properties somehow
mysteriously revealed. The patterns themselves convey no
information at all about the nature of their source. They
are mere labels to be used to index the memory structure.
This is a severe distortion of the relationship between an
organism and its natural environment. Not only are stimulus
patterns the only source of information available to real
organisms; they are a diverse, complex, and equivocal source
of information. Perception under these circumstances is an
achievement [Hilgard,1978]. The structures and mechanisms
required by this task provide the framework for all
subsequent processing and behavior. Findler and Allan have

completely ignored this issue. Consequently, their model
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does not address one of the most basic requirements of
functioning in a realistic environment.

Some organism/environment simulations have been
organized more along psychologically motivated lines. One
such approach is found in the model described by Plum
[1972]. The environment is a one dimensional runway with an
object and light at one end and a shelter at the other end.
Sometimes the object delivers food to the organism, other
times it delivers pain. The change in state of the object
is signaled by a change in the color of the light. The
organism is motivated to seek food when it is hungry - that
is, when its resource reservoir falls below a certain level
- and it must therefore learn which sensory cues indicate
food is present. The organism is constructed using
principles from the cell assembly theory first described by
Hebb [1949]. More specifically, the system processes
information using a network of "aggregated cell assembly”
units. Bach unit in the network has a specialized job:
either detecting stimuli or rewards, recognizing situations,
predicting sequences of events, or initiating action. The
state code for each unit is activity. The level of activity
indicates how much evidence a unit has accumulated from
other units and/or the environment. All of the units
associated with a given function in the system compete with
each other for control of that function. 1In this way,
system behavior is generated by the set of units with the

highest levels of actiVity. The types of units in the
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system and their interconnections are specified in advance.
It is possible, however, to modify the influence one unit
has on its neighbors.

Limited simulations of the model generated somewhat
disappointing results. The organism never learned where to
eat or under what circumstances food would be available.

One obvious reason for this failure is the inability of the
system to modify its structure in any significant way..
There is no way to add a useful new connection or delete an
unnecessary old one. Similarly, there is no way to create
new units or modify existing units. When the model the
system is given proves inadequate for a given environment,
the system is doomed to fail. Another difficulty is in the
way the system/environment interface is specified. The only
things the organism can detect about the object are if it is
large or small, indicating that it is close or far away;
and, whether or not it is emitting an odor signaling that it
will deliver food. The organism has no way of figuring out
where the object is or when being close to the object is
close enough to eat. The task of locating an object, even
in a one dimensional environment, is next to impossible
without information of this kind.

A powerful learning algorithm is one of the impressive
aspects of the model presented by Holland and Reitman
[1978]. Here again the environment is one dimensional, this
time with resources at each end. The organism has two

needs, one of which is satisfied by visiting the left
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resource, the other being satisfied by visiting the right
resource. In order to be successful, the organism must
learn to move through the environment in a way that keeps
both needs under control. The basic unit of structure in
the organism is the classigfier, a condition-response rule
that is sensitive to a set of signals from the environment.
Any given signal will usually satisfy the conditions of
several classifiers in the system., The choice of which of
these classifiers will generate behavior is made
stochastically, based on each classifier's utility value.
Estimates of a classifier's utility for finding a given
resource are refined over time; that is, each time a need i;
fulfilled the credit for the success is apportioned among
all classifiers that generated behavior along the way. The
overall utility of the system's classifiers is improved via
the genetic algorithm [Holland,1975]. This is a general
purpose learning algorithm used here to generate new
clagssifiers that will be more useful to the system than the
old cnes.

Two experiments were run to demonstrate the potential
of this classifier system. In the first experiment the
system was placed in a one dimensicnal space with saven
nocdes, each labeled with a randomly chosen eight bit signal
(see Figure 2). The directad arcs between adjacent nodes
were marked with a zero or one, chosen at randem, indicating
the response the system must make to traverse the arc.

There was twice as much of the right resource available as
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18 units 36 units
of of
resource A resource B

Figure 2.2. The environment for Holland and
Reitman's [1978] classifier system. (Adapted
with permission of the publisher)

there was of the left resource; therefore, trips to each end
must have the corresponding two-to-cne ratio in order to
simultaneocusly satisfy both needs. The organism started at
the middle node and moved until it had satisfied the most
pressing need. It was then returned to the middle node and
the cycle was repeated. After a short time the organism
performed considerably better than random and eventually
learned to consistently make the optimal trip. Given this
success, the second experiment was designed to show the
ability of the system to use experience. Three new nodes
were appended to each end of the original environment and
the resources were moved to the new endpoints. An organism
that had mastered the smaller environment was placed in this
extended one., Having previously experienced the embedded

nodes proved to be a tremendous advantage. The experienced
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organism learned the environment far sooner than organisms
with no prior experience.

Any analysis}of the capabilities of this system must be
tempered by the observation that it performs in a very
impoverished environment. There are no objects, no sense of
continuity, distance, or space - properties that are so
characteristic of natural environments. This means, in
particular, that the system can afford to rely on simple
stimulus-response pathways. Moreover, the algorithm for
apportioning credit among classifiers responsible for
successful behavior is much too coarse. A record is kept of
all classifiers active during the search for a resource.

The relative contribution of any particular classifier is
determined only at the end of the search. In a more
realistic environment this would prove to be impractical.
Not only would a large number of classifiers be involved in
the generation of a single response; there would also be
long intervals betwveen Ehe receipt of tangible external.
rawards., If the system’'s goals change before a reward is
obtained or the system has more than one gocal operative at a
time, it is more difficult to isolate the contribution of
any particular classifier once a behavioral segquence is
over. All these concerns point to the need for a more
"local"” way of evaluating a classifier's activity.
Nevertheless, the potential exists in the classifier system
framework for more sophisticated models. It is possible,

for example, to envision a system in which the response cof
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one classifier satisfies all or part of the condition for
various other classifiers. The system would then be
structured much like an associative network. Though such an
organization can be theoretically achieved using the genetic
algorithm, no system has been constructed to prove that it

is practical to implement.

Summary

Several issues emerge from the above discussion. First
there is the importance of choosing an environment with
simple but natural characteristics. Mistakes in this area
can lead to system designs that are ad hoc and/or irrelevant
to the problems faced by natural systems. This underscores
the importance of specifying an experimental frame and
justifying as much as possible all simplifying assumptions.
Moreover, the relationship between the system structure and
the structure of the environment should be considered from
the beginning. It has been noted that much of the
intelligence exhibited by an information processing system
resides in the architectural design of that system. The
functional characteristics of the design can be understood
only if the environment tests it in appropriate ways. This
suggests that the most effective simulation strategy is to
start with simple models. The environment can then be made
more complex in small increments and the system can be
elaborated only when a change is necessary to obtain some

desired behavior. 1In this way, a complex design can unfold
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grédually and so make its structure comprehensible.

Ancther important concern that stands out is the
Question of learning. It is clear that for most natural
systems, information acguisition is just as important a job
as information handling. When - as is usually the case -
that information is uncertain or there is simply too much of
it, an information processing system must take the learning
and inference issues seriously. Holland [1975] has
identified twc'objectives in processing uncertain
information. New information must be examined whenever
possible so as not to overlook something that might be
important. On the other hand, old knowledge needs to be
continually reevaluated and confirmed because it is steeped
in uncertainty. Clearly, in order to be successful, a
system must pursue both cbjectives., Obtaining the requisite
information, however, is not always easy. Though an
organism is swamped with information in a natural
environment, salient information is scarce [Kaplan,1976].

In a very real sense, therefore, an organism must be an
active processor of information., It must seek out that
which is new and/or relevant. Maintaining a knowledge base
that is reliably useful is a never ending task in an
uncertain environment; and, learning plays a vital role in
the process.

The computational organism model to be developed here
will therefore be an adaptive system. It must be emphasized

that developing such a model is a very difficult challenge.
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People talk fondly of computer programs that will
start with some fundamentals and acquire all the
knowledge needed by some natural sequence of
learning, experiencing the environment in which it
must function. Very little effort gets spent
studying what it would take to accomplish this,
perhaps because there is implicit realization that
the task is harder than it might seem.

[Norman, 1981, p. 284]

The first step toward realizing this goal is to take a
closer look at the kinds of information available in a
natural environment. Then the challenges facing the
adaptive system - and the system's designer - will be

clearer.



CHAPTER III

A SIMPLE MODEL OF INSTINCTIVE BEHAVIOR

The task at hand is to identify and analyze some of the
fundamental issues underlying an organism's commerce with
its environment. Given that one of the premises of this
research is that natural information processing mechanisms
are more functionally determined -~ reflecting the adaptive
demands of the environment - than they are logically'
organized [Lachman and Lachman,1979], it makes sense to
consider first the relevant properties of natural
environments. The properties most pertinent to this study
are those that convey information about the identity and
location of objects. It must be shown that the kinds of
information available in natural environments, together with
constraints on how the information can be used, establish
functional criteria for information processing. A class of
simulated environments will then be devised that embody many
of those criteria. Subsequently, a hypothetical organism
relying exclusively on innate structures to generate

behavior and capable of surviving in the simulated

'Logical, that is, in terms of strict adherence to the
rules of some known mathematical formalism.

34
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environments will be designed and tested.

It should be pointed out that this approach to
organisms, environments, and information is based on the
philosophical assumption of reallism: that there is an
objective world with real properties that exist whether or
not they are perceived or thought about [Shaw and
Bransford,1977]. The environment, in other words, has a
physical nature which places constraints on the patterns of
stimulation available to an organism. It makes sense from
this point of view to study the properties of an environment
and ask how those properties might be supportive of or a
hindrance to various information processing activities.
This is not to say, however, that there is not
...a necessary mutual interplay between stimulus
and organismic properties. An organism cannot
engage in pattern recognition, for example, based
on a feature analysis unless there are in fact
features in the stimulus to be analyzed. On the
other hand, there is no need to attempt pure
stimulus descriptions in terms that are
inappropriate to the processing organism. So the
properties of the organism limit the properties of
the stimulus to which we pay attention; at the
same time, the properties of the stimulus limit
what the organism can do with the stimulus.
+.++ In other words, properties of the stimulus
provide a limiting condition for the processing
organism, but at the same time, the stimulus
properties do not completely determine mode of
processing at all. [Garner, 1978, p. 101]

The environment is seen as a source of information and an
organism comes to "know" the environment by sampling and
processing that information. Knowledge of the environment
is indicated by some reliable correspondence between the

"psychological” states of the organism and the informational
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states of the environment [Shaw and McIntyre,1374]. This
means that the extent to which some set cf properties is

informative will vary depending on the organism in question.

The Organism/anironment Intarface

It is important to emphasize, therefore, that the
organism and environment must be considered in terms of
their interactions. For the purposes of this research,
intelligent behavior is viewed as an adaptation to the
demands of an environment. An organism is accordingly
‘thought of as an adaptive system. Simon [1963] has noted
that, from a designer's point of view, an adaptive process
is most conveniently thought of in terms of three
components: the goals or functions to be realized by
successful adaptation; the .innex envinonmzni, or structural
details of the adaptive system; and, the outea environment
or surroundings in which the system behaves. This
functional point of view has two potential advantages.
First, the inner environment and goals together may specify
a functional environment that involves relatively few of the
many details of the outer environment. On the other hand,
the outer environment and gocals may constrain the set of
appropriate behaviors to such an extent that the behavior of
the adaptive system can be predicted without having
extensive knowledge of the inner environment. A good design
yields both advantages. It characterizes "... the main

properties of the system and its behavior without
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elaborating the detail of either the outer or inner

environments" [Simon, 1969, p. 9].

PHYSICAL
WORLD

outer
environment

----( cues )-----— Behavior )—=~- -

inner
environment

ADAPTIVE
SYSTEM

Figure 3.1, The interaction between an adaptive
system and its physical surroundings.

These considerations suggest that it will be most
useful to consider natural environments as part of a dynamic
relationship as shown in Figure 3.1. An adaptive system
interacts with an environment in two ways. First, it
continually samples the information available about the
current environmental state and state transitions. This
information from the environment defines the opportunities
for adaptation and behavior available to an adaptive system;
specifying, in conjunction with the sensory and motor
apparatus of the adaptive system, an environmental niche.

wWhat information permeates the interface depends, of course,
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on the receptor orientation and behavioral disposition of
the adaptive system. Second, the environment can be acted
upon by the behavior of the adaptive system. This can
result in a change in the set of cues being sampled by the
adaptive system and/or a state change in the environment.
The relationships depicted in Figure 3.1 emphasize how the
interface between an adaptive system and its environment -
as determined by the environmental niche and by the
functiocnal goals of the system - defines and constrains all
interactions.

What characterizes the way the interface mediates the
flow of information from a natural environment toc an
adaptive system? The most basic distinction to be made is
between the sources of stimulation and the stimulus cues
themselves. Brunswik [1956] and others refer to the former
as diasatal objects and the latter as proximal stimuli.
Distal objects are remote from an adaptive system in the
sense that they are defined without reference to any
behaving organism. Proximal stimuli are the sensory cues
available at the system/environment interface. The
distinction is made clearer by the following example:

Physically, this page is an array of small mounds
of ink, lying in certain positions on the more
highly reflective surface of the paper.... But
the sensory input is not the page itself; it is a
pattern of light rays, originating in the sun or
in some artificial source, that are reflected from
the page and happen to reach the eye, Suitably
focused by the lens and other ocular apparatus,
the rays fall on the sensitive retina, where they
can initiate the neural processes that eventually

lead to seeing and reading and remembering.
[(Neisser, 1967, p. 31
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The point is that the adaptive system can sense the physical
world only in terms of the information available through

Sensory cues.

Cues and their Implications

This distinction is perhaps obvious, but it is too
often overlooked when considering how to structure a task
environment. For example, most of the studies reviewed in
Chapter 2 designated entities in the environment as static,
non-decomposable symbéls. While the cues can indeed be
thought of as symbols, the notions of symbolic information
‘prevalent in computer science and information theory differ
markedly from the concept of "natural" information that is
salient to an active, purposive creature [Shaw and
Bransford, 1977]. The cues available in natural environments
have meaningful structure. Gibson's [1966] analysis of
natural stimuli leads him to conclude "... that the
available stimulation surrounding an organism has structure,
both simultaneous and successive, and that this structure
depends on sources in the outer environment" (p. 267). A
similar observation was made by Tinbergen [1951] in his
study of instinctive behavior. The stimuli that "release"
activity in an innate behavior mechanism as a rule tend to
be structural; "that is, it is the arrangement of elements
in the visual field, in space and in time, that releases
behavior, the elements themselves being the same in the

releasing and non-releasing situations" (p. 78). Because the
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cues are structured, and their structure is indicative of
the source of stimulation, an organism is rarely forced to
deal with isolated bits of meaningless data. The
relationship between an organism and its environment is
mediated by useful information.

Natural environments offer organisms a seemingly
inexhaustible supply of such information
(Gibson, 1966;Kaplan,1976]. Bven in a single situation, the
cues are so diverse and their number is so large that an
organism cannot hope to attend to each one individually. To
do so would run the risk of being overwhelmed with
processing all the cues without ever getting around to
making an overt response. Moreover, the stimulation
available at any given instant of time is likely to be
unique. An organism constrained by a limited storage
capacity or a finite processing time clearly cannot afford
to treat each cue as a distinct entity; indeed, knowledge of
such detail is, from a functional point of view, probably
not even important [Bartlett,1932]. It is therefore
unlikely that an organism can rely on mere accrual as a
strategy for picking up information. Natural environments
demand some degree of discrimination, selectivity, and
infermation reduction.

Another important characteristic of cues and their role
in the organism/environment relationship is the egquivocality
of any particular cue. Brunswik [1956] emphasized that

there is seldom a one-to-one, perfectly correlated
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relationship between a given cue and a given source of
stimulation.? In a natural environment the relationship
between proximal cue and distal object is fallible and
uncertain; in other words, the correlation between cue and
object is typically less than one. There also tend to be
correlations of less than one among various cues for the
same object. This is not to say, however, that the natural
environment is chaotic. Kaplan [1978] points out that

Although the environment is uncertain, it is by no
means random. Regularities abound, and the
organism must identify them. A lion, for example,
presents many regularities. A lion has teeth
(unless it is a very old lion), a mane (unless it
is a female lion), impressive stature (unless it
is a cub), and a tail (unless, of course,
something happened to it). Lions also roar.
Sometimes. But Quite apart from the variability of
lions, there is the variability in the way one
happens to observe them. A side view provides
certain information, a back view looks different,
and an eyeball-to-eyeball view looks very
different indeed. Yet to a potential lion prey,
the appropriate action may be the same.

The variability in stimulation from the same
objects has still other sources: the background or
setting in which it appears can vary; the foliage
may obscure portions of the animal; and so on. (p.
30)
Natural environments therefore require that an organism
somehow manage to respond to the regularities hidden behind
the equivocal nature of cues.

It is of course possible to reduce the uncertainty

*The Gibsonean position would argue that, in principle,
there exists higher order unequivocal information about
distal objects. While in some cases such stimulus
information is indeed potentially available, it is not clear
when or if the information can be used effectively by a
perceiver [Hochberg,1974].
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involved in any given situation. A careful examination of
all the salient cues, together with precise measurements and
calculations, will evéntually lead to an unequivocal
ascertainment of the underlying reqularities. Such a
strategy, though, requires at the very least some time for
locomotion and manipulation, and an extensive knowledge of
the relevant physical laws [Brunswik,1956]. This is clearly
not feasible. Not only is an organism unlikely to have
knowledge of all physical laws, it is also unlikely to have
the time to do any extensive analysis. Natural environments
characteristically have several properties - such as
unstable resources, predators, and competitors - that
generate a direct adaptive advantage for the speedy
processing of cues. Accordingly, the only viable processing
strategies are those that are fast, avoid drastic errors,
and maintain a reasocnable correspondence with the
environment [Raplan,1978]. The information processing
structure and behavior of organisms should therefore be
considered in light of their advantages for survival and
reproduction in the face of competition and a changing
environment. These advantages can be studied directly with
the use of optimization or cost-benefit analysis models
designed to show an adaptive fit between structure and
function ([Smith,1978].

The aforementioned challenges posed by the nature of
proximal cues severely constrain the ways information can

permeate the environment/adaptive system interface. It has
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long been known [James, 1892;Lashley,1942;Campbell,1966] that
animals and humans meet those challenges by being sensitive
to patterns or equivalence classes. The word "pattern”
refers to the dimensional and correlational structures that
exist in the environment [Garner,1974]. Patterns provide an
economical and reasonably accurate summary of a potentially
infinite set of information. They are discernable at
several levels, from the informational structure
characteristic of a given kind of cue to the simultaneous
and successive relationships found in groups of cues. The
regularities underlying the information available in natural
environments establish a stable framework for information
processing. Without such regularities, adaptation and
intelligent behavior would be impossible. Bruner [1957,

P. 42] notes that recognizing patterns "... represents the
simplest form of utilizing inference. It consists of
learning the defining properties of a class of functionally
eguivalent objects and using the presence of these defining
properties as a basis of inferring that a new object
encountered is or is not an exemplar of the class.”

An important principle for the design of an artificial
task domain is therefore that the stimulus information have
some underlying structure that can be used to generate
equivalence classes. Gibson [1966, p. 40] lists three
characteristics of natural stimuli that summarize this idea:

1) A stimulus has nontrivial properties that

characterize its structure in space. It is in
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particular not an isclated symbol or mathematical
peint.

2) A stimulus has a structure in time that is lost if
the stimulus is isclated in some mathematical
instant.

3) A stimulus is associated with some components that
change, and other components that are invariant.?

If a complex task domain provides stimulus information
having these properties, then an adaptive system can cope
with the complexity in the environment by being sensitive to
patterns. Brunswik [1956] used the term distal focusing to
describe this strategy of generalizing over the variants in
the proximal stimulation. The term is appropriate because,
by discerning the underlying patterns, an adaptive system
focuses beyond the immediate stimuli to establish a stable
relationship with the distal source. It should be
emphasized that, by being sensitive to patterns, an adaptive
system does not completely eliminaﬁe the problems associated
with complexity and uncertainty. The problems are merely

constrained to more manageable proportions.

Spatial Information

The interface between the inner and outer environment

3Gibson argues that a natural stimulus always has
invariant components, or high order properties common to all
instances of a particular entity. Several studies of
"natural categories”, however, indicate it is very unlikely
that such invariants exist in the stimulus itself
[Bransford, 1979]. Rather, the invariants are residues of
the perceptual processes of the observer.
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not only affects the quality of information available to an
adaptive system; it moreover defines what information is
potentially salient. The interface of the proposed adaptive
system specifies functional goals involving locomotive
behavior; namely, locating resources and avoiding noxious
objects. These goals can be realized only if the
environment provides spatial information in a way that makes
locomotion possible. Tinbergen [1951] makes a useful
distinction between two kinds of information required for
locomotion: neleasing stimuli that indicate a particular
kind of behavior is appropriate; and, directing stimulli that
orient the behavior with respect to the relevant spatial
characteristics of the environment.

This difference can be made clear by an analogy.
The movements of a steamship are dependent on two
mechanisms. The propeller pushes it, the rudder
steers it. The forward movement is dependent on a
releasing stimulus and can go on without further
external stimulation as long as the fuel does not
run out. The steering, however, is continuously
controlled by new stimuli, coming, eventually,
from the external environment.... The releasing
stimuli that are responsible for the forward
motion of the ship are entirely different from the
directing stimuli. The sailing order releasing
the departure, the open ocean releasing increase
of velocity to full speed, or slowing down the
speed, &c., provide stimuli controlling the
propeller mechanism. Visual and magnetic stimuli
(the latter received by the compass, the ship's
magnetic receptor) continuously control the rudder
mechanism. (p. 83)

The releasing stimuli for the task domain in this study are
the cues associated with resources and noxious objects. The
nature of such cues has been discussed above. What remains

to be considered is the nature of directing stimuli and the
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spatial characteristics they indicate.

The most fundamental kind of spatial information
required for locomotive behavior is information indicating
the location of a source of stimulation. Tinbergen [1951]
points out that localization involves ascertaining the
direction and/or the distance of the stimulus source.

These two principles of spatial analysis of the
environment, viz. localization of direction and
of distance, are of great importance for the
understanding of the influence of the environment
on behavior. First, spatial analysis enables an
animal to 'recognize' objects. Further, it
enables it to localize objects in relation to
other parts of the environment and thus perform
oriented movements, that is, movements directed in
relation to spatial patterns outside the
animal. (p. 25)
The "objects" that are to be localized need not be concrets
and specific. Directing stimuli in natural environments
include cues such as the direction of gravitational and
magnetic forces, the polarization of light, as well as
distinctive places and physical objects.

The key issue is what the relevant spatial patterns in
the environment are and how they can be assessed by an
adaptive system. That is what determines the degree to
which an adaptive system must process detailed location
information. ~Fraenkel and Gunn [1961] cite several examples
illustrating the variety in spatially oriented locomotion
strategies: Consider, for instance, the woodlouse which can
only survive in very moist places. By changing its speed of
locomotion, moving rapidly in low humidity and slowly or not

at all in high humidity, the creature manages to spend most
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of its time in the most suitable regions of the environment.
The spatial knowledge reguired for this behavior is minimal.
"The interface between the inner and outer environment
specifies a reliable cue that is directing only in a generic
sense. BEach individual locomotory reaction is undirected,
but the overall behavior is in effect oriented toward moist
regions.

A different use of location information is exemplified
by creatures that must maintain a general direction of
motion that is not straight towards or away from the
directing stimulus itself. Ants, for example, use the sun
along with other cues to return to the nest. One proposed
explénaticn for their behavior is as follows. By simply
maintaining the image of the sun on a fixed ommatidium in
one eye, the ant can move at a constant angle with respect
to the sun. On returning to the nest, the ant need only
keep the sun's image on the "inverse” ommatidium in the
other eye. This so-called Light compass reaction has also
been observed in the honey bee in situations where there are
no visible landmarks. As long as the trip is qQuick enough
so that the sun has not moved too much, the compass reaction
is an effective way for a creature to maintain a general
orientation in an uneven terrain.

Accurate estimation of distances not previously
traversed or encountered seems to depend almost exclusively
on visual stimulation for most organisms [Tinbergen,1951].

One of the rare known exceptions is the use of sound waves
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for "echo location", a capability used by relatively few
creatures such as bats and cetaceans*. The ability to
accurately judge distance is of course important if an
organism is to acguire any three-dimensional knowledge of an
environment. For simple locomotive behaviors, however, only
certain rough estimates of distance seem necessary. For
example, an organism must at least be able to detect when it
is close enough to food to consume it. It might also be
important to know roughly when an object is "in range” or
"getting closer” so that other behaviors - such as escape,
changing speeds, or paying closer attention - might be
triggered when appropriate. Needless to say, the
information making these distance judgements possible must
be available through the organism/environment interface.
Aside from indicating location, another potential
important function of a directing stimulus is to serve as a
landmark. A distant landmark that is stationary or that
moves in predictable ways can be used for orienting as
described above, A higher order function, however, is
implied when an object, place, or region serves as a choice
point for a change in direction. An organism that uses
landmarks as the locus for making a choice must store
explicit information about the choices and their associated
outcomes. This is a direct use of spatial knowledge about a
particular environment. What kinds of entities are most

readily used as landmarks? Kaplan [1976] points out that

‘i.e. Whales, dolphins, and porpoises.
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distinctiveness is an important issue, and that
distinctiveness can arise from at least three factors.
First, from sensory qualities that can be easily
discriminated from the immediate environment, such as the
visual distinctiveness of a mountain surrounded by a flat
plain; second, from sensory qualities that can be
discriminated using the experience of the organism. "An ocak
tree, for example, can serve as a landmark to the individual
who knows that éll the other trees in the area are maples”
[Raplan, 1976, p. 43]; and, third, the existence of some
functional relationship with the organism's activities that
causes an entity to be fregquently encountered. For
instance, an otherwise non-distinctive location which offers
an unrestricted view of some goal could be a valuable
landmark.

An environment can either facilitate or hinder the use
of landmarks, depending on how distinctive the individual
objects and locations are. An equally important factor,
however, is the overall organization of elements in the
environment and their interrelationships. Consider, for
example, the foraging strategies of various ant colonies and
how they are determined by the spatial and temporal
distribution of resources [H;lldobler and Lumsden, 1980].
African weaver ants forage in environments that have
uniformly distributed, continuously renewing resources. The
territory for a colony is defined simply by the amount of

area a worker can cover in a relatively short period of time
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from the nest. The use of landmarks is not implicated in
the worker's search for food. A random exploration in all
directions is the cost-effective strategy for the ant
colony. Some species of harvester ants, on the other hand,
exploit resources that tend to be patchily distributed.
Foragers from these colonies travel along well-established
trunk routes to known patches of focd, and from there
perhaps wander off in search of new supplies. These trunk
routes are well marked by visual and chemical cues that
persist over very long periods of time. The harvester ants,
in other words, use landmarks to reliably find their food
supply.

If an organism.has to learn the relevant
"spatiotemporal” pattarns of the environment through
experience, it is helpful if the patterns are organized
coherently so that they can be readily discerned. Lynch
[1960] uses the term Legibility to refer to the ease with
which experience with an environment leads to knowledge of
its structural patterns. A legible environment is one
containing easily identifiable units and well defined
relationships among them. Units are grouped together in
regions according to their relationships, all in the context
of some overall organizing construct. A well structured
environment can serve as a frame of reference in which
locomotive behavior and spatial knowledge can be corganized.
"The environment suggests distinctions and relations, and

the observer - with great adaptability and in the light of
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his own purposes - selects, organizes, and endows with
meaning what ﬁe sees" [Lynch, p. 6]. The more legible an
environment is, the more readily an organism can learn to
find its way through it. A chaotic or "information poor"
environment can make navigation extremely difficult or even
impossible. Efficiency is not the only issue here.
Survival could be at stake as well. In humans, for example,
the need to experience order in the environment is closely
tied to feelings of security and well-being. Lynch notes
that, consequently, experts who have learned to navigate
unaided in more or less "featureless” domains such as the
open sea still experience strain and anxiety during every
trip.

A legible environment can also help an adaptive system
obtain certain generic information useful for the control of
locomotion. The control of motor behavior requires, among
other things, an assessment of the possibilities afforded by
each alternative action [Gibson,1379]. An obstacle affords
a collision, an "opening"” affords unobstructed movement, a
resource affords a positive experience, and danger or
noxious elements afford a negative experience. These
factors, once perceived, can be used by an adaptive system

to help-decide on the most appropriate course of action.

Implications for an Artificial Environment

The above discussion is only a brief review of the many

issues relevant to understanding how information about the
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identity and location of objects can be made available. It
would be extraordinarily difficult, and computaticnally
expensive, to design and implement a simulated environment
having all of these properties. Consequently, some attempt
must be made to identify some small subset of basic issues
most pertinent to this research. Four aspects of an
organism's commerce with a natural environment summarize
what is of interest here., First, the organism/environment
interface makes available to the organism only a limited
.sample of all the information potentially available in the
environment. Second, there is a meaningful and functional
distinction between proximal cues and distal cbjects.
Third, the cues available from any given cbject are likely
to be highly diverse and variable. Finally, there are
structural reqularities underlying the object/cue
relationships that have potential functional significance to
the organism.

Bven given this reduction in scope, there are still
several parameters involved in designing an environment with
realistic informational properties. Consider, for example,
some alternatives relating to object/cue relationships. The
relevant cues "defining” an object can have varying degrees
of accessibility. All the cues might be accessible all the
time; or, perhaps, only one of any number of different
subsets of those cues might be accessible due to the vantage
point of the observer, the inherent variability in the

object class, etc. 1In some dynamic situations, the cues
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might even be dispersed over time. There is also potential
diversity in the ways cues can be correlated with objects.
A given cue might be perfectly and exclusively correlated
with a given object. Detection of the cue in that case is a
reliable indicator of the presence of the object.
Alternatively, a cue might be correlated with several
objects to varying extents, or even with other cues.
Determining object identity under these circumstances is a
much more challenging process. Values along these
dimensions obviously impact the degree to which an
environment is considered complex or uncertain.

Given the broad range of choices regarding
environmental parameters, where is one to begin in the
design of an artificial environment? The review in Chapter
2 of previous work points out a consistent failure to
specify functional differences between cue and object in the
environment. Only the Holland and Reitman [1978] simulation
forced the adaptive system to acquire knowledge exclusively
from sensory cues; however, their environment did not
contain any information about objects or space. The problem
that must be faced by the designer of an artificial
environment is how to make sensory information available in
a way that suggests the desired object and spatial
properties. Since the primary requirement for guiding a
locomotive task is information about the direction and
distance of objects, the localization issue will be dealt

with first.
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The first decision that must be made in constructing an
appropriate environment concerns the number of spatial
dimensions. It is hard to imagine any kind of spatial
behavior that would be interesting in a one-dimensiocnal
environment. On the other hand, designing a three-
dimensional environment requires detailed attention to the
layout of surfaces, volumes, and so on. These factors are
important spatially, but they present additional
complications to the more basic notion of locus reguired
here. A simple two-diménsional environment can have many
spatially interesting properties, such as area and
occlusivity?®, that vary depending on the vantage point
[(Benedikt,1978]; and, at the same time, in two dimensions it
is easy to directly manipulate direction and distance
parameters., Accordingly, the environments to be consideread
will be two-dimensional.

As a further simplification, the loci in an environment
will be indicated by discrete points on a sguare 20 by 20
grid (see Figure 3.2). 1In order to approximate the
continuity of a mére realistic space, a grid is given
hexagonal coordinates so that each point has six neighbors;
and, the boundaries ara "joined" to make a torus so that the
environment is a surface without any edgesf An object is
specified spatially by giving its locus and all cocordinates

from which its stimulus signals are potentially available.

'OCcclusivity is a term used by Gibson [1966] to refer to
the extent to which surfaces visible from a given vantage
point seem to cover each other.
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Figure 3.2. A typical distribution of signal
intensities in an environment. Each object is
located at the center of its distribution, and
intensity falls off 30% per unit distance. The
dots indicate loci where no signals are
available. At the top are the distributions for
two objects. Below, two similar objects are
placed closer together so that their
distributions merge.

Since radiant energy - in particular the intensity of
-light rays - provides the primary source.- of orienting
information for many biological organisms [Fraenkel and
Gunn, 1961], an intensity parameter is associated with each
stimulus signal. The intensity of a signal is a scalar

guantity that is highest at the object locus and falls off
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with distance. This parameter is meant to approximate the
measurable intensity due to a source of light or heat in the
physical world, or the concentration level generated by a
chemical stimulus. Signal intensity decreases uniformly
with distance in all directions. In this sense, the
simplifying assumption is made that all objects are sources
of stimulus energy in a uniform medium. This avoids
complications such as intensities generated from reflective
surfaces, etc. An intensity gradient is thus made available
for an adaptive system to determine the direction of an
object. If an adaptive system has some knowledge of what
the full strength signal intensity is, it can infer the
distance of the object as well.

Bach kind of signal is available via a characteristic
"channel”. A channel can be thought of in terms of certain
physical properties of the medium through which signals from
objects are made available. Two signals are said to be on
different channels if they can both be available at the same
locus at the same time without interfering with each other.
An organism with an appropriate interface can then have
access to either signal independent of the other. If two or
more signals are available on the gsame channel at the same
locus, they are merged into cne signal. . This means that the
signal and intensity detectable by an adaptive system at
that locus is scme function of the various alternatives.
Alternative intensities are simply added together. The

nature of stimulus signals and how they combine with each
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other will be discussed later when object identity becomes

an issue. As noted above, the most relevant information for

localization is intensity. The state of any point in an

environment is therefore fully specified by indicating what

-kind of object, if any, is located there; and, by giving a

vector designating the signal and intensity available on

each channel.

Simulation of a Simple Model

Does this class of environments adeguately specify the

desired spatial information? Clearly, any adaptive system

equipped with sensory apparatus that detects intensity

gradients will have no trouble locating objects. The answer

is not so obvious, however, if the adaptive system is not

allowed to directly perceive or compute the gradients; that

is, if the system must act solely on the basis of

intensities currently available. Recall that one design

criterion for an artificial environment is that it enable an

adaptive system to take a relatively limited sample of the

available sensory information and figure out what its

implications are. 1In this context, that means it should be

possible to use the given signal intensities as they are.

An adaptive system should be able to follow
without ever having to compute it or detect
particular, it should be possible to design
routines that a system could use to produce

To see if this kind of environment has

the gradient -
it. 1In
simple motor
this behavior.

the desired
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properties, a simple organism model is proposed. The
overall organizing construct for this and all subsequent
models is summarized by Simon [19635] as follows:
The condition of any goal-seeking system is that
it is connected to the outside environment througk
two kinds of channels: the afferent, or sensory,
channels, through which it receives information
about the environment; and the efferent, or motor,
channels, through which it acts on the
environment. The system must have some means of
storing in its memory information about states of
the world - afferent, or sensory, information -
and information about actions - efferent, or
motor, information. Ability to attain goals
depends on building up associations, which may be
simple or very complex, between changes in states
of the world and particular actions that will
(:?liahly or not) bring these changes about. (p.
66
The signal intensities are the only part of the
environmental state to be used for orienting by the proposed
organism. It is reasonable to suppose, at the simplest
level, that built-in or "hard-wired"” information is
available about which motor components are appropriate for
each "channel" in the environment. A typical arrangement is
shown in Pigure 3.3. An organism has innate structures
allowing information from the environment to directly
initiate the appropriate motor behavior. Tinbergen [1351]
called such structures .(nnate relzasing mechanisms. While a
system using only such mechanisms is not at all an adaptive
or goal-seeking system, it does provide an adegquate '
framework for testing proposed motor routines.
What kinds of innate motor complexes should be
considered? There are several hierarchical levels to choose

from: activation of particular muscle fibers; overall
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. (hard wired) Motor
Stimulus ﬂ

Figure 3.3. An innate releasing mechanism, the
simplest arrangement for generating appropriate
behaviors, in which a stimulus signal directly
elicits the correct response.

activity in a given muscle; coordinated activity in several
muscle complexes to move a limb or joint; coordinated
movements of several limbs; stereotyped, fixed pattern
responses; and goal-directed, flexible instinctive behavior
[Tinbergen, 1951]. The lower levels involve sophisticated
and flexible coordination of specific motor channels in
response to specific input configurations. Exactly how this
occurs is still a subject of considerable controversy
[Bindra, 1978] and, for the purposes of this research, those
issues are best avoided. 1Indeed, it can be argued that at
the lower levels it is not even possible to make reliable
predictions about the relationship between input and output
[Brunswik, 1956]. At the more generic levels of overt
response - either stereotyped or flexible instinctive
behavior - studies oﬁ animal behavior [Tinbergen,1951]
indicate that the major issues involve how one response is
selected over alternative responses. Handling motor
organization from this perspective means the focus in
designing a hypothetical organism can remain at the level of

a general control architecture.
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Given this generic approach to motor responses, Bindra
[1978] identifies two kinds of overt actions characteristic
of animal behavior: transactional actions and instrumental
responses.

Transactional actions, such as eating, drinking,
sniffing, grooming, copulating, biting, and
struggling to get free of a predator, are
performed when the animal 'is in contact with an
environmental cbject, including parts of its own
bedy. Instrumental rasponses, such as walking,
climbing, lever-pressing, and head-turning, bring
the animal closer to a particular stimulus (or
otherwise make the stimulus available) or take it
away from a particular stimulus (or otherwise make
the stimulus disappear). (p. 46)
This basic classification - consummatory or defensive
actions in response to contact with an object and
instrumental responses affecting potential commerce with an
object - will guide the choice of motor packages for the
organism being designed here.

Accordingly, consider a primitive system that has a few
very basic motor actions: TURN, which changes the direction
of motion 60° to the right or left;*¢ MOVE, which transports
the system from the current locus to the one directly ahead;
ESCAPE, which removes the system from contact with an
object; and, CONSUME, which enables the system to "nourish”
itself when in contact with some resocurce. It is easy to
see how these primitive actions might be combined to produce

somewhat more sophisticated motor packages. An exploration

routine EXPLORE, for example, might consist of a seguence of

‘In a hexagonal grid, the angles specifying the
direction of neighboring points are all multiples of 60°.
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MOVE's interspersed with a few random TURN's. The organism
has its detectors in front, and they can pick up only the
intensities at the loci directly ahead, to the right, and to
the left (see Figure 3.4a). The system cannot detect
signals emitted by objects behind it. This restricted
"retina" gives the system a well-defined orientation,
reduces the potential for being overloaded with information
at any locus, and is an approximation of the sensory
interfaces common to many biological systems. Assume, in
addition, that the organism can detect when it is in
"contact" with - that is, at the same locus as - some
object.

Now consider a particular version of this hypothetical
organism that is to use the signal intensities to approach
objects in a one-channel environment. All objects are
considered resources that are to be consumed. The existence
of many loci where no signals are available is a
simplification based on the assumption that, in a natural
environment, salient information is relatively scarce
[Raplan,1976]. 1In the absence of salient information,
exploratory or seeking behavior is the most appropriate
strategy to follow until adequate stimulation is found
[Tinbergen,1951]. There is a further simplification in that
the objects are more or less uniformly distributed, the
environment is unchanging, and there are no competitors for
the resource. All these factors make random exploration an

adequate foraging strategy.
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Figure 3.4
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Figure 3.5. The environment used for organism
simulations 1, 2, and 3.

The system has two innate releasing mechanisms: one
that is triggered by contact with an object and activates
the CONSUME response; the other is triggered by the presence
of the stimulus signal from an object and activates some as
yet unspecified APPROACH motor package. When no signals are
detected, the EXPLORE routine is the default response. The
priority scheme for how these generic motor routines compete
for control of system behavior is - from highest to lowest -
CONSUME, APPROACH, and EXPLORE. As a simplifying

assumption, resources are considered stable and renewable in
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The organism is satiated after each activation

of CONSUME and the availability of the resource is

effectively undiminished.

What remains to be specified is the organization of the

APPROACH motor package. The most straightforward kind of

mechanism orients with respect to the strongest intensity

currently detected. Computer simulations of this simple

strategy are summarized below:

ORGANISM SIMULATION 1

Environment

One channel with "rassources” objects only.
Six objects are distributed so as to present
a representative set of intensity
configurations (see Figure 3.5).

Required Behavior

When a signal is detected, the organism
should orient toward the object and move in
that direction until contact is made. On

‘contact with an object, CONSUME is activated.

When no signals are detactad, EXPLORE is
activated. EXPLORE causes the system to
randomly TURN left or right, them MOVE n
times, whers n is a random number between 1
and 6. This seguence is intarruptad, of
course, when a signal is detacted.

Mechanisms

1) The restricted retina described above
prevents the system from seeing behind it.
This, along with a satiable need for the
"rasourca”, enables the system to move
away from an object aftar comtact and
experience other parts of the environment.

2) The APPROACH motor routine: If the
strongest intensity is not centered on the
retina, TURN until it is (see Figure
3.4b), then MOVE,

Results

The simulation was run until the organism had
encountered all the given stimulus
configurations from several angles. In every
case, the system successfully approached the
object.
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The simulated behavior shows that this APPROACH motor
routine, applied at each locus, enables the organism to
follow the gradient and find the object. A set of
representative approach trajectories is shown in Figure 3.6.
Using the strongest intensity as a directional cue is, under

these circumstances, an acceptable strategy.’
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Figure 3.6. Some representative approach
trajectories.

’Eventually there must be some limits on how strong an
intensity can be and still remain useful for orienting. 1In
a more realistic situation, intensities that are "too
strong” might indicate danger or might be damaging or
painful.
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The behavior of this primitive system can be classified
according to how each movement is related to the source of
stimulation, in a manner analogous to the classifications
used for biological organisms [Fraenkel and Gunn,1961]. The
system moves directly toward the source of stimulation, and
therefore the behavior is a positive "taxis" or orientation.
When confronted with two equally intense and egqually
attractive sources, each one stimulating a different half of
the retina, the system orients toward one and disregards the
other. The behavior is thus a positive "telo-taxis", where
the prefix "telo"” means goal or objective, It is
hypothesized that biological organisms use some kind of
central inhibitory mechanism to ignore one stimulus and
orient to the other during telo-taxis. In place of such a
mechanism, the organism described here merely chooses
between the stimuli at random.

Now consider a one-channel environment containing
objects that the organism is to avoid contact with. Again
the system will use only two innate releasing mechanisms.
This time, however, contact with an object triggers the
ESCAPE response and detection of a stimulus signal triggers
an AVOID motor package. How should this new motor package
be organized? It would be convenient if the organism could
manage to always move directly away from the source of
stimulation. Such a negative telo-taxis, analogous to the

strategy used above, would be a realistic mechanism,
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provided the organism can "look" directly back.' However,
the organism as described cannot detect signals directly
behind it. Since most biological organisms operate under
the same limitation [Fraenkel and Gunn,1961], it seems
advisable to consider a different orienting strategy. An
obvious alternative mechanism is simply to turn away from
the strongest intensity currently detected. Simulations of
this mechanism are summarized below:
ORGANISM SIMULATION 2
Environment

Same as in Figure 3.5, but the objects are
now considered noxious.

Required Behavior
When a signal is detected, the organism
should orient away from the object.’ When
no signal is detected, the system explores.
Any inadvertent contact with an object
triggers the ESCAPE response. ESCAPE causes
the organism to choose a new direction at
random, then MOVE.

Mechanism
An AVOID motor routine: TURN away from the
strongest intensity, then MOVE.

Results :

The behavior was simulated until all the
stimulus configurations had been encountered
from several angles. The organism had
difficulty only with the bilaterally
symmetric stimulus configuration described
previously (see Figure 3.4c). In that
situation, the motor routine can get stuck
TURNing back and forth - choosing one side to
turn away from, then turning away from the

‘Another way to achieve negative telo-taxis would be to
enable the system to move backwards. Many simple organisms
do not have this capability, however, and neither does the
hypothetical one being considered here.

*Since noxious objects are not mobile, a "freezing”
reaction is inappropriate.
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other side only to leave the organism back
| where it started.

This motor routine, like the approach routine, uses the
direction of strongest intensity as the basis for an
orienting reaction. The stratagy is confounded, however, by
the presence of equally intense stimulation from both sides.

A mechanism that leaves the organism in a behavioral
deadlock is, to say the least, inconvenient. Some more
functional solution must be found: The temptation is to
remedy this problem by devising a strategy that uses the
direction of weakest intensity directly, orienting toward
weak intensities rather than away from strong ones.
Unfortunately, there are no studies of animal behavior that
.justify using such a mechanism [Fraenkel and Gunn,1961].
Given egqually intense stimulation from both sides, there is
no way for an adaptive system to determine - using only the
current retinal intensities'® - when turning away from one
source does not imply turning toward the other. The only
option remaining is to go straight ahead, making sure the
system never orients toward either object and, therefore,
eventually aveids both of them.

The factor missing from the current strategy is an

assessment of the equality, or lack of equality, of the

'*Recall that the mechanism can only specify which simple
motor actions are evoked by which intensity configurations.
At this level, it cannot rely on anything suspiciously
"cognitive" like remembering and reevaluating the
configuration detected at some other location.
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total stimulation across both halves of the retina.'' This
consideration suggests a somewhat different AVOID mechanism;
namely, to turn away from the most stimulated half of the
retina. The following is a summary of the results of
simulations using this mechanism:
ORGANISM SIMULATION 3
Environment

Same as in Figure 3.5, but the objects are
now considered noxious.

Required Behavior
When a signal is detected, the organism
should orient away from the object. When no
signal is detected, the system explores. Any
inadvertent contact with an object triggers
the ESCAPE response.

Mechanism :
The AVOID motor routine: If the stimulation
on both halves of the retina is not equal,
TURN away from the most stimulated half;
then, MOVE,

Results
The behavior was simulated until all the
stimulus configurations had been encountered
from several angles. The organism behaves
appropriately even in the presence of the
bilaterally symmetric stimulus configuration
(see Figure 3.4d).
In the two-stimulus configuration this modified AVOID
routine always guides the organism between and then away
from both sources. The behavior is classified as a negative
"tropo-taxis" since the orientation is based on a resultant
of the stimulation levels on both sides. Figure 3.7

illustrates some typical trajectories.

'"'*The "center" of the retina is considered part of both
halves. A more biologically realistic system would be
bilaterally symmetric and have two retinas.
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Figure 3.7. Some typical avoidance
trajectories.

At this point a brief discussion about the two-stimulus
configuration is appropriate. Two equally intense stimuli,
bilaterally and symmetrically located with respect to an
organism, are not likely to occcur in a natural environment.
An organism is much more likely to be inundated at each
moment with several stimuli of varying magnitudes from all
directions. The fact that this particular situation arises
so often in the simulated environment points out the extent
to which stimulus configurations have been simplified.

Moreover, even when the situation is artificially created
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under laboratory conditions, it is not always the case that
an organism behaving tropo-tactically will stay on the
middle path between both sources [Fraenkel and Gunn,1961].
Deviation from the middle path may be simply
accidental, due to a somewhat erratic mode of
locomotion. On the other hand, there may be
asymmetries in the animal that give a bias to its
locomotion., If one eye is in a different state of
adaptation from the other, if the muscles of cne
side are fatigued, or if there are slight
structural asymmetries, the maintenance of the
middle path is not to be expected. (p. 152)
In other words, the bothersome "dilemma" faced by our
hypothetical organism is an artifact of the "idealized"
environment and the "perfect" set of detectors and
effectors being used. Nevertheless, in the circumstances
under which tropo-tactic behavior can be reliably elicited,
animals do indeed move directly between both stimuli. The
solution adopted here is therefore in line with the way
simple animals behave under equally artificial conditions.
On the basis of the above simulations, it can now be
concluded that the given class of environments makes spatial
information available in a useful way. Simple mechanisms
using that information have been shown to generate
meaningful, directed orientation behaviors. Moreover, the
use of balance of stimulation to control the action of
symmetrical effectors is a very widespread orienting
mechanism in animal behavior [Fraenkel and Gunn,1961]. It
is encouraging that these artificial environments afford the

successful use of a mechanism that is consistent with what

is known about biological systems.
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A Basic Goal-Directed System

The environments considered so far have been overly
simplified in one other important respect. BEach one has
contained only one kind of object and, in each case, contact
with an object directly releases the appropriate behavior.
The fact that all objects considered so far have the ability
to directly elicit responses is not an unreasonable
simplification. Instinctive mechanisms rely heavily on the
environment to signal the appropriate context for a
potential response [Tinbergen,1951]. Innate releasing
mechanisms are in many ways cornerstones for instinctive
behavior and for the acguisition of higher order units of
behavior. Indeed, Tinbergen argues that "... it is not
generally understood that learning and many other higher
processes are secondary modifications of innate mechanisms,
and that therefore a study of learning processes has to be
preceded by a study of the innate fcundations of behavior”
(p. 6). It is appropriates, therefore, to begin our design of
a hypothetical organism by first endowing it with simple
inflexible behaviors. Of course, any goal-seeking organism
will be capable of much more than this. By relying
exclusively on innate releasing mechanisms, our hypothetical
organism must wait for the environment to provide an action
mandate. In a more complex environment, this organism would
most likely have a long and dangerous wait. An organism
capable of taking a more active role in the process of

generating behavior would have a significant adaptive
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advantage. What factors in the environment lead to such
different demands on the organism? How can the organism be
redesigned to meet those demands?

One way the simulated environment could be more
demanding would be if both kinds of releasing stimuli,
appetitive and aversive, were present at the same time. An
organism with limited output capabilities would be forced to
respond to 6ne of the stimuli and ignore the other. It is
hard to imagine circumstances in which it would be
advantageous to always make the same choice regardless of
the intensity of the stimuli or the physical reguirements of
the organism. Flexibility with regard to these factors is
observed even in the behavior of creatures at low
phylogenetic levels [Milner,1970]. A further complication
would be to introduce neutral stimuli into the environment
and thereby make overall stimulation more coﬁplex and
releasing stimuli perhaps more difficult to discern. An
organism that can somehow make use of the periods of neutral
and/or noisy stimulation to increase the likelihood that
appetitive objects will be encountered and reduce the
chances of encountering aversive objects will have a
tremendous advantage over its competitors. Similarly, if
the environment contains more than one type of appetitive
object, it is to an organism's advantage to have some kind
of "agenda" that enables it to gather everything it needs as
efficiently as possible. This agenda must of course be

flexible - capable of adjusting to the moment to moment
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fluctuations in stimulus conditions. All these potential
complications to the environment imply a basic principle
about the internal design of a suitably adapted organism:
...the motor output comprising a response is
separated from current sensory inflow by the
intervention of some central system ..., and it is
this system, not sensory-motor associations, that
determines what the response will be. It is
assumed that such a central system somehow
flexibly adjusts the motor output to the ever-
changing stimulus and organismic
conditions. [Bindra, 13978, p. 44]
The required sophistication of such a central system will of
course depend on the adaptive demands of the environment.
It should be pointed out that there are risks involved
when an organism uses internal processes to select a
response. Using an internal mechanism must not be such an
involved process that the outcome - that is, the response -
comes too late or not at all. On the other hand, the
process must involve enocugh details of the current sensory
array and organismic state to insure that the response will
be an appropriate one. As the internal processes get more
sophisticated, the necessary balance between central and
external determinants of behavior becomes more difficult to
achieve., This is one area in which natural systems have
been more successful than their artificial counterparts.
Thomas [1977], for example, notes that the pragmatic - as
opposed to strictly logical - nature of human inference
procedures is an advantage. "The fact that people are

locally driven and subject to constant, parallel, and

multidimensional stimulus input enables them to operate
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under a much larger set of inference rules than would be
optimal for a deterministic, seguential, and top—down goal-
driven machine" (p. 12).

The most basic kind of internal factors involved in
modulating response selection are called "motivational"”
factors [Tinbergen,1951]. These factors depend on metabolic
conditions such as hormone concentrations, food or water
deprivation levels, etc., and their effect is to determine
the central motive atate of the organism. While there is
some disagreement over exactly how this central motive state
is generéted and coordinated with action [Bindra,1978],
there is general agreement that the motivational state
changes the relative effectiveness of stimuli to elicit
behavior.. In particular, the various metabolic conditions
seem to serve as "... 'gates' or modulators in the paths
between the receptors and the motor system. Each gate is
selective for the particular impulses generated in the
sensory systems by the relevant goal stimuli, so that the
animal will approach food when it is hungry, a mate when it
is sexually mature, and so on" [Milner,1970, p. 399]. This
rather straightforward control mechanism allows an organism
to vary its behavior in appropriate ways.

It is important to emphasize the difference in function
between the motivational factors and releasing stimuli. A
motivational factor selects for some behavioral goal by
priming or otherwise increasing the readiness of appropriate

motor complexes [Tinbergen,1951]. Conflicting action
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mandates compete with each other for this control, probably
through some kind of mutual inhibition. Once a set of
alternative motor routines has been primed, the releasing
stimulus activates - via an innate releasing mechanism - the
one that best suits the current situation. The priming is
necegsary for the releasing action to be effective. In this
way, motor control is not vested exclusively in sensory
input. It is this kind of interaction between control
information and the appropriate context that is the minimum
processing requirement of any geoal directed system
[Scott,1979]. It should be noted that motor complexes
related to certain defensive or aversive reactions must be
effectively "ungated” so that the releasing stimulus can
reliably elicit behavior. It would be maladaptive, for
example, if the detection of a predator did not elicit an
innate ineclination to flee. An organism with a central
motive state is therefore best characterized as a system
having both rigid, stimulus controlled behaviors and
flexible, motivationally controlled behaviors.

These considerations suggest that motivational control
can be imposed on the set of innate releasing mechanisms as
shown in Figure 3.8. Pathways under control of the central
motive state require facilitation in order for the releasing
stimulus to have the capacity to elicit behavior.
Facilitation designates one or meore of the paths as
alternative ways of achieving some behavioral gocal.

Environmental stimulation then activates the pathway most
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Figure 3.8. A simple implementation of
motivational control. Some pathways require
facilitation from the central motive state to be
effective., Others are not subject to this
control mechanism. All activated pathways must
compete for control of the motor system.

appropriate to the current context. Pathways not subject to
this control operate as before except that for conflicting
action mandates there is a competition - based on strength -
among all activated pathways for control of the motor
system. It must be emphasized that, though the mechanisms
here are still innate, they allow for flexible internal
control. This is an important step in the elaboration of
simple behaviors to generate more "intelligent" ones.
Lashley [1949] notes that "the mechanisms of instinctive and
intelligent behavior ... seem fundamentally the same....
Higher levels of intelligence are based on a greater variety
of types of organization, but this does not mean that they

are any less dependent upon genetic factors" (p. 31).
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Figure 3.9. The two-channel environment
containing both resourcas [sguares] and noxious
objects [circles]. Each object has an intensity
aura like those shown in Figure 3.5.

In order to demonstrate the effectiveness of this
control architecture, a new environment is proposed. This
environment has two channels, one for noxious stimuli and
the other for appetitive or resource stimuli. Eight
objects, four of each type, are arranged so that there is
ample oppeortunity for making choices between the two stimuli
(see Figure 3.9). Note that signals from resources and
noxious objects don't interfere with each other because they

are on separate channels. Our primitive organism is
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modified to include the aforementioned motivational control
structure., It is proper, at this point, to refer to the
organism as a goal-seeking system. The system retains the
innate releasing mechanism for ESCAPE. Now, however, the
effectiveness of the CONSUME, APPROACH, and AVOID pathways
are under "motivational” control. It is assumed that the
organism must CONSUME enough of the resource to keep some
internal deprivation level within tolerable limits. The
deprivation level is simply a counter that is incremented
every time step. When the counter is above a fixed
threshold, the organism is "motivated" to seek resources.
Every time a needed resource is contacted, CONSUME resets
the counter to zero. Contact with a noxious object is
costly in that the counter is incremented by a substantial
amount. If the deprivation level gets toc high, the
organism "dies”. It is important to note that in this
environment death is a very real possibility. With the
maximum deprivation level set at 100, for example, a
primitive organism using only EXPLORE to stumble across
resource objects usually lives only 191 time steps.'? The
ability to make use of the aura of stimulus signals is
therefore a crucial adaptive advantage.

When both kinds of signals are detected by the
organism, the control of behavior is resolved as follows.

If the deprivation counter is above the fixed threshold, the

'2This was empirically determined by simulating 10 such
organisms.
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APPROACH pathway is facilitated in proportion to the
difference between the counter value and the threshold;
otherwise, the AVOID pathway is facilitated in proportion to
the threshold value. In this way, the threshold corresponds
to an innate, constant "motivation" associated with aversive
stimuli. The pathway facilitated can be considered the
winner of a competition between the appetitive and aversive
influences. Final control is determined by computing a
strength for éach path, which is the product of the
facilitation - if any - and the total intensity detected on
that channel. The pathway with the highest strength
controls which motor routine is activated. The strength
associated with a pathway therefore represents the combined
influence of internal and external factors. Note that
CONSUME implicitly has higher strength than APPROACH and
ESCAPE has higher strength than AVOID due to the special
significance of contact with an object. It is not possible
in this environment for the organism to be in contact with
more than one object at a time. A more complete priority
scheme for the output pathways is therefore not necessary.

The goal-seeking system just described was placeé in
the two channel environment with the implicit goal of
'keeping the deprivation level within tolerable limits and
surviving., As a simplification, it is assumed that the
effectiveness of the motor packages cdoes not diminish with
an increase in the deprivaticn level. The computer

simulation is described below:
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ORGANISM SIMULATION 4

Environment
The two channel environment depicted in
Figure 3.9.

Required Behavior

On contact with a needed resource, CONSUME
it. This resets the deprivation level to
zero. On contact with an aversive object,
ESCAPE. This increments the deprivation

- level by 10. For other stimulus
configurations, APPROACH or AVOID as
indicated by the central motive state. When
no signals are detected, EXPLORE,

Mechanism
The CONSUME, APPROACH and AVOID pathways are
under motivational control. The threshold
for motivating CONSUME and APPROACH is a
deprivation level of 10. AVOID is always
motivated at the constant level of 10. The
organism dies if the deprivation level
reaches 100.

Results

The organism demonstrated its ability to

survive in this environment as the

deprivation level was kept below 80 during a

433,428 time step interval of observation.

The average deprivation level was 10.36.
The success of this organism in a non-trivial environment
demonstrates that the motivational mechanism, as
implemented, is an effective way to exercise flexible
control over behavior. 1In fact, the control architecture of
this goal-seeking system contains all the basic components
found in Tinbergen's [1951] comprehensive model of the way
instinctive behavior is coordinated.':?

The behavior of our organism can be described more

systematically within the framework of Tinbergen's model.

'3The principles of organization are considered here
without subscribing to Tinbergen's assumptions about the
accumulation and "draining away" of various impulses.
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Figure 3.10. An instinctive cesntar, the basic
elament in Tinbergen's [1951] model of the
organization of instinctive behavior. Canters
are linked together in a hierarchy. A typical
canter raceives facilitation from the cemtral
motive state and from canters at higher levels.
These factors combine to implement the "gate”
effact on the releasing stimulus as shown in
Figure 3.8.

According to this mocdel, behavioral control is
hierarchically organized. The lowest level components are
the so-called "consummatory actions”, simple responses like
actual eating, escape, etc. that are characterized by

stereotyped motor responses. These actions are either
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released directly by external stimulation or they are under
the control of higher "instinctive centers". Each such
center itself receives control signals from the central
motive state and, perhaps, from other superordinate centers
as well (see Figure 3.10). Activation of an instinctive
center - via the combined effect of a facilitating control
signal and a releasing stimulus - leads to facilitation of
all directly subordinate centers and consummatory acts. If
none of these subordinate components becomes active, the
center initiates a searching or exploratory behavior which
strives to attain some behavioral goal. For example, the
behavior might be directed toward finding a stimulus that
will release one of the lower level centers.

Coordination in the system is achieved by the
interaction of two selection criteria. Within a
hierarchical level, active components are chosen on the
basis of intensity. There are competitive - that is,
inhibitory - interactions within any given level so that
only the component with the strongest total mandate will
become active and thereby initiate behavior. Between levels
in the hierarchy, active components are selected on the
basis of a simple priority scheme: output is controlled by
the lowest active center in the hierarchy. 1In this way, the
exploratory behavior associated with an active center is the
default response when control is not assumed by one of the
facilitated subordinate centers. Each hierarchy represents

the organization of a major instinct. The highest center in
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Pigure 3.11., The control structurs of the goal-
seeking organism, shown as an "instinct” in the
manner of Figure 3.10.

the hierarchy represents the overall gocal. This center may
or may not require a releasing stimulus to be activated.
Figure 3.11 indicates how the "locomotion instinct” of
our goal-seeking organism fits into this framework. The
system is organized into three levels. At the highest lavel
is a center responsible for overall control of locomotion.
In our organism this center is always active. Whenever none
of the lower level components is active, the default motor
response is EXPLORE. The middle level contains two centers

subject to motivational control. Only one of these centers
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can be active at any given time. The food-seeking center,
when active, causes the organism to APPROACH a resource
until contact is made and consumption is possible. The
pain-aversion center, which always has enough facilitation
to be released by a noxious signal, causes the organism to
AVOID noxious objects. At the bottom level in the hierarchy
are the two "consummatory actions" CONSUME and ESCAPE.
CONSUME reqguires facilitation from the food-seeking center
and contact with a resource to become active. ESCAPE is
released automatically by contact with a noxious object.
Given this explicit designation of the way various motor
routines are coordinated, it is easier to see how the
organism might be redesigned to perform more sophisticated
tasks in more complicated environments. Moreover, we can
ask well posed gquestions about how such a control structure
might arise from experience with the environment (see, for
example, Scott[1979]); and, hopefully, about how other forms
of internal control of behavior might supplement and work

with this structure.



CHAPTER IV

SOME CONSEQUENCES OF UNCERTAINTY

The goal-seeking organism model developed in the
previous chapter has, from a functional point of view, two
important information processing structures: the innate
releasing mechanism and the motivational control system.
The innate releasing mechanisms afford the generation of
appropriate behaviors in response to functionally
significant stimulation from the environment. When the
organism/environment interface provides for direct and
unambiguous selection of the relevant sensory/motor pathway,
these mechanisms are - in and of themselves - a sufficient
means of generating behavior. As the complexity of the
interface increases, however, mechanisms only sensitive to
external stimulation are no longer adequate for efficient
functioning. One example of this increased complexity is
the simultaneous presence of appetitive and aversive stimuli
at the same locus in the environment. An organism in such
an environment is faced with a series of choices, each of
which impacts its prospects for survival. In order to meet
this challenge, an organism must have criteria for deciding

which stimulus is most important in a given situation; ang,

86
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it must have the structural apparatus to selectively process
and respond to the chosen stimulus. Our goal-seeking model
was modified to address these concerns by including an
internal selection mechanism based on innate motivational
factors. The motivational control system - using
facilitation to nominate alternatives and competition to
resolve conflicts - augments the innate releasing mechanisms
to provide for flexible, adaptive responses; and, therefore,
allows the organism to function effectively in more complex
circumstances.

Complexity, however, is not the only issue that impacts
the functional structure of organisms in a natural
environment. As was argued in the last chapter, uncertainty
is an important factor as well. The simulated environments
and hypothetical organisms discussed so far have taken for
granted the issue of object identity. Each sensory/motor
pathway in the organism has been innately "tuned" to receive
only those signals from the relevant channel in the
environment, thus providing unambiguous information about
the identity of the stimulus. Because the organism in this
sense responds only to the presence or absence of
stimulation on a channel, the structure of the stimulus
signals has been left unspecified. Functionally, each
signal has been an arbitrary, non-decomposable symbol. We
have already argued that the stimulation available in
natural environments has meaningful structure; and, that

this structure is indicative of the distal stimulus source.
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When the relationship between objects and their proximal
stimuli is uncertain, information processing strategies
relying exclusively on the moment to moment details of
isolated stimuli are no longer adequate. An organism must
discern and respond to the regularities or patterns
underlying the proximal stimulation.

Accordingly, the simulated environment and goal-seeking
system developed so far must be re-designed to account for
uncertainty. For the environment, this means introducing
variability and pattern structure into the object
definitions; and, making stimulus signals available in a way
that suggests the underlying reqularities., For the goal-
seeking system, this means that sensory/motor pathways must
no longer all be hard-wired into their relevant
environmental channel. Instead, the system must somehow be
made sensitive to patterns. Information strategies and
mechanisms must be found that discover which stimulus
patterns are indicative of an object. The resulting
equivalence classes must then eventually be associated with

the appropriate motor pathways.

Specifying Stimulus Patterns

Given that the simulated environment is to be medified
to include stimulus pattern information, how should those
patterns be structured? To answer this guestion, it is
helpful to examine the correlational structures in the real

world. Gibson's [1966] analysis of natural stimuli,
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referred to in Chapter 3, points out that there is
considerable.spatiotemporal structure in any natural
stimulus. As for the pattern structure across various
stimuli, the most fundamental concept is the notion of a
categony or equivalence class of objects. "A category
exists whenever two or more distinguishable objects or
events are treated equivalently" [Mervis and Rosch, 1981,
p. 89]. Humans structure their object categories so that, in
general, members of one egquivalence class are more "similar"
to one another than members of alternative equivalence
classes [Medin and Schaffer,1981], There is considerable
flexibility concerning the way the term "similar" can be
used to define a category. At one extreme, membership can
be rigidly determined by the presence or absence of certain
critical features in the stimulus. The features in this
case are said to be "criterial"” for class membership. A
more flexible criterion would check for several alternative,
perhaps overlapping sets of features, any one of which would
be sufficient for class membership. Such features are
"characteristic” of the class as opposed to criterial. At
the other extreme, one can imagine equivalence classes in
which the members have no common features at all
[Wickelgren,1969]. Membership in this case is based on some
higher level notion of similarity derived from the knowledge
state of the observer making the classification.

There has recently been a considerable amount of

research and theory examining the structural details of the
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equivalence classes formed by humans and the corresponding
structural basis for those classes in the environment. The
equivalence classes are usually referred to as natural
categonies (see Mervis and Rosch [1981] for a review).
Several useful characterizations of real-world correlaticnal
structures and the categories that delineate them have
emerged. Real-world attributes or features do not occur in
arbitrary combinations.
+++ The world is structured because real-world
attributes do not occur independently of each
other. Creatures with feathers are more likely
also to have wings than creatures with fur, and
objects with the visual appearance of chairs are
more likely to have functional sit-on-ableness
than objects with the appearance of cats. That
is, combinations of attributes of real objects do
‘not occur uniformly. Some pairs, triples, or
ntuples are quite probable, appearing in
combination sometimes with one, sometimes another
attribute; others are rare; others logically
cannot or empirically do not occur. [Rosch et
al.,1976, p. 383]
There is increasing evidence [Mervis and Rosch,1981] that
most natural categories do not have rigid necessary and
sufficient membership criteria. The boundaries of natural
categories tend to be fuzzy or ill-defined. Some members of
a category may be more "typical" of the category than others
because the members vary in the number of characteristic
attributes they posses. The issue of category membership is
therefore best described by the phrase "family resemblance”,
indicating criteria possibly more general than any featura-
based similarity.
An organism that categorizes stimuli in the real world

must find a balance between two conflicting constraints. On



91

the one hand, it is advantageous for the organism to
delineate as many categories as possible to reduce the
potential errors in any future discriminations between
categories. On the other hand, as it was argued in Chapter
3, the primary rationale for using equivalence classes is to
"... reduce the infinite differences among stimuli to
behaviorally and cognitively usable proportions" [Rosch et
al.,1976, p. 384]. As Kaplan [1978] has pointed out, there
is a tradeoff between accuracy on one hand and speed and
economy on the other. For an organism in a natural
environment, unerring accuracy must be sacrificed to achieve
increased speed and economy.

In spite of the flexible structure of natural
categories, organisms must somehow manage to make consistent
and economical categorizations. How can the structural
information about a category be usefully summarized? Rosch
et al. [1976] argue that class inclusion is an important
relation among categories with respect to their
informational structure. The more inclusive a category is,
the higher its relative level of abstraction. Within each
such hierarchy of natural categories there seems to be a
"basic level"” of abstraction. This is the most inclusive
level at which an organism can categorize and efficiently
discriminate among real-world correlational structures.'

"In general, the basic level of abstraction ... is the level

'Which level in a hierarchy is "basic" will vary
depending on the organism in Question.
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at which categories carry the most information, posses the
highest cue validity, and are, thus, the most differentiated
from one another" [Rosch et af.,1976, p. 383]. For example,
the concept "chair” is a basic level category for humans
because there are predictable clusters of attributes and
functions common to all or most category members: chairs
have legs, a seat, arms, a back, they can be sat upon, etc.
Superordinate categories like "furniture" have fewer
attributes shared by members of the category. Subordinate
categories such as "kitchen chair” contain many attributes
which overlap with other categories at the same level

(e.g. "desk chair"); these categories are therefore less
efficient for making discriminations. The basic level is in
this sense the most inclusive level at which the
informational content of attribute clusters is maximized.
Rosch et al have shown that humans learn basic level
categories before categories at other levels; that at the
basic level people tend to use similar motor actions to
interact with category members; and, that the basic level
categories reflect the fundamental classifications made
during perception.

Given that the boundaries of a category are not clear
cut, even at the basic level, how is it that categecries come
to be differentiated? One way

+.+«. to achieve separateness and clarity of
actually continuous categories is by conceiving of
each category in terms of its clear cases rather
than its boundaries.... Categories can be viewed

in terms of their clear cases if the perceiver
places emphasis on the correlational structure of
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perceived attributes such that the categories are

represented by their most structured

portions. [Rosch, 1978, p. 35-36]
At the basic level, members of a category are sufficiently
similar that the entire category can be characterized by a
prototype or ideal cluster of features. Because of the
heightened similarity at this level, the probabilistic cue
validity [Brunswik,1956] of the category - a measure of the
extent to which attributes are reliable indicators of
category membership - is maximized. Prototypes are an
exaggeration of category structure in the sense that they
represent only the most characteristic attributes clusters
of the category; and, just as basic level categories
maximize the cue validity of attributes across hierarchical
levels, prototypes maximize cue validities within a category
level. All these considerations point to basic level
categories and prototypes as useful and efficient summaries
of the correlational structures in the real world.

It is not unrealistic, therefore, to impose a
prototype-based structure on the signals available in the
simulated environment. Each object category in the
environment will be designated by some defining or
characteristic set of feature values. The goal-seeking
system must infer from experience with individual signals or
exemplans which features are relevant to that category and

which are irrelevant. The resultant categorical informatiocn
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then provides a basis for classifying novel signals.® The
next chapter will discuss how the goal-seeking system can
manage to make the required inferences. What must obviously
be considered first is how to generate the feature values
for each exemplar.

There are several ways in which an object category can
be generated on the basis of a prototype. The basic idea is
to generate category exemplars by varying some attribute
values of the prototype. In the simplest case, when all
members of the category must share a set of common
attributes, the variations among exemplars comes from
substitutions within the irrelevant attribute dimensions of
the prototype. A-more flexible, family resemblance-type
category can be generated by independently modifying the
relevant attributes of the prototype. These modifications
or distortions are done in a way that makes the prototype
the statistical "center"” of the category; that is, the
prototype attribute values can be the average of the values
across all exemplars, the most frequently occurring values,

or some other perceptual designation of "ideal" values. At

iMedin and Schaffer [1978] point out that many
prototype~like effects can be accounted for without
resorting to prototypes - using, instead, only information
about specific exemplars. This point of view does not
account for experiments showing that, days after a pattern
recognition task, subjects' memory for prototypes is
stronger than for any exemplar [Posner and Keele, 1570].
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yet a more general leQel’, the prototype might be

"structural" in the sense that it is both the relevant
attribute values and their correlations that determine
category membership; that is, certain values must occur

simultaneously in an exemplar. Modifications to relevant

attributes in this case cannot be made independently. They
must preserve the correlational structures that are
characteristic of the category.*

Hayes-Roth [1973,1974] provides a theoretical analysis
of these various alternatives in terms of the difficulty of
the abstract classification problems they present. One
approach to generating pattern classes is called the
"volume" approach [Hayes-Roth,1974]. The basic intuition
behind this approach is that exemplars éor a category are
contained within some well-defined "volume" or region in an
M-dimensional feature space. Pattern generators based on
this approach typically produce exemplar features that vary
stochastically, within limits, from prototypical values.
Values along each dimension are usually determined
independently, although sometimes they are chosen to

preserve pairwise linear correlations between dimensions.

*Although prototypes are often thought of exclusively in
terms of some highly specific exemplar (e.g. Reed [1972]),
Palmer [1978] points out that there is a continuum of
prototype-like approaches based on the degree to which
within-category variation is represented by the prototype as
opposed to within-category invariants.

‘There is evidence [Whitehead,1977] that this feature-
correlation information is in fact used by human subjects in
pattern recognition tasks.
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The classification problem associated with this approach
involves locating a test item at a point in the M-
dimensional space based on its values along each feature
dimension. If the point lies within a region centered
around some prototype, the test item is classified as a
member of that class. Given the assumption that all
categories are at the basic level so that cue validities are
maximized, each point lies in only one volume in the space.
The classification problem is therefore trivial - merely
deﬁermine which volume, if any, a point belongs to. The
simplifying assumptions of this approcach, however, make it
useful only for a very restricted set of problems.

An alternative way of generating patterns is called the
"schematic” approach. This approach acknowledges the fuzzy

boundaries of natural categories by using combinations of

feature values - or schema - to define membership in a
category. More specifically, a schema is simply a set of
feature values. In an M-dimensional feature space, a schema
of k features corresponds to a k-dimensional hyperplane.
The schematic apprecach assumes, in the simplest case, that
each pattern class can be defined by a single structural
prototype or charactenisiic. Bach such Eharacteristic is a
schema designating a set of feature values required for
class membership. Unspecified values are assumed to be
irrelevant to the given pattern.

t follows from such a view that many of the

... attribute values may be irrelevant for some

patterns and that, in general, different patterns
may be best predicted by different subsets of
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attributes. The ... pattern recognizer must
determine which attribute values are coadapted,
that is, which combinations are necessary and
sufficient for determining membership in each
pattern class. [Hayes-Roth, 1973, p. 343]
The obvious generalization of using just one characteristic
to define a pattern class is to permit several
characteristics to define a class disjunctively. Even more
flexible membership criteria can be attained by allowing a
characteristic to have less than perfect correlation with a
pattern class. Pattern generators based on the schematic
approach generate exemplars by assigning the mandatory
combinations given by one or more of the pattern
characteristics and producing irrelevant feature values
probabilistically. In this way, each exemplar of a class
manifests at least one of the pattern class characteristics.
The classification problem can be very difficult under the
schematic approach, since any given item can mateh or
instantiate the characteristics of several alternative
pattern classes.

On the basis of the previous discussion of natural
categories, the schematic approach to generating patterns is
the most appropriate one for the simulated environment. It
allows classification problems having varying degrees of
difficulty to be posed that challenge the organism at any
one of several levels of environmental complexity and
uncertainty. Hayes-Roth [1976] suggests a simple, yet

powerful representation framework for a schematic pattern

generator. "Each feature can be associated with a single
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value in a bit vector - the value being cne if the feature
is present and zero if not ..." (p. 319). This is basically
just a standardized property list description of an object.
However, the bit string encoding means that the category
level pattern information can be recovered by simple bit
operations: the bitwise logical product of two bit strings
yields the set of features common to both strings; and, if
pattern characteristics are represented by bit string.
templates of relevant features and essential feature
values®, the match between an exemplar string and a pattern
characteristic can be determined by simple masking
operations. The use of bit string encodings for information
in the simulated environment therefore affords simple and
efficient abstraction and classification processes for any
proposed organism.

At first sight it might appear that the bit string
representafion is too weak. For example, property lists
have a pre-determined fixed length which, in many cases, can
be a disadvantage [Minsky,1963]. It is not unreasonable,
however, to assume that an organism has a limited set of
sensory detectors and hence that the fixed length signal is
appropriate. The bit string representaticn cannot be used
to express arbitrary, general relationships among
properties. However, this is a concern only from the point

of view that all the information about an cbject must be

‘Either the presence or absence of a feature might be
designated as essential.
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economically captured in a single bit string; for example,
by trying to designate relationships among features as
simply another kind of feature [Palmer,1978]. Such an
enterprise. is not likely to be successful given the flexible
structure of natural categories. Several characterizations
of each type of information might be required and they could
need different kinds of processing. For example, there is a
growing body of evidence indicating that organisms use two
largely independent mechanisms to process contour
information and spatial information [Kaplan,1870]. 1It is
therefore reasonable to assume that the many facets of
properties and relations in object categories can be
adequately designated by sets of binary strings, each set
specifying a particular aspect of the overall representation
of an object.

Of equal concern is the facility with which graded
comparisons of objects designated by bit strings can be
made.

The attractiveness of bit operations to effect
learning (abstraction) and pattern recognition in
the framework of feature list descriptions is
seriously diminished by the fact that such
matching operations are fundamentally all-or-none.
Each bit in a feature vector represents an
attribute that is or is not present and provides
no basis for fuzzy comparisons of two objects. In
this context, the term fuzzy refers to a graded
measure of the degree to which the values of the
same attributes of two objects are similar. The
capacity to retain the information that two
objects are fuzzily equal is important in many
learning problems involving continuous, ordinal,
or noisy data. [Hayes-Roth, 1976, p. 319]

Fortunately, there are ways of organizing features so that
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bit operations can be used to make graded comparisons. One
such organization is based on the notion of "receptive
field” in visual perception and is called a "radial
generalization manifold" [Hayes-Roth,1976]. The basic idea
is that for a given feature dimension, some finite subset of
values Xx,,...,X, is chosen so that any point in the maximum
possible range of all values lies within a radius r of one
of the X; o The parameter r~ is called the "radius of
generalization” and designates "... the maximum difference
between the values of the same attribute which can be viewed
as fuzzily equal” [Hayes~Roth, 1976, p. 321]. The "receptive
field" of a value x; is the set of values within the radius
of generalization. It is assumed that adjacent fields
overlap. The distance between adjacent values X and X541
determines the amount of discrimination possible between two
patterns along this dimension. The bit string

representation of this feature is simply a string of length

n where the one or zero at position i indicates whether or

not the feature value belongs to the ith

receptive field.
Given this encoding, fuzzily determined matching and
abstraction operations are possible with the simple bit
operations described above.* For example, suppose the
range of values for a given feature is the continuous

interval [0,10]. If the four values 2, 4, 6, and 8 are

‘Hayes-Roth [1976] also gives a method for representing
disjunctive sets of features in a single bit string. For
the purposes of this research, however, dzsjunctlon is
adegquately represented by havzng one blt string for each
disjunctive component.
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chosen as the centers for receptive fields of radius r = 2,
then any value in the interval can be represented by a bit
string of length four. The value 2.8, for instance, is
represented by the string 1100 and the value 5.2 by the
string 0110, A simple bitwise logical product reveals these
two values to be fuzzily equal since they are both contained
in the second receptive field.

The use of bit strings as stimulus signals therefore
does not impose any unjustifiable limitations on the
complexity of objects that can be defined in the simulated
environment. Moreover, from the standpoint of the learning
algorithm to be presented in the next chapter, the bit
string representation is in some sense an optimal choice
(see Holland [1975]). Patterns in the simulated environment
will therefore be defined over bit strings. The most
straightforward way to define a pattern class or object -
following the schematic approach - is to specify a set of
characteristics associated with the class. BEach
characteristic will be a string in the alphabet {1,0,#}
where the * is a place holder for an irrelevant feature and
each 1 or 0 designates a relevant feature value.’ A
characteristic is a schematic template for generating binary
strings in the sense that the 1 and 0 indicate mandatory
values and the * indicates values to be generated at random.

Thus the characteristic 1*0* generates the four strings

'The interpretation of a characteristic could also be in
terms of receptive fields for various features dimensions as
discussed previously.
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1000, 1001, 1100, and 1101. When more than one
characteristic is associated with a pattern class, each one
is given some non-zero probability of being applied to
generate a pattern exemplar. As a simplification, each
pattern class will be assigned exclusively to one channel in
the environment. This means that when two or more signals
are available on the same channel at the same locus, they
are in some sense redundant. One signal can therefore be
chosen at random to be available to the goal-seeking system

without any significant loss of information.

Identification of Distal Objects

The new class of simulated environments now makes a
functional distinction between proximal cues and distal
objects. Each stimulus signal, as an isolated entity, is an
unreliable basis for generating behavior because of the
variability in the way signals correspond to objects. How
does this change impact the design of our hypothetical
organism? The instinctive version of the organism had all
of its motor pathways hard-wired into the relevant
environmental channels. In order to make sure that the
organism has to rely on the structure of the stimulus
signals, these hard-wired pathways are eliminated.
Moreover, suppose that information about which external
channel a signal belongs to is lost when the signal is
transmitted across the environment/organism interface; that

is, the interfaces preserves - or reconstructs - the
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distinctive nature of each signal but, internally, all
signals belong to the same sensory modality; For example,
the appetitive and aversive objects in the environment might
be sources of chemical stimulation. The stimulus signals
can be on different external channels in the sense that the
concentration gradient generated by one type does not
interfere with the gradient generated by the other; yet,
internal to the organism, all the signals are processed
within the same modality. This added restriction is to make
sure that the only information available to the organism
about object identity is the underlying structure of the
proximal stimulation.

One rather straightforward, but perhaps subtle,
implication of these conditions is that the mere detection
of a signal - or sensation - is no longer a sufficient
information processing mechanism. Somewhere between the
sensation and the overt response there must be a process
that ignores the variants in proximal stimulation and
discerns the distal source. An organism must have, in other
words, some kind of perceptual machinery. Psychologists
have established several general characterizations of the
perceptual process and its functional significance to an
organism.

Perhaps one of the most useful and durable
descriptions of the perceptual process is William
James's: "Perception is of probable and definite
things". By "probable" he meant that we tend to
perceive what is likely, what is familiar, even
when the stimulus is in fact not familiar. 3y

"definite” he meant that we tend to perceive
clearly, even when the stimulus is vague, blurred,



104

or otherwise ambiguous....
A percept that is definite is a necessary
condition for speedy response. And being probable
makes the percept reasonable; it reduces the need
for accuracy, even if it is not a direct
substitute for it. Essentially what the organism
is doing, in classical functionalist terms, is
making a "best guess”". [Kaplan, 1978, p. 31-32]
implicit in this characterization is the importance of prior
experience and learning. The "guess" the crganism makes
about a stimulus configuration is derived from many concrete
experiences with detailed stimuli. Learning processes
distill these experiences into an internal residue or
ébstraction that summarizes which stiﬁulus properties
usually occur together. This abstraction has a structural
basis [Hebb, 1949] and, because it more or less corresponds
to the experiences it is derived from, it is an infzanal
representation of those particular stimuli [Raplan,1873].
Since the residues of varied experiences with an object are
the structural regularities underlying the proximal
stimulation, an internal representation is a way of
achieving a perceptually stable environment [Hilgard,1978] -
one that is in correspondence with the distal stimulus
source, The fact that the perceptual process leads to
"definite” outcomes points to a fundamental bias to perceive
clearly [Wocdworth,1947]. A clear percept has two
properties that Hebb [194S] calls "unity” and "identity".
Unity refers to the extent to which the perceived object is
distinct or segregated from the background or concomitant

stimulation. A perceived object has identity "... when it

falls at once into certain categories and not into others
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«+. [and] is capable of being readily associated with other
objects or with some action" (p. 26). The orientation of
perception toward potential action is particularly important
for an organism as it interacts with its environment
[Arbib, 1972].
These rather general characterizations of the
perceptual process are useful constraints to keep in mind as
we formulate a perceptual component for our hypothetical
organism. The other source of constraint is, of course, the
prototype-based, schematic structure of object categories in
the simulated environment. It is important to emphasize
that the specification of object categories in terms of
prototypes constrains but does not determine the mode of
internal representation, processing, and learning to be
chosen [Rosch,1978]. Consider, for example, how prototypes
are assumed to account for perceptual classification.
There are categorical representations stored in
memory.... However these representations are
constructed, the input pattern is represented
along the same dimensions as the prototypes. A
measure of similarity is computed between the
input pattern and each categorical prototype. The
similarity is assumed to be highly resolved or
even continuous. A decision strategy is used to
assign the pattern to a category on the basis of
degree of similarity. The most common
classification rule is of the best-fit variety
such that each pattern is classified into one-and-
only-one category. [Palmer,1978,p. 289]

It is easy to see how several representation schemes -

generalized templates, binary features, multidimensional

features, or complex structural descriptions - might

implement this rather general process, each using its own
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particular similarity metric and decision criteria. Given a
suitable sensory interface, our hypothetical organism might
use any of these alternatives as the structural basis for
its perceptual machinery.

A representation scheme is available, however, that is
particularly appropriate for the binary strings in the
simulated environment; and, for the given locomotive tasks,
does not require the organism to do any additional
preprocessing of the signals.® The representations are
called classigierns and were originally proposed by Holland
[1976]. 1In its simplest form, a classifier is a
straightforward kind of "production rule” [Davis and
King,1976]; that is, it is an ordered pair of symbol
strings, the left string denoting the conditions under which
the rule is applicable and the right string denoting what
actions or conseguences the rule engenders when it is
evokad. For classifiers, each of these strings is called a
Zzxon. The left string is the inpul Ztaxon, a fixed length
string designating the set ¢f all binary strings the
classifier is sensitive to. The right string is the message
Zaxon, a string of the same length that determines what kind
of message or binary signal the classifier is capable of
generating. The only consequence of evoking a classifier is

that a message is produced.

'The signals available in the simulated environment have
already been preprocessed in the sense that each signal is a
standardized feature description of the object as detectable
by the crganism.
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More specifically, the input taxon of a classifier
specifies some subset of all binary strings of a given
length. A classifier is "sensitive to" signals belonging to
this subset in the sense that it can be evoked whenever one
-of these signals is present. Each taxon of length k is a
string <s,,...,5;> in the alphabet {0,1,#}. This string
denotes a subset of binary strings in the following sense.

A binary string <b1,...,bk> belongs to the subset just in
case bi = s; whenever s; = 0 or 1, 1In other words, each
symbol S; designates a value that must be present at
position i for all binary strings belonging to the subset.
When s; = #, position i is irrelevant for determining
membership in the subset and the binary string can have
either a 0 or 1 at that position. Strings belonging to the
subset are said to match the given taxon. Thus, for
example, the taxon #11...11 designates the subset {011...11,
111...111} and the taxon #0#...## is matched by any binary
string with a 0 in the second position. This notation for
designating subsets does not allow arbitrary subsets to be
represented by a taxon.’ For instance, there is no single
taxon that designates exactly the subset {000...00,
111...11}, It is the case, however, that any arbitrary
subset can be specified as the union of subsets denotable by
taxa. In this sense, the taxa constitute a "basis" for

representing the set of all possible subsets.

*Indeed, given any large set there is no compact and
useful way of specifying arbitrary subsets without simply
listing 'the members.
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To date, the ability to produce messages has not been
implemented in any of‘the systems designed to use
classifiers [Holland and Reitman,1578]., Nevertheless, this
capability has a tremendous - albeit untapped - potential as
a way of realizing some sophisticated information procassing
mechanisms. Message taxa are strings defined over the same
alphabet as the input taxa and have the same length. A
message taxon designates the binary string to be generated
by a classifier as follows. Given the taxon <Si,eee,85>, @
binary string <Bj,+..,By> is produced such that by = 55
whenever s, = 0 or 1. When s; = #, the value of bi is the
same as the value in position i of the binary string that
evoked the classifier. 1In other words, the meaning of the
symbol # in a message taxon is that a particular value is
"passed along” from the incoming signal to the outgoing
message. For example, consider a classifier with input
taxon 1##...## and message taxon 0##0...00. The signal
111...11 matches the input taxon and, therefore, when it is
present the classifier can be evoked. The message generated
will be 0110...00, passing along the information contained
in the second and third positions of the signal. 1In this
sense, a classifier can be said to "process” the signal that
evokes it. It defines a transformation or mapping over the
set of binary strings that match the input taxon. This
transformation might have any of several interpretations:
certain values in the string are replaced, indicating that

some additional information is available or that a step has



109

been completed in some complex string computation; some
subset of values is transmitted to be processed elsewhere,
the modified values indicating where or how; and so on. It
does not take much imagination to realize that the syntactic
simplicity of a classifier is deceptive with respect to its
potential as a component in an information processing

system.
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Figure 4.1. The structure of a simple
classifier system.

Classifiers are implemented within the framework of a
classigien system. In its most basic form, a classifier
system has four components (see Figure 4.1): a set of input
detectors; a message LisX or working memory; a set or

population of classifiers; and, a set of effectors. In more

detail,
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The input detectors translate the information
available from the system's task environment into
fixed length binary strings. For example, each
detector can be thought of as a device that analyses
the current environmental configuration for the
presence of some feature or property. The output of a
detector is then a binary string indicating the
presence or absence of the corresponding feature, a
value computed along some feature dimension, a binary
encoding of some structural information, etc. The
signals generated for subsequent processing by a
population of classifiers are_formed by concatenating
the output from some subset of detectors into a single
binary string.

Signals derived from the detector cutputs are placed
on the message list. The contents of this list at any
given time determine which classifiers and/or
effectors will be evoked. 1In this way, all operations
performed by a classifier system are "data-driven” and
therefore potentially "... sensitive to any change in
the entire environment and potentially reactive to
such changes with the scope of a single execution
cycle” [Davis and King, 1976, p. 304].

The population of classifiers is a fixed number of
ordered pairs of taxa as described above. When a
signal appears on the message list that matches a

classifier's input taxon, that classifier has the
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potential to become active. Active classifiers

influence the overall operation of the system by

placing their message on the message list.

4) The effectors can be thought of as classifiers whose

message taxa specify actions the system can perform

with respect to its task environment. When an

appropriate message appears on

the message list, an

effector can be activated and the system can therefore

make an overt response.

The basic execution cycle for these systems is

straightforward. At the beginning of each cycle, the

message list is emptied and a new list is constructed by

including all signals derived from the input detectors. All

active classifiers generate a message that is appended to

the list, after which these classifiers cease to be active.

Now each classifier in the population scans the message list

and determines how much of a mandate
active, This determination involves
for each message which indicates the
string matches the specifications of
the basis of these computations, one

probabilistically selected to become

it has to become
computing a match scone
degree to which each
the input taxon.'® On
or more classifiers are

active. At the end of

a cycle, the system generates any overt behavior specified

by active effectors.

This general characterization of classifier systems

'°Strings belonging to the subset
taxon match the taxon perfectly.

designated by an input
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clearly encompasses a large class of particular
implementations. For example, we shall see in the next
chapter that there are several ways to compute a match
score. It is also possible to imagine situations in which
variations on these basic themes might be appropriate:
clagsifiers could be defined to have more then one input
taxon to integrate information from several sources;
classifiers might generate more than cne message when
activated; classifiers might be activated by the absence
rather than the presence of a message on the message list;
classifiers might remain active across several execution
cycles; messages could have variable durations as well; and
so on. The point to be made is that classifier systems are
a poverful computational tool and representation scheme, It
is a simple exercise to construct a classifier system that
is computationally complete. Indeed, "classifiers, in
combination, readily implement arbitrary production systems,
providing the designer with a natural way of organizing the
system initially” [Holland, 1980, p. 252].

We are now in a position to see why classifier systems
are such an appropriate choice as the structural framework
for our hypothetical organism. The correspondence between
the syntax of an input taxon and the designation of
schematic templates for signals in the simulated environment
is obvious. One is a string in the alphabet {0,1,#} and the
other is a string in the alphabet {0,1,*}, Classifiers can

therefore serve directly as internal representations of
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environmental patterns and the objects they indicate.
Because classifiers are capable of sending and receiving
messages, they are capable of being "associated" with each
other and/or with system effectors. An "association" means
that the message generated by one classifier matches the
input taxon of some other classifier. In this sense, an
active classifier can be a percept that has "identity"
insofar as it pertains to associations with other structures
and with potential action. Furthermore, the generation,
transmission and processing of messages has been cited
[Hebb, 1972] as one of the key issues related to behavior in
higher organisms.
«+.. The complex communications network of the
higher animal has developed so that messages run
to and fro within it as well as into and out of
it. Such internal activity, infinitely more
complex than these words can suggest, <4 mind; and
possession of this internal complexity is what
distinguishes higher from lower animal, making the
behavior of the higher animal less directly under
the control of sensory input. (p. 79)
Classifiers system provide a simple but powerful framework
in which complex message passing activities can be
systematically analysed.

A classifier system can be "pre-programmed” to
recognize certain patterns, form specific associations, etc.
Moreover, classifier systems were specifically designed to
be compatible with certain general learning heuristics
[Holland,1976]. This means classifiers can be modified,

based on experience with the environment, to be sensitive to

relevant sensory patterns. Since more than one classifier
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at a time can be active, classifier systems can easily
process cbject information designated by sets of incoming
signals. Finally, note the similarity between the execution
cycle of a classifier system and Palmer's [1578]
description, cited earlier, of the perceptual classification
of input patterns based on prototypes. If we assume that
the message generated by an active classifier indicates a
categorization decision, then the execution cycle is a way
of implementing the desired perceptual process. All these
factors, taken together, imply that the classifier system
framework will provide our hypothetical organism with a more

than adequate set of information processing tools.

Modifving Stimulus-Response Probabilities

Identifying the entities in the simulated environment
is not the only issue raised by the introduction of
variability and pattern structure into the stimulus signals.
Of equal importance is determining which behaviors are
appropriate in response to the presence of those entities.
The hypothetical organism has to this point been equipped
with hard-wired pathways leading from stimulus to response.
This innate organization was successful because the design
anticipated all possible behavioral contingencies. In
effect, the organism was provided with a set of specific
"instructions" that was sufficient for adaptive functioning.
As Pulliam and Dunford [1980] point out, however, "in a

complex, unpredictable environment ... there can be no sat
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of specific instructions that successfully anticipates all
eventualities"” (p. 4). An organism must have some
discretion, within limits, to generate "instructions"
appropriate for the actual circumstances it is confronted
with. 1In other words, an organism must have the

"... capacity to lZeaan, where learning is understoocd to be
nothing more than a change (in the environmentally
appropriate direction) in stimulus-response probability
relations" [Dennett, 1978, p. 76].

The increased flexibility engendered by this learning
capability has two fundamental implications for the design
of our hypothetical organism. First, the organism must
start with some reservoir of modifiable, potentially useful
pathways or "soft-wiring". Given the assumption that it is
impossible to anticipate or explicitly provide for all
eventualities, this set of soft-wired connections obviously
cannot be exhaustive. Indeed, until the perceptual
machinery develops some internal representations, it is not
clear where specifically the soft-wiring must be available.
From a design standpoint, therefore, it is important that
the initial soft-wiring be chosen in a way that "covers" the
space of possibilities.

Since it is impossible to determine, at the
outset, which changes experience will require, the
designer should consider the full range ... of
systems that could result from various
combinations of changes.... It is vital that the
changes allowed for ... be rich enough to give a
reasonable chance of correcting faults in the
initial design. In other words, the system should

not only learn, but some guarantee should be given
that it can adapt to a wide range of
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situations. [Holland and Reitman, 1978, p. 314-315]
This means that the initial soft-wiring must be robust in
the sense that it can be selectively modified to instantiate
any of a large number of stimulus-response probability
relations.

The plasticity of soft-wiring is an advantage only if
the organism is "... able to distinguish good results of
plasticity from bad, and preserve the good" [Dennett, 1978,
p. 75]. Consequently, a second implication of plasticity for
the design of our organism is that criteria must available
that indicate whether or not a given pathway is adaptively
salient; and, a mechanism must be provided for selecting and
preserving the scft-wiring deemed adaptive. The organism
needs built-in definitions of "good"” and "bad"” in order to
select the pathways most consistent with its overall goals
of funectioning and surviving, Definitions tied explicitly
to these long term goals would clearly not be very useful.
An organism "... would have to try an option long enough to
see if it survived and reproduced, by which time it would be
too late to try another option” [Pulliam and Dunford, 1980,
DP. 6]. Instead, the definitions must allow for more short
term, ongoing evaluations of experience. In the selection
of an appropriate hard-wired response, we saw that the
simplest mechanism relied on the environment to evoke the
correct alternative. Similarly, definitions of good and bad
are, in the simplest case, derived directly from the

presence of certain stimuli in the environment whose
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significance to the organism is innately determined. These
stimuli are usually called reingorcens. Examples of such
stimuli
... include sights, sounds, tastes, odors,
temperatures, and cutaneous textures that are
provided by such biologically important objects,
events and situations as food, water, a sexual
partner, a nest, the call of a distressed
offspring, the shape of a predator, and injurious
levels of heat or cold. [Bindra,1978, p. 45]
By detecting these stimuli, an organism obtains a useful
evaluation of the current situation. |
An organism can make use of these evaluations by being
innately disposed to seek out good experiences and avoid bad
ones; that is, if the soft-wiring is modified so as to
increase the probability that good experiences will recur
and decrease the probability that bad experiences will
recur. In this sense, good experiences are "rewarding” and
bad experiences are "punishing”. This mechanism for
selecting adaptive soft-wiring illustrates the commonly
observed principle of learning known as the Law of Effect:
"rewards or successes further the learning of the rewarded
behavior, whereas punishments or failures reduce the
tendency to repeat the behavior leading to punishment,
failure, or annoyance" [Hilgard and Bower,1975, p. 34]. In a
realistic environment, stimuli can be rewarding (or
punishing) to varying degrees or with varying probabilities
(Pulliam and Dunford, 1980]. Part of this is due to

variability in the stimulation itself. The rest can be

attributed to the presence or absence of the proper
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motivating factors in the organism. As avsimplification, we
assume that, for a given level of internal motivation, the
reinforcing effects across stimulus categories are all
equally strong and equally reliable.'' Moreover, we assume
that the organism's evaluation of its experience is binary -
either positive or negative. These assumptions reduce the
complexity of the evaluative information and preserve the
essential categorizations, thereby minimizing the processing
burden on the organism.

The learning mechanism to this point includes a set of
stimuli the organism is innately predisposed to intarpret as
good or bad; and, a simple learning rule that strengthens
soft-wired behavior leading to encounters with good stimuli
or the cessation of a bad stimulus. An organism with only
these capabilities can generate a set of adaptively salient
connections from stimulus representations to responses. It
is often not encugh, however, merely to have in place an
appropriately strengthened set of pathways. Using these
pathways, especially when a stimulus configquration nominates
more than 6ne alternative, might regquire some assessment of
what the consequences will be. Pulliam and Dunford [1980j
illustrate this with a simple example. Consider a
hypothetical lizard with a motivationally controclled, innate
disposition to eat ants. This lizard can function

adaptively as long as the ants in its environment are all

''*As a stimulus category becomes familiar and well
learned, a more realistic organism might habituate to the
stimulus and thereby neutralize the reinforcing effects.
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edible and nourishing. Suppose, however, that black ants
are edible but red ants are toxic. In ofdet to avoid toxins
the lizard must store information about the outcome of
eating each kind of ant and refer to that information before
following its impulse to eat the next ant. William James
[1892] makes a similar point in his explanation of the way
instinctive impulses are controlled.
Some expectation of consequences must in every
case like this be aroused; and this expectation,
according as it is that of something desired or
something disliked, must necessarily either re-
enforce or inhibit the mere impulse. (p. 262)
These considerations suggest that it is advantageous for an
organism to be able to store the evaluation - or affect -
derived from a reinforcing stimulus; and, subsequently use
the evaluation to influence which behaviors are selected by
the motivational control mechanisms.

There is evidence that many organisms do indeed code
and store these evaluations and that activation of these
codes can serve a motivating function. 0lds [1969] reviews
several studies which demonstrate that mutually inhibitory
reward and aversive centers are located in the hypothalamic-
limbic regions of the central nervous system. This is part
of the "old brain" that evolved befcre the neocortex and is
a significantly large fraction of the total brain tissue in
many lower animals [Zajonc,1980]. Coupled with Olds [1969]
observation that the anatomical distribution of reward

effects is the same in man and at least nine other kinds of

animals, this suggests that the reinforcement mechanisms
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appeared very early in philogeny. As for the coding
function of these affect regions, Olds [1963] points to
research suggesting that remembered behavior patterns
previously associated with rewards can induce a temporary
neural "memory" or activity in the hippocampus. This
temporary activity serves a motivating function in the sense
that it is correlated with the nature of the effective goal
stimulus and resembles the activity induced by an actual
reward. Futhermore, Olds [1963] speculates that "a reward
stimulus might make a motivational inscription on both the
afferent and the efferent sides of the memory elements”

(p. 129). In other words, the available evidence indicates
that affective codes are in fact stored and used by many
organisms.

It is interesting to note that some of the affective
regions are directly related to the control of consummatory
actions and the central motive state. Electrical
stimulation of various sites in these regions can elicit
specific motor responses [Flynn,1978] as well as complete,
well cocordinated generic behavior pattarns in which the
specific actions vary depending on the situation
(Tinbergen, 1951;8indra, 1978]. This suggests that the
affective regions. are also the locus for much of the
"gating” functions of the central motive state discussed in
the previous chapter. Having the evaluative code closely
associated with behavioral control has obvious adaptive

advantages. Activation of the code can lead directly to an
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appropriate response, in spite of an inconclusive perceptual
analysis. Zajonc [1980] offers a good example illustrating
how this is adaptive.

A rabbit confronted by a snake has no time to
consider all the perceivable attributes of the
snake in the hope that he might be able to infer
from them the likelihood of the snake's attack,
the timing of the attack, or its direction. The
rabbit cannot stop to contemplate the length of
the snake's fangs or the geometry of its markings.
If the rabbit is to escape, the action must be
undertaken long before the completion of even a
simple cognitive process - before, in fact, the
rabbit has fully established and verified that a
nearby movement might reveal a snake in all its
coiled glory. (p.156)

The affective evaluations referred to here are defined very
much like primitive sensory qualities; that is, they can be
detected quickly and automatically. Zajonc argues that such
evaluations are the dominant factor in the behavior of lower
organisms and that the affective system is a basic and

powerful determinant of behavior in higher organisms.

A Revised Design

To summarize, our hypothetical organism must be changed
in several ways before it can cope with the uncertainty of
the simulated environment. It has to have perceptual
machinery in order to be sensitive to the patterns in the
proximal stimulation. The organism also must have the means
to modify its repertoire of stimulus-response pathways.

This involves, among other things, the designation of
certain stimuli as reinforcers having special significance

in terms of evaluating which pathways need to be modified
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and how they should be modified. Moreover, the organism
should have the capability to store the evaluations or
affective codes derived from reinforcing stimuli. These
codes are then available to serve two roles: as a criterion
for choosing among alternative behaviors that augments the
function of the central motive state; and, as control
signals that have a motivating function in and of

themselves,

|

primary
reinforcers

Affect .-

" | Component

’ s
0 4, ,’

stimuius Percaption | FOOD
signai | Component | sesxinG |Aversion|

PAIN !

Figure 4.2. The integration of percesption,
affact, and learning into the goal-seeking
system.
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We can integrate all these concerns into our overall
system as shown in Figure 4.2. There are two new
components: a perceptual component that generates and stores
representations of the stimulus patterns in the environment;
and, an affect component that stores representations for the
evaluations obtained from reinforcing stimuli. The soft-
wiring between the two components allows the system to build
associations between the representations of a stimulus
pattern and the appropriate affective code. The perception/
affect pathways are a replacement for the hard-wired inputs
to the food seeking and pain aversion centers in the
previous model. It is assumed that these two centers
monitor the activity in the affect component. The overall
code associated with that activity - either "good" or "bad"
- determines which center is most likely to control
behavior.

Under the assumption that in primitive organisms the
affective assesément is the dominant behavioral factor, no
direct connections between the perceptual representations
and the motor routines are modeled here. Instéad, it is
assumed that the system's repertoire of innate releasing
mechanisms contains all the necessary direct sensory/motor
connections. Stimulus categories come to exercise selective
control of behavior through association with an appropriate
affective code. This preserves the basic role of releasing
stimuli while at the same time permits the flexibility

mandated by the uncertainty of the simulated environment.
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It is worth emphasizing that the role of affect as a
mediator between pérception and action - though not
absolutely necessary for our simple creature =~ is a very
important elaboration of the system. It allows response
pathways to be evaluated before the system is committed to
an overt response [Kaplan,1973]. 1In this sense, affect is a
useful "pre-adaptation" for more sophisticated systems
relying on internal processes to nominate potential courses
of action.

_ Contact with either a resource object or a noxious
object is the only reinforcing stimulus in the simulated
environment. Obviously, contact with a resource is "good”
and contact with a noxious object is "bad". 1If the
organism’'s deprivation level is below threshold, contact
with a resource object has no reinforcing effect. The
result of reinforcement is learning in three areas:

1) The concomitant stimulus signals are assumed to be
important. Therefore, the set of internal
representations is mecdified to improve the system's
ability to categorize the signals in the future.

2) The evaluation of good or bad is used to generate an
affective code for the current situation. While there
are only two generic kinds of codes, each situation
elicits its own characteristic affective "pattarn”.

3) The soft-wiring connecting the current perceptual
representation with the current affective

representation is strengthened. This allows the
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affective code to be retrieved upon subsegquent

occurrences of this kind of situation.
Note that, because modification of internal representations
also goes on at a slow background rate without external
reinforcement, the system has what amounts to an innate
motivation to match all the signals it encounters. This
assures that the most frequently encountered patterns will
eventually get represented and that the soft-wiring is
anchored to a stable and complete set of perceptual
representations.

It is instructive to ask how sophisticated a learning
system can be explained using only the basic principles and
mechanisms discussed so far. Organisms relying solely on
reinforcement from the environment are limited in terms of
what they can learn. This is because "... they can learn
only by actual behavioral trial and error in the
environment. A useful bit of soft-wiring cannot get
selected until it has had an opportunity to provide some
reinforcing feedback from the environment” [Denné:t,1978,
p. 76]. Trial and error learning is not only time consuming
and limited. In a realistic environment it can alsc be
dangerous. An organism would have a significant advantage
over its competitors if it could somehow evaluate a piece of
soft-wiring without resorting to overt behavior. A small
step in this direction is the ability to make tentative
responses to get the needed information - what Tolman [1948]

called "vicarious” trial and error behavior. The behavior
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is "vicarious” in the sense that an organism faced with a
choice pauses to sample and compare the various
alternatives. The response pathway chosen is the one that
is deemed most desirable as a result of this overt
comparison. This behavior implies the use of stored
affective codes that can be retrieved in the presence of
stimuli that are associated with them.

A more powerful strategy is to allow the codes to be
used in the absence of supportive external stimulation. 1In
other words, to provide for some kind of internal
reinforcement that selects adaptive soft-wiring.

Ultimately of course it is environmental effects
that are the measure of adaptivity and the
mainspring of learning, but the environment can
delegate its selective function to something in
the organism ..., and if this occurs, a more
intelligent, flexible, organism is the
result. [Dennett, 1978, p. 78]
In its most primitive form, this internal selection could be
a mechanism for "secondary”" reinforcement where a stimulus
associated with reinforcement from the environment acguires
reinforcing properties of its own. The importance of this
simple elaboration of the basic principles has long been
racognized by psychologists [Hilgard and Bower, 1S75].

An even more sophisticated mechanism arises when the
internal reinforcement is not derived solely from external
reinforcement. For example, the extent to which a given
stimulus matches the existing reprasentations in the system

is an indication of how novel the stimulus is. Novel

stimuli usually cause an increased alertness in an organism.
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This increased alertness must accompany any change
in the environmental conditions, any appearance of
an unexpected (and sometimes, even an expected)
change in those conditions. It must take the form
of mobilization of the organism to meet possible
surprises, and it is this aspect which lies at the
basis of the special type of activity which Pavlov
called the ornienting regfex and which, although
not necessarily connected with the primary
biological forms of instinctive processes (food-
getting, sexual, and so on), is an important basis
of i{nvestigative activity. [Luria,1973, p. 55]
One consegquence of this activity, of course, is that
learning is much more likely. 1In this sense, novelty is an
internal criterion for identifying what is important. Other
such criteria might include accurate predictions, "... well-
ordered paegenences, sound plans of action, in short all the
favorite tools of the cognitive psychologist" [Dennett, 1978,
p. 80]. The point to be made is that the basic principles
established so far provide a framework in which many
sophisticated processes can be described and, eventually,

implemented.

Implementation as a Classifier System

Now that the goal-seeking system has been redesigned
and a representational framework has been chosen, it is time
to specify in more detail the way the system will be
implemented. In simplest terms, the organism model
developed in the last chapter will be augmented with two
populations of classifiers: one to serve as the organism's
perceptual component, the other to serve as the affective
component., Two separate populations are used rather than

one larger cne so that the learning algorithms can benefit
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from having classifiers already separated into gross
functional "niches". Signals from the environment activate
perceptual classifiers which in turn transmit messages to
the population of affect classifiers. The resulting
activity in the affect population, together with the central
motive state and motor control hierarchy, determines what
kind of overt response the organism makes.'? Each
population of classifiers is continually modified based on
the organism's experiences in the environment. These
modifications are designed to improve the system’'s ability
to recognize objects in the environment and respond to them
appropriately.. If the learning heuristics are successful,
the organism will acguire the same ability to function and
survive that was built-in to the instinctive model given in
the previous chapter. Implementing these changes regquires
that some of the basic definitions regarding classifier
systems be broadened and that appropriate learning
heuristics be developed and tested.

The Message List. One classifier system component that
must be revised is the meésage-list. To present the system
with an undifferentiated list of stimulus signals is to
assume that the organism is neutral with respect to the
information contained in each signal and that all signals
should be equally effective in terms of eliciting activity.

This is a common, though often unstated, assumption in many

'?Note that two sets of messages are processed before the
system generates an overt response.
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information processing models [Lachman and Lachman,197%].
Natural organisms have an evolutionary history which
predisposes them to be sensitive to certain adaptively
salient stimuli. "Some concepts, percepts, and
relationships should be easier to process than others
because they have a longer history of adaptive salience"”
[Lachman and Lachman, 1979, p. 144]. Even though our
hypothetical organism.has no evolutionary history, its task
environment does subject it td particular adaptive demands.
The organisms's structure should have the capacity to be
sensitive to those demands by selectively processing
functionally important signals. Selectively processing one
signal over another is one aspect of the phenomenon usually
referred to as attention. Attention is a very complex issue
[Norman,1976] and no attempt will be made here to discuss
its many facets in any detail. It suffices to say that the
extent to which a given signal is likely to influence
subsequent information processing depends, among other
things, on both the physical and informational properties of
the signal. Selection based on the information content of a
signal is already evident in our organism's innate releasing
mechanisms. The only physical property of signals in the
environment that has functional significance is the signal
intensity. The higher the relative intensity within a
stimulus aura, the closer the organism is to a given object.
In this sense, intensity is a rough comparative measure of

how salient a signal is. Accordingly, the message list will
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be modified to include both signals and their intensities.
The relative intensities of signals on the list is a factor

in the relative ability of each signal to elicit activity.

Perception Affect
Classifiers Classifiers\
— | Message Message +tor=
INPUT —— code
—— | List #1 List #2

Figure 4.3. Implementation of the model using
two message lists.

Because the system has two populations of classifiers,
it is convenient to implement it with two message lists as
shown in Figure 4.3. Signals from the environment are
placed on the first list and determine the activity in the
perceptual classifiers. The messages generated by this
activity are then placed on the second list to be procassed
by the affect classifiers. It must be emphasized that the
use of two lists is merely a convenient simplification.
Holland [1980] points out that the definition of a
classifier can be broadened to include a binary prefix as
part of every input taxon and every message. This prefix

can function much like an "address" for a classifier in the
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sense that the classifier can only receive messages having
an identical prefix. For our purposes only two prefixes
would be required: one designating all classifiers in the
perception population and the other designating classifiers
in the affect population. If messages from the environment
are given the perception prefix and messages generated by
the perceptual classifiers all have the affect prefix, our
organism can function with one message list - and, if
desired, one combined population - in the traditional manner
shown in FPigure 4.1, However, because it is easier to
analyse and debug a set of classifiers and messages that are
physically separated according to their function, the
organism will be implemented using two message lists.

Even though prefixes will not be used here, it should
be noted that prefixes and "addresses"” can be used to
implement some very sophisticated information processing
mechanisms. The simple use of prefixes proposed above ‘can
turn the message list into a global database analogous to
the blackboard used in the Hearsay-II speech understanding
system [Erman et af.,13980]. Each population of classifiers
can be thought of as a-set of independent, specialized
processors or knowfedge sounces. We can define a loose
hierarchical structure over a population by extending the
notion of an input taxon prefix to include a more specific
kind of address. As before, all classifiers in a population
have the same binary prefix. Now, however, each classifier

also has its own particular address prefix which is a string
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in the alphabet {0,1,#}. One classifier is said to be
subordinate to another in the hierarchy if the set of
strings matching its address is a subset of the set of
strings matching the other classifier's address. For
example, the address #1014#0 is at a lower level than the
address ##01##. Addresses at the lower levels have more 0's
and 1's and are more specific in the sense that they match
relatively fewer strings. Address at higher levels are
correspondingly more general with respect to the set of
strings they match. This addressing scheme is flexible
enough to implement many kinds of control architectures for
communication and cooperation among distributed processors.
Such architectures have proven to be very useful in several
practical applications [Erman et al.,1980].

Moreover, this extended use of prefixes could allow our
hypothetical organism to treat a set of signals as a
structured array instead of as a mere list. Specifically,
each input signal might be spatially tagged with certain
"retinotopic” or "tonotopic” coordinates from the organism's
senscry system. Messages at the output interface might be
organized spatially as well, perhaps encoding environmental
cocrdinates needed to direct a movement, BEach classifier
- can now be thought of as having a meaningful relative
"location” in the system: one classifier is close to another
to the extent that the messages they process come from the
same "neighborhoed" in sensory coordinates. The "spatial"”

layout of activity at the sensory interface then has an
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orderly relationship to the location of activity in the
population of classifiers. 1In this way, classifiers
sensitive to messages from the sensory interface are
organized to preserve rough spatial relationships like
proximity among incoming signals. Arbib [1972] has pointed
out how this kind of "somatopic" organization of elements is
a characteristic and computationally important principle of
the way the brain processes information.

CLlassifien Strength. Implementing the revised organism

model as a classifier system requires a broadening of the
basic definition of a classifier. The input taxon of a
classifier designates some pattern of messages that is
presumably important to the system. The message taxon
designates a set of responses appropriate to that pattern.
Because the environment is uncertain, the system must have
some way of discerning which patterns - among all the
possible patterns that could be extracted from a set of
messages - are the most probable and the most salient; and,
which combinations of input and message taxa are the most
useful in terms of generating behavior. In order to help
provide that information, each classifier has a stxrength
parameter associated with it. The strength of a classifier
is a number estimating how well the classifier characterizes
the situations in which it is a candidate to become active.
Classifiers with high strength are more likely to become
active than classifiers with low strength; and, when the

system generates and tests new classifiers, classifiers with
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high strength are less likely to be replaced.'®

A classifier represents a good characterization of a
situation to the extent that it specifies an appropriate
pattern and generates useful messages. It is important that
a classifier’'s input taxon - the organism's internal
representation of a pattern class - corresponds as closely
as possible to the categorical prototype from which the
signals are generated. In this sense, a taxon can be too
general or toc specific by designating a superset (too many
#'s) or a subset (too few #'s) of the actual category. For
example, if an object prototype is defined to be 1x00==x,,.3
then the perceptual classifier 1####...# is too general a
representation and the classifier 1000##...# is too
specific. In order to bias the system away from classifiers
that are toco general, strengths are continually adjusted so
that they are proporticnal to, and therefore estimate, a
classifier's expected match score. In this way, specific
classifiers accrue more strength than general ones and,
relatively speaking, general classifiers are at a
disadvantage., As we shall see later, there are other
mechanisms at work in the system selecting against
classifiers that are too specific. The result is a system
biased toward classifiers at an appropriate level of
generality based on the system's experience.

A classifier is said to generate useful messages if its

'3Recall that a population of classifiers has a fixed
size. When a new classifier is inserted, an old one must be
deleted.
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messages are instrumental in activating subsequent
classifiers and/or enabling the system to obtain resources
or avoid noxious stimuli. When a message is put on the
message list, classifiers that match it may or may not
become active. Active classifiers are chosen
probabilistically so there is some uncertainty about which
messages on the list will ultimately be successful in
eliciting activity. Since messages are at the heart of the
system's processing capabilities, classifiers whose messages
reliably elicit activity are indispensable if the system is
to generate consistent behavior. Such classifiers are good
"predictors” in the sense that they indicate the most likely
next "locus of activity"” in the system. Obviously, it is
also important that the sequence of activity generated by
the system have meaningful consequences in terms of overt
behavior. For the given environment, seguences of behavior
leading to external reinforcement are the most significant.
The most useful messages, therefore, are those that are
reliably associated with a sequence of activity resulting in
reinforcement. In order to formulate a classifier's
"prediction” about the effects of its message, each
classifier receives feedback about whether or not its
message elicits activity and, ultimately, reinforcement.
Strengths are adjusted to estimate the prediction of
expected feedback and therefore bias the system toward
classifiers that generate effective messages.

The strength parameter can be thought of as a kind of
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long term structural code, activity being a more short term
code. Over time, strength should be modified so that the
most functiocnally valuable representations in the system
have the highest strength. There are several simple
heuristics available [Minsky and Papert,1969] for adjusting
this parameter to estimate the expected match score and
feedback. The version used here postulates that, for each
message on the message list, classifiers competing to become
active lose a fixed fraction of their accumulated strength.
In return, each classifier receives an amount of strength
proportional to its current match score and feedback. More
specifically,

Leg Ss(t) be the amount of strength in a classifier on the

t time it is evoked.

Let @ be the fraction of strength lost in the process of

competing to classify this message.

Let m(t) be the match score of the clasgsifier.

Let M be the highest possible match score.

Let S be the relatively constant amount of strength made

available to be recovered by a classifier.

Then the change in strength for a classifier is given by

S{t*1) = s{t) - e*s(t) + (m(t)/M)=*S

It is easy to show (see Minsky and Papert [196%]) that,

given an appropriate choice for @, the amount of strength

in a classifier will be (m/M)=S where m is the expected

match score.
This simple scheme can be extended to estimate feedback by
making the strength recovered proportional to both the match
score and the feedback. The most effective way to combine
the two factors will be described in conjunction with the
algorithm for generating new classifiers.

A sophisticated feedback mechanism is not necessary for

our organism. Feedback is only required for the messages
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generated by perceptual classifiers'* and all the message-
passing "sequences” in the system are of length one. There
are three pieces of information needed to evaluate the
effect of one of these messages: First, some measure - of how
strong the "associative connection" is between the
perceptual classifier and those affect classifiers
responding to the message; second, an indication of whether
or not the associated affect classifiers become active; and,
finally, an assessment of how closely those affect
classifiers represent the affective code indicated by the
current reinforcement signal. The average match score of
the message with the active classifiers it evoked - assuming
the score is zero if it evokes no activity - provides the
first two items of information. The third factor is
summarized by the average "tag score" (see discussion of
tags below) of the active classifiers. The product of these
two scores is therefore sufficient feedback about the
effectiveness of a message. Because of the extent to which
our hypothetical organism depends on reinforcement from the
environment, feedback is available only when a reinforcing
stimulus signal is present. The expected feedback for a
classifier is estimated by its strength as indicated above.
Note,'however, that a separate parameter is required to keep
track of the expected feedback. Modifying strength directly

will not work since the relatively infrequent presence of

'4We shall see later how the affect classifiers have
hard-wired connections into the motor control hierarchy.
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feedback information would be mere noise in the background
of the steady flow of input taxon match scores. This
problem can be avoided by using a separate fasedback
parameter to modify strength and updating that parameter
whenever feedback is available. This means that the system
will be biased toward classifiers that produce effective
messages.

Even though the feedback requirements of our
hypothetical organism at this stage in its design are
minimal and straightforward, it is important to indicate how
more powerful feedback mechanisms could be implemented
within the classifier system framework. In general,
classifier systems are capable of generating arbitrarily
long sequences of message-passing activity before making an
overt response. Moreover, during the course of any
behavioral sequence in a complex task, many classifiers will
be activated before the system can expect to receive
reinforcement. A classic difficulty under such
circumstances is the so-called "credit-assignment"” problem
[(Minsky,1963]. Simply stated, the problem is how to
apportion credit (or blame) for scme behavioral outcome when
a system uses many elements over several time steps to
produce that behavior. When the numbet'of classifiers
involved is large, and/or there is a long delay between the
activation of a classifier and the receipt of a reward, it
is not practical to keep track of what each classifier did

and when. Not only would this reqﬁire large amounts of
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storage, it would also require a sophisticated critical
analysis of the entire seguence and the contribution of each
classifier. The component of the system performing this
analysis - the "critic" - would more than likely have to be
very complex, an anomaly in a system designed to achieve
computational power and simplicity at the same time. The
only realistic alternative for a classifier system, or any
"self-organizing” system, is to define reinforcement for
sequences in terms local to the interacting elements
involved and to discover and make use of reliable
subsequences [Minsky, 1963].

Making predictions can be an effective way to identify
the local decisions in a behavioral sequence that are
‘responsible for each ultimate success or failure
[Ssamuel, 1959]. The feedback parameter defined above
designates a classifier's prediction about the effects of
its message. This parameter can be redefined to include
information about expected reinforcement from the
environment as follows. Suppose that every classifier
active when the system is reinforced has its feedback
parameter increased by an amount proportional to the size of
the reward. Suppose further that every time a classifier
transmits a message its feedback parameter is adjusted based
on two factors: the average match score of the message with
the classifiers it evokes (if any); and, the average
feedback estimate of those newly activated classifiers.

This arrangement allows information about reinforcement to
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be passed back to all classifiers involved in a message-
passing sequence leading to a reward. Classifiers belonging
to such a sequence will have a higher feedback estimate -
and, therefore, higher strength - than classifiers that do
not belong. Subsequences consistently leading to
reinforcement will thus have high average strength while
those only occasionally resulting in reinforcement will be
correspondingly weaker.

Tags. Several aspects of the revised organism model
implicitly assume that the system has some way of internally
selecting one representation over another. Consider, for
example, the way motivationally controlled stimulus-response
-pathways are facilitated. 1In the instinctive model the
facilitory connections between a given'motivational factor
and the appropriate pathway were determined in advance.
Identifying the functional significance of a pathway was
never an issue. The soft-wiring in the revised model
changes all that. There are no important representations or
pathways in the naive organism for the motivational factors
to connect to. As the organism experiences the environment
and develops representations, the appropriate facilitory
connections must be generated as well. This cannot happen
unless the functional significance of a representaticn can
be identified.'®

It is important to note that this identification must

'SNote that the input taxon doces not do this. The
organism has no a priorl knowledge about which patterns are
important or why.
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be done at the level of the perceptual representation. To
illustrate why, suppose that some motivational factor is at
work selecting for behavior appropriate to stimulus category
A, If the organism is confronted with a stimulus
configuration involving two kinds of objects - categories A
and B - the dominant perceptual activity will be, all other
things being equal, determined by the object generating the
most intense set of signals.'* 1If that activity happens to
be in response to category B, there is a contradiction
between the "attention"” mandated by the environment and the
behavior mandated by the central motive state. Behavior
directed at object A requires the activation of the
representation for object A. The currently active
representation is what the system is attending to and that
is what must determine subsequent action [James, 1892]. 1If
the organism is to use internal control in a way that is
sensitive to the environment, the facilitory influences must
be exerted at the perceptual level,

Another example of internal selection is the way affect
classifiers come to designate affective codes. The organism
is innately predisposed to interpret reinforcement signals
as good or bad. If these evaluations are to be stored for
later use, each affect representation must be labeled with
an identifier that indicates its valence; and, the current

activity must be biased toward representations having the

'‘Recall that the relative intensity of a signal is an
important factor in determining how much activity will arise
in response to that signal.
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"right" code. In order to meet thesea concerns, the
definition of a classifier is broadened once again to
include a tag. A tag is simply a binary string that serves
to identify a classifier to other parts of the system. 1In
the case of affect classifiers, for example, the tag is the
affective code. The instinctive centers for food seeking
and pain aversion monitor the affect population for
activation of the appropriate code. The occurrence of such
an active code has a built-in releasing effect on the center
in question. The need was expressed earlier for a tag scoxre
to measure how closely a given affect classifier designates
the code indicated by a reinforcing signal. Since codes and
tags are binary strings, a simple count of the bit positions
at which they differ is an adequate way to measure their
prcximity.

More generally, tags can be thought of as coordinates
locating each classifier in the perceptual-conceptual
"space"” of the organism. The dimensions of this space are
innately determined and the location of a classifier in the
space has functional significance., For instance, affect
classifiers in one "region” of the space code for good
events while those in another region code for kad events.
Since classifiers in the same region have similar functions,
facilitory effects due to motivatiocnal factors or
reinforcement can be thought of as built-in phenomena
targeted to regions instead of specific representations.

Facilitation biases activity in faver of one kind of
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classifier versus another. This gives our organism the
important capacity to have and use "dispositions" or
momentary biases on processing [Minsky, 1979].

Revised Execution Cycle. Having specified all the

changes required for the basic structures in our classifier
system, we are ready to see how these changes are reflected
in the system's execution cycle. On each time step, the
system processes messages as follows:

1) Both message lists are emptied and all active
classifiers are deactivated.

2) The excltation level of every classifier is set to
zero. BExcitation is a number indicating how much
evidence there is that a classifier should be
activated.

3) Signals from the environment are placed on the first
message list.

4) The set of active perceptual classifiers is determined
(see below).

5) Each active classifier places exactly one message on
the second message list. If a classifier matched more
than one signal, its message is generated by
processing the signal with the highest intensity and
match score. The intensity of the message generated
by the meost excited classifier is set to some fixed
value k. The other messages are assigned intensities
that preserve the relative excitation levels of the

classifiers that generated them. So, for example,
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classifiers with excitation levels of 1000, 700, and

SOOIwill generate messages having intensities K,

0.7#k, and 0.5*k respectively.

6) The set of active affect classifiers is determined
(see below).

7) If reinforcement is available, all active classifiers
have their feedback estimates revised as explained
previously.

8) The affective code corresponding to the activity in
the affect classifiers is used by the hierarchical
control mechanism as it determines an overt response.

The following steps are involved in deciding which
classifiers in a population are activated by the contents of
the message list.

1) Por each message on the list,

a) Determine the N classifiers with the highest match
score, These are the classifiers in the system
considered most zelzvant to the message.

b) Increment the excitation level of each relevant
classifier by an amount equal to the product of
three (or four) factors: strength, match score,
message intensity, and incoming facilitation (if
there is any). Sensitivity to facilitation is
directly related to a classifier's tag score.

c) Update the strength of each relevant classifier as
discussed previously.

2) Determine the M most excited classifiers and assign
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each one a probability of becoming active based on

relative excitation values. If E(f) is the excitatioh

level of classifier f and E is the total excitation in

the set of M classifiers then the probability that

classifier /| will be activated is simply E(f)/E.

3) Choose J active classifiers without replacement using

this probability distribution.
There are two new concepts introduced here. First, there is
the excitation level associated with each classifier.
Excitation can be thought of as a number indicating the
mandate a classifier has to become active. Each message can
engender an increase in excitation that is the simple
product of the factors cited earlier as determinants of
activity in the system. These factors include
considerations of prior structure (strength and match score)
and the current processing environment (message intensity
and facilitation). The more messages on the list a
classifier is relevant to, the more excited it gets.
Relevance is the second new concept. The relevant
classifiers represent the set of options available to the
system at any given time for processing a message. The
limited time and resource constraints imposed by realistic
environments dictate that this set not be complete and
exhaustive. It has been argued previously that information
about a pattern class is often best designated by a set of
messages rather than a single, pe?haps more complex message.

Because of this, and the fact that the message list is
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likely to contain information related to more than one
pattern class, each message is processed by the most
specific classifiers available. In this way, a population
can be thought of as a group of specialists in competition
for processing resourcas - that is, activity - and capable
of operating in parallel. A similar use of specificity to
determine which rule to activate has been made in other
production systems (e.g. Anderson and Kline [1979]), but
without the added flexiﬁility of having more than one
production activated, none of which has to match all of the
messages.

There are two ways in which classifiers compete with
each other to become active. For any given message,
clagssifiers compete to get in the relevant set and
accumulate excitation. This competition is in most cases
won deterministically by the most specialized classifiers.'’
At the next stage, classifiers compete probabilistically for
activation based on their total excitation. This stochastic
process enables the system to function more effectively in
an uncertain environment. In effect, each classifier is
treated like a tentative hypothesis about the distal source
of a message. The reliability and limitations of such a
hypothesis can be discovered only if it is tested in various
contexts and compared with various alternatives,

Summaruy. It is useful to review some of the important

'7A complete discussion of the issues involved in
choosing a set of relevant classifiers is given in the next
chapter. :



147

properties of the system as it has been described so far.

It is clearly a system with a distributed memory. The
system's knowledge about any given situation or category is
represented by a set of classifiers. This representation
captures much of the variability and correlational structure
of a category in terms of the various combinations of taxa,
tags, and strength within the group. Storage and retrieval
of information can be accomplished either on a content basis
- using messages and input taxa - or on the basis of a
particular function or goal - using tags. Of course, both
factors could be operative at the same time. The inherent
redundancy in this kind of knowledge representation makes it
resistant to the loss or destruction of an occasional
classifier. This simplifies the problems that might arise
if some "critical"” element in the system is modified or
replaced. There are no critical classifiers. The system
can function adequately using any one of several alternative
subsets of classifiers.

The system is also a model of parallel, distributed
processing., More than one classifier can be active at a
time. Because of the way excitation is computed, behavior
in the system is determined by the locations where several
messages "converge" to induce a high probability of
activity. 1In this sense, classifiers can increase their
effectiveness by cooperating with other classifiers - each
one sending its message to the same part of the system.

Competition is another important aspect of the way
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clagssifiers interact. The competition mechanism enables the
system to generate and test a set of hypotheses derived from
experience, Holland [1980] points out that competition has
another important function.
The competition mechanism provides more than a set
of h theses ... based on experience. It allows
the [learning] algorithm to inject new classifiers
into the system with a minimum of disruption. The
new classifiers must win competitions to be
activated and tested. Typically, this will happen
only when the system is inadegquately handling some
(situation] so that the scores of the classifiers
competing in this context are relatively low.
Then the new classifier has a chance of winning
the competition. If, upon winning, it provides an
improvement it will become one of the preferred
classifiers in that context. (p.266)
This means, in particular, that the system changes
gracefully - it can be modified without incurring disastrous
consequences for behavior. Similarly, performance changes
gracefully even in the face of potentially disruptive events
such as the loss or distortion of a message. All of these
properties work together to give the system a useful "common
sense” knowledge representation of its environment
[{Ruipers, 1979].
Tags give the system another interesting capability.
If we assume that tags have the same length as messages,
then the tags from active classifiers in one part of the
system can serve as messages for classifiers in another part
of the system. This means that the system has the ability
to nrecognize and act on the basis o4 iits own intzanal
patteans 04 activity. This 1is a very sophisticated ability.

For example, it allows the system to integrate the activity
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generated by patterns and objects into representations of
higher order entities like scenes. It also allows
hierarchical or heterarchical processing to be accomplished
easily, automatically, and parsimoniously. Top-down and
bottom-up processing can be implemented as well. Tags used
in the manner described here make classifier systems a very
powerful computational tool.

Finally, the statistical processing leading to patterns
of activity as described here is analogous to the way the
brain has often been characterized as an information
processor [Hebb, 1949; Lashley, 1951; von Neumann, 1958;
John,1967]. There are certain parallels that can be drawn
bétween classifiers and structural representations - or
"cell assemblies" [Hebb,1949] - hypothesized for the brain.
Both are generic pattern sensitive elements derived from
experience with the environment. They are activated and
processed in a statistical manner in a network of rich
associations. Both make extensive use of strength,
proximity, facilitation, and competition in their reépective
computations. There are also, however, some significant
differences. Cell assemblies have many partially active
states that allow them to process patterns extended over
time; and, their activity can be influenced by large amounts
of barely discernable or "fringe" activity. What a
classifier accomplishes with tags a cell assembly achieves
more elegantly with its physical structure. Moreover, while

a classifier system requires explicit computations for
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matching and relevance, cell assemblies are activated
automatically by structures that allow for switching and
convergence of activity. The implications of these
similarities and differences are not clear. The analogy is

worth pursuing, however, as a subject for further research.



