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ABSTRACT A critical review of the increasing emphasis being placed on 
the use of multivariate statistical methods in anthropometric research is given. 
Particular attention is paid to multivariate techniques for testing hypotheses 
concerning mean vectors, principal components analysis and the use of dis- 
criminant functions, but some more general comments about the proper role 
of statistics in research are included. I t  is argued that multivariate techniques 
often do not allow the effective description and communication of the infonna- 
tional content of a body of data and that much additional research -both from 
the standpoint of theory and from the standpoint of practice -must be done 
before multivariate analysis can fulfill the promise it holds for the physical 
anthropologist. 

The need for quantitative measure- 
ments to supplement verbal descriptions 
of body size and shape has been evident 
since early in the 19th Century when 
physical anthropology was becoming a 
distinct discipline, and anthropometry has 
since occupied the pre-eminent position 
in the subject. The evolution of tech- 
niques ostensibly suited for the analysis 
of anthropometric measurements has pro- 
gressed rapidly, and i t  is now common- 
place for physical anthropologists to em- 
ploy highly sophisticated methods of 
multivariate statistical analysis in an 
attempt to gain some insight into mor- 
phology, function, heritability, classifica- 
tion, discrimination and growth. And the 
use of such methods is increasing. It is 
therefore suggested that the time has 
come for a critical evaluation of the use 
of these methods; to point out their limita- 
tions as well as their strengths; to rec- 
ognize problems that remain as well as 
problems which have been “solved.” Half 
the job has already been done. In a re- 
cent paper, Howells (‘69a) lucidly pre- 
sented the case for multivariate analysis 
in anthropometry and additional favorable 
discussions have been given by Ashton, 
Healy and Lipton (‘57), Barnard (‘35), 
Bronowski and Long (‘51), Harris (‘65), 
Healy (‘65), Howells (‘57, ’68, ’69b), La- 
velle et al. (‘70), Oxnard (‘68), Rao (‘48a, 
’61) and Schull (‘62) to name just a few. 

The present paper is not meant to con- 
stitute an “equal time” rebuttal; nor are 
many of the notions contained herein 
diametrically opposed to those proffered 
by Howells. It is intended, simply, to show 
that there does exist another side to the 
story and that much research needs to be 
done before multivariate analysis can 
fulfill the promise that it holds for the 
physical anthropologist. 

I want to emphasize that this paper 
does not question statistical theory prop- 
erly used but, rather, the increasing em- 
phasis on multiuariate statistical methods 
in certain contexts. The question of ex- 
actly what the formal theory of statistics 
can contribute to data analysis (Tukey, 
’62) was considered by Tukey and Wilk 
(‘65) and they indicated that data analy- 
sis can gain much from formal statistics, 
but only i f  the connection is kept ade- 
quately loose. For those wishing to go a 
step further, Feller (‘69) is a good place 
to start. 

THE OTHER SIDE OF THE STORY 

The other side of the story, for me at 
least, began in a somewhat unexpected 

1 A good introduction to the nature and scope of mul- 
tivariate analysis is  given in Chapter l of Kendall (’57).  
Following Kendall, I find it easier to say what multi- 
variate analysis is not than to say what it is and to 
prescribe my domain of discussion by enumeration 
rather than by definition. I exclude bivariate analyses, 
such as correlation and regression, and enumerate the 
procedures included in the body of the text. 
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manner. I was busily engaged in reading 
Krishnaiah’s (‘66) collection of papers on 
multivariate statistical analysis. My in- 
tent was to learn something about these 
methods, methods which I assumed would 
be of wide applicability and lead to here- 
tofore unachieved levels of insight into the 
structure of multidimensional phenomena. 
I was convinced that this was in fact hap- 
pening for the first 520 pages. Then an  
article by Kempthorne (‘66) appeared: In 
his introduction he flatly stated, 

“It is  rare for a n  experimentor to obtain a 
single response, and I cannot recall being 
consulted on an  experiment in this class. 
But I have never used or suggested the pro- 
cedures of statistical analysis presented so 
excellently by Dr. Anderson (’58). Also I 
have yet to see any convincing examples 
of experimental data in  which the standard 
techniques of multivariate analysis have 
led to scientific insight.” 

Never used or suggested their use! 
Never an example providing scientific in- 
sight! And this by one of the most emi- 
nent biologically-oriented data analysts of 
our time. While Kempthorne did hedge a 
bit (with tongue in cheek?) on the use of 
factor analysis, “I have no doubt that the 
psychologists find that the techniques of 
factor analysis give them insight,” one 
should read the classic paper by Cure- 
ton (‘39) before assuming that factor anal- 
ysis (Harman, ’67; Horst, ’65) is somehow 
above reproach - even among psycholo- 
gists. 

The root of the conceptual problem 
lies in honestly interrogating ourselves 
about what we expect statistical analyses 
to accomplish for us. If our answer is to 
provide insightful descriptions of the in- 
formational content of the data or, more 
simply, to form opinions about the under- 
lying situation, then it is certainly pos- 
sible to obtain such descriptions and to 
form opinions on the basis of univariate 
and/or bivariate techniques, which have 
the advantages of being communicable 
and relatively easy to understand. The 
question of what multivariate analysis 
can provide over and above separate uni- 
variate analyses is usually answered by a 
statement to the effect that it ”allows 
comparisons of several groups or popula- 
tions to be based on many variables, all 
treated simultaneously and with due re- 
gard for the effects of correlation” (Right- 

mire, ’70a) or that it “assesses the to- 
tality of the data,” but this global assess- 
ment may introduce as much confusion 
into the interpretation of the data as it 
is designed to remove. As Tukey (‘62) has 
said, “. . . multiple-response differences 
are not simple, are usually not easy to 
think about, are usually not easy to de- 
scribe.” Some examples may help to il- 
lustrate the source of this confusion in 
particular cases. 

Multivariate TS and D2 statistics 

The problem of the comparison of treat- 
ment effects when the response is multi- 
dimensional in character is intrinsically 
complicated by the fact that there is, in 
general, no unique linear ordering for 
vectors (Gnanadesikan and Wilk, ’69). The 
usual way of circumventing this problem 
is arbitrarily to associate a measure of 
size with each vector and make the com- 
parisons in terms of its size. Examples of 
this strategy are Mahalanobis’ (’30) DZ, 
Hotelling’s (‘31) T2 and Fisher’s (‘38) lin- 
ear discriminant function. These statistics 
are computed “with due regard for the 
effects of correlation” but may have little 
to offer over and above separate univari- 
ate analyses when one is called on to in- 
terpret the results of his analysis, As 
stated by Gnanadesikan (‘70), 

“Unlike the univariate situation, for multi- 
response problems, the statistics that are 
used for purposes of tests of hypotheses . . . 
are complex derivatives from the data and 
do not generally have significant value as 
easily understood summaries of the struc- 
ture underlying the multiresponse data.” 

Thus one problem with this approach 
is that the associated test statistics often 
turn out to be complicated functions 
which do not have intuitive value as sum- 
maries of the informational content of the 
data from which they are computed. An- 
other is that their use often results in a 
substantial loss of power and hence in 
paradoxes when compared with the re- 
sults achieved by the corresponding uni- 
variate procedures. 

The former problem is of considerable 
practical importance and deserves more 
study than it apparently has received to 
date. Recognizing the need to keep mea- 
sures of distance simple and communica- 
ble, Sokal (’61) recommended the use of 
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Pythagorean distance in a variety of taxo- 
nomic problems. However, this choice of 
metric simply doesn’t work (Blackith, ’65) 
when the characters under study exhibit 
little intra-group variation, i.e., in pre- 
cisely the case when one might expect 
discrimination or classification procedures 
to be most sensitive, and the call has 
gone out for the employment of “more 
realistic” - and more complicated - 
metrics. So, in practice, one is often faced 
with the choice of using a simple function 
to communicate nonsense, or using a com- 
plicated function and not communicating 
at all. Clearly the “optimal strategy,” 
if it exists, lies somewhere between these 
extremes but the prevailing confused the- 
oretical situation needs to be ironed out 
before much in the way of objective 
guides to this choice are available. A 
good discussion is given by Dempster (’69: 
219) who concludes, “. . . no single dis- 
criminator or single distance measure can 
tell the whole story.” What this means 
for “the other side of OUT story” is that 
we need more experience with various 
measures of distance, and with combina- 
tions of these measures, before we can as- 
sume that we are measuring something 
with any biological relevance. 

As an example of the latter problem, 
it is not uncommon in pructice to find 
significant differences at a given level of 
significance by applying Student’s t-test 
on each individual measurement, whereas 
the T’ or D2 test (Anderson, ’58:lOl) 
utilizing all the measurements simulta- 
neously fails to indicate significance at 
the same level. This raises an important 
point that is, in the author’s opinion, 
often not appreciated by practitioners of 
multivariate significance tests, namely, 
that the chance of finding significant dif- 
ferences by a multivariate test is lessened 
when variables which do not contain in- 
formation about group differences are 
included in the analysis. A n  example of 
this phenomenon was given by Rao (‘66) 
who discussed the analysis of some an- 
thropometric data involving samples from 
two supposed bivariate normal popula- 
tions assumed to have common variances 
and covariance. Taking each variable on 
its own, in  both cases the differences 
between the sample means gave rise to a 
value of t which was significant a t  the 

5 %  level. But when the variables were 
considered simultaneously, the value of 
Hotelling’s T2 corresponded to a P-value 
of 1 2 % .  Healy (‘69) exhibited this para- 
dox - which has become known as “Rao’s 
paradox”-in a very simple form and 
noted that its consequences are of par- 
ticular consternation in the context of 
classification and diagnostic problems, in 
which many investigators have empir- 
ically reached the conclusion that the 
inclusion of “noise” variables in  the 
analysis can have a deleterious effect on 
the sensitivity of the procedure. As stated 
by Rao (‘66), “Here is a dangerous situ- 
ation in which the inclusion of an  extra 
character decreases the discriminatory 
power of the test.” So much for the 
“shotgun approach,” which was chaxac- 
terized succinctly by Koons (‘62): 

“Although it appears obvious that one 
chooses variables that ‘seem’ to belong to- 
gether for manipulation - whether the 
choice is by hunch or hypothesis- the 
temptation of the data-engulfing computer 
is hard to resist. A shotgun approach cer- 
tainly yields data: however, one is often 
hard pressed to interpret the results ob- 
tained . . . we can hardly defend our model 
if we cannot interpret the results it pro- 
vides.” 
The problem is compounded by the fact 

that our knowledge of the power or sen- 
sitivity of multivariate tests concerning 
mean vectors is slight and one can have 
but little faith in a test of significance 
if one has no knowledge of its power. 
One might hope, and many have so con- 
jectured, that the robustness and power 
of the univariate t-test (a good discussion 
is given in Chapter 10 of Scheffe, ’59) 
would carry over to the multivariate case, 
but the available evidence tends to indi- 
cate that this anticipation is unwarranted. 
Ito and Schull (‘64) and Holloway and 
Dunn (‘69) have investigated the robust- 
ness of Hotelling’s T2 with respect to in- 
equality of covariance matrices and their 
results are not very encouraging. Hollo- 
way and Dunn (‘69) noted that with un- 
equal sample sizes and covariance ma- 
trices we may have either a test with an  
unreasonably large level of significance 
and somewhat higher power than we 
would expect, or a test with a very low 
level of significance and very low power. 
In short, we have very little control over 
the error probabilities of the test. Keep- 
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ing the sample sizes equal, which is sel- 
dom possible in anthropometric research, 
does tend to keep the actual level of sig- 
nificance close to the nominal level, but 
does not help in maintaining the power 
of the test. And, when the covariance ma- 
trices are unequal, increasing the number 
of variables causes a direct increase in  the 
level of significance, i.e., the probability 
of a type I error, of the test. People have 
complained long and loud about how the 
use of separate univariate t-tests mud- 
dles up the composite level of significance 
(though the overall level can often be 
calculated and almost always bounded) 
but, unless the covariance matrices are 
equal, the same sort of phenomenon af- 
fects the multivariate test and the greater 
the number of variables, the greater the 
distortion of the nominal significance 
level. 

And how can one test the equality of 
the covariance matrices? Or should one 
(Box, ’53)? The test described by Ander- 
son (‘58:247) might be used, but little is 
known about its power or i t s  robustness 
with respect to departures from multi- 
variate normality. Nor does i t  lead to any 
ideas of how the matrices differ when 
significance is reached. 

Thus there are a number of problems 
associated with the use of multivariate 
tests concerning mean vectors, and other, 
more subtle, issues could be raised (see, 
e.g., Chapters 10 and 15 of Dempster, 
’69). As stated by Tukey and Wilk (‘65), 
“Most multivariate analysis procedures 
are related, in typical textbooks, to prob- 
lems of hypothesis testing, usually in a 
quite artificial framework, as for instance 
in so-called multivariate analysis of vari- 
ance. Such procedures provide almost no 
help whatever in  data analysis . . .” So 
there is indeed another side to the story. 
The methods of multivariate statistical 
analysis hold great promise but more 
needs to be known about their operating 
characteristics before they can really tell 
us much about the informational content 
of our data. 

Discriminant functions 

Fisher (‘38) defined the discriminant 
function as that linear combination of the 
elements of the response vector which 
maximizes the ratio of the variance be- 
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tween two groups to that within the 
groups, and Rao (‘52) generalized this 
concept to the case of several groups. 
These procedures, as  is the case with most 
multivariate procedures, are based on the 
assumptions of equal covariance matrices 
and multivariate normality of the response 
vector. When the covariance matrices are 
unequal, Smith (‘47) has shown that a 
quadratic discriminant function is appro- 
priate, but extremely little use of non- 
linear discriminant functions is evident 
in practice. Han (‘68) and Gilbert (‘69) 
have demonstrated that the agreement 
between the linear discriminant function 
and the optimal quadritic is often poor 
and, in general, that it becomes poorer 
with an increase in the number of vari- 
ables considered. Another important as- 
pect to this problem is that the estimation 
of the probabilities of misclassification 
(see, e.g., Dunn and Varady, ’66; Lachen- 
bruch, ’67; Lachenbruch and Mickey, 
’68) may be considerably biased if the 
linear function is used when the covari- 
ance matrices are unequal (Gilbert, ’69). 
From the standpoint of theory, we do now 
have a considerable accumulation of 
knowledge regarding the distributions of 
quadratic forms (Hotelling, ’54) but the 
application of this theory to the discrimi- 
nation problem has been largely neglected 
and more comparative studies are neces- 
sary if we are to learn which form of the 
discriminant function should be used in 
particular situations. 

And what about the normality assump- 
tion? Recognizing that this assumption is 
not always (ever?) tenable in practice, 
various attempts (e.g., Fix and Hodges, 
’51; Das Gupta, ’64; Kendall, ’66) have 
been made to provide distribution-free or 
nonparametric methods of discrimination. 
These have in common the problems of 
defining “nearness’ in  terms of distances 
in multidimensional spaces and the fact 
that the rules for allocation become ex- 
tremely complex in precisely the cases 
which are of the most interest. And how 
does one choose a metric when, as is so 
often the case in anthropometric work, 
some of the variables are continuous and 
other discrete? Elashoff et al. (‘67), Gil- 
bert (‘68), Hills (’67), Kurczynski (‘70) 
and Linder (’63) have made valuable con- 
tributions towards the definition and im- 
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plementation of measures of distance 
between populations on the basis of dis- 
crete variables, but mixtures of discrete 
and continuous variables still present 
problems (Linhart, ’59), and more prac- 
tical experience with these methods is 
needed if we are to be able to choose the 
“correct” metric in a specific situation. 

In addition to the choice of metric, the 
two main conceptual problems in the de- 
velopment of any discrimination procedure 
involve the determination of the dimen- 
sionality of the space within which to 
define the groups and the number of 
groups one is to have. We have already 
noted that the introduction of “noise” 
variables may adversely affect the analy- 
sis but we should also note that the dis- 
carding of these noise variables from the 
discriminant function once they are in 
presents a number of difficulties as well. 
Rao (‘46, ’48b, ’49) developed some tests 
for hypotheses of the form that “the co- 
efficients of some specified variables in 
the linear discriminant function are zero” 
but only recently (Rao, ’70) cleared up a 
number of problems regarding the theory 
and application of these tests. Unfortu- 
nately, some problems of interpretation 
remain (Bargmann, ’70). There are also 
a number of equally important problems 
connected with the specification of the 
number of groups into which the indi- 
viduals at hand are to be classified. In 
discriminant analysis we must assume 
we know the number of groups into which 
our sample is partitioned and the dis- 
criminant function serves to allocate a 
new individual into one or another of 
these specified groups.’ Anderson (‘51) 
gave a comprehensive discussion of the 
discrimination problem under various de- 
grees of knowledge about the populations 
under consideration but this elegant the- 
ory can be used only when the parame- 
ters of the populations are known (or are 
at least estimated from “substantially 
large samples”) and when the investiga- 
tor is willing to specify a utility function 
measuring the relative importance of the 
various costs of misclassification and a 
priori probabilities for each of the groups. 
Failing to use a priori probabilities when 
they are available can be costly: Morri- 
son (‘67:132) gave an example where the 
use of prior probabilities halved the num- 

ber of misclassifications. Other problems 
of this general type were discussed by 
Isaacson (‘54), Lachenbruch (‘66) and 
Rao (’52). Rao (‘52), cited by Howells 
(‘69a) as one of the major contributors 
to multivariate statistical analysis and, 
in particular, to the discrimination prob- 
lem, after discussing the theoretical basis 
of the solution, stated, “The elegant solu- 
tion . . . has many limitations so far as 
the practical applications are concerned,” 
and then went on to list and discuss 
seven of these limitations. Many of these 
problems are still with us (Rao, ’69). 
Kendall (‘57:37) questioned the rationale 
behind forcing each new individual into 
one or another of the existing groups, 
arguing for an “undecided region” with 
the observation that, “I prefer a situation 
in which I may reserve judgement to one 
which forces me into mistakes even if I 
know the probability of making them,” 
but procedures of this type are in an 
early stage of development. 

Another problem often overlooked when 
applying discriminant function theory is 
that the variables included in the dis- 
criminant function often have a marked 
dependency on age (or some other vari- 
able). This leads to the question: What 
is the proper definition of a sample best 
linear discriminator in the presence of 
covariates? Attention has been drawn by 
Cochran (‘64) to two different answers 
to this question. Other ideas were fur- 
nished by Cochran and Bliss (‘48), Rao 
(‘62, ’69) and Tallis (‘70). The point is 
that we often want to use shape variables 
that are independent of size so that we 
can classify small and large individuals 
from the same population into the same 
group. On the other side of the coin, i t  
is quite possible for two groups to differ 
significantly in some aspect of shape, and 
yet for a conventional multivariate test 
along the discriminant function to indi- 
cate that no significant differences exist. 
As stated by Blackith (‘65), 

“Even when a group of organisms appears 
to be homogeneous, there are special prob- 

2 The problem of using the data to determine whether 
or not the sample members fall into groups and, if so, 
to delineate the groups i s  a problem of “cluster analy- 
sis.” A good review of cluster analysis is given by 
Bolshev (’69) and a discussion of the distinctions 
between discrimination and clustering problems i s  
given by Kendall (’66). 
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lems connected with the variation of shape 
within the sample, which have not re- 
received the attention they deserve; their 
existence renders the ordinary multivari- 
ate significance tests, like Wilks’ criterion 
[a good development of Wilks’ criterion is 

given by Kendall (’57:106)], irrelevant to 
the examination of differences of form in 
living material.” 

Since it is difficult, both theoretically 
and practically, to identify shape varia- 
bles that are in fact independent of size 
(Burnaby, ’66; Mosimann, ’70) it appears 
that either some form of covariance ad- 
justment or an approach along the lines 
suggested by Tallis (’70), where the re- 
sponse vector X(t) is considered as a mul- 
tivariate time series, will often be neces- 
sary in anthropometric investigations. It 
seems clear that considerable accuracy 
may be lost by not taking account of the 
existing regression on age, but exactly 
how to account for it remains an open 
problem. 

Before leaving this subject it is per- 
haps appropriate to admit that the dis- 
crimination problem is not even definitely 
solved to everyone’s satisfaction in the 
univariate case when sorting objects 
known  to belong to one or the other of 
two normal populations with the same 
known  variance, the costs associated with 
the two kinds of misclassifications being 
equal. Robbins (‘51) has pointed out that 
the obvious rule of assigning an object 
to the population whose mean is nearer 
(using the usual measure of distance) 
than that of the other population to the 
value of the object may not be the best 
rule. It is anybody’s guess’what happens 
when the response is multivariate, when 
no natural measure of distance is avail- 
able, when normality is suspect, when one 
doesn’t know how many variables to use 
nor how many groups there are (let alone 
their prior probabilities), and when the 
covariance matrices are unknown and 
possibly unequal. But the moral should 
be obvious. 

Principal components and factor 
analysis 

The basic strategy behind a principal 
components analysis is to describe the 
variation of N points in a p-dimensional 
space by introducing a new set of orthogo- 
nal linear coordinates in such a way that 

the sample variances of the given points 
with respect to these new coordinates are 
in decreasing order of magnitude. Thus 
the first principal component is such that 
the projections of the points onto it have 
maximum variance among all possible 
linear coordinates; the second principal 
component has maximum variance sub- 
ject to being orthogonal to the first; and 
so on. This technique, due to Pearson 
(‘01) and Hotelling (‘33), is perhaps the 
most widely used multivariate method, 
both directly as applied to the sample 
covariance or correlation matrix and in- 
directly, under various guises collectively 
referred to as factor analysis. 

It is perhaps appropriate to stress at 
the outset that, although the two tech- 
niques of principal component and factor 
analysis are similar in mathematical 
structure and are often used more-or-less 
interchangeably, the strategies behind the 
two methods are quite different (Kendall, 
’61:37). In component analysis we begin 
with the observations and look for com- 
ponents in the hope that we may be able 
to reduce the dimensions of variation 
and ascribe to them some biological mean- 
ing. We proceed from the data toward a 
model. In factor analysis we work the 
other way around; we begin with a model 
and check to see if it agrees with the 
data and, if so, we use the data to esti- 
mate the parameters of the model. These 
are quite different notions (Morrison, 
’67:259) and the distinction between the 
two approaches should be kept in mind 
when interpreting the results of one or 
another of these analyses. While the prin- 
cipal components solution can be viewed 
as a particular factor solution, there are 
situations in which it is confusing to 
attempt to interpret principal components 
as factors (Cureton, ’39). We proceed 
now to separate discussions of these anal- 
yses though many authors confuse the is- 
sues by not distinguishing between these 
two models. 

The rationale behind the extraction of 
principal components seems eminently 
reasonable and, at first glance at least, 
the procedure would seem to be useful in 
the study of morphology since the physi- 
cal anthropologist is typically interested 
in determining what measurements or 
combination of measurements show con- 
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siderable variation, i.e., measurements 
which may be used to pinpoint interper- 
sonal differences. The main problem here 
is that the solution depends on the units 
of measurement. Anderson (‘58:279) says, 
“Analysis into principal components is 
most suitable when all the component 
variables are measured in the same units. 
If they are not measured in the same 
units the rationale . . . is questionable; 
in fact, the analysis will depend on the 
various units of measurement.” So what 
should one do when, as in a study of 
craniofacial morphology, angular and 
linear measurements are collected along 
with areas, ratios and volumes? What in- 
sight will the principal components pro- 
vide? How can they be interpreted? After 
giving an example of a principal compo- 
nents analysis, Kendall (’57:26) made the 
revealing statement: 

“The remarkable feature of Stone’s work, 
however, is that he was able to interpret 
his components. In many cases our prin- 
cipal components do not have an identifi- 
able separate existence and are to be 
regarded as convenient mathematical ar- 
tefacts. In others it is arguable whether 
the components can be given any reality.” 

Dempster (‘69: 140), while holding out 
some hope that future developments may 
improve the situation, summarized the 
current state of the art as follows: 

“Attempts are sometimes made to regard 
the factors . . , as hard well-defined vari- 
ables, but such attempts deserve skeptical 
scrutiny. I t  may be that principal compo- 
nent analysis will some day be of use in  
locating hard underlying factors, such as 
genetically determined factors. A t  present, 
however, the uses are largely descriptive, 
explanatory, and empirical. Sampling the- 
ory and formal procedures for drawing in- 
ferences from samples to populations are 
in an underdeveloped and unsatisfactory 
state, both for principal components anal- 
ysis and for methods of factor analysis gen- 
erally.” 

It should also be noted that even if all 
the measurements m e  in the same units, 
univariate procedures based on ratios, 
etc., have considerable intuitive appeal 
and may well behave in a simple way. The 
early emphasis on indices in anthropo- 
metric work may, in this sense, be looked 
upon as one tradition worth keeping. 
This is especially evident if one is con- 
sidering the study of changes of shape 
with respect to time. There a single mea- 
surement like the cephalic index can be 

expected to be informative, communicable 
and relatively easy to handle analytically 
(Hirschfeld, ’70a,b) whereas the changes 
in the prinicpal component structure, if 
present, would be formidable to handle, 
both conceptually and from the point of 
view of methodology. When considering 
the problem of measuring change (Har- 
ris, ’63) it is of considerable importance 
to keep the structure of the problem as 
simple as possible. While a number of 
advances in the analysis of growth data 
have been made (Bock, ’63; Danford, 
Hughes and McNee, ’60; Elston and Griz- 
zle, ’62; Geisser, ’63; Geisser and Green- 
house, ’58; Greenhouse and Geisser, ’59; 
Potthoff and Roy, ’64; Rao, ’59) a number 
of problems remain (Horst, ’63) not the 
least of which is the fact that anthro- 
pometric data are often too sparse to 
support the structure assumed by these 
highly specialized models. Thus Penrose 
(‘54) suggested that the “discredited” co- 
efficient of racial likeness (Pearson, ’26) 
might indeed be more useful than “gen- 
eralized distances” - which have the ad- 
vantage of taking the correlation struc- 
ture of the observations into consideration 
-in a number of situations. Although 
the “data-engulfing computer” now makes 
Penrose’s arguments concerning compu- 
tational difficulty obsolete, he went on 
to remark: “There are other reasons for 
not despising simpler indices. It may be 
doubted whether the anthropological data 
usually available are always complete 
enough or sufficiently accurate to jus- 
t i fy the application of the most elegant 
mathematical calculations. . . .” 

When we have sufficient data, when the 
assumptions underlying the use of the 
technique are satisfied, when we can in- 
terpret and communicate the results of 
the analysis and when multivariate meth- 
ods contribute insight over and above 
that which can be achieved using simpler 
methods their use is certainly justified. 
But when these criteria are not satisfied 
it would appear that some case could be 
made for the employment of simpler pro- 
cedures. To paraphrase Penrose (‘54), 
there may be a bit of life left in the co- 
efficient of racial likeness. 

Turning now to factor analysis, this 
may be an appropriate place to quote 
Cureton (’39) since his comments on the 
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method appear to be relatively unknown 
among anthropologists : 

“Factor theory may be defined as mathe- 
matical rationalization. A factor-analyst is 
an individual with a peculiar obsession re- 
garding the nature of mental ability or 
personality. By application of higher math- 
ematics and wishful thinking, he always 
proves that his original fixed idea or com- 
pulsion was right or necessary. In the proc- 
ess he usually proves that all other factor- 
analysts are dangerously insane, and that 
the only salvation for them is to undergo 
his own brand of analysis in order that the 
true essence of their several maladies may 
be discovered. Since they never submit to 
this indignity, he classes them all as hope- 
less cases, and searches about for some 
branch of mathematics which none of them 
is likely to have studied in order to prove 
that their incurability is not only neces- 
sary but also sufficient.” 

Of course this quote is over thirty 
years old, not directed at physical an- 
thropologists, and some progress has 
since been made. But some nagging ques- 
tions persist. Consider, for example, the 
notion of the rotation of factor solutions 
vis-a-vis the justification of one’s “fixed 
idea.” The claim is that the rotated so- 
lution is often “easier to interpret,” but 
what exactly does this mean? Has anyone 
ever found that his first factor (or prin- 
cipal component) was not a “generalized 
size factor” or has anyone ever disproued 
his prior opinions on the basis of a dis- 
agreeable factor solution? Has anyone 
ever found a useful morphological factor 
which was not previously identified on the 
basis of biological considerations? Might 
not the emphasis on complicated multi- 
variate techniques be the result of a quest 
to find a branch of mathematics that 
will prove one’s sophistication by sacri- 
ficing interpretability and communicabil- 
ity? Is it not possible to by-pass some of 
the mystique and concentrate on varia- 
bles, or combinations of variables, that 
are suggested by biological considera- 
tions? Virtually all the meaningful analy- 
ses of multidimensional data I have seen 
have come from experimental insight and 
scientific theory but, when statistics was 
indeed helpful, i t  was generally univari- 
ate in character. A definite danger in the 
indiscriminate employment of a procedure 
like factor analysis is that it may impede 

cal anthropologist. Horst (‘65:23) ad- 
mitted, 

‘ I .  . . it is probable that the emphasis on this 
aspect of factor analysis - namely, its role 
in classification and taxonomy - has a iim- 
ited and superficial role and has done much 
to retard more fundamental applications 
to the problems of prediction.” 

Other m u  ltiuariate procedures 
It is not my intention to survey the en- 

tire field of multivariate statistical analy- 
sis in this paper. I have attempted to con- 
centrate on procedures which are most 
often used in the anthropometric litera- 
ture and present “the other side of the 
story” with respect to their usefulness, 
applicability and interpretation. However, 
similar remarks apply to many of the 
multivariate procedures not considered in 
detail here. To cite one final example 
which illustrates quite nicely how ques- 
tions of interpretation persist throughout 
much of multivariate analysis, consider 
the case of canonical correlation analysis 
(Anderson, ’58:288). The mathematical 
theory behind the technique is quite ele- 
gant and applications would appear to be 
abundant in anthropometry. However, in- 
terpretation is quite another matter: As 
stated by Kendall (’57:82), 

“When it comes to the stage of interpre- 
tation we shall encounter the same diffi- 
culty that we already met in component 
analysis: of knowing whether our linear 
functions correspond to anything ‘real’ or 
whether they are merely matters of mathe- 
matical convenience.” 
This common thread of problems in the 

interpretation of certain multivariate anal- 
yses was also noted by Dempster (‘69: 
179): 

“Canonical correlation analysis has an ob- 
vious mathematical appeal; whether or not 
it is a statistically useful tool is less easily 
discovered. A similar question was raised 
when considering principal components 
analysis . . . the question of meaning and 
usefulness of the artificial canonical varia- 
bles remains.” 

The physical anthropologist usually has 
an embarrassing profusion of variables 
and often employs multivariate techniques 
with the objective of achieving parsimony 
by introducing a mathematical idealiza- 
tion in an attempt to “reduce the dimen- 
sions of the problem.” While this approach 
may in fact occasionah produce the re- progress in the development of techniques 

more suited to the problems of the physi- quiied simplification, i< is more usually 
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the case that the new dimensions defy 
meaningful interpretation and that no 
real simplification is realized. These con- 
siderations lead to the following ques- 
tion: Is there not something basically 
wrong with an idealization which creates 
difficult problems rather than serves to 
avoid them? No one really questions the 
philosophical foundations of most multi- 
variate techniques nor the mathematics 
upon which they are based. This does not 
mean, however, that they are useful in 
practice, and disciplines which choose to 
ignore the possibility that mathematical 
artefacts may not be interpretable in the 
context of the subject-matter problem 
leave themselves open to the further ques- 
tion: Is there not something basically 
wrong with a discipline if difficult prob- 
lems arise from a supposedly simplifying 
idealization? Some more general com- 
ments concerning the reasons for these 
difficulties are given in the following sec- 
tion. 

Some more general comments 

In most anthropological contexts, the 
main business of statistical data analyses 
is the description and communication of 
the informational content of a body of 
data. Pictures and graphs play a key role 
in data analysis but, with multidimen- 
sional data, revealing plots of the struc- 
ture of the raw data cannot easily be 
made. For example, when three or more 
variables are involved, there is no con- 
venient graphical representation of a mul- 
tivariate histogram or empirical cumula- 
tive distribution function. Nor can one 
utilize the examination of residuals (see, 
e.g., Chapter 3 of Draper and Smith, 
’66) in order to check on the underlying 
assumptions, identify outliers, etc. This 
prevents the investigator from obtaining 
realistic clues, as he is used to getting 
in the one or two variable cases, as to 
what to do, or what models to try (Tukey 
and Wilk, ’65). A case in point is how 
does one get a feel for whether or not his 
data are multivariate normal. Marginal 
normality is certainly not sufficient: 
There are examples of bivariate distribu- 
tions having normal marginals where the 
correlation coefficient can be zero despite 
a high degree of association between the 

variables (Lancaster, ’59) and where the 
correlation coefficient is positive and yet 
the values of one of the variables de- 
creases as the other increases (Vaswani, 
’47, ’50). Also see Feller (‘66:69,99,162). 
Kempthorne (‘66) raised the questions: 

“What is the status of goodness-of-fit tests 
for the multivariate normal distribution? 
Are there concepts analogous to skewness 
and kurtosis of univariate distributions, 
with associated tests of significance? Has 
anybody since Galton actually looked at a 
bivariate distribution? How does one look 
at a five-variate distribution? Although it 
is true that univariate procedures are dom- 
inated by the normal distribution, it was 
considered relevant, and probably still is, 
to have classes of non-normal univariate 
distributions, as exemplified by Pearson’s 
types, but have any classes of non-normal 
multivariate distributions been developed?” 

The present author (Kowalslu and Tar- 
ter, ’69; Kowalski, ’70, ’71) has attempted 
to provide some answers to these ques- 
tions, but they stand a long way from 
being satisfactorily answered and, until 
they are, caution must be advised in 
practice. When the data are multivariate 
in character, what is available by way of 
statistical techniques for the assessment 
of models is very limited from the stand- 
point of theory and even more so from the 
standpoint of practice. We know precious 
little about the operating characteristics 
of multivariate procedures; they are often 
based on complex functions of the data 
which do not provide useful summaries 
of the informational content of the data; 
they are often difficult to interpret and 
communicate; and they do not readily 
lend themselves to graphical analysis, al- 
though Mahalanobis (‘70), Wilk and 
Gnanadesikan (’61, ’64), Gnanadesikan 
and Lee (‘70) and Gnanadesikan and Wilk 
(‘70) have made some important contri- 
butions in this area. 

So there is another side to the story. 
Most will agree that the field of multi- 
variate statistical analysis is both diffi- 
cult and important-in theory and in 
practice. I believe that the current state 
of the art is such that some consideration 
should be given to univariate analyses, 
despite the fact that our data are gen- 
erally multidimensional in character, and 
that a concerted effort should be made 
to restrict the use of formal statistical 
analyses to situations in which they are 
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informative, communicable and relative- 
ly easy to understand and display. When 
multivariate analyses do not satisfy these 
criteria, I question the rationale behind 
their employment and suggest the use of 
simpler, data-analysis oriented techniques. 

I want to close this discussion by in- 
dicating what “the other side of the story” 
is not. It is not a signal to physical an- 
thropologists that multivariate analysis 
is never useful and therefore not worth 
knowing about. On the contrary, when 
properly used, multivariate techniques 
can be of considerable value in certain 
situations and their scope of applicabil- 
ity promises to expand significantly with 
future developments in the field. If we 
are to make reasonable judgments about 
when to apply these techniques and keep 
abreast of new developments we must be 
conversant with “Quotations from an Un- 
familiar Bartlett” (Seal, ’64:xi). While in 
order to present “the other side of the 
story” it was necessary to give views 
which did not hold much hope for the 
future of multivariate analysis, these re- 
marks should be tempered in the light 
of the well-known advantages of multi- 
variate analysis in certain contexts and 
the expectation that further research will 
shed additional light on some of the cur- 
rent problems in the field. Both sides of 
the story have been presented: Papers 
containing arguments for multivariate 
analysis were cited in the introduction 
and questions raised by various investi- 
gators - many of whom were responsible 
for the mathematical development of 
these methods - were sprinkled liberally 
throughout the text. In the final analysis 
the decision of which approach to use 
in a given situation rests with the in- 
dividual investigator. In my own view, 
there is a case to be made for using 
both univariate and multivariate analy- 
ses whenever possible. They may not al- 
ways lead to consistent inferences (viz., 
Rao’s paradox) but even this may be 
informative of the situation under analy- 
sis if i t  motivates the investigator to go 
back to the data in an attempt to dis- 
cover “why” it happened. We should 
never lose sight of the fact that statistics 
is a tool; and it seems wise to choose the 
particular tool or tools which are best 
suited to the job at hand. Nobody ques- 
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tions the use of multivariate techniques 
when they can add something to the 
results of simpler analyses, but everyone 
should question their use when they im- 
pede communication among anthropolo- 
gists and focus attention on mathematical 
artefacts instead of on biological truths. 
A handy rule of thumb is suggested by 
Koons’ (‘62) observation that, “. . . we 
can hardly defend our model if we cannot 
interpret the results it provides.” 
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