Automatic Tour Plan Generation
for Mobile Robots

by
J .\Borenstein, Assistant Research Scientist
and
Y. Koren, Professor

Technical Report No. UM-MEAM-89-03
April 1989

ABSTRACT

This paper introduces a Tour Plan Generator for mobile robots. Tour
eneration for mobile robots is a special case of what is known as a "Vehicle
heduling Problem". In this paper, the particular requirements for mobile
robots are identified, and a Tour Plan Generator is designed which address
these requirements.

This TPG combines different heuristic tour-construction rules into a
"heuristic team approach". A new heuristic rule has been tested and was found
to yield superior results when J)art of the heuristic team. Finally, an Index of
Performance has been defined which allows to evaluate the performance of
individual members of the heuristic team.

C:\WS2000\PAPERS\PAPERO8, April 21, 1989 page-1

1. INTRODUCTION

A task-oriented navigation system for mobile robots is currently under development in
the Robotic Systems Division at the University of Michigan. This hierarchically organized
system comprises four functional levels of performance.

The Task Planner (TP) represents the system’s highest level (Level IV). Interfacing with
the human operator, the TP receives a list of tasks that need to be performed by the robot.
Out of this list, the TP extracts all locations pertinent to mobile robot travel and sends them
to the next lower level.

Level 111 is the Tour Plan Generator (TPG). The TPG plans a sequence of #rips among
all specified locations. This is not a trivial task, since some locations have to be visited in a
certain order, and some potential tours may be to long and have to broken up into smaller
ones.

Level II of the system is the Global Path Planner (GPP). The GPP contains (or has ac-
cess to) a world model which includes information about stationary obstacles (e.g., walls),
off-limit zones (e.g., stairs), and information about recently detected unexpected obstacles.
Based on this information, the GPP plans an optimal path between the current location and
a goal location (Borenstein and Koren, 1986). The path produced by the GPP is expressed
as a linked list of via-points, typically spaced about 1 to 10 meters apart.

At the lowest level (Level I), a Local Path Planner (LPP) drives the mobile robot from
one via-point to the next. The main task of the LPP, however, is obstacle avoidance
(Borenstein and Koren, 1888, 1989a, 1989b). In our mobile robot system, the LPP uses
ultrasonic sensors to detect and avoid obstacle on the fly, while continuing to proceed
toward the designated target location.

This paper deals with some aspects of Level I1I, the Tour Plan Generator. The heart of
the TPG is an algorithm which computes an optimal (or near-optimal) tour. A tour com-
prises of one start location and any number of intermediate-goal locations. It is assumed
that a tour is closed, that is, the robot returns to its original start location.

This type of problem falls into the class of "Vehicle Scheduling Problems" and is of in-
terest to a variety of transport applications. However, mobile robots represent a special
class of transportation device and therefore need special considerations.

The TPG described in this paper is especially designed for mobile robot applications
and offers the following features:

page-2

1.1 Distribution

This is the most basic feature of the TPG (in this form, it is also known as the "Traveling
Salesman Problem".) A distribution task requires the mobile robot to get a supply of items at
a central depot, and then distribute these items to a number of drop-off points. For this pur-
pose, the TPG will calculate an optimal tour (in terms of distance), starting at the depot and
passing each specified drop-off point exactly once, before returning to the depot. Usually,
the order in which drop-off points are visited is unimportant.

In this basic case, the robot’s transport capacity is considered unlimited, that is, it is as-
sumed that there is always enough capacity to load all distribution items for a tour.

1.2 Tour Length Constraint

A mobile robot’s maximal tour length may be limited to a certain "mileage" between
necessary visits to a "home-depot". Typical reasons for this requirement may be the need to
recharge batteries, or to recalibrate an onboard position system (e.g., a gyro).

The TPG inserts "home-depot visits" into the tour, after a preprogrammed tour-length
has been traveled. The overall tour-length, comprising all such created subtours, is again op-
timal. While not expressively addressed in this paper, this feature can easily be modified to
deal with load-capacity limitations.

1.3 Ordered Pairs

This feature addresses situations in which only one item can be transported at a time.
This situation is characteristic for mobile robots equipped with an arm. Whenever the arm is
used to carry an item, it is only this one item that can be held in the robot’s gripper. Conse-
quently, goal locations are not treated equally, but rather as Ordered Pairs, where each
source location (where an object is acquired), must be followed immediately by its respec-
tive goal location (where the object is released) before the robot can perform the next task.

1.4 Mixed Tasks

With the described TPG, Distribution and Ordered Pair Tasks can be handled concur-
rently. This means that the operator may issue a list of mixed commands (command
keywords are printed in upper-case), such as:

page-3

*BRING item_1 FROM place_1 TO place_2 AND DISTRIBUTE kem_2 to place_3 AND DISTRIBUTE
item_3 to place_4 AND MOVE TO place_5 AND BRING item_4 (robot knows where) TO place_6
AND [more activities] AND [more activities] PLEASE".

The TPG computes a sequence of #rips which connect all locations, such that the overall
traveling cost (in terms of distance) is optimal.

2. THE TRAVELING SALESMAN PROBLEM

Features 1.1 through 1.4 above are based on a well known problem in the fields of opera-
tions research and artificial intelligence, which is known as the "Traveling Salesman Problem"
(TSP). The problem is to find an optimal tour through n cities, starting at city 1, then visiting
the n-1 remaining cities once and only once before returning to the origin. Optimallity is
normally defined in terms of minimum distance or minimum cost.

The problem is of great interest because of its many "real-life" applications, among which
are fuel oil delivery, newspaper distribution, or delivery of any kind of goods from a central
depot to a number of outlets. One approach to solve the problem is based on branch and
bound algorithms (also known as A") (Nicholson, 1967; Miliotis, 1976), which yield exact
(optimal) solutions if the number of cities involved is small. Unfortunately, the combinatori-
cal nature of the problem tends to increase computer-storage and calculation-time require-
ments dramatically with increasing n. As a matter of fact, the problem has been shown to
belong to the class of NP-complete problems, which require an amount of time exponential
in n for an exact solution.

Therefore, much effort has been put into the development of heuristic algorithms, which,
by their very nature, are not necessarily optimal, but may be evaluated in statistical terms.
This is justified by the fact that a "good" solution is acceptable for most practical applica-
tions. In addition, almost-optimal algorithms have been tested that average at only 1 percent
cost above the known optimal solution’s cost (Golden et al., 1980) for fairly large problems
(n=100). For this reason, we will use the term "optimal" in the sense of "almost-optimal" or
"the-best-solution-the-heuristic-algorithm-could-produce". By contrast, when refering to the
mathematically exact optimal solution, we will use the term "absolute optimal’".

The heuristic solutions for the TSP fall into three classes:
a) Tour construction procedures
where the heuristics are applied during construction of the tour, by proper choice of the
next city to be included and its location in the growing subfour. Examples for this

methods are:

* Nearest Neighbor, discussed and analyzed in (Rosenkranz et al., 1974).

page-4

* Clarke and Wright Savings, discussed and improved in (Golden, 1977a).

* Nearest-, arbitrary-, or farthest insertion, analyzed and tested in (Rosenkranz et al,,
1974).

* Cheapest Insertion, introduced in (Raymond, 1969).

* Convex Hull (Wiorkowski and McElvain, 1975; Golden et al., 1980).

b) Tour improvement procedures
where a randomly constructed initial tour is improved by exchanging one subset of links
in the tour with another subset, until no more improvement is achieved. Examples for
this method are:

* inversions or 2-opt method, introduced in (Croes, 1958).
* 3-opt method, introduced in (Lin, 1965).
* k-opt method, introduced in (Lin and Kernighan, 1973).

c) Composite procedures.
This is a simple yet effective refinement: Firstly, a tour construction procedure is ap-
plied in order to produce a "good" initial tour. Secondly, one or even two tour improve-
ment procedures are applied. This method, in several variations, has been tested and
compared in (Golden et al, 1980) and a FORTRAN program is given in (Zdenek,
1973).

A thorough comparison between all the above methods, with many experimental results
(concerning accuracy and timing) is given in (Golden et al, 1980). A theoretical analysis of
some of the tour constructing procedures is given in (Rosenkranz et al, 1974).

2.1 Limitations and Assumptions
There are two assumptions for the TSP in its basic form:

2.1.1 Symmetrical Distance Matrix

This assumption applies for the common case where the distance between city i and city
j is the same in both directions). An example for a case which produces asymmetrical dis-
tances are intraurban connections, with one way streets, where the actually traveled distance
between two locations is not the same in both directions.

2.2.2 Triangle Inequality

The triangle inequality is fundamental in euclidean geometry, stating that the sum of the
lengths of any two sides in a triangle is greater than the length of the third side. The TSP,
applied to interurban connections in hilly areas, where roads may be much longer than the
direct distance between two adjoining cities, is an example for a case were the triangle ine-
quality is not necessarily satisfied.

page-5

Not all of the above algorithms are capable of handling exceptions from the basic form of
the TSP. Unfortunately, experimental results in (Golden et al, 1980) relate only to the basic
form of the TSP, and so do most other papers on the subject.

2.2 Vehicle Routing

A related class of problems is known as the Vehicle Routing Problem (VRP). In the VRP,
one must design a set of routes of minimal total cost, leaving from and eventually returning
to a depot, while satisfying capacity constraints and meeting customer requirements
(Federgruen and Zipkin, 1984). The problem can be seen as a (at times much more
demanding) extension of the TSP, adding some or all of the following requirements and
restrictions beyond the standard TSP:

* An optimal tour between one central depot and many customers has to be found for
many vehicles traveling concurrently on many subtours.

* Vehicles have maximum capacities.

* Vehicles have maximum route time constraints.

* Multiple depots, multiple capacities, multiple demands, etc.

The approach in (Federgruen and Zipkin, 1984) and (Golden et al, 1977) is based on
reducing the complexity of the VRP (by means of some heuristics), to the basic TSP, which
may then be solved by any of the methods discussed above. Clearly, this approach yields
only an approximate solution. Moreover, it is very difficult to evaluate the performance (in
terms of accuracy) of the suggested algorithm, since exact solutions are known only for very
small problems.

3. ATOUR PLAN GENERATOR FOR MOBILE ROBOTS

We have developed two models for mobile robot applications which allow to implement
our TPG as a special case of the Traveling Salesman Problem.

Model I:

The foremost problem in tour planning for mobile robot applications stems from the fact
that many mobile robots (especially when carrying an object in their gripper) have a limited
transport capacity, namely, one item at a time. In the case of the Ordered Fair feature,
where the robot is required to transport several objects (one at a time) from source locations
to goal locations (source and goal, respectively, in the following), the TSP can not readily be
employed. This is so, because in this problem a source must always be visited immediately
prior to visiting a goal — a constraint the basic TSP is not equipped to handle.

page-6

As a solution to this problem, we suggested that each ordered pair (source and goal) are
treated as ome location in the TSP. This concept can be visualized by picturing the vehicle
entering a location i at source(i) and emerging from that location at goal(i) (see Fig. 1). The
cost matrix C(n,n) for this model is asymmetric, with elements c(i,j) being distances between
goal(i) and source(j). As is seen in Fig. 1, the distance between goal(i) and source(j) differs
from the distance between source(i) and goal(j).

The diagonal elements in C represent the distance between source and goal of the same
Ordered Pair. Since the vehicle must travel from each source to its respective goal, anyway,
diagonal elements are not considered in the algorithm at all, and may be set to 0 (they are
considered, nevertheless, but for another purpose, which will be explained later).

It should be noted that tasks involving only one physical location at a time (e.g., Distribu-
tion tasks) can easily be adapted to the above concept by simply assigning the same coor-
dinates to artificially defined sources and goals. This is why Ordered Pair and Distribution task
commands can be issued in the same command sequence.

From Fig. 1 one can see that the triangle inequality does not hold true in this case: the tri-
angle tour 1’ to 2; 2’ to 3; 3’ to 1, constituting a complete tour according to our model, does
not yield ¢(1-2) + ¢(2’-3) > ¢(3’-1).

In practical mobile robot applications the triangle inequality does not hold for yet
another reason: a distance in the cost matrix is actually the length of a #rip, which is com-
puted as the shortest possible connection between two locations, under avoidance of known
obstacles. Therefore a #rip may be considerable longer than the straight (euclidean) dis-
tances between two locations.

As is seen from the above, the requirements in mobile robot applications do not meet any
of the two assumptions of the basic TSP. Although some of the TSP-algorithms are still ap-
plicable, most of the experimental and analytical results from literature are not, since they
assume symmetric cost matrices and euclidean distances.

Model IT:

In order 1o insert a "home-depot visit", after a preprogrammed tour length L_ . has been
traveled, the tour must be broken up into subfours, each of which starting and terminating at
the "home"-Jocation. The length of the subtour is not to exceed L, ... Once a suitable
mechanism for breaking up the complete tour into subtours is devised, it is easy to alter the
physical attribute producing the cost which is not to exceed L, Battery charge, for ex-
ample, in a battery powered vehicle; time, in school-bus scheduling or newspaper dispatch-
ing; capacity, in a vehicle with capacity limitations; or position accuracy of a position sensor
(e.g., a gyro) which drifts with increasing tour length or time.

page-7

4. THE TPG ALGORITHM

Out of the three classes of heuristic TSP algorithms (see Section 2), we have chosen to
work with tour construction procedure, since these offer a straight-forward way to accom-
modate Model II. A four construction procedure (also called "insertion procedure”) usually
starts with the smallest possible subtour (2 locations), inserting new locations to this subtour
according to a heuristic rule, until all locations are included and the tour is completed. At
each stage, after a new location has been inserted, the tour length constraint can be tested.
This is done by comparing the accumulated tour-length (of the current subtowr) to L ,,. If
L, is exceeded, the last inserted location is removed and the remaining subtour (now com-
plying with L_,) is saved. Subsequently, a new subtour is constructed, until all locations
have been included. Note that the a subtour is optimal at any stage of this process, since the
newly inserted location was selected by the algorithm’s heuristic selection rule.

The following is the generic form for the "closest” (or "farthest", or "arbitrary”) insertion
algorithm for the standard TSP:

1. choose a starting location .

2. choose a location k such that c(i,k) is minimal (or maximal) and form subtour i-k-i.

3. find location k not yet in the subtour, which is closest (or farthest, or arbitrary) to any
location in the subtour.

4. find trip (i,j) in the subtour which minimizes c(i,k) +c(kj)-c(i,j). Insert k between i andj.

5. repeat 3. and 4. until all locations are included in the tour.

Calculation times for such algorithms are of the order of n? (Golden, 1980). Commonly,
one would run the same algorithm n times, choosing each one of the n locations once as the
starting location, comparing costs of each run and selecting the lowest cost as the result. This
changes the order of the resulting algorithm to O(n3), but considerably improves the quality
of the solution.

In our application, however, subfour are likely to be created because of the tour length
constrain. Since subtours have to start and end with the same location, one can not run the
algorithm with different starting locations, rendering this means of improvement useless.

Nevertheless, we were able to improve results by running several similar algorithms for
the same problem, again selecting the best run to yield the resulting tour. We run the
generic insertion algorithm (comprising steps 1 through 5, above), with variations to the
selection rule (step 3). The following six selection rules were employed:

page-8

SELECT1:
SELECT2:

SELECT3:

SELECT4:

SELECTS:

SELECTS6:

Find location k, not in subtour, farthest from starting location
Find location k, not in subtour, closest to last chosen location

Find location k, not in subtour, close to last chosen location, but far from 1st
location, minimizing ¢(1,k)-c(k-1,k)

CLOSEST INSERTION: find location k, not in subtour, closest to any location
in subtour

FARTHEST INSERTION: find location k, not in subtour, farthest from any
location in subtour

CHEAPEST INSERTION: for (ij) in subtour find location k, not in subtour,
minimizing c¢(’ k) + c(k’y) - ¢(7’y).

5. EXPERIMENTAL RESULTS

In order to obtain statistically relevant data, 50 random problems, each comprising n=15
locations (1 starting location and 7 start-goal pairs), were created. Table 1 gives the coor-
dinates for one such problem and Table 2 shows the associated asymmetric cost matrix C.
The diagonal elements of C hold the distance between the start and goal location of an Or-
dered Pair. This information is not needed (and could be set equal 0) for choosing an op-
timal tour, since this distance has to be traveled anyway, for any possible tour. However, this
distance must be considered on behalf of the tour length constraint.

RUN#32 RUN#32
COORDINATES ASYMMETRIC COST-MATRIX C

X' ¥ X Y ¥ 1 2 3 4 5 6 7 8
1 718 279 718 279 1 0 108 108 194 327 424 348 246
2 507 312 705 171 2' 213 243 137 157 120 210 134 38
3 33 171 620 233 3' 693 672 590 528 373 308 374 476
4 201 11 561 164 4' 582 528 474 391 328 333 359 429
5 650 258 391 279 5! 71 102 39 129 259 360 285 189
6 595 343 297 330 6' 138 204 112 182 213 298 222 116
7 186 143 373 327 7' 549 519 443 375 246 217 262 352
8 532 170 479 339 8' 215 173 108 29 178 284 223 177

Table 1; Exampie-run coordinates Table 2: Asymmetric cost-matrix for example run.

page-9

Fig. 2 depicts the same example graphically. The starting location is labeled "1,
start/goal pairs are labeled "2" through "8", and goal locations are distinguished by
apostrophes. Close inspection of Fig. 2 shows the difficulty in finding an optimal tour
manually, even for this relatively small problem.

For each one of the 50 problems, the absolute optimal solution was calculated by compar-
ing the costs for all possible tours. There are [(n-1)/2]! (=5040, for n=15) possible permuta-
tions for each of the problems, which is why only "small" problems were created in our ex-
periments.

In order to enforce the creation of a tour comprising at least two subtowrs, L, was then
set to 75% (arbitrarily chosen value) of the absolute optimal cost. (Clearly, if the admissible
maximal length of a subtour (L,,,.) is less than the known absolute optimal solution, then the
heuristic algorithm will have to build two or more subtours.) Recalculation of the new op-
timal cost, now under consideration of the maximal cost constraint (L,.), yielded a new
optimal tour, as illustrated for the above example, in Table 3. The value of C, in Table 3
represents the total cost of the absolute optimal solution of the 2-subtour problem created
through the tour length constraint.

RUN#32 SEED WAS:-21848 5040 tours created.
Absolute optimal tour (with 1 subtour): 1 2 8 4 753 6 1
Copt = 3485 (with one subtour)
:Fx = 2613 (set to 0.75*C__. to force 2nd subtour)
solute optimal tour (wi'ffx 2 subtours): 1361284751

Copt = 3625 (with 2 subtours)

Table 3: Absolute optimal tour with one and two subtours.

Subsequently, each one of the six heuristic algorithms was run for each of the 50 ran-
dom problems. A typical result (for the above example) is shown in Table 4, where the rela-
tive error E ; (as compared to to C,,) of each selection rule is shown. Since the TPG always
runs all of the six selection rules for each problem, The TPG can chose the best result out of
the six and make it the "representative" result. In the example run of Table 4, selection rule
#3 happened to find the exactly optimal tour, and therefore the representative result shows
E_.,=0. Obviously, this is coincidental, and representative results have mostly E ., >0. A bet-
ter indication would be an average of the relative errors of representative results over a large
number of problems. We will call such an average ang.

page-10

RUN$#32 SEED WAS:-21848 Ih“=2613 an=3625
Selection Tour Cost E .
Rule

SELECT1 1376512481 4112 13.43%
SELECT2 1847651231 4293 18.42%
SELECT3 1284751361 3625 0.00%
SELECT4 1283751461 3830 5.65%
SELECT5 1283761451 3796 4.71%
SELECTé6 1768451231 4267 17.71%
TPG's best 1 284751361 3625 0.00%

Table 4: Results of individual selection rules.

6. INDEX OF PERFORMANCE FOR HEURISTIC SELECTION RULES

As is evident from Table 4, the various selection rules performed quite differently on the
same problem. However, none of the selection rules performed always well or always poorly
on all 50 problems.

One can easily think of additional heuristic selection rules and add them to the TPG.
Even if the rules were bad, they may produce the best tour, eveg' once in a while. However,
with more selection rules to run, computation time for the TPG grows. A good evaluation
method would allow the programmer to include only those heuristic rules that contribute
significantly. The question therefore arises, how to evaluate the performance for heuristic
selection rules. One approach to this question would be to calculate the average relative error
produced by each selection rule when run alone. A result of this test is shown in Table 5.

Active rule Average error
E-vra (50 runs)
only SELECT1 7.22%
only SELECT2 7.12%
only SELECT3 8.00%
only SELECT4 7.63%
only SELECTS 7.45%
only SELECT6 10.03%

Table 5: Average error Eavrg produced by each selection rule, when running alone.

page-11

However, since in the actual algorithm the rules function as a "team", their performance
should be evaluated in that context. For this reason, we introduced another test. This time,
the TPG was run for all S0 problems, but each time omitting one of the six selection rules
(i.e., the representative result was chosen out of the remaining five rules.) The better Cavrg
resulting from the remaining selection rules, the lesser the "would-be" contribution of the
omitted selection rule. To illustrate this approach, one can imagine a creative "think-tank"
team, working jointly on a problem: If only the best idea counts, it is less important how of-
ten a team-member comes up with another good idea, but rather how often he or she
produced the best one.

Table 6 shows E,lvrg for the TPG using all but one selection rule. The first entry, with all
selection rules active, produced an average cost of 2.39% above the optimal cost. In each of
the following runs, one of the selection rules was omitted.

As can be learned from Table 6, by far the best contribution comes from selection rule 3.
(To our knowledge, the heuristics of this rule have not been suggested elsewhere in the con-
text of the TSP. However, it must be emphasized that this experiment has been performed
with a tour length constraint). Intuitively, selection rule 3 can be understood as an attempt to
fill as many remote (yet close to each other) locations as possible into one subtour, thereby
avoiding high costs in cases where a subtour had to be closed due to L, before covering all
locations in a remote area.

Active selection Average error Contribution to
rules Eyrg (50 runs) joint performance
All Selection rules 2.39%
all except SELECT1 2.69% 0.30 = 11.15%
all except SELECT2 2.52% 0.13 = 5.16%
all except SELECT3 3.07% 0.68 = 22.15%
all except SELECT4 2.76% 0.37 = 13.41%
all except SELECT6 2.51% 0.12 = 4.78%

Table 6: Average error Eavrg produced by all (or all except one) selection rules.

7. CONCLUSIONS

A Tour Plan Generator (TPG), optimized for the specific needs of mobile robot ap-
plications, has been developed. Features of this TPG include the ability to automatically in-
sert home-depot visits into the tour, as well as to deal with ordered source/goal pairs which
have to be visited in proper sequence. A model has been developed which allows to repre-
sent the latter problem as a TSP with asymmetric cost matrix and non-euclidean distances.

page-12

New heuristic tour construction procedures, designed specifically for mobile robot re-
quirements have been tested and found to compare favorably with known heuristics.

A "heuristics team approach” has been employed to further improve the TPG’s perfor-
mance, and an original way to evaluate the performance of individual components (selection
rules) of the heuristic team has been introduced.

With the index of performance method described in Section 6, an efficient tool has been
introduced in order to accurately evaluate the performance of additional selection rules. This
method is particularly suitable for the heuristic team approach used in this TPG.

8. REFERENCES

Borenstein, J. and Koren, Y., 1986 "Optimal Path Algorithms For Autonomous Vehicles".
Paper presented at the 13th CIRP Manufacturing Systems Seminar, June 5-6, Stuttgart,
West-Germany.

Borenstein, J. and Koren, Y., 1988, "High-speed Obstacle Avoidance for Mobile Robots".
Proceedings of the IEEE Symposium on Intelligent Control, Arlington, Virginia, August 24-26.

Borenstein, J. and Koren, Y., 1989a, "Real-time Obstacle Avoidance for Fast Mobile
Robots". Accepted for publication in the JEEE Trans. on Systems, Man, and Cybemetics.

Borenstein, J. and Koren, Y., 1989b, "Real-time Obstacle Avoidance for Fast Autonomous
and Semi-autonomous Mobile Robots". Third Topical Meeting on Robotics and Remote Sys-
tems, Charleston, South Carolina, March 13-16, 1989.

Croes, G. A.: "A Method For Solving Traveling-Salesman Problems." Operations Research 5,
1958, pp. 791-812.

Federgruen, A., and Zipkin, P.: "A Combined Vehicle Routing and Inventory Allocation
Problem". Operations Research, Vol. 32, No. 5, Sept.-Oct. 1984, pp. 1019-1037.

Golden, B. L., 1977, "Evaluating a Sequential Vehicle Routing Algorithm". AIIE TRANSAC-
TIONS, Vol. 9, No 2, pp. 204-208.

Golden, B. L., Magnanti, T. L., and Nguyen, H. Q.: "Implementing Vehicle Routing
Algorithms". Networks, Vol. 7, 1977, pp. 113-148.

Golden, B., Bodin, L., Doyle, T., and Stewart, W. Jr.: "Approximate Traveling Salesman
Algorithms". Operations Research, Vol. 26, No. 3, May-June 1980, pp. 694-711.

page-13

Lin, S. and Kernighan, B. W.: "An Effective Heuristic Algorithm for the Traveling-Salesman
Problem". Operations Research 21, 1973, pp. 498-516.

Lin, S.: "Computer Solutions of the Travelling Salesman Problem". Bell System Tech. Jour-
nal, Vol. XLIV, No. 10, December 1965.

Miliotis, P.: "Integer Programming Approaches to the Traveling Salesman Problem". Mathe-
matical Programming, Vol. 10, 1976, pp. 367-378.

Nicholson, T. A. J.: "A Sequential Method for Discrete Optimization Problems and its Ap-
plication to the Assignment, Traveling Salesman, and Three Machine Scheduling Problems".
J. Inst. Maths Applics, Vol. 3, 1967, pp. 362-375.

Raymond, T. C.: "Heuristic Algorithm for the Traveling Salesman Problem". IBM Journal of
Research and Development, July 1969, pp. 401-407.

Rosenkrantz, . J., Stearns, R. E., and Lewis, P. M.: "Approximate Algorithms for the Travel-
ing Salesperson Problem". Proceedings of the 15th Annual IEEE Symposium of Switching and
Automata Theory, 1974, pp. 33-42.

Wiorkowski, J. J. and McElvain, K.: "A Rapid Heuristic Algorithm for the Approximate
Solution of the Traveling Salesman Problem". Transportation Research, Vol. 9, 1975, pp.
181-185.

Zdenek, F.: "Algorithm 456. Routing Problem [H]". Communications of the ACM, Vol. 16,
No. 9, Sept. 1973, pp. 572-574.

page-14

Fig. 1 Triangle Inequality does not hold
when using the ordered pair model.

Fig. 2: Example problem with one start location
and 7 ordered pairs.

IVERSITY

39015 0

9015 02526 5821

MIC|

