
AMEKICAN J O U R N A L  OF PHYSICAL ANTHKOPOLOGY 58:403-41 l(1982) 

A Method of Analyzing Density-Dependent Vital Rates 
With an Application to the Gainj 
of Papua New Guinea 

JAMES W. WOOD AND PETER E. SMOUSE 
Department of Human Genetics, Uniuersity of Michigan Medical School, Ann 
Arbor, Michigan 481 09 

KEY WORDS Demography, Density-dependence, Population 
regulation, New Guinea 

ABSTRACT A method of estimating age-specific coefficients of density-de- 
pendent variation in fertility and mortality is developed; the method is applicable 
to longitudinal data on population size and the number of births and deaths 
classified by age. Given a sufficiently large data set, it is possible to  estimate 
both the sensitivity of each age class to density-dependent damping and the 
density effect of each age class on every age class in the population. Application 
of the method to government census data on the Gainj, a small tribal population 
from highland Papua New Guinea, shows that fertility is density-independent, 
but that mortality is a t  least partially density-dependent. This finding suggests 
that the size of the population is regulated by mortality rather than fertility. 
Individuals aged less than five years and greater than 50 years are particularly 
sensitive to  density-dependent survival damping; individuals of adolescent and 
early reproductive age are not themselves damped, but appear to be responsible 
for the observed damping. 

It is a common assertion that small human 
populations a t  the band or tribal level main- 
tain their numbers in stable equilibrium 
through some form of population regulation. 
Although there is a good deal of anecdotal evi- 
dence in favor of this view, we know of no rig- 
orous quantitative demonstration that it is true 
of any human population. For a direct dem- 
onstration of population regulation, it would 
be necessary to establish two separate facts: 
First, an equilibrium actually exists, so that 
the size of the population in question is effec- 
tively constant over some protracted period of 
time. Second, the equilibrium is stable, so that 
the population returns to the equilibrium after 
being displaced from it. Unfortunately, it would 
take many years of observation to develop this 
sort of direct demonstration, and the special 
circumstances under which both convergence 
to equilibrium and the equilibrium itself can 
be observed are probably rare. It can be shown 
under realistic assumptions, however, that a 
necessary and sufficient condition for the ex- 
istence of a stable demographic equilibrium is 

that the growth rate of the population is a de- 
creasing function of population size (Leslie, 
1959; Pielou, 1977; Charlesworth, 1980). This 
condition is known as negative density-de- 
pendence, since it implies that population 
growth is negatively correlated with popula- 
tion size or density. In general, it doubtless 
takes far fewer years of observation to  detect 
a relationship of negative density-dependence 
than to construct a convincing direct demon- 
stration of stable demographic equilibrium. 

If it can be established that population growth 
is negatively density-dependent, at  least two 
additional questions must be answered before 
anything can be inferred about the mecha- 
nisms of population regulation. First, how do 
the various age groups that make up the pop- 
ulation contribute to  density-dependent damp- 
ing? That is, are the vital rates of any given 
age group sensitive to damping, and do changes 
in the size of the age group provoke changes 
in vital rates either for that same age group 
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or for any other age group? Second, what are 
the relative roles played by fertility and mor- 
tality in damping population growth? This 
question arises because the condition of neg- 
ative density-dependence can be met either by 
the birth rate declining or the death rate in- 
creasing (or both) as the population grows in 
size. Most anthropologists appear to believe that 
population regulation, if it occurs in humans 
at all, is mediated through some form of fer- 
tility control. (For recent examples, see Ben- 
edict, 1972; Hayden, 1972; Dumond, 1975; Hal- 
berstein, 1980). This view is based on evidence 
that various mechanisms, either cultural or 
physiological, act to lower fertility below some 
theoretical maximum. To regulate the popu- 
lation, however, fertility must be adjustable in 
a negative density-dependent fashion, at  least 
in the neighborhood of demographic equilib- 
rium. If fertility is low but constant, it cannot 
regulate the population. The same argument 
applies to mortality, even though mortality is 
rarely invoked by anthropologists as a mech- 
anism of population regulation. 

In this paper, we develop new methods of 
fitting and testing models of age-specific, den- 
sity-dependent fertility and mortality, and we 
apply these methods to census data from a small 
tribal population, the Gainj of highland Papua 
New Guinea. Here we are particularly con- 
cerned with developing the necessary statis- 
tical tools for this analysis, with showing that 
density-dependent damping of population 
growth actually occurs among the Gainj, and 
with investigating the relative sensitivities of 
the fertility and mortality of various age groups 
to this damping. In a sequel to this paper we 
shall deal with the implications of such damp- 
ing for the population’s age structure and the 
form of the demographic equilibrium itself. 

MODELS OF DENSITY-DEPENDENT DAMPING 

We begin with a description of the basic 
models to be tested. All these models can be 
derived from a simple modification of the den- 
sity-dependent model of Smouse and Weiss 
(1975). The essence of that earlier treatment 
is that both the probability of surviving and 
the probability of reproducing during a short 
interval of time are log-linear functions of the 
age distribution and size of the population a t  
the beginning of the interval. For convenience, 
we shall describe only models of mortality in 
this section. Structurally equivalent models of 
fertility can also be constructed, and we shall 
test such models later in the paper. In con- 
formity with standard demographic practice, 

we adopt a female-dominant, single-sex treat- 
ment here. This greatly simplifies the math- 
ematics and, as we shall discuss below, is par- 
ticularly appropriate for the application to 
follow. 

Let the population be divided into Z nonov- 
erlapping age classes. For a female in the i-th 
age class a t  time t, let the probability of sur- 
viving one time unit (say, one year) be denoted 
by pi, (i = 1, 2, . . . , I; t = 1, 2, . . . , 13. (Sim- 
ilarly, in our models of fertility we work in 
terms offi,, the probability that a female in the 
i-th age class produces a single daughter in the 
same interval.) The number of females present 
in the age class a t  the beginning of the interval 
is denoted by nit. Following the Smouse-Weiss 
model, we define 

to be the density-dependent survival probabil- 
ity for the i-th age-class during the t-th census 
period. The term a, is the density-independent 
component of survival in the i-th age class. 
(The traditional density-independent demo- 
graphic treatment describes pLt by the simpler 
model In pLt = al, so that pzt is a constant that 
does not depend on population composition.) 
The p, are positive “damping coefficients” that 
determine the influence of the j-th age class on 
the survival of the i-th age class. Given these 
negatively density-dependent survival rates or 
a parallel model for fertility, it is easily shown 
that the population converges to both a stable 
age distribution and an equilibrium popula- 
tion size under all but the most extreme de- 
mographic circumstances (cf. Smouse and Weiss, 
1975). 

Because exponents are additive, the expo- 
nential form of eq. (1) is mathematically con- 
venient for use with Leslie projection matrices; 
however, it involves two serious problems with 
respect to estimation. First, nothing in it con- 
strains plt to lie between zero and one. Second, 
it does not produce a smooth sigmoid curve of 
the sort usually assumed to characterize den- 
sity-dependent processes. A very similar model 
that avoids both of these difficulties is provided 
by the familiar logit transformation: 

R. In (1 - ’pi.) 

I 
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The parameters here have exactly the same 
meanings as before, but the model is more use- 
ful for estimation. For either large (0.80 < pit 
< 1.00) or small (0.00 < pit < 0.20) survival 
probabilities, eqs. (1) and (2) yield similar p- 
coefficients. Only in the intermediate range 
(0.20 < pit  < 0.80) do the p-coefficients differ 
appreciably between these models, and we are 
not operating in this range. 

The full model (a) requires I (I + 1) param- 
eters for survival and a similar number for 
fertility; it is thus both completely general and 
theoretically rich. Unfortunately, the quantity 
of data required to estimate so many param- 
eters is prohibitive for most anthropologically 
interesting situations; the full model is a bit 
too rich to be of much utility. Therefore we 
present a series of simplified models that re- 
tain various important features of the most 
general model (cf. Weiss and Smouse, 1976). 

The first such simplification, Model I, is the 
density-independent model, which will serve 
as our null hypothesis: 

(3) 

eat 
Orpit = = PI .  

The second simplification, Model 11, allows for 
generalized damping by total population size 
h): 

(4) 

Finally, the third simplification, Model 111, is 
identical to the most general model (a), except 
that it assumes that some of the p-coefficients 
are zero. Given a subset (H C I) of the nht as- 
sumed to damp, Model I11 takes the form 

111: 

h € I  

where the summation is over that same subset 
(H) of the I age classes. Models I, 11, I11 and 
require I ,  U, Z(H + 1) and Z(Z + 1) parameters, 
respectively. 

We should note at  this point that all these 
models have constant parameters and thus are 

not applicable to  cases undergoing demo- 
graphic transition due to social or environ- 
mental change. In any particular application, 
it will be necessary to find some sort of tran- 
sient perturbation that changes the size of the 
population enough to reveal density effects 
without modifying its underlying demographic 
patterns. 

ESTIMATION AND TESTING 

Our estimation strategy, though superfi- 
cially complicated, is basically a weighted least- 
squares procedure. As before, we find it con- 
venient to treat only mortality here, but the 
procedures for fertility are precisely analo- 
gous. 

Although we do not actually use the full model 
(eq. 2) here, we begin with the estimation of 
its parameters since estimates for all the other 
models can then be obtained as a series of spe- 
cial cases. Observed survival fractions of 1 and 
0 create statistical problems, because one can- 
not take the logarithm of 0. Gart and Zweifel 
(1967) have shown that this problem can be 
circumvented and the chi-square approxima- 
tions improved if one defines (in our terminol- 
ogy) 

r 
Pit + 1/(2nit) 

1 - pit + 1/(2nit) 1 yit = In 

We then have the linear model 

Ytt = a, - Pint + €It. 

. (6a) 

(6b) 

Gart and Zweifel (1967) have also shown that 
the variance of the error term eit is approxi- 
mately 

(7) 

Now define the vectors 0: = (ai, p i 1 7  B i z ,  . . . , 
and xi = (1, --nit, -nzt,.  . . , -nit). The 

general model can be rewritten 

yj t  = a, - pint + eit = t 3 j t  + (8) 

Place the observed yit values into a vector yi 
= &, yi2, . . . , y i ~ )  and construct a matrix X 
of dimension T x ( I  + 1) whose t-th row is the 
observed vector xi. Define the inverse-variance 
weights wit = l h a r ( 4  using eq. (7) and place 
them in a diagonal matrix Wi of dimension T 
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x T.  The coefficient vector, e,, can now be es- 
timated according to a standard weighted least- 
squares normal equation (Neter and Wasser- 
man, 1974: 3271, 

e, = (xfw,x)-l (x'wJ,). (9) 

According to the Gauss-Markov theorem, this 
is the best estimator of 8, in that it is unbiased 
and of minimum variance among all weighted 
estimates (Rao, 1973). A separate vector 8, is 
estimated for each age class, and the ylr pre- 
dicted by the model are computed as 

yLt = eix, = - pLlnlt 
- PL2nzt - . . . - Pgnrt.  (10) 

Define a vector of these 9 values for the i-th 
age group, viz., YL = (.%I, QLz ,  . . . , 9 , ~ ) .  

The goodness of fit of the general model is 
assessed by partitioning the total variation in 
the observed yLt values into a component at- 
tributable to  the model and a residual com- 
ponent. For the i-th age class, we compute the 
following weighted sums of squares: 

SS(Tota1) = yLWyl = xw,& (lla) 

SS(Mode1 R) = yiW,X6, ( l lb )  

SS(Residua1 a) = (y, - 9J'W1(y, - Yc) ( l lc)  

t  

= c Wlt C r r t  - 9J2. 
t 

The ylt values are defined so that SS(Model0) 
and SS(Residua1 a) are distributed as chi-square 
variables with (I + 1) and (T - Z - 1) degrees 
of freedom, respectively. Obviously, to  esti- 
mate all the parameters we require T > I + 
1, and in general we need T >> I to achieve 
satisfactory estimates. Exactly analogous 
treatment is possible for fertility, but since only, 
say, K < I age classes will usually be fertile, 
we need only T > K + 1 to estimate all the 
non-zero fertility parameters. If T (the number 
of separate censuses) is too small for the full 
estimation task-and in the following appli- 
cation it will be too small-one must be content 
with one of the simpler models, I, 11, or 111. 

One usually prefers to reduce the number of 
parameters to  a parsimonious minimum that 
still allows an adequate fit of the model to the 
data. One begins with the simplest version, 
Model I, and adds only those terms required to 
improve the degree of fit. For Model I, the es- 

timators and sums of squares can be written 
down immediately: 

SS(Mode1 I) = x w,,?; (13a) 

SS(Residua1 I) = wLtblt - y,)2. (13b) 

Since Model I is the null hypothesis of density- 
independence, eq. (13b) is the total variation 
available for modeling density-dependent de- 
viations. If eq. (13b) is not significant when 
compared to a chi-square distribution with (T 
- 1) degrees of freedom, then there is no evi- 
dence for density-dependence and the analysis 
should terminate. 

If Model I does not provide an adequate fit 
to the data, we then assess Model 11. The es- 
timation and testing strategy is exactly the 
same as in eqs. (g-ll), except that the 8, and 
xt vectors now take the form 8, = (aL, yJ and 
x, = (1, - n J ,  where n is the total population 
size at  the beginning of the t-th census period. 
The fit of Model I1 is assessed by computing 

t 

t 

SS(Mode1 11) = SS(Residua1 I) 
- SS(Residua1 11) (14~)  

= W,t @,t - YL)', (14b) 
t 

where 

SS(Residua1 11) = x wLt brt - 9J2, (14c) 
t 

the j i t  values in eqs. (14b) and ( 1 4 ~ )  being the 
predictions from Model 11. These sums of squares 
are distributed approximately as chi-square 
variables with 1 and (T - 2) degrees of free- 
dom, respectively. 

Finally, if Model I1 does not provide an ad- 
equate fit, it is useful to  examine Model I11 with 
different choices of elements for the vector xt. 
The estimation and testing strategy is again 
the same as in eqs. (g-ll), but with the vectors 
Bi and xt correspondingly reduced in dimen- 
sion. Each age class can be modeled separately. 
Computer programs are available from the au- 
thors on request. 

GAINJ DEMOGRAPHIC DATA 

To illustrate the methods described above, 
we have applied them to census data collected 
among the Gainj of Papua New Guinea. The 
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Gainj, who were studied by one of us (J.W.W.) 
in 1977 and 1978, number about 1500 individ- 
uals living in 20 villages in the vicinity of the 
Upper Tagui Valley on the northernmost fringes 
of Papua New Guinea’s central highlands. They 
are classic swidden horticulturalists, cultivat- 
ing sweet potato, taro, yams, and other crops 
in small, temporary plots cleared from primary 
or secondary rainforest. The density of the Gainj 
population is low by highland New Guinea 
standards, averaging only about 25 persons per 
square kilometer. Circumstantial evidence, 
summarized by Wood (19801, suggests that the 
Gainj have maintained essentially this same 
density for at  least the last three to five gen- 
erations. In 1969, however, the Gainj experi- 
enced an outbreak of A2 Hong Kong influenza, 
which was pandemic in Papua New Guinea a t  
that time; as a result, they declined in number 
by about 6.5% between 1969 and 1970. Since 
that time, the size of the Gainj population has 
returned to nearly its pre-epidemic level (Wood, 
1980). It is this temporary disruption of the 
population that permits us to infer something 
about the demographic equilibrium. In effect, 
the epidemic serves as a natural perturbation 
experiment, and the aftermath of this disturb- 
ance provides us with the data analyzed in this 
paper. 

These data (Table 1) were obtained from gov- 
ernment census books for the Gainj Census Di- 
vision; these books are kept a t  the Simbai Sub- 
district Office in Madang Province and were 
kindly made available to us by Subdistrict Of- 
ficers Moses Poi and George Chapok. A few 
words about the way government census pa- 
trols are conducted in Papua New Guinea will 

make clear both the strengths and limitations 
of these data. During the first such patrol, peo- 
ple from several neighboring villages are called 
together a t  some predetermined location, their 
names are recorded by household, and an es- 
timated year of birth is assigned to each in- 
dividual. On later visits, which occur at  roughly 
yearly intervals, the list of names is read aloud. 
The names of persons who are no longer resid- 
ing in the area are crossed out, a note being 
made as to  whether they died or migrated out 
of the area. Similarly, new residents are re- 
corded either as births or as in-migrants (or, 
in the years before complete enumeration has 
been achieved, as people who were missed by 
earlier censuses). In general, this strategy is 
an efficient one once the enumeration has be- 
come more or less complete, but it entails two 
potential sources of error. First, the ages as- 
signed to individuals born before the first cen- 
sus are based solely on visual appearance and 
cannot be particularly accurate. Therefore we 
have employed only a very crude ten-year ca- 
tegorization of the adult population. Second, if 
a child is born after one census patrol and dies 
before the next, its existence may never be re- 
corded. Consequently, the census procedure 
underestimates both the birth rate and the in- 
fant death rate to an extent determined by the 
length of the intercensal period. This has the 
effect of partially confounding fertility and in- 
fant survival in the analyses to follow, a point 
to which we shall return later. 

The data in Table 1 pertain to  only a part of 
the total Gainj population and were collected 
by government officers during five quasi-an- 
nual census patrols between 1970 and 1977. 

TABLE 1 .  Annual fertility (fJ and survival (pd rates of Gainj females, listed by age class and census year, with age class 
sizes (n,J in parentheses. Fertility rates refer strictly to the production of daughters 

Age class in years (i) Census 

( t )  
year 0-4 5-9 10-19 20-29 30-39 40-49 50 + 

f i t  (nd f i t ( n d  f 3 t  ( n d  At (nd fst ( n d  fit (nd f i t  (nd 
~ ~~ 

1970 - (116) - (82) - (184) ,115 (157) ,112 (89) ,027 (74) - (58) 
1972 - (117) - (97) - (187) ,131 (160) .118 (102) .014 (73) - (69) 
1974 - (116) - (98) - (184) ,100 (160) ,096 (114) ,015 (68) - (79) 
1976 - (115) - (100) - (174) ,111 (162) ,182 (143) ,054 (74) - (84) 
1977 - (121) - (109) - (183) ,093 (161) ,091 (143) ,014 (71) - (85) 

plt  (nd pzt (mt) ~3~ ( n d  pat (n4J P5t (nd p6t (nst) mt (nd 
1970 ,983 (116) 1.000 (82) ,995 (184) ,994 (157) ,989 (89) 1.000 (74) ,983 (58) 
1972 ,889 (117) ,959 (97) 1.000 (187) ,981 (160) 1.000 (102) ,932 (73) ,986 (69) 
1974 ,974 (116) ,990 (98) ,989 (184) ,981 (160) ,965 (114) ,868 (68) ,937 (79) 
1976 ,965 (115) ,980 (100) ,994 (174) ,957 (162) ,944 (143) ,905 (74) ,833 (84) 
1977 ,959 (121) ,991 (109) ,995 (183) ,994 (161) ,965 (143) ,986 (71) ,929 (85) 
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Not all the censuses taken during this period 
have been included in this table, simply be- 
cause the detailed breakdowns for some years 
were not available to U8. A few earlier censuses 
were also available at  Simbai, but comparison 
with our own pedigree data shows that these 
earlier efforts seriously underenumerated the 
extant population. Because the epidemic losses 
in 1969 presumably represent a different phe- 
nomenon from mortality induced by density- 
dependent factors, we exclude the 1969 census 
from the analysis as well. While the epidemic 
caused the pertubation, it is the aftermath that 
we examine for density-dependent effects. 

The data for the five censuses included in 
Table 1 have been grouped into seven age cat- 
egories, which we have labelled “early child- 
hood” (roughly 0-4 years of age), “late child- 
hood (5-9 years), “adolescent” (10-19 years), 
“early reproductive” (20-29 years), “mid-re- 
productive” (30-39 years), “late reproductive” 
(40-49 years) and “post-reproductive” (50 + 
years). We present the survival and fertility 
data for females only. Males have been ex- 
cluded for two reasons: First, males often leave 
the area for irregular periods to work on low- 
land plantations, and the census data are such 
that it is difficult to  determine accurately 
whether a given male was actually in resi- 
dence within the Tagui Valley during any given 
intercensal period. Males who are not present 
contribute nothing to density stress and are 
not vulnerable to  it. The females are perma- 
nent residents, however, and we are much more 
confident about both their numbers and sur- 
vival rates. Second, the patrol officers con- 
ducting the censuses made little effort to  as- 
certain paternity reliably, and the estimation 
of male fertility rates would be very difficult 
in practice. Female fertility is more easily as- 
certained, except for the under-reporting al- 
luded to above, and an age-specific fertility ta- 
ble is easily constructed. We have elected to 
indicate only those births resulting in daugh- 
ters, in accordance with the strictly single-sex 
models presented above. 

The vital events listed in Table 1 occurred 
during the intercensal period following the 
year’s census. As mentioned above, the dura- 
tion of the intercensal period varies slightly 
from one year to the next. In Table 1, we have 
adjusted the fertility and survival rates to  an 
annual basis by dividing the raw figures by the 
length of the intercensal period, on the as- 
sumption that births and deaths are uniformly 
distributed with respect to time over these short 
intervals. The adjustments are all small. 

TABLE 2. Residual chi-squares (by census year and age 
class) for the fertiliw and survival rates of Gainj females 

after fitting Model I (density-independence) 

Residual fertility chi-square 
Age Age class 
class 1970 1972 1974 1976 1977 total 

20-29 0.025 0.670 0.180 0.000 0.487 1.362 (4)t 
3039 0.118 0.051 0.846 3.852 1.562 6.430 (4) 
40-49 0.005 0.454 0.345 1.377 0.410 2.590 (4) 

Age Residual survival chi-square 
class Age class 

1970 1972 1974 1976 1977 total 

0-4 2.771 6.087 1.755 0.876 0.451 11.940* (4) 
5-9 1.076 1.550 0.430 0.004 0.618 3.678 (4) 
10-19 0.018 0.753 0.410 0.004 0.016 1.201 (4) 
20-29 1.540 0.108 0.108 2.556 1.618 5.930 (4) 
3039 1.266 2.347 0.011 1.169 0.030 4.823 (4) 
4049 3.602 0.227 1.860 0.088 3.479 9.256 (4) 
50+ 2.904 3.685 0.698 5.166 0.429 12.882* (4) 

‘Significant (P  < 0.05). 
tNumber in parentheses = degrees of freedom 

RESULTS 

The first step of the analysis is to examine 
Model I, eq. (31, the density-independent null 
hypothesis. If the data fail to reject this most 
parsimonious hypothesis, we need proceed no 
further. The fertilities of the 20-29,30-39, and 
4 0 4 9  age classes were tested against Model 
I, and the results are presented in the top sec- 
tion of Table 2. There is no evidence for a de- 
parture from the null hypothesis. In other words, 
there is no need to invoke density-dependent 
regulation of fertility to explain the results, 
and the analysis of fertility variation can be 
terminated. The resulting null hypothesis es- 
timates of the fertilities of all seven age classes 
are: 0.000, 0.000, 0.000, 0.113, 0.129, 0.035, 
0.000. 

Similarly, the survival figures for all seven 
age classes were tested against Model I, and 
these results are presented in the bottom sec- 
tion of Table 2. Here the outcome is mixed. 
Both the youngest (0-4) and oldest (50 + age 
classes deviate significantly from the null hy- 
pothesis of density-independent constancy, but 
none of the other age classes shows any sig- 
nificant departure from the null hypothesis. 
The “late reproductive” age class (40-49) does 
show a nonsignificant but suggestive depar- 
ture from the null hypothesis (0.10 > P > 0.051, 
but further analysis (not presented) shows no 
convincing evidence of any density-dependent 
pattern to the departures from constancy; we 
thus accept the density-independent model for 
this age class as well. For the 5-9,lO-19, . . . , 
40-49 age classes, the resulting null hypoth- 



DENSITY-DEPENDENT VITAL RATES 409 

esis estimates of the survival probabilities are: 
0.974, 0.991, 0.974, 0.959, and 0.910. 

The next step is to examine Model 11, eq. (41, 
for the youngest ( 0 4 )  and oldest (50+) age 
classes. The estimated a- and y-coefficients and 
the chi-square test criteria are presented in 
Table 3, along with the corresponding figures 
for the Model I analysis. SS(Mode1 11) = 0.42 
for the survival of the (0-4) age class; in other 
words, the youngest age class is not credibly 
damped by total population size. For the (50 + ) 
age class, on the other hand, SS(Mode1 11) = 
4.98*, a significant improvement over the null 
hypothesis; there is thus some evidence for 
generalized damping on the survival of this 
age class. The residual variation for the (50 + 
age class is nevertheless sigificant [SS(Residual 
11) = 7.90*], and so Model I1 is not entirely 
adequate here either. 

To determine which age classes are respon- 
sible for the damping, it is necessary to test 
various versions of Model 111, eq. (5). There are 
seven p-coefficents to work with, so there are 
( ) + ( $ ) + . . . + ( 7 ) = 127 permutations 
of the model to be considered. Since there are 
only five census sets and one degree of freedom 
is required to fit each model, we can fit only 
models with fewer than five pcoefficients. That 
still represents ( 1 + ( $ ) + , . . + ( I = 98 
permutations to  be tested. Although one would 
normally employ a stepwise version of the 
regression analysis in a situation such as this, 
a stepwise procedure is not guaranteed to con- 
verge on the best model. To avoid this problem, 
we have generated all 98 models and have 
searched for “sensible” sequences of models. In 
Table 3 we present the same set of models for 

both the (0-4) and (50 + ) age classes, because 
this set appears to represent the sensible so- 
lution in both cases. 

In the case of the (0-4) age class, the (10-19) 
age class provides the most convincing evi- 
dence of damping, with SS(ModelII1, p13 I aJ 
= 4.02*. The (20-29) age class, in contrast, 
yields no credible evidence of damping since 
SS(Mode1 111, pi4 I al) = 0.14. Under either 
model, the residual variation remains signifi- 
cant [SS(Residual I11 I al, p13) = 7.92* and 
SS(Residua1 I11 I al, p14) = 11.80*], and we are 
justified in proceeding. The model with both 
the (10-19) and (20-29) age classes as dampers 
yields SS(Mode1 111, pI3, p14 I al) = 7.58* and 
reduces the residual to SS(Residua1 I11 I al, p13, 

p14) = 4.36. For the (50 + ) age class, either the 
(10-19) or the (20-29) age class provides a good 
description of the observations, since SS(Mode1 
111, p73 I a7) = 10.86* and SS(Mode1 111, p74 I 
a,) = 9.85*. The coefficients for the model with 
the (10-19) age class as dampers are both neg- 
ative, however, implying that survival of the 
(50 + ) age class is very poor a t  low population 
density but improves with an increase in the 
numbers of women in the (10-19) age class. 
Since the dynamics of such a model would be 
pathological, we arbitrarily rule it out of con- 
sideration. Both coefficients for the model with 
the (20-29) age class as dampers are positive, 
and the residual variation [SS(Residual I11 I 
a7,/374) = 3.031 is nonsignificant. Although we 
are justified in stopping at this stage, we have 
also examined the model with both age classes 
as dampers. The coefficient for the (10-19) age 
class remains negative, however, and the im- 
provement in SS(Mode1 111) is small. On bal- 

TABLE 3. Estimated parameters and sums of squares for Model I (density-independence), Model II (genemlized density 
damping) and three versions of M A 1  III (age-specific density damping) for the survival mtes of females in age classes 

(04) and (50 +). The three versions of Model 111 are indicated by the respective @-coefficients employed. 

Estimated model parameters Source of survival variation 

Model Residual 
Damped 

Model age class 4 A PI3 P14 SS DF SS DF 

I 0-4 (i = 1) 2.760 - - - t 1 11.94* 4 
t 1 12.88* 4 50+ (i = 7) 2.237 

n 0-4 (i = 1) -0.304 -0.0037 - - 0.42 1 11.52* 3 
50+ (i = 7) 15.064 0.0152 - - 4.98* 1 7.90* 3 

I11 0-4 ( i  = 1) 18.609 - 0.0864 - 4.02’ 1 7.92* 3 
50+ (i = 7) -20.901 - -0.1290 - 10.86* 1 2.02 3 
0-4 (i = 1) -5.176 - - 0.0018 0.14 1 11.80* 3 
50+ (i = 7) 7.734 - - 0.0796 9.85* 1 3.03 3 
0-4 ( i  = 1) 85.921 - 0.1445 0.3535 7.58* 2 4.36 2 
50+ (i = 7) 24.079 - -0.0845 0.2298 11.78* 2 1.10 2 

- - - 

*Significant Ip < 0.05). 
tCorredion for the mean. 
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ance, we accept the model with the (20-29) age 
class responsible for damping on the (50 + ) age 
class. For both the damped age classes, (0-4) 
and (50 +), then, the best models take the form 

91t  = 85.921 - 0.144n3, - 0.354n4, (15a) 

p7, = 7.734 - 0.080n4, (15b) 

The corresponding predicted survival proba- 
bilities for the five census years are: (0.979, 
0.912, 0.941, 0.971, 0.929) for the (0-4) age 
class and (0.985,0.938. 0.938,0.851,0.903) for 
the (50 + ) age class. These predictions should 
be compared with the observed values of (0.983, 
0.889, 0.974, 0.965, 0,959) and (0.983, 0.986, 
0.937, 0.833, 0.929), respectively. 

Leaving aside the particular values of the 
estimates, the conclusions to  be drawn from 
this analysis are fairly simple: (i) The survival 
of both the youngest (0-4) and oldest (50 + 
age classes deviates significantly from the den- 
sity-independent null hypothesis, and appar- 
ently both the “adolescent” (10-19) and “early 
reproductive” (20-29) age classes are impli- 
cated in the damping. (ii) Among the 5-9,lO-19, 
20-29, and 30-39 age classes, survival shows 
no evidence of departure from density-inde- 
pendent constancy. (iii) The survival of the 
(40-49) age class shows a suggestive but non- 
significant departure from the null hypothesis, 
but lacking any convincing evidence for den- 
sity-dependence, we accept the null hypothesis 
here as well. (iv) There is no evidence that 
fertility is anything but density-independent 
and constant. Recall that infant survival is 
confounded with reproduction in our data, a 
fact that could only have increased the appar- 
ent evidence for density-dependent fertility if 
infant survival itself were density-dependent. 
Thus the failure to detect any such pattern for 
fertility is doubly convincing. 

It is important to recall a pair of statistical 
caveats when interpreting these results. First, 
a phenomenon such as density-dependence may 
be real without necessarily being statistically 
significant. Second, Type I error can never be 
avoided entirely, and so the null hypothesis 
will be rejected some percentage of the time 
even if it is true. Since we have only five census 
periods to work with, all of our conclusions 
must be tentative pending the availability of 
more data. In light of these facts, we have care- 
fully avoided a statistical “fishing expedition,” 
pursuing the alternative (density-dependent) 
hypothesis only when the null (density-inde- 
pendent) hypothesis clearly fails to  account for 

the results. In each case, moreover, we have 
chosen the simplest density-dependent model 
consistent with the observations. 

DISCUSSION 

Among the Gainj, fertility and the survival 
of most age classes appear to be relatively in- 
sensitive to  density effects. Only survival of 
the very young and the very old responds 
strongly in density-dependent fashion. We 
therefore predict that one major demographic 
effect of increasing population size is an in- 
crease in differential mortality among the young 
and elderly in comparison to individuals of in- 
termediate ages. Population stress is experi- 
enced preferentially by the young and the old. 
If survival of the young and old is density- 
damped, then individuals aged roughly 10-30 
years appear to be the “dampers.” We do not 
yet fully understand this finding, but we con- 
sider it important that: (i) the dampers are 
individuals experiencing sexual maturation and 
early reproduction, and (ii) reproductive indi- 
viduals are themselves relatively insensitive 
to damping. It may well be that as the per 
capita availability of resources declines with 
increasing population size, food is consumed 
preferentially by adolescents and early repro- 
ductives at  the expense of young children and 
post-reproductive adults. 

In a later paper, we shall examine the ques- 
tion of whether this pattern of survival damp- 
ing is sufficient to bring the population to a 
stable demographic equilibrium and, if so, what 
the predicted age structure a t  equilibrium will 
be. For the moment, however, we want to  spec- 
ulate about possible mechanisms of survival 
damping suggested by the observed age pat- 
tern. We know from a variety of biomedical 
studies that the Gainj population is a poorly 
nourished one, at  least when it is near demo- 
graphic equilibrium (Wood et al., 1979; Wood, 
1980). We also know that the very young and 
old are the most poorly nourished segment of 
the population and suffer high overall mortal- 
ity. Some 40% of infant deaths involve nutri- 
tional crises brought on by weanling diarrhea, 
and clinical and anthropometric signs of un- 
dernutrition are almost universal among chil- 
dren less than five years old. Additionally, there 
is a widespread hypochromic, microcytic ane- 
mia, apparently nutritional in etiology, that 
increases rapidly in prevalence with age, so 
that about 80% of all individuals over age 60 
are affected. Moreover, the pattern of body fat 
development indicates that the “dampers” are 
individuals with proportionately very large fat 
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reserves relative to  younger and older individ- 
uals, reserves that are largely depleted over 
the course of the reproductive span (Johnson, 
1981). Due to their marginal nutritional sta- 
tus, the young and old appear to  be especially 
vulnerable to  almost any kind of stress. A com- 
paratively minor change in the environment, 
especially in the availability of food, would be 
sufficient to compromise their chances of sur- 
vival. There is little doubt, then, that the den- 
sity-dependent survival rates we have dem- 
onstrated among the Gainj are a reflection of 
resource (food) limitation. 

In this paper, we have developed a method 
for detecting density-dependent variation in 
fertility or mortality, using the kind of limited 
longitudinal data that is likely to  be available 
to many anthropologists. For the Gainj, the 
results suggest that fertility is density-inde- 
pendent but that mortality is partially density- 
dependent, suggesting in turn that population 
size is regulated by mortality rather than fer- 
tility in this particular case. The generality of 
this conclusion can be assessed only by appli- 
cation of the method to other populations. We 
do not wish to prejudice future results at  this 
stage by arguing that either fertility or mor- 
tality is inherently more likely to be impli- 
cated in population regulation. We do, how- 
ever, wish to point out that the issue is still 
very much an open one. 
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