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ABSTRACT An intergroup comparison of cephalometric landmark config- 
urations by the finite-element method elegantly depicts the algebra of some of 
the size and shape change measures that one may define by reference to those 
landmarks. In studies of mean differences between groups, the statistical 
analysis of these finite elements is equivalent to competent statistical analysis 
of the same data using any other geometric metaphor, such as properly stan- 
dardized vector descriptions of landmark “movement” or scalar measures, size 
and shape variables, taken in sufficient variety. In applications to landmark 
data, the reality of finite-element depictions is purely statistical rather than 
phenomenological. In the absence of additional evidence, they should not be 
held either more or less biologically meaningful than other descriptions of the 
same landmark changes to which they lead. These propositions are exemplified 
using landmark data from 13 cases of Apert syndrome. 

In several recent articles, the method of 
finiteelement analysis has been applied to 
data in the form of cephalometric landmark 
locations. Some of these presentations use 
triangles (Moss et al., 1985), others quadran- 
gles (Cheverud et al., 1983); mine use both 
triangles and curvilinear polygons (Book- 
stein, 1978, 1984a,b, 1986). The statistical 
counterpart of all these efforts is the tensor 
biometries under development by myself, 
Colin Goodall (19831, and others. Together 
these techniques, one new, the other newly 
applied, attempt to turn D’Arcy Thompson’s 
notion of Cartesian transformation into a 
workable method for routinely describing and 
testing differences in growth and form. 

The two approaches analyze the same data 
bases of digitized landmark coordinates and 
draw the same diagrams of triangles, circles, 
ellipses, and crosses; but they have begun t o  
diverge in their vocabularies of interpreta- 
tion. Whereas the finite-element literature 
usually speaks about real deformation 
(changes of material shape in between land- 
marks, in small regions as well as large), 
tensor biometrics deals with size and shape 
variables referring only to the landmark lo- 
cations available for analysis, not the regions 
around or between them. Each variable ex- 
presses a particular trend, change, or com- 
parison to a greater or lesser extent. 
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In this comment I argue that as currently 
applied in cephalometrics the finite-element 
method reports relationships among alter- 
nate measurement schemes rather than any 
underlying material phenomenon. Different 
finite-element schemes may not be distin- 
guishable by statistical criteria; nor is it nec- 
essary that a data analysis carried out by the 
machinery of finite deformation analysis be 
reported in those terms. The statistics of a 
sufficiently diverse setlof conventional vari- 
ables-distances between landmarks, angles 
and ratios, or  vector^'^ of landmark dis- 
placement in an appropriately registered co- 
ordinate system-are indistinguishable from 
the statistics of finite elements based on 
landmark locations whenever both statisti- 
cal analyses are carried out correctly. The 
biological interpretation of a cephalometric 
data set must be the interpretation of that 
common multivariate core of statistica1 sig- 
nal, not of whatever accidentally measured 
“variables,” or even “finite elements,” par- 
ticular investigators proceeded with in their 
computations. 

‘The measures recorded must constitute an archive of the 
landmark configuration: they must contain all the information 
necessary to reconstruct their relative positions in full detail. 
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No two fair summaries of the same Carte- 
sian coordinate data can contradict each 
other: geometry is geometry. But in practice, 
whenever two biometers are beholden to dif- 
ferent particular sets of measurements, the 
one cephalometric analysis can be made to 
appear contradicted by the other. The 
strength of tensor analysis lies in the disen- 
tangling of these interpretive difficulties. Be- 
cause good biological interpretation is 
univariate, whereas the statistics of form is 
multivariate, the geometric justification of a 
choice of interpretation matters a great deal 
for the quality of biological insight. I argue 
below that one version of the finite-element 
analysis suits the multivariate statistics of 
form very well and permits the most appro- 
priate (i.e., informative) cephalometric de- 
scription to be deduced highly objectively and 
reliably. But neither tensor analysis nor any 
other analysis of landmark data may be used, 
for instance, to determine “where the prob- 
lem originates”-for this is not a multivar- 
iate question, but a biological one. 

Craniofacial anomalies are distributed. Al- 
most everywhere across the affected head, 
nearly all measurements, conventional or 
tensor, will tend to be abnormal. In this ap- 
parent richness of descriptive material, some 
features will be far more abnormal than oth- 
ers. But there are strong constraints on the 
distribution of these characteristically most 
anomalous variables, constraints owing 
purely to the geometric origin of alternate 
measurements. Indeed, it is easy to show that 
in any anomaly some features must be nor- 
mal, precisely (Bookstein, 1983). This is a 
mere fact of geometry, having no biological 
content, not even the notion of “normal.” But 
whereas biology is the discussion of syn- 
dromes, geometry is merely the discussion of 
rulers and protractors. If one does not under- 
stand when the values of two alternate mea- 
surements are expressing a contingent 
relationship, and when instead a necessary 
one, then one cannot tell the difference be- 
tween biology and geometry in one’s findings. 

The foundation of morphometrics is at the 
same time the crux of its clinical relevance: 
it is the understanding of ways in which ge- 
ometry constrains biological or clinical in- 
sight. Only via this understanding can we 
ultimately combine disparate and distrib- 
uted findings in a rational way. One sensible 
set of variables, for instance, incorporates a 
large variety of distance-measures, such as a 
conscientious clinician might record by ruler 
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or dividers. It then becomes the morphome- 
trician’s task to indicate how the distances 
(or angles, or ratios) that are most informa- 
tive, syndrome by syndrome, should be com- 
bined and balanced in a report. A somewhat 
more effective approach is via the considera- 
tion of all possible measures at the same 
time for simple sets of landmarks, such as 
triangles; this is tensor biometries. 

The tensor description ultimately results 
in a prescription of appropriate measures for 
characterizing an anomaly: those measures 
most abnormal, together with those least ab- 
normal, triangle by triangle. When shape 
variables are generated as ratios of distances 
at go”, then these pairs of most-and-least are 
associated with pairs of shape variables at 
45” (Bookstein, 1983). It is reasonable next 
to inquire how such descriptions interact 
among different triangles. How does one com- 
bine alternate local descriptions of shape 
change into a most meaningful overall 
scheme? The purpose of this paper is to ex- 
plore, in a preliminary way, the aspects of 
description of anomaly which are common to 
diverse triangulations of a set of landmarks. 
These are, by theorem (Bookstein, 19861, the 
statistical underlayment of the biological 
phenomenon the clinician is pursuing. 

REPORTS OF SHAPE CHANGE 

Case by case or average by average, one 
can report information about a shape change 
systematically whether one talks about sca- 
lars (numbers), vectors (arrows), or tensors 
(crosses). Figure 1 shows how the same 
change in relative positions of three land- 
marks, frame a, can be expressed equally 
effectively by way of a variety of geometric 
metaphors. Figure lb  draws the change from 
left to right as a deformation of the interior 
of a triangle, after the fashion of D’Arcy 
Thompson. In frame c this deformation is 
reexpressed as a conjoint change in all dis- 
tances measurable across this triangle of 
landmarks. The continuum of distance-mea- 
sures is redundant; the pattern of their 
changes can be summarized, as in frame d, 
by the perpendicular pair of principal direc 
tions characterized as having greatest and 
least strain, or rate of change of distance. In 
this example, one length has increased by 
lo%, and the other has decreased by 9%. 

The style of report in frame d is a tensor 
presentation independent of any specifica- 
tion of a coordinate system. However, there 
are many other coordinate-independent 
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Fig. 1. Various cephalometric languages for the 
change in a configuration of three landmarks drawn in 
panel a. b: Cartesian deformation, after D’Arcy Thomp- 
son. c: Changes in length of a continuum of distance- 
measures crossing the form. d Tensor analysis: principal 
directions starting and finishing at 90” and bearing 
greatest and least rates of change of length, or principal 
strains. e: Lengths along the principal directions as vari- 
ables measured along transects of the form. The ratio 
between the indicated distances is the shape variable 

modes of reporting the same change. For in- 
stance, one might exploit the language of 
scalar variables rather than tensors but use 
the tensor analysis to select a single most 
appropriate variable. For the change shown 
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most sensitive to  this deformation. E Changes in lengths 
of three sides. g: Changes in three angles (schematic). h 
After correcting for the change in separation of any two 
landmarks, the third landmark may be considered as 
having “moved with respect to a baseline fixed upon 
the other two. After information about size change is 
restored to versions g and h, an appropriate multivariate 
statistical analysis of groups differing or changing in 
this way results in the same algebraic findings regard- 
less of the representation of shape change that is used. 

in Figure 1, one most sensitive shape vari- 
able is the ratio of distances measured par- 
allel to the cross of principal directions and, 
for convenience, passing through at least one 
landmark each, as in frame e. This ratio 



F.L. BOOKSTEIN 498 

Fig. 2. Design of a simulation for a transition from 
square to kite shape. All forms begin exactly square on 
a 20-unit diagonal and “grow” into configurations which 
vary from the kite shape by independent normal devia- 
tions of variance 1 unit in every direction at each of the 
four landmarks. The net shape change (asymmetry of 
the kite about the horizontal) has been exaggerated al- 
most threefold for legibility; the t-ratios reported in the 
text and in the legends of Figures 3 and 4 correspond to 
a much subtler change-for instance, half the amount of 
shape change shown here together with a sample sized 
25 instead of 50. 

changes from 0.45 to  0.55 over the transfor- 
mation. Other scalars may satisfactorily re- 
port this change in sets of two or three. 
Frame f reports the change as changes in the 
sides of triangle by fractions 0.0, 0.0, -0.095; 
frame g, as increments of -11.4”, 5.7”) and 
5.7” in the angles of the triangle. Finally, 
frame h shows three equally correct vector 
interpretations: the relative motion of any 
one of the landmarks with respect to two 
others after correction for the change in the 
distance between those two. (This correction 
for change in baseline distance overcomes 
the only serious objection to conventional 
systems of registration and orientation in ce- 
phalometrics; cf. Bookstein, 1984b.) 

The formal geometry of frames o h ,  com- 
mon to both finite-element analysis and ten- 
sor biometrics, makes no reference to any 
information beyond the locations of land- 
marks. The edges of the triangle are abstrac- 
tions, the interior likewise. In this context, 
all lines in frames c and e must be taken to 
depict point-to-point length measurements 
rather than straight-line loci cutting across 
tissue. What the geometry of this mathemat- 
ical triangle supports, and the tensors depict, 
is in fact the algebraic structure of these 
distance variables and of the shape variables 
derived from them (Bookstein, 1986). 

Finite-element analysis was developed to 
exactly suit the phenomena of continuum 
mechanics: to express real stress-strain rela- 
tions and conservation laws in material sys- 

tems. But the deformation model of D’Arcy 
Thompson is an abstract transformation, un- 
founded as biomechanics whenever there is 
heterogeneity of material content inside. This 
is certainly the case for polygons of cepha- 
lometric landmarks about the face. The as- 
pect of cephalometrics which smooths out the 
complicated internal structures into a contin- 
uum is the application of a ruler or protrac- 
tor) that is, the operation of measurement. In 
the application of finite elements to cephalo- 
metrics, then, the appropriate analogy is not 
of craniofacial process with continuum me- 
chanics, but of landmark-based measure 
ments with continuum mechanics. The areas 
between landmarks supply no information 
not already available from landmark loca- 
tions alone. From data so sparse there is no 
best way, only several equivalently thorough 
ways, equivalent geometrical metaphors) to 
report a form-change or a pattern of influ- 
ence upon form-change. (There is an ex- 
tended discussion of alternate measurement 
schemes in Bookstein et al., 1985.) The for- 
malism of finite elements, without any nec- 
essary relation to the biological phenomenon 
under study, nevertheless exactly suits the 
task of coordinating all these biometrical re- 
ports. That is, tensors computed from land- 
mark data depict the measurement of 
craniofacial form-change, not the phenom- 
enon. 

SQUARE TO KITE: THE EQUIVALENCE OF 
ALTERNATE CEPHALOMETRIC METHODS 

I will demonstrate this radical biometric 
relativism by studying one shape change ac- 
cording to diverse biometrical methods and 
showing their findings to be identical. The 
example is artifical, exploiting some unreal- 
istic symmetries so as to  ease verbal presen- 
tation of the equivalents. 

Consider the shape change shown in Fig- 
ure 2, taking an originally square configura- 
tion of landmarks VXWY into the form of a 
kite shown at the right. Around this partic- 
ular change there is assumed to be individ- 
ual variation in the final positions of the 
landmarks) variation which is distributed in- 
dependently from landmark to landmark ac- 
cording to a circular normal pattern 
(Bookstein, 1984a, 1986) as sketched by the 
circles about the landmark locations in the 
right-hand panel, the “later” locations. Sup- 
pose the available sample size is 50. Let the 
original square of landmarks have a diago- 
nal 20 units long; let the amount of shape 
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Fig. 3. Biometrical analysis of the change in Figure 2 
according to one finite-element scheme. Each change of 
triangular shape is displayed as the displacement of one 
landmark with respect to  the two landmarks of the base- 
line both fixed in position (cf. Fig. lh.) The shape changes 
of the two triangles are uncorrelated under the assump- 
tions of Figure 2. The shape variables most sensitive to 
these changes, constructed as empirical distance-ratios, 
are indicated triangle by triangle. The combination of 
these two into one best four-landmark shape score is the 
ratio of heights of the triangles above their common 
baseline, with matched t-statistic 3.5 for the change. (See 
the text for interpretation of this t.) 

X 

Fig. 4. The same change according to an alternate 
triangulation. The best shape variables for the separate 
triangles may be taken as the ratios of side indicated by 
the crosses; the best combined measure is now algebrai- 
cally equivalent to  the ratio of the summed upper two 
edges of the quadrilateral to the summed lower two 
edges. The matched t is again 3.5. 

change be calibrated by a change equal to 
0.5 unit in the relative location of its diago- 
nals (a change exaggerated to 1.4 units in 
the diagram for legibility); and let the stan- 
dard deviations of landmark locations about 
their mean positions be 1 unit in each direc- 
tion, landmark by landmark, as indicated by 
the radii of the circles. 

Notice that this transformation is in the 
language of Bookstein (1985), purely inhome 
geneous: the diagonals of the quadrilateral 
are unchanged from those of the square in 
both length and orientation. By virtue of this 
double invariance, the tensors for the sepa- 
rate triangles in either triangulation to fol- 
low “sum” to a net homogeneous component 
of zero, that is, no change-not a helpful point 
of view at all. 

The biometrical exercise this example is 
intended to support is twofold the descrip 
tion of the mean shape change from the 
square to the kite, together with the testing 
of that change for statistical significance. The 
statistical analysis will involve matched t- 
tests for changes from the fixed starting form. 
For each shape measure that we come to 
consider, I will cite without proof its mean 
change from left to  right and its standard 
deviation in the forms at the right owing to 
the circular landmark noise we assumed. 
These quantities may be inferred from the 
setup in Figure 2 by algebra which will not 
be reproduced here (cf. Bookstein, 1986). For 
each measure, 450 times the ratio of its mean 
change to the standard deviation of that 
change serves approximately as the square 
root of an F-ratio for testing the significance 
of shape change from the starting square 
form. In general, this JF has four degrees of 
freedom for the numerator. To be thought of 
as an approximate t-test, it must be deflated 
by about 20% if we stumbled into the shape 
variable under consideration from the class 
of all possible shape measures of a triangle, 
and by about 38% if we stumbled into it for 
describing the change of a quadrilateral; see 
Bookstein (1984a). In the interest of simplic- 
ity, I will assume instead that we suspected 
kite-shaped-ness all along, so that the ratio 
of mean change to its own standard error can 
be taken at face value as a t-statistic. 

Let us begin by considering the simple but 
arbitrary finite-element scheme shown in 
Figure 3. Registering on the landmarks of 
the common baseline (Bookstein, 1984b), we 
find the mean shape change of each triangle 
from left to right to be represented by the 
vectors shown. (These are really pseudovec- 
tors, Bookstein 1984b, as they behave differ- 
ently than vectors do when we change 
coordinate systems.) The shape variables 
capturing these changes may be taken as the 
ratios of size variables corresponding to the 
tensor crosses inside the triangles. In either 
triangle, the ratio most sensitive to this par- 
ticular shape change is the aspect ratio of the 
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Fig. 5. The same change, according to two versions of a quadrilateral element. a: Projection, 
leaving both diagonals straight but nonlinear everywhere. b Bilinear transformation, linear 
on all four edges of the square, bending one diagonal and mildly nonlinear along the other. 

triangle, its height divided by the length of the simulated sample is again .025, the stan- 
its base. From the numerical specifications dard deviation .05, and so the appropriate 
of the change (recall that the diagrams ex- test statistic is .025/(.05/&0) = 3.5. This is 
aggerate this change threefold) one can infer sharper by a factor of d2 than the ratios for 
that the net shape change of either triangle the shape changes in the triangles separately 
is represented by a change of .025 in the because it is the sum of two independent, 
mean of this ratio, which has, furthermore, a equally precise estimates of the same 
population standard deviation of .07. Then phenomenon. 
the “t-ratio” for testing the change from the Consider, now, the triangulation in Figure 
starting right triangle will be .025/(.07/J50) 4, based upon the other diagonal of the 
-2.5, which is significant at the 1% level (if square. The effect of this shape change on 
we had intended all along to ask about this either of these triangles is quite different 
particular ratio) or at about the 5% level (if from that in Figure 3. For these triangles, 
we stumbled into this ratio as the empiri- the change is equivalent to a shear of the 
cally strongest index of change from left to third landmark parallel to the baseline, and 
right). corresponds (Bookstein, 1983) to principal 

The shape change from square to kite is axes of shape change that are at f45” to the 
equally pronounced in both triangles of the baseline, so that they lie along the sides of 
figure. In the upper triangle the aspect ratio the square, triangle by triangle, as shown. 
has decreased by .025; in the other, it has Segments VY and WY grow by 2.5%, while 
increased by the same amount. By virtue of VX and WX shrink by the same fraction. The 
the example’s symmetry, the morphometric shape variable best expressing this change 
variable most sensitive to the effect of this may be taken as the ratio VXNY for the left- 
simulated shape change is constructed by hand triangle, W x / w y  for the right. The 
cancelling the common denominator of the mean change of either ratio from the “ear- 
two ratios, the diagonal of the triangulation, lier” square to the “later” form is .05, the 
so as to arrive at the ratio of the two heights standard deviation .14. 
of the two triangles. This ratio is better taken As for the other triangulation, the most 
in the form of the ratio of one height to their sensitive four-landmark variable for describ- 
sum. The mean change of this proportion in ing and testing the tendency to kite-shaped- 
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ness simply adds together the two separately 
optimal shape variables for the triangles sep- 
arately. Because of the symmetry of the de- 
sign, this is equivalent to summing the two 
numerators, then dividing by the sum of the 
two denominators, to arrive at the ratio 
(VX + WX)/(VY + WY), the sum of the lengths 
of the upper two edges divided by the sum of 
the lower two. As before, to improve the sta- 
tistical behavior of the ratio we replace the 
denominator by the sum of numerator and 
denominator, the sum VX+VY+WX+WY 
of all four sides involved. In this form, the 
fraction has a mean change of .0125 from 
square to kite, with a standard deviation of 
.025. The t-ratio corresponding to the ob- 
served change in this fraction is thus .0125/ 
(.025/&0) = 3.5, just the same as for the 
ratio of heights in the first triangulation. 
The correlation of these two shape variables, 
one based on one triangulation, one on the 
other, is .992-they are measuring precisely 
the same geometric phenomenon, up to small 
nonlinearities remaining in the algebra. 
Hence the biometries of this change is inde- 
pendent of triangulation. 

Other attempts to derive a shape measure 
customized for this particular shape change 
will arrive yet again at the same end result, 
essentially the same variable. For example, 
noticing that the effect of the change is to 
move the diagonal XY along the diagonal 
VW without rotation or change of length, one 
might construct a third clever shape mea- 
sure which is the proportion in which diago- 
nal XY cuts diagonal VW. This proportion 
will be found to have sample standard devia- 
tion twice its mean change, 0.025, from 
square to kite, so that it encapsulates the 
observed difference of form with the same 
precision as the other two indices, and indeed 
is correlated with them by the same coeffi- 
cient, .992: it is just another version of the 
ratio of altitudes already discussed in connec- 
tion with Figure 3. Or one might consider 
the difference between the angles of the 
quadrilateral measured at X and at Y; over 
the shape change, this difference changes by 
an average of 5.7" with standard deviation 
11.4", leading, once again, to a t-ratio of 3.5 
and nearly perfect correlation with the other 
descriptive measures. 

This statistical equivalence notwithstand- 
ing, the different geometric versions of 
chanpes interior to the landmarks are flatlv 

straight; that of Figure 4 breaks it into a pair 
of oblique segments. The transformation of 
Figure 4 models the change of diagonal XY 
as linear, while that of Figure 3 presumes it 
highly nonlinear, growing at the bottom but 
shrinking at the top. A composite effect on 
the "interior" might be modeled D'Arcy 
Thompson-style as the projection mapping 
in Figure 5a, which leaves straight lines 
straight but is nonlinear everywhere. Or we 
might have chosen instead the bilinear map- 
ping of Figure 5b. This map (cf. Bookstein, 
1985) is linear on all four external edges of 
the quadrilateral of landmarks but bends one 
diagonal and transforms the other nonlin- 
early. Neither of these global finite elements 
is consistent with either triangulation. There 
is no reason to expect any of these maps to 
relate accurately to biological reality inside 
this quadrilateral of landmarks in the ce- 
phalogram or in the head. Finiteelement 
models applied to landmark data deal with 
the algebra of alternate measurement 
schemes, not biological reality. 

GENERALITY OF THESE FINDINGS 

The equivalence just exemplified is always 
the case, though the general development is 
algebraically complicated (Bookstein, 1986). 
Shape variables synthesized so as to be opti- 
mally sensitive to a mean change or other 
biometric effect upon a set of landmarks will 
be statistically indistinguishable regardless 
of whether a finite-element analysis has been 
used and, whenever one is used, regardless 
of which finite-element decomposition is in- 
volved. There is no analogue to this ambigu- 
ity in other applications of finite-element 
modeling, where the governing principles are 
the constitutive laws of continuum mechan- 
ics instead of the biological rules of homolo- 
gies between points across populations. 

Which of the geometric metaphors of 
change in Figures 3-5 are supported by the 
available data, the coordinates of those four 
landmarks? Clearly, none of them. The coor- 
dinate data determine the biometric specifi- 
cation and testing of an effect, but do not tell 
us how to depict the mechanism of that ef- 
fect. That mechanism is located in the region 
between landmarks, where there are no data. 
When the information available is limited to 
locations of homologous landmarks, a vari- 
able found to be most sensitive by analysis of 
all the distances between pairs of landmarks 
and constructed landmarks will be correlated 
nearly perfectly with the quite different-look- 
ing variable found to be most sensitive hv 

Y 

incompatible. For instance, the first triangu- 
lation and the second blatantly contradict 

-., each other. That of Figure 3 leaves line VW - . ._~~_~._  - 
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Fig. 6. Three finite element schemes for growth of the sphenoethmoid synchondrosis; Brg, bregma; Lam, 
lambda; IPS, intraparietal suture. a ,b  Two triangula- 
tions in substantial agreement. c: The biorthogonal grid, 
a global finite element smoothing over alternatives like 

neural skulls of 21 purebred rats from 7 days of age to 
14 (data courtesy of M. Moss and H. Vilmann). Land- 
marks: Bas, basion: SOS, spheno-occipital synchon- 
drosis; ISS, intersphenoidal synchondrosis; SES, a and b. 

finite-element analysis, biorthogonal analy- thogonal grids, the finite-element analysis is 
sis, or the analysis of relative “movement” a helpful picture of this common biometrical 
of landmarks to a common arbitrary base- core. 
line. Whether one chooses local or global For a data base consisting of point-coordi- 
elements, triangles, quadrilaterals, or bior- nates, there is at root only one multivariate 
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Fig. 7. Mean positions (to the Frankfurt horizontal) of 
ten landmarks from the lateral cephalogram in a sample 
of Apert cases (lower set) vs. their positions in an  age- 
and sex-matched normative sample of Ann Arbor chil- 
dren from the 1960s (upper set). These landmarks will 
be used in various unconvincing finite-element analyses 
of Apert syndrome as a deformation (Fig. 8) and will be 
summarized in the scheme of Figure 9, which does not 
refer to deformations. 

statistical analysis of size and shape (Book- 
stein, 1986). But these analyses reside in a 
space of 2 k - 3  dimensions (where k is the 
number of landmark points involved), not in 
the two-dimensional space of the data. The 
diagrams of tensor analysis reexpress these 
findings in the more familiar space of the 
cephalogram, a space which must not be con- 
fused with the real spaces inside the head. 

Demonstrably homogeneous transforma- 
tion: The gap between the two senses of the 
single term “deformation”-one geometrical, 
one biological-should be bridged only in the 
presence of explicit evidence that the implied 
deformation is independent of the particular 
finite-element scheme used to  describe it.’ 
Figure 6, for instance, involves seven land- 
marks located on lateral cephalograms of the 
rat neurocranium. The elements are sum- 
marizing the shape change of these land- 

*This requirement is acknowledged whenever finite-element 
methods are applied in continuum mechanics, the field for which 
they were developed. 

marks in 21 rats followed from 7 days of age 
to 14. Analyses of these data, originally col- 
lected by Henning Vilmann, have been pub- 
lished several times (Bookstein, 1983; Patel, 
1983; Moss et al., 1985). Each analysis in- 
vokes its own finite-element decomposition, 
but they all agree about the phenomenon 
under consideration. The strains modeled 
here appear to change hardly at all when we 
pass from the triangulation of Figure 6a to 
the “opposite” triangulation of Figure 6b, or 
combine these and all other potential ele- 
mentary schemes in the global finite element 
(biorthogonal grid) of Figure 6c. 

In Bookstein and Sampson (submitted for 
publication) it is shown that the growth of 
the rat calvarium over these 7 days may be 
described satisfactorily by a homogeneous 
component that explains 91% of its effect 
upon the landmarks severally. The principal 
strains of this homogeneous component lie 
along the average directions of the grid 
curves in Figure 6c. (The other 9% of the 
change observed is mostly a deficit of longi- 
tudinal growth rate along the top of the skull, 
intraparietal suture (IPS)-bregma, relative 
to the growth rate observed along the bot- 
tom, basion-spheno-ethmoid synchondrosis 
(SES).) In this example, the empirical near- 
homogeneity of observed “growth strain” is 
expressing a nearly homogeneous biological 
process underlying the strain: the continuing 
directional growth of the normal rat brain. 
For further interpretation of this phenome- 
non, see Moss et al. (1985). 

THE CALVARIAL DEFORMITY IN 
APERT SYNDROME 

In order to relate these cautions to the topic 
of this symposium, the analysis of craniofa- 
cia1 dysmorphology, I shall reanalyze some 
cephalometric data from 13 patients with 
Apert syndrome. The data were kindly sent 
to me by Dr. Joseph McCarthy from the pa- 
tient files he maintains at the Institute for 
Reconstructive Plastic Surgery, New York 
University. Some of these findings have been 
published in Bookstein (1984b) and in Gray- 
son et al. (1985). Apert syndrome, along with 
Crouzon syndrome, is a cranial synostosis 
characterized by premature closure of the in- 
tracranial bony sutures about the maxilla 
and frontal bone. The genetically distinctive 
version which is Apert syndrome, or acroce- 
phalosyndactyly, shows deformities of the ex- 
tremities as well. Facially, the syndromes 
typically include a high, bulging forehead 
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C 

Fig. 8. Attempts to describe the calvarial deformity 
as deformation in 13 Apert cases. These mean tensors 
are computed by the method of Bookstein (1982) and 
tested according to the approximations of Bookstein 
(1984a). For each triangle, 60 size variables are consid- 
ered, distances from each landmark to 20 points evenly 
dividing the side opposite. Each of these size variables 
has an empirically observable strain from normative 
mean form to each Apert case. For each triangle, the 
average deformation is not computed as a matrix, but, 
rather, is directly characterized by the size variables 
which bear empirically greatest and smallest mean ra- 
tios of deformity (Apert length divided by mean norma- 
tive length) averaged over the 13 cases. On the model of 
homogeneous deformation, these strains apply to every 
distance measure to which they are parallel; I draw 
them, by convention, through the center of the circle 
inscribed in the mean form of the element, with length 
equal to the radius of that circle. The difference between 

these mean ratios, divided by the sum of the sample 
standard errors of the ratios, may be used as a test 
statistic for significance of shape change in that triangle; 
it is proportional to an approximate t-ratio and has a 5% 
significance level of about JT- 1.77. Axes not nearly at 
90" correspond in practice to a finding of insignificance 
for this component of the change. More rigorous proce- 
dures for the analysis of data sets like these, suitable for 
larger samples, are reviewed in Bookstein (1986). a-c: 
Mean tensors for triangles in three different tesselations 
of the configuration of ten landmarks, expressing three 
mutually incompatible finite deformations. Each of these 
models expresses the same biometric analysis, and 
therefore none of them can be considered a picture of 
true biological deformation. Their truth is limited to the 
space of alternate shape and size measures. d Additional 
triangles in the cranial base. The deformations implied 
by these triangles contradict schemes a-c. 
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Fig. 8. Continued. 

and a short maxilla positioned further back 
than normal. 

Beginning with the @odd landmarks cus- 
tomarily available on the lateral cephalo- 
gram, I excluded those on the dentition. 
Because of the open-bite usual in Apert cases, 
I have further restricted my attention to the 
calvarium. There remain the ten landmarks 
indicated in Figure 7. The conventional cra- 
nial base is delimited by sella, basion, and 
nasion. A fourth “cranial base” landmark, 
sphenoethmoid registration point (SER), is a 
useful artifact of the lateral projection; it is 
located at the intersection of the shadows of 
the greater wing and the body of the sphe- 
noid. Three landmarks lie laterally on the 
maxilla broadly construed: inferior zygoma 
(TNZ), orbitale, and pterygomaxillary fissure 
(PTM). The landmark condylion, though 
technically on the mandible, is used here to 
indicate a location at the temporomandibu- 
lar joint upon the temporal bone. Finally, 
two landmarks lie on the midline of the max- 
illa: anterior nasal spine (ANS) and posterior 
nasal spine (PNS). 

The statistical comparisons to follow con- 
strue the deformity of the Apert case as the 
deformation into his or her form from the 
age- and sex-matched University of Michi- 
gan University School Study normative 
mean landmark locations (Riolo et al., 1974). 
By theorem 2 of Bookstein (1986), any size 
variable whose mean value in the Apert cases 
shows an extreme of contrast with respect to 
the normal mean can be defined using at 
most three landmarks. Hence we survey the 
biometrics of the syndrome quite efficiently 
by computing mean shape changes for a va- 

riety of triangular parcellations of the form, 
as in Figure 8a-d, and subsequently inter- 
pret these mean differences in terms of size 
and shape variables measured across the 
form. The caption to this figure sketches the 
algorithm by which these means were com- 
puted and tested; details of these steps are to 
be found in Bookstein (1982, 1984a). 

For instance, the most reduced maxillary 
distance (in this lateral projection) is the sep- 
aration between orbitale and ANS, as seen 
in either of the triangles involving ANS at 
lower right in Figure 8a-c. This distance falls 
short of normal by some 41+10% (S.D.). In 
the cranial base, one constructed distance 
(Fig. 8d) has sh runk  by a greater fraction: 
the distance from SER to a point 75% of the 
way from basion to nasion has decreased from 
the normal mean by 50*21%. Contrariwise, 
certain aspects of the mean Apert form differ 
from the normal mean hardly at all. For ex- 
ample, the cranial base triangle basion-sella- 
nasion, although it falls about 12% short of 
the matched normative mean form in gen- 
eral size, is almost identical with normal in 
mean shape-there is only a 4% mean dispro- 
portion, best measured as a change in the 
cranial base angle. 

But these statistical summaries notwith- 
standing, nothing in the “deformation” bear- 
ing the sample statistics comparing Aperts to 
normals bears automatic interpretation as 
biologically real deformation somehow typi- 
cal of the patients’ heads. Instead, we find 
ourselves in the situation of Figures 3-5: dif- 
ferent triangulations imply utterly different 
deformations that cannot be statistically 
resolved. 
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Consider, for example, the quadrilateral 
sella-condylion-PTM-orbitale. In Figure 8a it 
is divided into two triangles along the diago- 
nal from sella to F‘TM. We see a shape change 
by some 16% (measured, for instance, by the 
ratio of distances sella-condy1ion:condylion- 
PTM) in one triangle, and near-normal form 
in the other (albeit reduced by about 18% 
from normal size). In Figure 8c the same 
quadrilateral is triangulated along its other 
diagonal, from condylion to orbitale. Now 
each triangle shows a diminishment of this 
diagonal by about 20% from normal; but in 
one of the triangles this nearly is the most 
normal transect, and in the other the least 
normal! While sella’s distance from this di- 
agonal is approximately normal on the aver- 
age, the mean height of the triangle opposite 
falls short of normal by nearly 30%. These 
statements, each true separately, are incon- 
sistent with any single model of real defor- 
mation: the analysis is analogous to that in 
Figure 3-5 rather than Figure 6. 

Further contradictory information is sup- 
plied about this region of the form in Figure 
8b; here we “see” a deformation apparently 
constant over the quadrilateral SER-condy- 
lion-PTM-INZ, a deformation which shows 
distances to be contracted by 30% of normal 
in the “northwest-southeast” direction here, 
but indistinguishable from normal along seg- 
ments like condylion-SER. These strains in 
turn are contradicted by those in Figure 8d: 
the strain -0.31 of triangle condylion-SER- 
PTM, for instance, lies nearly atop the 
+ 0.31 pertaining to the triangle basion-sella- 
SER, and so forth. 

Hardly anywhere in this set of landmarks 
can one find opposing triangles that show 
similar shape deformities. That triangles 
PTM-condylion-basion and PTM-condylion- 
sella share a strain tensor implies only that 
the point condylion, on the temporal bone, 
can be imagined to be deformed nearly uni- 
formly with the posterior cranial base seg- 
ment basion-sella: the identity of the two 
tensors is not a statement about any area. 
Likewise, the agreement between the ten- 
sors describing the changes of triangles na- 
sion-orbitale-ANS and INZ-orbitale-ANS is a 
statement about the straightness of the 
“line” nasion-orbitale-INZ. From these finite 
elements we gain no reliable knowledge of 
any deformation of areas in the lateral 
cephalogram. 

Any summary analysis from this pile of 
triangles ought to proceed without reference 
to deformations. In the absence of any ca- 

nonical method for summarizing the changes, 
I proceed as follows. Running up the middle 
of Figure 8a is a quadrilateral of landmarks 
(sella-PTM-INZ-orbitale) which shows nearly 
normal proportions throughout. A computa- 
tion using the opposite triangulation, not 
shown here, confirms that by themselves 
these four landmarks lie in a normal, albeit 
quite small, configuration. For all triangles 
in this quadrilateral, the standard deviations 
of length-ratios along the directions of larg- 
est or smallest mean strain lie in the range 
of 10-15%. Then the net shape deformation, 
normative to Apert, is statistically not signif- 
icant by matched T2 applied to the shape 
coordinates (Bookstein, 1984b, 1986) or by 
the approximate t-test of Bookstein (1984a1, 
while the size component of difference is 
highly significant. 

Now no other landmarks appear to partici- 
pate in this uniform 20% shortfall of scale. 
However, there is another near-invariance of 
normal shape-the cranial base triangle, Fig- 

xANS 

Fig. 9. The author’s preferred description of the Apert 
deformity in terms of these ten landmarks, superim- 
posed upon the mean positions of the landmarks from 
Figure 7. Both the cranial base (together with the lateral 
landmark condylion) and the lateral maxilla appear to 
change scale (by different fractions) without deforma- 
tion, but the spatial relationship between them is al- 
tered. The sphenoidal artifact SER and both palatal 
landmarks seem translated with respect to these struc- 
tures. In the lower panel, each of these three outlying 
landmarks is connected by a dash to the position im- 
puted to i t  by the uniform scale change of one of these 
triangles. 
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ure 8d, referred to alreadly. (This uniformity 
extends to the point condylion here and also 
to the point FMN, the frontomaxillonasal su- 
ture: cf. Grayson et al., 1985.) There is a 
relative rotation of some 5” between these 
two forms, together with a discrepancy in 
their scale changes. 

With respect to either of these apparently 
“fixed” forms, the point SER appears to be 
considerably displaced. The Apert SER is 
found, on average, about halfway between 
sella and nasion, instead of the normal 33% 
of the way along that segment, and also 
slightly below its usual position. Grayson et 
al. (1985) accept this aspect of the description 
as real, i.e., as describing actual displace- 
ments (not deformations) of the ala sphenoi- 
dale forward and the body downward owing 
to hydrodynamic pressure generated by brain 
growth within the synostosed calvarium. The 
body of the sphenoid has presumably de- 
formed in response, but we have no informa- 
tion permitting us to  calibrate this deforma- 
tion. 

The remaining two landmarks, ANS and 
PNS, are substantially displaced from their 
normal positions with respect to either 
“fixed” structure. The greatest shortfall in- 
volving ANS appears to be in its displace- 
ment from orbitale, as mentioned above, and 
that for PNS appears to be its separation 
from a point just forward of PTM. The frac- 
tions of shortfall from normal are both 40%: 
and the directions make opposite angles with 
the palatal plane. But both of these distances 
are severely foreshortened in lateral projec- 
tion, and no other landmarks are available 
against which we might check the assertion 
that the apparent “deformation” of these 
maxillas is real. In my view, the configura- 
tion would best be summarized instead as a 
relative motion of each palatal landmark 
with respect to higher midline structure not 
located here. 

For the available data there results the 
summary diagram of Figure 9. The finite- 
element analysis has found two landmark 
triangles typically normal in shape, but ab- 
normal in size and in relative orientation, 
and three landmarks further out-of-position 

3The distance of the mean location of PTM from the mean 
location of PNS (Fig. 7) is reduced in the Apert sample by some 
60% of the normative distance. But the anteroposterior relation 
between PTM and PNS in the Apert case shows much greater 
variation than in the Ann Arbor sample, so that the comparison 
of mean locations itself foreshortens the actual mean distance- 
ratio. 

with respect to  these two structures. A finite- 
element analysis deals with shape change as 
deformation, but this report does not refer to 
any nontrivial deformations anywhere. It is 
likely that the reorientation and adjustment 
of scale discrepancy between the two struc- 
tures of approximately normal shape-the 
cranial base triangle basion-sella-nasion and 
the lateral maxillary triangle-is managed 
by a deformation of the anonymous regions 
of calvarium in between them, the regions 
where there are no data. But there is no 
evidence regarding the nature of this defor- 
mation. (Is sella “misplaced”? How is the 
discrepancy between scale changes-12% in 
the cranial base, 18% in the maxilla- 
bridged?) I consider it unwise to speculate on 
its geometrical nature. The necessary evi- 
dence would instead be histological, beyond 
the scope of the landmark coordinates avail- 
able for this analysis. 

CONCLUDING REMARKS 

Figure 8a-c are all consistent with the 
available data-the locations of ten land- 
marks from cephalograms of Apert cases and 
of normal children-but are grossly inconsis- 
tent with each other. The inconsistencies do 
not have the appearance of “measurement 
error” that might be corrected by averages 
over adjacent regions; instead they express a 
spatial heterogeneity that is irreducible at 
the level of detail afforded by these data. The 
data unambiguously detect mean differences 
of Aperts from normals for nearly all size and 
shape measures, but do not specify any par- 
ticular deformation that might best interpret 
this deformity. The summary which I prefer, 
Figure 9, finds no “deformation” at all, but 
instead reports size change at different rates 
in different regions, together with vectors of 
relative displacement involving both isolated 
points and structures of normal shape. Of 
course, Figure 9 is neither more nor less con- 
sistent with the landmark data than any of 
the panels of Figure 8. Rather, the units it 
deals with as explanatory entities-the cra- 
nial base, the lateral maxilla, and the pal- 
ate-are the sort of entities to which 
functional cranial explanations often apply. 
Mine is, in short, a satisfactorily simple ex- 
planation consistent with the data. This is 
the most that can be required of any cephalo- 
metric landmark analysis. For Figure 6, that 
simplest explanation is itself a nearly uni- 
form deformation asserting that the form, 
in effect, does what the variables do. For 
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the Apert data, no such simple deformation 
suits the data; but a complex deformation is a 
more complicated description than that of Fig- 
ure 9. 

I am not claiming that this is an adequate 
analysis of the calvarial aspects of Apert syn- 
drome. There are only ten landmarks here; 
we should have more. Evidence of true defor- 
mation, such as in the cranial base, might be 
supplied by a close study of the curving of 
form between the landmarks used here, just 
as in this example we used the position of 
condylion, however far lateral, as a check on 
the observation of shape invariance for the 
superoposterior structures. (But there is at 
present no consensus among morphometri- 
cians about an appropriate statistical method 
for this study.) These landmarks were lo- 
cated only on X-ray film: the third spatial 
coordinate is missing, the one automatically 
obliterated in lateral cephalometrics. Else- 
where in this symposium there are reports of 
three-dimensional computer graphics for 
shape inspection which, extended somewhat, 
may lead to satisfactory three-dimensional 
landmark data bases. Because Apert syn- 
drome is in part a growth deficiency (that is, 
the normal form grows in ways prohibited 
for the Apert calvarium), the description of 
the deformity should itself vary with age. 
This latter aspect of the syndrome is one of 
the topics of Richtsmeier’s paper elsewhere 
in this symposium. 

But the fallacies underlying finite-element 
interpretations in cephalometrics are inde- 
pendent of other problems peculiar to these 
particular data. One cannot escape the purely 
bwmetric paradox: finite elements quite ef- 
fectively describe the algebra of alternate 
measurement schemes for landmark data 
even when they have nothing to do with the 
processes, deformations or otherwise, that are 
moving the landmarks around. The biome- 
tric analysis of any landmark data set is 
essentially unique: it is the same for all com- 
plete finite-element schemes, but also for all 
full-information systems of displacement vec- 
tors and all competent collections of dis- 
tances and angles in saicient variety. 
Although finite elements underlie this com- 
mon biometrical substrate, the findings may 
be reported as true deformations of biologi- 
cally real finite elements only when the data 
S U D D O ~ ~  such an intermetation with as much 

algebra of possibly helpful variables. It is 
consistent with excellence of statistics-this 
is, of course, no mean accomplishment-but 
it should not claim empirical superiority over 
statistically equivalent scalar or vector inter- 
pretations of greater biological insight. 
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