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Many studies in physical anthropology in- 
volve taking repeated measurements on 
each of the individuals (experimental units) 
comprising several samples. A wide variety 
of data-analytic strategies have been pro- 
posed for such data sets (e.g., Kowalski and 
Guire, 1974; Goldstein, 1979; Guire and 
Kowalski, 1979; Nesselroade and Baltes, 
1979; Marubini and Milani, 1986), but appli- 
cation of these methods is constrained by the 
lack of software for performing them. The 
purpose of this note is to briefly describe, 
and make available, SAS (Statistical Analy- 
sis System, SAS Institute, Inc., Box 8000, 
Cary, NC 27511) programs implementing 
two techniques for performing longitudinal 
data analyses. In  particular, we have imple- 
mented the methods due to Potthoff and Roy 
(1964) and Rao (1958), both of which com- 
pare the patterns of growth in several inde- 
pendent groups of individuals. 

THE POTTHOFF-ROY (PR) ANALYSIS 
PR approached the problem of growth 

curve analysis by generalizing the standard 
multivariate analysis of variance 
(MANOVA) model into a form that accom- 
modates fitting polynomial growth curves, 
constructing confidence bands about these 
curves, and testing hypotheses in the con- 
text of more complex experimental designs 
than had been previously considered. The 
form of this generalized model is 

E (X) = BTW’ (1) 

where E( . ) is the expectation operator and 
X is a N x T data matrix containing the val- 

ues of the variable whose growth is being 
studied at T times of measurement for each 
of N individuals. B is a N x G matrix speci- 
fying group membership; T a G x P matrix 
containing the P (unknown) parameters fit- 
ting a polynomial of degree D = P - 1 to the 
average growth curves (AGCs) in the G 
groups; and W is the T x P within-individ- 
ual or time design matrix specifying the ac- 
tual times at which the measurements were 
taken (W’ is the transpose of W). These 
times of measurement t,, t,, . . ., tT need not 
be equally spaced, but they are assumed to 
be the same for each of the N individuals. 
See Schneiderman and Kowalski (1985) for 
a more detailed description of these quanti- 
ties. 

The generalized model (1) is transformed 
into the MANOVA model E(Y) = BT using 

Y = XAplW(W’A-lW)-’ (2) 

where A is an arbitrary T x T symmetric, 
positive-definite matrix. Standard 
MANOVA methods can now be used to ana- 
lyze model l .  In particular, our program de- 
termines the smallest D adequate to fit the 
AGCs in each of the groups, fits polynomials 
of this degree to the AGCs in each of the G 
groups, tests the equality of the resulting 
regression coefficients, and performs pair- 
wise comparisons among the groups both 
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with respect to all the coefficients consid- 
ered simultaneously and one coefficient a t  a 
time. Two forms of the multivariate tests are 
included: The first is for parallelism of the 
growth curves (all coefficients except for the 
intercept equal), the second for coincidence 
(all coefficients, including the intercepts, 
equal). Several different forms of these tests 
are computed, viz., those based on the Ho- 
telling-Lawley trace, Pillai’s trace, Wilks’ 
criterion, and Roy’s maximum root criterion. 
See, for example, Kshirsagar (1972) for more 
details concerning these statistics. The de- 
gree of the polynomial is determined using 
step-up goodness-of-fit tests comparing the 
“reduced model” of degree RD to the “full 
model” of degree FD (Neter et al., 1985). RD 
and FD are both user-specified and the com- 
parisons begin with DR (often DR = l), 
stepping up, if necessary, until an accept- 
able fit (at the 5% level of significance) is 
achieved. If no degree less than FD is ade- 
quate, FD is used. To bypass the tests and 
choose your own degree, simply take 
RD = FD. 

With regards to the arbitrary matrix A in 
equation 2, we allow A to equal the identity 
matrix, the sample covariance matrix, or a 
matrix input by the user. Timm (1975) dis- 
cusses the first two of these possibilities. 
Potthoff and Roy (1964) illustrate how the 
third option might arise in practice. It 
should be noted the PR method remains 
valid regardless of the choice of A. The com- 
puter program performing this method is a 
SAS macro, called %POTROY, which uses 
PROC IML to compute the transformation (2) 
and PROC GLM to perform the MANOVAs. 

RAO’S TIME METAMETER 
Rao’s (1958) analysis is based on a trans- 

formation of the time axis, t--ct*, with re- 
spect to which the growth curves in the G 
groups are approximately linear, regardless 
of the shapes of the growth curves on the 
t-axis. This new time scale, t*, is referred to 
as  a time metameter and its structure can be 
estimated from the data in hand. Letting 
Atj* (j = 2,3 ,  . . ., T) denote the length of the 
interval between the (j - 1y‘ and jfh time 
points on the transformed time axis t*, Rao 
(1958) suggested that these quantities (and 
hence t* itself) could be estimated by 

N 

(3) 

ie., the mean values of the gains in the jth 
interval (on the t-axis) over all the individu- 
als included in the sample. Here Axij repre- 
sents the differences between the observed 
values of x at successive time points for the 
ith individual (see Schneiderman and Kow- 
alski, 1989). 

Since the growth curves are linear, the 
N x T data matrix X can be reduced to a 
N x 2 matrix containing the initial values of 
the measurement for each of the N individu- 
als and an estimate of their growth rates. 
The average growth rates in each of the 
groups can now be compared using a simple 
univariate analysis of variance or covari- 
ance, adjusting for differences in the initial 
mean values, if necessary. We provide three 
different estimates of these rates, viz., for 
each i = 1,2,  . . ., N 

and 

The choice between these estimators de- 
pends on what sorts of assumptions one is 
prepared to make concerning the variances 
of the Ax’s. If these are assumed to be equal 
at each Atj:, equation 4 is the least squares 
estimator; if they are presumed to be propor- 
tional to the size of the corresponding Atj*, 



MULTIGROUP LONGITUDINAL ANALYSES 253 

then equation 5 is the least squares estima- 
tor; the least squares estimator is equation 6 
if the variances of the Ax’s are proportional 
to the square of the corresponding Atj*. See 
Draper and Smith (1981) for a detailed dis- 
cussion. For convenience, our program auto- 
matically computes all three of these esti- 
mators and performs analyses of variance 
and covariance on all three. The user is left 
to choose the analysis most appropriate for 
hisher  data. 

The program is in a SAS macro, %META, 
which uses PROC IML to compute the suc- 
cessive differences between the x-measure- 
ments and three estimates of the growth 
rate defined above, and PROC GLM to per- 
form the analyses of variance and covari- 
ance on these growth rates. For the analysis 
of covariance, the initial value of the mea- 
surement is taken as the covariate. Scheffe 
comparisons between each pair of groups 
are also output. 

DISCUSSION 
We have described, and made available, 

two SAS programs for comparing the growth 
profiles in G independent groups of individ- 
uals. The PR method is quite structured; 
multivariate normality is assumed, polyno- 
mials are fit to the AGCs, and users must 
specify the form of the arbitrary matrix, A. 
The method based on Rao’s time metameter, 
on the other hand, is somewhat less restric- 
tive. No specific functional form for the 
growth curves is postulated and the times of 
measurement tl, t,, . . ., tT need not even be 
known to employ the method. The first point 
is particularly germane when one has sam- 
ples so small as to preclude the selection of a 
more structured model (polynomial or other- 
wise) for the growth curves; the point con- 
cerning the times of measurement may 
prove useful in “non-standard” problems as, 
for instance, when small samples of fossils 
from different, ordered but unknown geolog- 
ical ages are to be contrasted. Thus, several 
phylogenetic series from separate sites but 
based on the same set of geological strata 
could be formally compared with this proce- 
dure. 

The apparently great flexibility and 
power of Rao’s approach may, however, be 
somewhat compromised by problems of in- 

terpretation. Goldstein (1979) stated, “It 
would appear difficult to interpret differ- 
ences in average growth rates using this 
kind of time scale which is defined solely in 
terms of the growth measurements them- 
selves, and there seem to have been few 
applications of this technique.” He also 
questioned the existence of a common trans- 
formation that would lead to linear growth 
for each individual. While we agree that in- 
terpretation is difficult, we should note that 
Rao (1958) stressed that “the emphasis. . . 
is not on obtaining a model adequately de- 
scribing the growth of a n  individual but on 
examining whether differences exist be- 
tween groups of growth curves.” In a subse- 
quent paper, Rao (1961) suggested that his 
technique might be of particular value to 
physical anthropologists, concluding, “Thus 
the maximum reduction of data without sac- 
rificing essential information, leading to a 
satisfactory test and providing a direct an- 
swer to a relevant question appears to be 
feasible.” An intermediate assessment was 
given by Hoel (1964). While using the word 
“ingenious” to describe Rao’s approach, Hoel 
noted that its sensitivity (power) depends on 
the type of alternative to the null hypothesis 
of equal growth curves envisaged. In  the 
case of two groups, Hoel (1964) showed that 
one can expect Rao’s method to be most ef- 
fective if one growth curve is consistently 
above the other, or if the two curves have 
approximately the same initial values but 
one rises faster than the other. It would be 
less powerful with respect to alternatives 
where the two curves had differing slopes 
and crossed midway through the observed 
time period. 

In any case, both the PR and Rao methods 
for comparing the growth patterns in G in- 
dependent groups would appear to be of po- 
tential value to the biomedical research 
community and they are offered here in the 
spirit of encouraging their use so that we 
will be able to gain experience with respect 
to both interpretation (cf. Kowalski, 1972) 
and such matters as the choice of A in the 
PR analysis (Timm, 1975). 

Copies of the programs described above 
and additional documentation may be ob- 
tained by writing to E.D.S. a t  the Baylor 
College of Dentistry. Copies will be fur- 
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nished on 51/4” floppy disks and the code is 
annotated to aid the reader in following the 
steps in the programs. Details concerning 
the actual execution of SAS will depend on 
how it was implemented at  the user’s partic- 
ular installation. Complete manuscripts 
concerning both the PR and Rao procedures 
will be included upon request. 
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