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ABSTRACT

The effects of small, periodicity-destroying irregularities on the dynamics of multi-span
beams are examined. It is shown that minute deviations of the span lengths from an ideal
value alter qualitatively the dynamic response by localizing vibrations and waves to small ge-
ometric regions. These confinement phenomena are studied over a wide frequency range for
beams resting on simple supports and with variable interspan coupling. Approximations
of the localization factor (the average rate of spatial exponential decay of the vibration
amplitude) are derived by statistical perturbation methods and validated by Monte Carlo
simulations. If the interspan coupling is strong, localization effects are weak and of no
practical significance for most engineering structures. On the other hand, localization is
severe for small interspan coupling. Confinement is also generally stronger near the edges
of frequency passbands and increases nearly linearly with frequency from passband to pass-
band. This means that strong localization occurs at high frequencies, even for large static
coupling between spans. De-localization is also observed at very high frequencies.

NOMENCLATURE

C torsional spring stiffness constant

E Young’s modulus

2 =-1

I area moment of inertia

J span number

13 wave number

K =Cl,/2E1

l; length of span j

l, nominal, or average span length

l j =1 J / lo

m mass per unit length

M; moment at left end of span j

M; = M;l,/EI, dimensionless bending moment

N number of spans

p = Ve

T; = T(/;) random transfer matrix for span j

T, = T(1) average, or nominal, transfer matrix

W; = W(l;) random wave transfer matrix for span j
W, = W(1) average, or nominal, wave transfer matrix
2w width of the uniform probability density function of disorder
X matrix of eigenvectors of T,

T distance along a span

Y transverse deflection

¥ localization factor

A eigenvalue of transfer matrix

o = w/\/EI/ml3 dimensionless frequency

o standard deviation of disorder

b; slope at left end of span j

<. > average of a random variable



1. INTRODUCTION

Periodic structures consist of identical subsystems repeated along one or more directions
and coupled through one or more coordinates. Many engineering structures are periodic—
for example: truss beams; turbomachinery rotors; airframes; towed-array sonars; and lam-
inated composites. The general purpose of this research is to examine how the dynamics
of such structures is affected by small irregularities that destroy perfect periodicity. In this
paper, we study a simple multi-span structure with imperfections, i.e. a multi-span beam
on rigid supports that are randomly spaced.

Periodic structures have characteristic properties that make much of their dynamics
qualitatively the same. These were studied first by Brillouin (1953) in a pioneering work,
and later by Heckl (1964) and Mead (1971, 1975). Periodic structures feature alternating
frequency bands in which harmonic waves either propagate freely (passbands) or are at-
tenuated (stopbands). The number of passbands equals the number of degrees of freedom
(DOF) of a subsystem and energy is transmitted along the structure only in the passbands.
There are as many pairs of waves as there are coupling coordinates between two adjacent
subsystems, and each pair of waves is characterized by a propagation constant, y1, such that
waves propagate according to e**. For example, a Euler-Bernoulli beam on rigid supports
is mono-coupled through the rotation at the supports and thus features a single propa-
gation constant, while a beam on flexible supports is bi-coupled, as energy also transmits
through the bending displacement at the supports. The natural frequencies of an N-bay
periodic structure typically lie within the passbands, with N frequencies in each passband.
For example, for beams on rigid supports, Miles (1956) was first to show that the natural
frequencies of an N-span beam are clustered in an infinite number of bands, with N fre-
quencies in each band. The mode shapes of periodic structures are extended and feature a
nonattenuated shape.

The design and analysis of periodic engineering structures is usually based on the as-
sumption that periodicity is perfect. However, departure from periodicity always occurs
because of manufacturing and material tolerances. These irregularities may severely alter
the structure’s dynamics by confining the vibrational energy to small geometric regions, a
phenomenon known as normal mode localization.

Mode localization was first predicted in solid state physics by Anderson (1958) and
has been examined in structural dynamics only recently. The work of Hodges (1982) was
ground-breaking and laid the foundations for most of what followed; for example, the works
of Hodges and Woodhouse (1983), Pierre and Dowell (1987), Pierre (1988, 1990), Bendiksen
(1987), and Cornwell and Bendiksen (1989). The dissertation of Kissel (1988) provides a
nice account of this history and the most recent contributions. Research on localization
has focused chiefly on the deterministic study of localized free modes and on the statistical
analysis of the confinement of harmonic waves and vibrations near the excitation source.
In most studies some type of perturbation or Taylor expansions were used to approximate
either the localized free modes or the rate of spatial decay of the vibration amplitude.

While a number of studies of periodic multi-span beams were performed in the past
(see (Mead, 1970), (Mead and Markus, 1983), (Miles, 1956), (Lin and McDaniel, 1969),
(Tassilly, 1987), (Faulkner and Hong, 1985), and (Sen Gupta, 1970)), localization in multi-
span structures was first examined by Pierre et al. (1987) for a simple two-span beam,
both theoretically and experimentally. The study showed that localization occurs for weak
coupling between spans when the intermediate support is located slightly away from the
middle of the beam. Kissel (1988) made an important contribution by deriving approximate



localization factors (the average rate of spatial decay of the amplitude) for multi-span beams
on randomly spaced rigid supports. His model, however, did not allow for variable coupling
between spans and, consequently, his results were mostly concerned with weak localization
effects. In a very recent study, Cai and Lin (1990) calculated localization factors for a multi-
span beam on equally spaced rigid supports by a new perturbation technique, but they
examined the effects of randomness in the torsional stiffness of the intermediate supports.
Also recently, Lust et al. (1990) studied localization numerically in multi-span beams on
flexible supports using a Timoshenko beam model. Finally, it should be pointed out that
multi-span beams on randomly spaced supports were studied earlier by Lin and Yang (1974).
However, although they demonstrated the high sensitivity of the dynamics to the break in
periodicity, they did not evidence localization.

In this paper, we examine localization phenomena in mono-coupled, multi-span beams
with small random variations of the span lengths. A key feature of our approach is that
we allow for variable coupling between the spans, which allows us to examine both weak
and strong localization effects. This is achieved in our model by including torsional springs
at the supports. We show that for the transmission of vibrations to be severely affected
by the small randomness in support spacing, either the interspan coupling must be weak or
the frequency must be high. The paper is organized as follows. We begin with the problem
formulation in Section 2. In Section 3 we review results for the perfectly periodic multi-span
beam. In Section 4 we calculate localization factors by statistical perturbation methods for
cases of weak and strong interspan coupling. We compare these results with Monte Carlo
simulations in Section 5. In Section 6 we examine localization effects at high frequencies
and Section 7 contains concluding remarks.

The main contribution of this paper is the study of localization in a multi-span beam
with randomly spaced supports and with variable coupling. In particular, the results we
obtain for weak interspan coupling are new. Also new are our results regarding the variation
of localization effects as frequency increases, both for moderate and high frequencies.

2. PROPAGATION CONSTANTS AND LOCALIZATION FACTORS

We consider the undamped, (nearly) periodic beam on simple supports shown in Fig. 1.
We assume the beam is uniform and homogeneous throughout its entire length, consider only
bending motion and neglect shear deformation. The (identical) linear torsional springs that
exert restoring moments at the supports allow us to vary the coupling between spans. For
example, as the torsional stiffness approaches infinity, the transmission of bending moment
reduces to zero and the interspan coupling vanishes. We define the beam as ordered if all
spans have identical lengths and create disorder by varying the locations of the supports in
a random fashion. We restrict our analysis to small span length deviations about a nominal
value.

In this section, we characterize the transmission of a free harmonic wave of frequency
w through the multi-span beam. We also consider an alternative formulation where the
beam is excited at one end with a harmonic force and the steady state response at the other
end is examined. In both cases we obtain the transmission properties of infinite multi-span
beams, which is a limitation of the approach.

2.1 Transfer Matrix for the Mono-Coupled, Multi-Span Beam

We first derive a transfer matrix that relates the dynamics at two adjacent spans. Since
the beam rests on simple supports, the individual spans possess a single DOF at each end.



This means that the beam is mono-coupled and its dynamics can be represented by 2 x 2
transfer matrices. Here we choose to describe the vibrational state at a support by the slope
and the bending moment. A span of length /; is shown in Fig. 2, where 6, (resp. fr;) and
My, (resp. Mp;) are the slope and the bending moment at the left end (resp. right end).
Considering free motion in the jth span, the bending deflection is, from Euler-Bernoulli
theory

yj(z) = Ay cosh(fz) + A;sinh(fz) + Az cos(fz) + Aysin(fz) z €[0,1;] (1)

where 8 = \/w (%)% The coefficients in Eq. (1) are obtained by applying the conditions
at the span ends
yi(0) =0, 6;(0) = bz, , y;(I;) = 0, 6;(1;) = Or, (2)

where the bending slope is 6;(z) = %—(z). The left- and right-end bending moments are
given by
do; C
{quz_Efjmy+7&j
Mg, = EIZL(1;) + %6,
Substituting 6;(z) obtained above in terms of 7, and g, gives two relations between the
moments and slopes at the ends of span j

My, | _ otk % O, (4)
MRJ' - ‘&%g] + K HRJ'

aj

3)

where HLj and HRj are dimensionless bending moments, K the dimensionless torsional

spring stiffness that governs the interspan coupling, and p = v/@, all defined in the nomen-
clature. We define the function g; by

- sinh p; cos p; — cosh p; sin p;
= a(l) = j j j i 5
9; = 9(l;) sinh p; — sin p; 5)

where p; = pl;, with I; as the dimensionless span length. Finally, a; is defined in Appendix

A.

Next, we write that 0r,;,, = 0p; and _MLm = —MRJ.. Defining the state vector for the
jth span by the slope and the bending moment at its left end, 6; = 6 and M;=Mp i We
obtain from Eq. (4) a transfer matrix that relates the dynamics at two adjacent supports

[7‘%:1 ] :T"[%:’] )
where
(7)

Clearly, det T; = 1 for this undamped span. For a disordered beam the T;’s are random
transfer matrices. For a tuned multi-span beam the individual spans’ transfer matrices are
identical and equal to

g9 + 3K = }

TET? = oy 7 pa'
3 =1) [z%(l—gf)—ﬂgj——p‘ﬁz 9it+ 7K

9+ 2K - } ®)

ToET(<lj>)=[p_ 2 o 172 LA
£(1-¢%)-2Kg-S$K* g+SK
where < I; >= 1 is the nominal, or average dimensionless span length, ¢ = ¢(1) and
a=al).



2.2 Wave Formulation

Here we define the propagation constant and the localization factor based upon a travel-
ing wave approach (see Kissel (1988) for a detailed derivation). We examine the propagation
of a harmonic wave of frequency w, through the beam and introduce wave amplitudes from
the slope/moment state vector by the transformation

i | _ L;
[E]_X[RJ] ©

where L; is the complex amplitude of the wave leaving span j to the left and R; is that of
the wave entering span j from the left (see Fig. 2). The columns of X are the eigenvectors
of the transfer matrix for an ordered span, T,

1 1
X= (10)
—i2V/1=(g+oK/p}? +ikV1-(g+ak/p)®

Substituting Eq. (9) into Eq. (6) we obtain a wave transfer matrix that relates the wave
amplitudes at adjacent supports

[ f{:’_i ] =W,; l: ILZj ] with W; = X_ITJ‘X (11)

In general the wave transfer matrix W; is not diagonal, unless it corresponds to an
ordered span. This means that disorder in the span lengths produces scattering that results
in localization.

To eliminate reflections at the boundaries from our calculation, we consider a beam with
an infinite number of spans in which an N-span disordered segment is embedded. Thus, we
have [; = 1 for —o0 < j < 0 and N < j < 400 and random lengths I; for j = 1,---,N.
This way we insure there is no reflection beyond the N-span segment.

The wave amplitudes entering and leaving the disordered segment are related by

Ly | _ L, .
ERAH “2)

where, for frequencies in the passbands,

CTrw._ | lUtw —TN/tN]
WN‘jEVWJ‘[—rfv/m 1/t )

where ty and ry are the transmission and reflection coefficients for the disordered segment
and * denotes a complex conjugate.

If we consider a wave of amplitude a incident from the left, we have Ly4; = 0 and
R; = o, and a simple manipulation shows that the ratio of the amplitude transmitted
through the disordered segment to the incident amplitude, Ry41/a, equals the transmission
coefficient ¢y. If we assume that, asymptotically, the transmitted wave amplitude decays
ezponentially along the chain, we obtain the limit of the rate of decay per site as

. 1
¥ = Nhinm —Nln [t (14)



which we define as the localization factor for the disordered structure. Asymptotically,
Eq. (14) means that the magnitude of the transmission coefficient decays exponentially
with N at the rate y. For an ordered structure v is the real part of the propagation
constant. Note that if we assume ergodicity, 7 can also be viewed as the average rate of
decay for finite disordered multi-span beams

- (L2
T=A\N

™N

) (15)

2.3 Vibration Formulation

Here the N-span beam is excited at its left end with a simple harmonic moment of
frequency w and dimensionless amplitude M. Our interest lies in the transmission of steady-
state vibrations along the beam.

Using Eq. (4) that relates the moments and slopes at both ends of a span for the (j—1)th
and the jth span, we can eliminate the bending moments by using the continuity condition
_ﬁgj_l =-Mp, ;- This yields a recursive expression relating the slope amplitudes at three
adjacent supports:

- L g4 (21{ + By Pﬁ’!i) 0~ 211 =0 (16)

aj-1 aj - @1 j

This can be written in matrix form, for the N-span beam, as

6 M
6, 0
Al =1 . (17)
On41 0
where A is the tridiagonal matrix
CK o+ %‘?f _ % 1
0
pg; | Pgi-
A= —an M+ 2 3 (18)
0 - .
. ~aw K+ G

The steady state response is simply obtained by inverting A. The slope at the right end is
of special interest in our study of localization and is given by

On41 [ cofactor matrix of A Juni1) 1 (19)
M det A T det AT, o
Assuming that asymptotically the slope amplitudes decay exponentially, we obtain the
localization factor as

o 1. 0Ny, .1 al
7_1\}1_1.1100_Nln| i —jélinwﬁ(jgllnla]|+lnldetA| (20)



To evaluate 4 we need to calculate det A as a function of frequency and then take the
limit of its logarithm. In some cases closed-form approximations of 4 can be obtained,
where the determinant is calculated via modal analysis. In general the localization factor
can be approximated numerically for long beams.

3. WAVE PROPAGATION IN THE ORDERED MULTI-SPAN BEAM

The propagation of waves in the infinite ordered multi-span beam is governed by the
eigenvalues of the transfer matrix T,:

1

=N (21)

A= (g+eK/p)+1/g+ak/p2-1 , X
The matrix eigenvectors of T,, X, is given by Eq. (10) and the wave transfer matrix for an
ordered span is :

W, = (22)
0 A

For a left- or a right-traveling wave, adjacent slopes are related by 8,41 = e’L—“Hj, where
p is the propagation constant, defined as the logarithm of, say, the first eigenvalue of T,.
Depending on frequency, p is real or complex:

e For g+ aK/p < -1, A1 are real. Thus ¥ = In|A;| and p = ¥ + ¢ 7, leading to
wave attenuation with adjacent spans vibrating out of phase. If g + aK/p > 1, then
g = 7, leading to wave attenuation, with adjacent spans vibrating in phase. The
corresponding frequencies define the stopbands of the multi-span beam.

o For -1 < g+ aK/p < 1, A 2 are complex conjugate of modulus 1, with A; = exp(if).
Thus ¥ =In|A\;| = 0 and p = i€, € € [0, 7). This leads to a non-attenuating propagat-
ing wave with a change in phase £ at each span. The corresponding frequencies define
the passbands of the structure. The natural frequencies of finite multi-span beams lie
within the passbands.

e For |g+ aK/p| =1, \; = A\ = £1, thus v = 0 and p = 0 or iw. The corresponding
frequencies define the passband-stopband edges.

The real and imaginary parts of the propagation constant are plotted in Fig. 3 versus
frequency for two values of the torsional spring stiffness, K. Figure 4 displays the deflection
shapes of typical traveling and attenuated waves (the wave shapes) at selected frequencies
for an infinite beam.

In Fig. 3, note the regular pattern of alternating attenuation (y # 0) and propagation
(y = 0) zones. The bounding frequencies of these bands can be related to the natural
frequencies of a single span: the lower passband edges correspond to the natural frequencies
of a span resting on supports of torsional stiffness K/2, while the upper passband edge
frequencies coincide with the natural frequencies of a span clamped at both ends. In general,
in the pth band a span vibrates primarily in its pth bending mode.

As expected, increasing the torsional stiffness of the supports reduces the width of the
propagation bands through an increase in the lower passband edge frequencies. The upper
edge frequencies do not depend on K because at these frequencies the wave shapes have
zero slopes at the supports, as shown in Fig. 4. The narrowing of the passbands makes



sense because propagation becomes more difficult as the interspan coupling decreases, or as
K increases. Weaker coupling also means a higher modal density for the multi-span beam
and thus a higher sensitivity to periodicity-breaking imperfections (Pierre, 1988). Hence,
we expect the interspan coupling, as determined by the torsional rigidity K, to be a key
parameter in localization.

4. APPROXIMATE LOCALIZATION FACTORS IN THE DISORDERED CASE

Here we use statistical perturbative methods to approximate the localization factor of
disordered multi-span beams in cases of strong and weak interspan coupling. We make the
dimensionless length of the jth span, I;, a random variable of mean 1 and standard deviation
o, such that 0 < 1, and define the dimensionless disorder as él; = 7]- — 1. When we need
the probability density function, we assume a uniform distribution of width w = v/3¢.

4.1 Weak Localization in the Strong Interspan Coupling Case

We take K to be small (possibly zero) and consider the small disorder as a perturbation,
an approach we refer to as the classical perturbation method. We choose a wave formu-
lation and expand the transmission coefficient in the disorder parameter to approximate
the localization factor in Eq. (14). Except for the support stiffnesses that allow us to vary
interspan coupling, the development is similar to that of Kissel (1988).

For frequencies inside the passbands, the wave transfer matrix for a span is, from
Egs. (7), (10), and (11):

a(l-g?) a;sin¢ __agj Ko %%
2a;siné 20 psin € 2p?sin £

(e(1-g?) ajsingé  ag; a2
N _ - K - K 2
(Wiha = ( 2a;sin 2a psing 2p%siné )

where o; and g; are functions of the random length I;. We approximate the wave transfer
matrix by expanding to the second-order in the small disorder 6l;

e 0 a b [ ¢ d
wj=[ ; e_,.f]+5zj[b* a,]+—2’— o | TO0R) (24)

To calculate the localization factor, we first multiply the W,’s to obtain the (1,1) element
of the wave transfer matrix for N spans. This yields, to the second-order,

. X N 612
(W) = eV [1 +e (aZalj +ed), 71)} (25)

j=1 j=1

where we have dropped all terms involving products of at least two distinct random vari-
ables. The expectation of such terms is zero because the random lengths are independent
variables.

Next, we take the modulus of the (1,1) term of the wave transfer matrix

A N 12
Wn)1)* = 1+ 2cosé (a, Zélj + ¢, Z ..2i)

j:]_ j=1



N N §12 N N
+2siné a,-251j+c,~2—21 +a2) 62 +a}) 42 (26)
1=1 i=1 =1 j=1
where a = a, + ia; and ¢ = ¢, + ic; are given in Appendix A. The next step is to take th;e
logarithm of the modulus in Eq. (26) and expand it to the second order using In(1+€) ~ e-%
with |e] < 1. At this stage we can either take the limit of the logarithm as N — +oo or take
its average for finite N (both procedures give the same result because of ergodicity). We
choose the latter method and invoke the independence of the 61 ;'s. This yields, introducing
the transmission coefficient from Eq. (13):

2

In

Thus, from Eq. (14),

<lIn

>= [—(Cr cos€ + ¢;sin€) — (a?_ + a?) + 2(a, cos € + a; sin 6)2] No? (27)

2
v (e = % [(Cr cosé + ¢;sin ) + (a2 + a?) — 2(a, cos € + a; sin 5)2] (28)

where 7(9) is the “classical” approximation of the localization factor in the passbands for
strong interspan coupling and weak disorder. Since the localization factor is proportional
to the variance of the small disorder, the spatial attenuation is small, and we refer to this
phenomenon as weak localization. We expect our approximation of 4 to deteriorate as
disorder increases, because we have retained only first-order terms in the variance. Better
approximations could be obtained by considering more terms in the expansion.

Anoiner observation is that the approximate localization factor becomes infinite for
sin¢ = 0, hence our perturbation approach breaks down at the passband-stopband edges.
The approximation also deteriorates for K large, that is, for weak interspan coupling.

4.2 Strong Localization in Beams with Weak Interspan Coupling

We consider the case K large, that is, weak coupling between spans. The approximate
localization factor, Eq. (28), breaks down because it is based upon a perturbation expansion
in the small mistuning that ignores the other small parameter, the coupling. We can remedy
this problem by ezpanding in the small coupling. However, to avoid degeneracy, we must in-
clude disorder in the unperturbed system, which then consists of decoupled spans of slightly
different lenghts. This approach which we refer to as the modified perturbation method,
makes physical sense because strongly localized vibrations are essentially perturbations of
oscillations of decoupled spans (Pierre and Dowell, 1987).

We choose the vibration formulation of Section 2.3 to approximate the localization
factor. In Eq. (20) the determinant can be calculated as the product of the eigenvalues of
A. In general these cannot be obtained analytically but for large K can be approximated
using perturbation theory for the eigenvalue problem. We take 1 /K as the perturbation
parameter and write

A=A, +6A (29)

10



where the unperturbed and perturbation matrices are

- -

0
A, = 2K + Ti=t 4+ Bl , §A = - 0 -2 (30)
0
|0 ]

The eigenvalues of A, are its diagonal elements and, assuming all span lengths are distinct,
the eigenvectors are vectors (€j)j=1,-.N+1, where the jth element of e; equals 1 and all
other elements equal 0. The first-order perturbation of an eigenvalue of A is

§rj=el 6Ae; =0 (31)

Thus, to the first-order in 1/K,

det A ~ <K+’:’:>{ﬁ(25+% 1+1;J)}(K+pgzv> (32)

i ;-1 an
From Eq. (20), the rate of decay for N spans is approximated as
Y12, 1 (g, gia
TN —ZlnIaJI + = j;ln ST E (a_,-+ a,--l)

J-l
1 1
24 __9_1

Xk L L 1 | +l~"—N (33)

N N N p Ka

The localization factor is the limit of vy as N — +o00. In Eq. (33) the terms that do
not involve summations tend to zero, except one term that goes to In K. The first term in
Eq. (33) tends to average of the random variable In a(7), where [ is the random dimensionless
span length, if we assume ergodicity. Next we consider the second term in Eq. (33). If we
again assume that the lengths I; form an ergodic sequence of independent and identically
distributed random variables, we note that the argument in the logarithm essentially consists
of two identical random variables, g;/a; and gj—1/aj_1. Thus we expect that in the limit
N — oo the second term in Eq. (33) tends to the average of the logarithm of twice the
random variable g(I)/o(1) (with appropriate additive and multiplicative constants). This
line of reasoning gives

+o0
7:7(’"’):an+/ In
—00

l)l pdf(l)dl (34)

2 -2
“a(D) + 2ol

where “pdf” is the probability density function of the random length. For a uniform distri-
bution of mean 1 and width 2w, the above becomes

14w

(m) _ i/ 12+ 2 “li 35
7v InK + 2 J, In pa(l)+ Kg(l) d (35)

-w

This closed-form approximation of the localization factor in the small coupling case can be
easily evaluated numerically.

11



A few words are in order concerning the transition from Eq. (33) to Eq. (34). We have
obtained an alternative result that accounts for the {wo random variables in the second
logarithm term in Eq. (33), without using ergodicity, by taking the average of vy for finite
beams. Clearly the result depends upon N but for N large can be approximated as

+00  p+4oc0
7™ ~n K + / / In
—00 J—o00

We have compared the localization factors given by Eq. (34) and Eq. (36) over wide
parameter ranges. In all cases the single- and double-integral results were very close. The
double integral, however, was much more expensive to calculate. In fact, its cost approached
that of a brute force Monte Carlo simulation!

Moreover, at high frequencies (e.g., in the tenth and higher bands), we noticed that the
double-integral expression slightly underestimates the localization factor (the discrepancies
were always less than 1%). We showed this by calculating vy in Eq. (33) and comparing it
with the single and double integral results: for N large the results of Eq. (33) converge to
the localization factor in Eq. (34). This leads us to believe that the correct expression of the
localization factor is Eq. (34), although we cannot give a rigorous proof (we simply make
an intuitive use of ergodicity). We conjecture that the double integral result is not strictly
equivalent to it because it is an average for a finite chain and thus may include boundary
terms.

pdf(D)pdf(T)dl dl'  (36)

20+ L (40 + 920
“aD+ ¢ (ga) ”(’)a(r))

5. ON MONTE CARLO SIMULATIONS AND WEAK AND STRONG LOCALIZA-
TION

The approximations of the localization factor need to be validated by means of Monte
Carlo simulations. We first discuss how these are carried out and then present a parametric
study of confinement effects.

5.1 Monte Carlo simulations

These can be performed by the wave approach, Eq. (14), or the vibration formulation,
Eq. (20). In both cases values of v are calculated for N large and then ensemble-averaged
over many realizations of disordered N-span beams. The random span lengths are obtained
from a random number generator with a uniform distribution.

With the wave formulation the transmission coefficient ¢y is computed by multiplying
N random wave transfer matrices for each disordered beam. Then the logarithm of ty is
averaged over M realizations of multi-span beams. In our simulations we took N = 100
and M = 1000. This gave us a small error for the Monte Carlo estimates of 7 and at the
same time kept the computational time reasonable.

As pointed out by Kissel (1988), we noticed that very small values of the localization
factor can be accurately simulated by averaging the logarithm of the transmission coefficient
for a single disordered span. This approximation, however, quickly deteriorates as v becomes
larger. For ¥ > 0.01 at least several (say 20) transfer matrices should be multiplied before
averaging. A tentative physical explanation is that the large reflections that occur at the
supports in the strong localization case affect the dynamics of several neighboring spans, a
mechanism that cannot be captured by using a single span in the simulations.

Two drawbacks of the wave simulation are (1) it is not accurate near the passband
edges because the matrix X that defines the similarity transformation to the wave transfer

12



matrix is singular at the edges (this is because T, has a double eigenvalue) and (2), its
accuracy deteriorates as the localization factor becomes large, i.e. it does not handle strong
localization well. Although we have observed the latter consistently in our simulations, we
do not have a satisfactory explanation.

In cases where waves simulations are not adequate, we used the vibration formulation,
Eq. (20). Clearly this approach does not work well for weak localization, because the
decay per span is small and many spans are required to keep the influence of the boundary
conditions to an acceptable level. ‘Moreover, taking a very large number of spans N is
not practical because the method requires solving eigenvalue problems of size N, which
is computationally intensive. Hence vibration simulations are best suited to the strong
localization case, such that the rate of decay is large and allows us to consider few spans. In
these simulations we took beams with as many as 60 spans and averaged over 1000 beams.

5.2 Weak localization results

Here we examine localization for strong interspan coupling. Figures 5 and 6 display 7 in
terms of frequency for two values of K and for small disorder. Both classical perturbation
(Eq. (28)) and wave simulation results are shown. We make the following observations.

While for the ordered beam there is no attenuation in the passbands, the disordered
beam features spatial amplitude decay at all frequencies. The localization factor is mini-
mum at the middle of the passbands of the ordered structure and increases rapidly as the
stopbands are approached. In fact, we noted in Section 4.1 that the classical approximation
of ¥ goes to infinity at the passband edges. This means that incident waves and normal
modes whose frequency is near the band edges will localize much more than those whose
frequency is near midband. Thus, as observed by Kissel (1988), the degree of localization
depends strongly on frequency within a passband in the strong coupling case. We also
observe that localization effects increase with frequency from passband to passband and
that localization increases for all frequencies as K increases, or as the interspan coupling
decreases. The latter is illustrated in Table 1: for K = 100 there is substantial confinement
even for a ten-span beam.

Figure 5 shows the excellent agreement between the classical perturbation method and
the Monte Carlo simulations for K = 0. Note from Fig. 6 that the classical perturbation
analysis start to break down for K = 100, indicating the transition from weak to strong
localization. In general we observed that the classical perturbation results overpredict the
simulation results in four cases: as K increases, near the band edges, as the passband number
increases and, although not shown here, as the disorder increases. These observations make
sense because the classical perturbation method treats the small disorder as a perturbation
and thus can only be accurate for small 9. The approach fails whenever the localization
factor becomes large, in which cases the modified perturbation scheme must be used.

The results in Fig. 5 tell us that the effects of disorder are small for strong interspan
coupling. To illustrate these effects, consider the case where all span lengths are within 1%
percent of the mean and the supports have no torsional rigidity. At the middle of the first
passband!, Table 1 gives the localization factor as Ymid = 28 X 107°. On the average the
vibration amplitude decays as exp(—yN), where N is the span number. This means that if
the first span vibrates with a unit amplitude the 100th span’s expected amplitude is 0.972.
Obviously the confinement effect of disorder is very weak here. Moreover, the localization
factor is for an infinite and undamped structure, and such effects of disorder would most

!We define the midband frequencies when the wave number equals x/2.
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likely be obscured by the dissipation and the boundary conditions present in all engineering
structures. In fact, this is precisely why we were unable to verify the small values of v by
vibration simulations: several thousands of spans were required to offset boundary effects
and only wave simulations, which do not include boundary conditions, could be used.

Fig. 7 illustrates some wave shapes for a disordered infinite beam in a case of moderate
localization. Notice that for the same excitation frequency, the wave shapes of the ordered
beam are propagating while those of the disordered beam are localized.

3.3 Strong localization results

Here we present results for weak interspan coupling. Figure 8 shows the localization
factor in the vicinity of the first frequency band for K = 1000. First, we note the excellent
agreement over the frequency range shown between the modified perturbation and the
simulations results. Next, we observe that for K large v is large and thus confinement is
severe. Finally, for very strong localization (e.g., ¢ = 1.5%), Fig. 8 shows that 7 varies little
with frequency throughout the passband, contrary to the weak localization case.

Figure 9 displays the variation of the localization factor at the first midband frequency
in terms of the torsional stiffness K, for a small disorder ¢ = 0.577%. Observe that
in the first region (approximately K € [0,100]) the classical perturbation results follow
the Monte Carlo simulations closely. In this weak localization regime the variation of ¥
with K is parabolic-like. The second region, K € [100, 300], corresponds to the transition
from weak to strong localization, where neither perturbation scheme gives good results.
As K increases, the modified perturbation results approach the Monte Carlo simulations,
indicating the occurrence of strong localization for weak interspan coupling. Equation (35)
tells us that in this third region + varies nearly logarithmically with K. The variation of ¥
shown in Fig. 9 would be similar if plotted versus the disorder o instead of K.

It has been shown by Pierre and Dowell (1987) for simple periodic systems that local-
ization depends primarily on the disorder to coupling ratio. It is of interest to investigate
whether this finding holds for multi-span beams, i.e. whether y depends on o/(1/K) (and,
of course, on frequency). Since this cannot be readily deduced from the perturbation re-
sults, Eqs. (28) and (35), we performed a numerical parametric study. Figure 10 displays
iso-localization factor lines in the (K, o)-plane, obtained by Monte Carlo simulations. Sim-
ple calculations for several points show that the product oK is nearly constant along each
iso-7 line, and thus these have a nearly hyperbolic shape. This suggests that - is primarily
a function of the disorder to coupling ratio.

6. EFFECT OF FREQUENCY ON LOCALIZATION

In Section 5 we have examined the variation of the localization factor with frequency
inside a passband. Here we study confinement effects as the frequency increases from
passband to passband. To that end we consider the localization factor at the midband
frequencies.

For strong coupling, K = 0, we can obtain a closed-form approximation of the lo-
calization factor at midband. Approximating the midband frequency of the ith band by
Wmig ~ [(1 + 1/4)7]?, Eq. (28) can be shown to give

1= 56+ 1V (37)
The derivation is outlined in Appendix B. The validity of Eq. (37) is illustrated in Fig. 11,
which displays the localization factor at the first 15 midband frequencies. Note the good
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agreement between the Monte Carlo simulations and both the classical approximation of ¥
(Eq. (28)) and its further approximation (Eq. (37)). As expected, the classical perturbation
scheme overpredicts v as ¢ increases.

Equation (37) shows that the degree of localization grows linearly with frequency from
passband to passband or, equivalently, increases with the square of the passband number.
This means that a transition from weak to strong localization takes place as the passband
number increases. This result makes sense because at higher frequencies the spans are
dynamically stiffer and thus become less coupled than at low frequencies, which in turn
results in stronger confinement. Note, however, that v increases much less rapidly for the
multi-span beam than for an assembly of spring-coupled beams (Cha and Pierre, 1990),
where 7 varies as 1® and the transition to strong confinement is very rapid.

Figure 12 displays the localization factor at midband frequencies in terms of the pass-
band number for various values of K and o. We clearly observe the transition from weak to
strong localization as i increases for the case K = 50 and o = 1.5%: the simulation results
nicely depart from the classical approximation of 4 to approach the modified approximation
as frequency increases. For small K and small o there is weak confinement over the first
15 bands, although strong localization would eventually occur as i increases further. For
large K strong localization occurs already in the first band, and consequently in all bands.
However, note that for strong localization 4 remains practically constant as i increases.
This contrasts with the case of an assembly of coupled beams, where + increases with the
logarithm of ¢ in the strong localization regime (Cha and Pierre, 1990).

We also explored localization at very high frequencies, even though the Euler-Bernoulli
model we use is questionable (in this case the Timoshenko model of Lust et al. (1990)
may be better suited). Figure 13 displays localization factors at midband versus passband
number. For weak interspan coupling we observe that while there is a very small increase of
7 in the first 50 passbands, a substantial drop takes place as 7 keeps increasing. This means
that some de-localization takes place at very high frequencies. This unexpected variation of
the localization factor is predicted remarkably closely by the modified perturbation method.
We also observe de-localization for strong interspan coupling in Fig. 13, taking place after
the transition from weak to strong localization.

We tentatively explain this de-localization by noting that at very high frequencies the
wavelengths of the deflection patterns are comparable in magnitude to typical variations
in support spacing. This means that such waves may propagate more easily through the
supports. Indeed, we observe in Fig. 13 that de-localization takes place for i ~ 100, cor-
responding to a dimensionless half-wavelength of 0.01. In terms of orders of magnitudes
this compares well with the disorder in the support spacing (w = 1%). This conjecture is
confirmed by Fig. 14, which displays the localization factor at high passband numbers for
various K and 0. We notice that for w = 1% de-localization takes place near values of i
that are multiples of 100 and for w = 1.5% near values of i multiples of 66. Figure 14 also
shows that this pattern is the same for both strong and weak inter-span coupling.

7. CONCLUSIONS

In this paper we have explored the effects of slight randomness in support spacing on the
dynamics of multi-span beams on rigid supports. We have shown that the key parameter
that governs the sensitivity to disorder is the dynamic interspan coupling. For weak coupling
disorder alters drastically the beam’s dynamics: waves and vibrations that transmit freely
through the ordered structure become trapped near the excitation source.
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We have characterized the degree of localization by the average rate of spatial decay of
the vibration amplitude and obtained analytical approximations of this localization factor
for weak and strong interspan coupling. We have found that for strong coupling localization
effects are weak and minimum at the midband frequencies. For weak coupling the local-
ization factor is large and increase with the logarithm of the support stiffness. Moreover,
even for strong static coupling, localization effects increase nearly linearly with frequency
from passband to passband, and a transition from weak to strong localization occurs if
the passband number is high enough. Thus, severe confinement is unavoidable for strong
static coupling if the frequency is large enough. In the strong localization regime the in-
crease of the localization factor with frequency is quite moderate, and some de-localization
is observed at very high frequencies.
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APPENDIX A
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APPENDIX B: LOCALIZATION FACTOR AT MIDBAND
For a multi-span beam, we approximate the frequency parameter at mid-band, \/@miq,

by the average of that of a pinned-pinned span and that of a clamped-clamped span. This
yields, in the ith band, for 7 sufficiently large (i.e.i > 2):

A |
Omid ~ (1 + Z)zwz

The circular and hyperbolic functions at the mid-band frequency can be calculated by
replacing p = \/Wmiq by (i + i—)ﬂ',

c08(v/@mid) = sin(vOmig) =~ —\}—5 cos(ir)

cosh(v/@miq) ~ sinh(v@mig) (sinh(%) + cosh(%)) cosh(ir)

The functions and their derivatives defined in Appendix A can be simplified by noting

that for sufficiently large ¢ the hyperbolic functions are very large compared to the other
terms. We obtain the simplified expressions:

=0, ¢'=-v2(i+ Hrcos(ir), g"=0
L f=0, [ =~(i+ 3y’

Substituting the above into Eq. (28) and letting K = 0, we obtain the simple expression:

,~12I2 //_12-_1_22
7mtd—20(g +f)_20'(1,+4)7l'
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K Omid Ymid | A1 | Ao A1o0
0.0 | 16.1214 | 0.00028 | 1.0 | 0.9971 | 0.9721
25.0 | 21.0006 | 0.01354 | 1.0 | 0.8737 | 0.2592

100.0 | 21.9575 | 0.17201 | 1.0 | 0.1790 | 3.10~%

Table 1. Average amplitude attenuation at the first midband in disordered N-span beams,
for 0 = 0.577% (by Monte Carlo simulations).
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