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L. INTRODUCTION

The numerical integration of the ordinary (nonlinear) differential
equations describing the steady flow of a reacting gas by the usual
Runge-Kutta, Adams-Moulton or Hammiﬁg's methods typically are
found to require a vanishingly small step size because of an extreme
stability property of the differential elquations known as "'stiffness.
Physically this situation arises from the very large spread in the time
scales associated with the various hydrodynamic and chemical rates
in the flow. The step size required by these usual explicit methods is
always determined by the fastest rates even though the overall solution
may not be determined by these fastest solution components. One would
like to use a step size more in keeping with the changes in the overall
solution.

Rather than discussing this phenomena further here, we refer the
ihterested reader to Ref. 1-7 and the references contained therein. Of
particular interest are Chapters 3 and 6 in Ref. 7.

In the follow iné sections the equations required to integrate large
sets of stiff differential quations which may have physically meaningful
parasitic eigenvalues are developed following the procedure given in
Ref. 2, 4-6. Since an algorithm which implements this very powerful
method has not been previously given, a FORTRAN IV listing of a com-

pletely self contained subroutine is presented, together with the calling



requirements and helpful explanatqry comments concerning the computer
program. Some remarks are made regarding the program modifications
needed if the matrix eigenvalues are to be computed and displayed, and
an example solution is provided. Finally, comparisons between this

method and other methods are given for several systems of equations.

II. DERIVATION OF EQUATIONS

A set of coupled differential equations can be written in vector

notation as

= F(W) (1)

2|
1]
EL

The equation is assumed to have been written in the automorphic form so
that the vector F does not explicitly contain the independent variable s.
We then locally linearize the right hand side by performing an expansion
of the ith component of the vector F (denoted by Fi) in a multidimen-
sional Taylor series about the point s, = nh. This gives, after sub-

stitution in (1) for the ith component of W' (denoted by w;')
Wi’ = Fin + (W]. - Wln) (aFi/BWI)n + ..
+ (W = W) GF /0w )y (2)
+O(IW-Wnlz) i=1tom
The number of components of W is taken to be m; hence there are m

coupled equations such as (2) in the set.



Note that when

1
v-w 2= . -w |2
n n+1 n
= hzlwn'l2 + O(h3)
Define the Jacobian matrix
[A] = (ay)) = (0Fy/aw)) (3)

In many problems , explicit expressions for the matrix elements,
aij cannot be conveniently given. In such cases the elements a,ij can be

numerically computed by the approximate formula

aj; = aFi/awj = [F,(1. 005 wj) - Fy(. 995 w].)]/. 01 W, (3a)

which is accurate to third order.

In terms of [ A] evaluated at s, and denoted by [A;], Eq. (1) can

be written
W=+ [A)] -7+ 0(h))
=[A]W+F_ -[A)]¥_+0(h?)
or
W =[A] W+ +0(hd (4)
where
fh=F -[A] A (5)



Note although Eq. (4) represents the local linearization of Eq. (1)
(referenced to s, = nh), it is the derivative W' that is represented as
linear in the step-size h,

We use the modified Euler implicit difference scheme which is
consistent with this error and is unconditionally stable to advance the

solution

Wn+1 = Wn + (h/Z)W;Hl + W) (6)

The local linearization has converted the set of differential equations
into a set of m algebraic equations that must be solved by the methods

of linear algebra. Inserting Eq. (4) into (6) gives

+fn+[An]\7v' +1)

W =W o+ /(A ]W T

n+1 n+1

which can be rearranged to form
([1) - (/LA - %) =h[A]W +hT
=h([A,] W+ F - [A] W)
=h E

where [I] is the unit matrix.

The increment in the dependent argument vector is given by

AW =W -, = (0 - (/A[A]) AT, )



where ([1] - v/ ?-)[An])-1
is the inverse of the matrix ([1] - (h/2)[An]).

A measure of the "stiffness' of Eq. (1) is given by the ratio of the
greatest to least eigenvalues of the matrix [A]. Standard explicit meth-
ods such as the fourth order Runge Kutta typically require a step size
less than ~ 2,78/ l)\max[for stability, where A s the largest eigen-
value of [A]7. This small step size is governed not by the behavior of

- the solution as a whole but by the rapidly varying transients, i. e., lar-
gest eigenvalue, which may have ceased to be numerically important
to the overall solut_ion at large times.

The method by which the step size is controlled is quite important
to the success and usefulness of a method. This will be illustrated in
Section IX in which the same formula as Eq. (7) is used to advance the
solution under two other step size control techniques.

The technique used here is described as follows:

1. Compute the increment in the independent argument Awi =

W.(n+1)

; -winfor eachi=1to m.

2. 1If any Iwil < €, ignore it in the following tests. The value of
€ used is 1 x 10750,
3. Find the largest | Awi/wi[ = lAw/wlmax.

4, If | Aw/wlma.x > 6, divide the current step size in half, discard

the calculated increments AW, and recalculate the step.



5. 1If |[aw/w| . < 6/b, double the current step size, discard the
calculated increments Aw, and recalculate the step.

6. H6/b< IAW/W[ma.x < 6, the calculations are considered satis-
factory, and the calculated step is accepted.

Values for b and 6 that have proved satisfactory are

b=5
.05

This step size control works well for implicit techniques. It de-
creases the step size in regions where the largest eigenvalues are impor-
tant in numerically determining the solution.

Since implicit techniques are stable for all negative eigenvalues, the
value of the maximum eigenvalue itself should not be used to control
step size.

All implicit techniques require the inversion of a matrix, usually
at each step, to advance the solution. This matrix inversion typically
requires of order N3/ 3 operations for a matrix of order N and so be-
comes the operation requiring the most time for very largé.N, (say of
order 50-100). For small N the evaluation of the derivative vector F

is usually the most time consuming operation.
III. ACCURACY AND STABILITY

We now discuss in an elementary manner those factors that are im-
portant in determining the accuracy and stability of the numerical solu-
tions to a set of differential equations and in particular discuss the

6



properties of the trapezoidal rule used in Section II. For a fuller
discussion, Ref. (5,7, 8 and 10) have proved helpful.

The accuracy of the numerical solution to an ordinary differential
equation depends on two things; the truncation error at each step due to"
the finite step size and the retention of only a finite number of terms
in the equivalent power series solution,and the stability of the finite dif-
ference method used. Stability of the finite difference method refers to
the manner in which unwanted solutions that are inevitably introduced,
are propagated from one step to another. We shall not be concerned
here with what Fox»8 calls, inherent instability, wherein a small amount
of a strongly increasing complementary solution to the differential equa-
tions, whose coefficients should be zero for the given initial conditions
numerically, is later introduced and swamps the wanted solution,
or strong instability in which spurious finite difference complementary
solutions are introduced through the use of higher order difference equa-
tions than the differential equations to which they are applied. ¥ox re-
fers to the stability of interest to us as partial instability since in prin-
ciple it can always be overcome by selecting a sufficiently small step
size.

To test the stability of a numerical method we consider a linear set

of simultaneous differential equations written in the form



¥ = [A] W(x) (1)

where [A] is a constant matrix which may be identified with the local
Jacobian matrix of Section II for a nonlinear set of equations. The ini-
tial conditions are presumed to be specified by W (0).

It can be shown' that if the matrix [ A] is diagonalizable, that is,
there exists a matrix [S] such that [S][A] [S]-‘1 = [I] X, then we can
write

7-[8]%
and transform Eq. (1) to the form
¥ Y3 2

1t [S][A][S]! = [1] X, then multiplying from the left on [§] 1
and transforming the right hand side yields [ A] = [I] X so that the
elements of the vector X are the eigenvalues of the matrix [A]. Expan-

ding Eq. (2) we see that it is therefore sufficient to discuss a set of

linear differential equations of the form
yi' = >ti yi (3)

for each i. Note it is only the eigenvalues A, of the matrix [ A] that are
important in determining the behavior of the solution.

The analytic solution to Eq. (3) is

y=e y(0) (4)



for each component.
We apply the modified Euler finite difference method

- _l'_l_ ? t
Yne1 =Vn*3 00 1+ V) (5)

or

1+—h§>ﬁ

R S v ol B (©)
1-5

The quantity in the brackets is known as the characteristic root p and

for the trapezoidal rule

hx

1+—2-
”=1-m (7)

2

The characteristic root when the simplest first order Euler method

Y1 =Y, + hYyy is used,can easily be shown to be

Ypo = (L+b)y (8

n

and

p=1+hA



To understand the importance of the p let Y = the true value of the

computed solution y which also satisfies Eq. (3), i.e.

Y' =AY

th

If e =Y -y is the error, then the error at the n™" step is

e = Yn -V Now
e'=Y'- yt
a(AY
or
e'= e

for small values of e. Thus the error e satisfies the same differential
equation as does y. Applying the modified Euler method to the error

equation yields

Inherent instability is avoided by requiring all }‘i < 0. If ahigher

order difference is applied to Eq. (3) one generally finds more than one

10



characteristic root 4. If some of these y are greater than unity then
the corresponding difference solution will grow faster than the true
solution. This is the case of strong instability.

For the simple Euler method we have [p | < 1 only for -2 < ha, S 0,

while the modified Euler or trapezoidal rule allows for all i
-0 < h)\l <0

in order that
MES!

Thus the trapezoidal rule is at least stable for any negative
eigenvalue no matter how large.

The characteristic roots of Eq. (8) and (6) are special cases of what
are known as rational Padé approximations to the true solution em given
by Eq. (4). In general any implicit method generates é. characteristic
root p(x) (where x = hA) that can be identified with a particular Pade

approximation to exp(x) which is written in the form
i i f‘: k
P = ). a.xX b, x
nmoo= U g K

Equation (8) is P, o While Eq. (6) is Py 4
) )
Even though the trapezoidal rule is stable for an arbitrarily large
range of negative ha;, the accuracy of the P1 1 approximation to exp(h)\i)
)

will be poor for the very largest negative values of }‘i if h is chosen to give

11



an accurate solution for some A's whose absolute value is closer to zero
and which may be more important in numerically determining the local
solution. Note as hA - -w, p - -1 for the implicit trapezoidal rule while
exp(h)) - 0. Even though the "stiff" components are not then accufately
calculated, their numerical contribution to the overall solution is small.
The virtue of the implicit method is that these stiff components no lon-
ger important in determining the solutiori, do not influence the stability
and accuracy of the overall solution, and the step size can be adjusted to
the remaining components to give accurate results. In other words the
step size h can be freely adjusted to give accurate results. with a prac-
tical value tailored to fit just those components most important in de—~
termining the local solution. This cannot be done using Pl, 0’ ie.

the simple Euler method. It is clear that once any component of a solution
has gone unstable, subsequent values of the whole solution are in error.
This may happen even if the truncation error per step may be unimpor-
tant.

I, >0, Eq. (7) indicates |p[>1 and hence the absolﬁte error per
step will increase. In this case however the true solution is also increa-
sing in value and it is the relative error that is important in determining
the step size., The solution will be valid as long as no spurious component

grows faster than the true solution.

12



For positive eigenvalues, A; > 0 it is clear that Pl,l is a good approxi-
mation to exp(h}) only for values of hA considerably less than 1. For
h) =, 4, the relative error of Pl,l is 5. 48 x 10'3. The allowable step
size is therefore limited by the largest positive eigenvalue for the case of
the parasitic eigenvalues. Local eigenvalues of real physical problems
can be locally parasiticg, i. e., have opposite signs. This is the strong
instability case of Fox8.
In summary we see that for the modified Euler method h must be
chosen to have lh}\[ <1 for the most important eigenvalues that determine

.the local solution but that the presence of very large negative Ai will not

affect the stability of the solution.

IV. CALLING REQUIREMENTS OF AMPLCT

Name: AMPLCT

Purpose: To obtain a solution of a system of first order
ordinary differential equations in/ dx =
Fi(x, YoV o v s yNEQ) i =1 to NEQ which
show extreme numerical 'stiffness', and have
parasitic eigenvalues.

Calling Sequence, ~ CALL AMPLCT (V, NEQ, DERIV, QMAT, L, M)
FORTRAN:

13



Parameters:

I<

V(1)

is a real vector of dimension > 8*NEQ + 3
containing the following information:

is an accuracy parameter controliing step
size changes. V(1) is the maximum rela-
tive change in any of the independent
variables. A value of V(1) = .05 has

proved satisfactory in past use.

= X, initial and current independent variable.

= h, the initial and current step size.

V(4), V(5), . . . V(4+ NEQ - 1) contain the NEQ

values of the Yvector, both the initial and

current values.

V(4+ NEQ), . . . V(4+ 2NEQ - 1) contain the NEQ

vaiues of the dY(I)/dx vector which are
supplied by the derivative subroutine
(i e., DERIV).

is the number of differential equations,
written in the form dY(I)/dx = F(I).
These must be written in the automor-
phic form if x appears explicitly in the
dY/dx vector. This is done by having

the last differential equation written in

14



DERIV

QMAT

‘\_t-'
=

QMAT, L, N

15

the form dx/dx = 1 and using the depen-
dent variable x in evaluating dY/dx.

As written NEQ < 50.

is the name of a subroutine supplied by

the user that evaluates the derivatives
dY/dx and stores them in V(4 + NEQ)
through V(4 + 2*NEQ - 1). The name of
this subroutine must be declared EXTER-
NAL. This subroutine has ﬁo arguments,
The variable V must be declared in a block
COMMON between the main program and
DERIV. In the dY/dx evaluation in DERIV,
the dependent value of x (if it appears) must
be used, not the independent value of x.

is a working matrix, which must be
dimensioned exactly NEQ by NEQ in the
main program. |

are integer work vectors which must

be dimensioned exactly NEQ in the main
program,

are used by the matrix inversion routine.



Usage:

Prior to calling, the user must set V(1) (=. 05
recommended), V(2) = initial value of x, V(3) =
initial value of step size and V(4) through

V(4 + NEQ - 1) to the NEQ values of the initial Y
vectbr.

Each call to AMPLCT advances the solution one
step. Upon return the new value of the independent
variable x is stored in V(2) and the corresponding
values of the solution vector Y are stored in V(4)
through V(3 + NEQ). Only 8*NEQ + 3 elements of
V are needed. |

The auxiliary vectors Q and C used internally in
AMPLCT need dimension > NEQ**2. As written, the
vectors Q and C limit NEQ < 50.

Successful solutions have been obtained to
systems of equations having the ratio of the absolute
value of the greatest to least eigenvalues on the order
of 108. Situations in which physically meaningful
positive and negative eigenvalues occur (parasitic
case) pose no special problem although the step size
must be reduced inversely with the magnitude of the
positive eigenvalue. The value of the largest positive
eigenvalue has been found tb be sensitive to the degree

C 9
of precision in extreme cases .
16



The subroutine can be converted to double pre-
cision by removing the C from the IMPLICIT REAL*8
statement in AMPLCT, line 2, and in MINV, line 43,
changing the function references ABS, AMAX1 in
lines 50 and 51 of AMPLCT and line 69 of MINV to
DABS and DAMAXI1 respectively. In addition in
AMPLCT, lines 12, 18, 25 and 50 the single preci-
sion power E should be changed to the double preci-
sion D power.

The subroutine MINV called from AMPLCT is

the standard IBM routine, supplied from SSP.

V. FORTRAN IV LISTING OF AMPLCT AND MINV

The leading carat > indicates the beginning of a line, while the
leading star * in MINV signifies the continuation of a wrapped around line.
The leading number at the left is the line number and is not part of the

FORTRAN statement.

17
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SUBRAUTINE AMPLCT(V,NEQ,DERIV,QMAT,L,M)
IMPLICIT REAL*8(A-H,0-2)

DIMENSION Q(€2500),C€2500),V(1),

1 QMAT(NEQ@,NEQ@),L(1),M(1)

CALL DERIV

D@ t JEQ=1,NEQ

V(2xNEQ+3+JEQ)=V(3+JEQ)
V(S*NEQ+3+JEQ)=V(NEQ+3+JEQ)

D& 2 JTERM=1,NEQ

Dd 9 JT=1,NEQ

V(3+JTI=V(2*NEQ+3+JT)
V(3+JTERM)=1.005%V (2kNEQ+3+JTERM) +1.E~30
CALL DERIV

D8 3 JEQ=1,NEQ
V(6XNEQ+3+JEQ)=V(NEQ+3+JEQ)

D2 109 JT=1,NEQ

V(3+JT)= V(2kNEQ+3+JT)
V(3+JTERM)=¢995%V (2%NEQ+3+JTERM)=1.E~30
CALL DERIV

D2 103 JEQ=1,NEQ

V(T*NEQ+3+JEQ)= V(NEQ+3+JEQ)

D2 5 JEQ=1,NEQ

JEQTER=(JTERM=1)*NEQ+JEQ
CC(JEQTER)=(V(6*NEQ+3+JEQ)-V(T*NEQ+3+JEQ))/
1 (0.010%V(24NEQ+3+JTERM)+2.E~30)
CONTINUE

JMAT=1

D3 17 ICOL=1,NEQ

D@ 17 IROW=1,NEQ
JEQTER=(ICOL~1)%*NEQ+IROW
AMATCIRAW, ICOL) ==+ 5%V (3)*C(JEQTER)
IFCICOL.EQ.IROW) QMATCIROW, ICOL)=GQMATC(IRGW,ICOL)+1.
CoONTINUE

CALL MINV(QMAT,NEQ,DETERM,L,M)

D8 16 ICOL=1,NEQ

DO 16 IRBW=1,NE@
JEQTER=(ICOL~1)%NEQ+IRAW
Q(JEQTER)=QMAT(IROW, ICAL)

D@ 7 JEQ=1,NEQ

V(3%NEQ+3+JEQ)=0.0

AMPLCT LISTING

18



41
42
43
44
45
46
47
48
49
50
S1
52
53
54
S5
56
57
58
59
60
61
62
63
64

D3 8 JTERM=1,NEQ
JEQTER=(JTERM=-1)*NEQ+JEQ

8 V(3*NEQ+3+JEQ)=V(3*NEQ+3+JERQ) +V(3)*QCJEQTER) *
1 V(S*NEQ+3+JTERM)

7 CONTINUE
JMAT=JMAT +1
IF(JMAT-10021,19,19

21 AM=0.0
D@ 10 JEQ=1,NEQ
IFCABS(V(2%NEQ+3+JEQ@))«LE. 1.E=30) GO T@ 10
AMA=ABS(V(3*NEQ+3+JEQ)/V(2%NEQ+3+JEQ))
AM=AMAX1 (AM, AMA)

10 CONTINUE
IFC(AM=V(1)) 11,511,512

11 IF(AM=0.2%V(1)) 18,185,519

12 V(3)=0+5%V(3)
G2 TOo 20

18 V(3)=2.0%V(3)
Go To 20

19 D@ 14 JEQ=1,NEQ

14 V(3+JEQ)=V(2*NEQ+3+JEQ) +V(3*NEQ+3+JEQ)
V(2)=V(2)+V(3)
RETURN
END

AMPLCT LISTING, CONT.
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> 1 C DECK MINV

> 2 C

*

> 3 c G0 00000000 0000000 OO0 OOOQCESCOOOONOOEOSPOPNOPONIIOGNIOINOINONOIOIONONPOONOEODOIOPOLEOO
Keeoeooeo000cnece

> 4 c

%*

> S C SUBROUTINE MINV

b 3

> ) c

E 3

> 7 C PURPOSE

3

> 8 C INVERT A MATRIX

*

> 9 C

X

> 10 Cc USAGE

%

> 11 C CALL MINV(A,N,D,LsM)

E 3

> 12 C

*

> 13 Cc DESCRIPTION OF PARAMETERS

*

> 14 C A - INPUT MATRIX, DESTROYED IN COMPUTATION AND
*REPLACED BY

> 15 C RESULTANT INVERSE.

*

> 16 C N - GRDER GF‘MATRIX A

*

> 17 C D - RESULTANT DETERMINANT

E

> 18 C L - WORK VECTOR 2F LENGTH N
*

> 19 Cc M - WORK VECTOR OF LENGTH N
3

> 20 C

¥

> 21 Cc REMARKS

Kk

> 22 C MATRIX A MUST BE A GENERAL MATRIX
k

> 23 Cc

k

> 24 C SUBRIUTINES AND FUNCTION SUBPROGRAMS REQUIRED
k

MINV LISTING
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> 25 C
E

> 26 c
*

> 27 C
%

> 28 C
*ETERMINANT

> 29 C
*ATES THAT

> 30 C
E

> 31 C
*

> 32 c
Keoesoeooosoosoce
> 33 C
%

> 34

*

> 35

%*

> 36 c
%

> 37 C
Koeooosooeoeoecoroe
> 38 C
*

> 39 C
*ESIRED, THE

> 40 C
*ECISION

> 41 C
*

> 42 C
*

> 43 C
*

> 44 c
*

> 45 C
*TATEMENTS

> 46 c
*TH THIS

> 47 C
x*

> 48 (o
*

> 49 C
*ST ALSO

> 50 c

*N STATEMENT

N@NE

METHOD
THE STANDARD GAUSS-JORDAN METHOD IS USED. THE D
IS ALS® CALCULATED. A DETERMINANT OF ZER@ INDIC

THE MATRIX IS SINGULAR.
08 000000 0000000000080 0600000000000¢¢00060000000000000C00O0OCCGD

SUBROUTINE MINVCAsN»DsL,M)

DIMENSION AC1),LC1),MC1)

€00 600000806000 0000000000000000000000000000000000000

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS D
C IN COLUMN 1 SHOULD BE REM@VED FROM THE D@UBLE PR

STATEMENT WHICH FOLLOWS.

D2UBLE PRECISION A,D,BIGA,HOLD
THE C MUST ALS@ BE REMOVED FROM DOUBLE PRECISION S
APPEARING IN @THER ROUTINES USED IN CONJUNCTION Wl

ROUTINE.

THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MU

CONTAIN DOUBLE PRECISI®ON FORTRAN FUNCTIONS. ABS 1

MINV LISTING, CONT.
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51 c

52 c

53 C
sesesesesees

55 c

56 c

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74 c

10

15

20

10 MUST BE CHANGED T@ DABS.

00000600 0000000000000000000800000000000000000000000

SEARCH FOR LARGEST ELEMENT

D=1.0

NK==N

D8 80 K=1,N
NK=NK+N
L(K)=K

MCK) =K
KK=NK+K
BIGA=A(KK)
D2 20 J=K,N
1Z=N*(J=-1)
D@ 20 I=K,N
1J=1Z+1

IFC ABS(BIGA)~ ABSCA(IJ))) 15,20,20

BIGA=ACIJ)

L(K)=1
M(K)=J

CONTINUE

MINV LISTING, CONT.
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> 75 c INTERCHANGE ROWS
*

> 76 C

%*

> 17 J=L(K)

*

> 18 IFC¢J=K) 35,35,25
¥

> 19 25 KI=K=-N

*

> 80 D2 30 I=1,N

*

> 81 KI=KI+N

%

> 82 H3LD=-A(KI)

*

> 83 JI=KI=-K+J

*

> 84 ACKII=sAWJD)

*

> 85 30 ACJI) =HOLD

*

> 86 c

*

> 87 C INTERCHANGE COLUMNS
*

> 88 C

*

> 89 35 I=M(K)

*

> 90 IFCI~-K) 45,45,38
*

> 91 38 JP=N*(l-1)

*

> 92 D@ 40 J=1,N

*

> 93 JK=NK+J

E 3

> 94 JI=JP+J

*

> 95 HOLD=-AC(JK)

*

> 96 ACJIKI=ACJII)

*

> 917 40 ACJI) =HOLD

X

> 98 Cc

*

> 99 C DIVIDE COLUMN BY MINUS PIVAT (VALUE OF PIVAT ELEME
*NT IS

> 100 C CONTAINED IN BIGA)
£

MINV LISTING, CONT.
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101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124

45

46

48

50

55

60
62

65

IF(BIGA) 48,46, 48
D=0.0

RETURN

D@ 55 I=1,N

IFC(I=-K) 50,55,50
IK=NK+1
ACIK)=A(IK)/ (=BIGA)

CONTINUE
REDUCE MATRIX

DB 65 I=1,N

IK=NK+1

HALD=A(IK)

IJ=1-N

D2 65 J=1,N

IJ=1J+N

IFCI-K) 60,65,60
IFC(J-K) 62,65,62
KJ=1J=1+K
AC(IJ)=HILD*A(KJI+A(1J)

CONTINUE

MINV LISTING, CONT.
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*V*V*V*V*V*V*V*V*VA*V*V*V*V*V*V*V*V*V*V*V*V*V*V*V*V*V

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

DIVIDE ROW BY PIVOT

KJ=K=-N

DB 75 J=1,N

KJ=KJ+N

IF(J=K) 70,75,70
70 ACKJ)=A(KJ)/BIGA

75 CONTINUE

PRGDUCT @OF PIVOTS

D=D*BIGA

REPLACE PIV@T BY RECIPRACAL

A(KK)=1+0/BIGA

80 CONTINUE

FINAL ROW AND CZLUMN INTERCHANGE

K=N
100 K=(K=-1)

IFCK) 150,150,105
105 I=L(K)

IFCI-K) 120,120,108

108 JA=N*(K-1)

MINV LISTING, CONT.
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¥V HEV HV ¥V HV HV YV ¥V XV ¥V HVEVYV XYV $V ¥V RV ¥V %V RV

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169

110

120

125

130

150

JR=N*(I-1)

D28 110

J=1,N

JK=Ja+J

HOLD=ACJK)

JI=JR+J

A(JKI==ACJI)

A(JI) =HOLD

J=M(K)

IFC(J=-K) 100,100,125

KI=K=N

Do 130

I=1,N

KI=KI+N

HALD=A(KI)

JI=KI-K+J

AKI)==AWJD)

ACJI) =HALD

GO TO 100

RETURN

END

MINV LISTING, CONT.
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VI. COMMENTS FOR SUBROUTINE AMPLCT LISTING (F,w refer to Eq. (II-7))

Line 5 DERIV is called to evaluate F's from current w's.

Line 7 The independent values, i.e., the w's JEQ =1 to
NEQ read into V(3 + JEQ) are stored in V(2*NEQ +
3 + JEQ). |

Line 8 The values of the derivative functions F's, JEQ =1
to NEQ, evaluated in DERIV and passed through in
V(NEQ + 3 + JEQ), are stored in V(5*NEQ + 3 + JEQ).

Line 11 The w's are reset in V(3 + JT), JT =1 to NEQ.

Line 12 The current value LA only is multiplied by 1. 005 in
preparation to call DERIV.

Line 15 The new F's for LA 1. 005 w, are stored in
V(6*NEQ + 3 + JEQ) JEQ =1 to NEQ

Line 17 The w's are reset

Line 18 The current value of LA only is multiplied by . 995 in
preparation for call to DERIV.

Line 21 The new F's for W= 995 W, are stored in V(7*NEQ +
3+ JEQ) JEQ =1 to NEQ.

Line 24 The value of the matrix [A], whose elements are
aij = aFi/ aw]. is calculated and stored column by

column in the linear array C.
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Line 27

Line 31, 32

Line 34

Line 38

Line 43

Line 47

Line 48-59

JMAT is a counter incremented by one each time a
trial solution cycle has been completed. No more than
10 successive doublings or halvings of the step size
are permitted.

The matrix [[I] - ¢th/2)[A]] is made up and stored in
the two dimensional matrix QMAT.

The suﬁroutine MINV inverts QMAT and returns the
inverted elements in QMAT itself.

The two dimensional array QMAT is loaded column
by column into the linear array Q.

The increment for each independent argument

Aw, = wi(n+1) - w/0) = hF, ; (655 - (0/2) ai].)'l

is calculated and stored in V(3*NEQ + 3 + JEQ),

JEQ =1 to NEQ.

No more than 10 step size changes and subsequent
recalculations of the whole step are allowed. I
JMAT > 10, the test for the maximum relative change
is deleted and the results of the step are accepted.
The largest value of IAWi/Wil is found and stored in
AM; to avoid division by zero, this test is deleted for
any lwil <1x 10730, The step size h is changed as
follows: If IAwi/Wilmax > V(1), divide current step

size h (stored in V(3)) by 2. 0, discard the results of
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the calculated increments Awi and recalculate. If
lAwi/Wilmax < (1/5) V(1), double the current atep
size, discard the calculated results and recalculate.
If (1/5) V(1) < lAWi/Wilma.x < V(1) the calculations
are considered satisfactory.

Line 61 The dependent arguments, w's are advanced.,

Line 62 The independent argument is advanced.

VII. MODIFICATIONS TO AMPLCT FOR EIGENVALUE DISPLAY

A principle adVantage of the scheme given here is that the eigenvalues
of the matrix [ A] do not need to be explicitly determined. There may be
situations however wherein the actual values of the eignevalues are wanted.

To do this create a storage matrix A dimensioned NEQ X NEQ.
This can be easily done by including A as an additional argument in the
argument list for AMPLCT and dummy dimensioning A(NEQ, NEQ) in
AMPLCT. The actual dimensioning of A is then done in the main program
where the value of NEQ is known. Between lines 30 and 31 in AMPLCT,
load A from the array C as follows:

A(IROW, ICOL) = C(JEQTER)
Then at preselected intervals set by a counter (which may be added as an
additional argument in AMPLCT) after a step has been successful, the

eigenvalues of A can be obtained for display by performing a decomposition
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of the matrix A into a lower triangular matrix having 1's on principle

diagonal and an upper triangular matrixm. The values on the prin¢iple
diagonal of the upper triangular matrix are the eigenvalues of A. Such
decompositions, done by Gaussian elimination and partial pivoting, are
usually available as library subroutines. In Ref. (11), a FORTRAN IV

program that does this decomposition by the Rutishauser method is given.

VIII. EXAMPLE SOLUTION

To illustrate the use of AMPLCT, a complete FORTRAN IV program

and the resulting computer output are given for the following equations12

dy1

-—-——:':-
5 =V = 2000y, + 1000 y, + 1

dy
2 o
& Y2V 7Y,

with y1(0) =0, y2(0) =0, from x=0. to 4

The eigenvalues are Al = -2000. 5 and Az = -. 5 and are constant be-
cause the equations are linear. These equations are already in automor -
phic form since the independent variable x does not appear on right sides

so that it really was unnecessary to include the third equation,

=313

= y|3 =1. , y3(0) =),

but doing so effectively includes the independent argument in the step size

test.
30



Due to the step size test on |Ay/y|, the solution was not started
atx=0, butatx=1x 10-3 to avoid an unnecessarily small initial step
size, since all initial condition§ were zero. The 360/70 CPU time re-
quired for this example was . 991 sec for 65 steps using a rather coarse
value of the accuracy parameter G(1) = . 50.

The CPU times and number of steps for G(1) =. 10 and . 05 were
4,072 sec and 8. 050 sec for 625 steps respectively. In each case about

30% of the steps were required to reach x =, 01.
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EXTERNAL DERA
COMMBN/D/G(50)

vV v

>C INPUT NEEDED: 6G(1)>=ACCURACY,G(2)=XSTART,»G(S0)=XMAX
>C AND G(3)=INITIAL STEP SIZE
>C WITH G(4),G(5),G(6) AS INITIAL CONDITIONS

\

NAMELIST/INPUT/G
DIMENSION QMAT(3,3) »L(3),M(3)
1 READ(S5, INPUT)
WRITE(6,110) G(1),G(2),6€3),G(4)5G(5),G(6)
110 FORMAT('1 ACCURACY PARAM«> G(1)=',1PE15.6/
1' INDEPEN. VARIABLE, G(2)=°',E15.6/
2' STEP SIZE, G(3)=',E15.6/
3' DEPEN. VARIABLE, G(4)=',E15.6/
4' DEPENe. VARIABLE, G(S5)=',E15.6/
S ' DEPENDENT VARIABLE G(6) = ', E15.6)
WRITE(6,101)
N=3
WRITE(6,100)G(2),G(4)5G(5)5G(6)
100 FORMAT(' ',1P4E16.6) }
101 FORMAT(®1'58Xs X5 15X, *Y(1) 512X, °Y(2)%512X5'Y(3)',5/)
6 CALL AMPLCT(GsN>DERA,QMAT,LsM)
WRITE(6,100)G(2),GC4),G(5),G(6)
IF(G(2)+LE«G(S0)) GO& TO 6

VVV VY VVV V¥V¥VVYVVVVVYVVVVVVYVV VY

END

SUBRGUTINE DERA

COMM@N/D/G(S0)
G(7)=-2000%G(4)+1000+%G(5)+1.
G(8)=G(4)-G(5)

G(9)=1.

RETURN

END

EXAMPLE PROGRAM LISTING

> &INPUT G=¢5051¢E=3,00155:0012E=452¢4993E=T51.E~3,G(50)=4.>

INPUT DATA FOR EXAMPLE PROGRAM
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&END



ACCURACY PARAM., G(1)=
INDEPEN. VARIABLE, G(2)= 9¢999999E-04
STEP SIZE, G(3)= 9.999998E-03
DEPEN. VARIABLE, G(4)= 5.001200E-04
DEPEN. VARIABLE, G(5)= 24 499300E-07

S+000000E-01

vV VvVvVyVvVvVYy

VVVVVVVVVVVVVVYVVYVVVVVyVYyY

1¢468749E-03
1.624999E-03
1. 781249E-03
14937499£-03
2.093749E-03
20 406249E-03
2.718749E-03
3.031249E-03
3¢343749E-03
3¢656249E-03
44281245E-03
4.906245E-03
5¢531244E-03
6¢156243E-03
6+781243E-03
8.031242E-03
9.281240E~-03
1.053124E-02
1.178124E-02
1.303124E-02
1.553123E-02
1.803123E-02

5+.001635E~-04
5.001901E-04
5.002199E~04
5+002522E-04
5.002865E-04
5.003582E-04
5.004329E-04
5.005093E-04
5+005863E-04
5.006639E-04
5.008194E-04
5.009754E-04
5.011314E-04
5.012872E-04
S5¢014429E-04
S+017542E-04
5.020658E-04

5+.023766E~-04

5.026872E-04

" 5.029982E~04

5¢.036192E-04
5¢042385E~-04

4.841975E-07
5+622686E-07
6+403317E-07
7¢183875E-07
7.964362E-07
9+525139E-07
1.108565E-06
1.264591E-06
1+420593E-06
1.576569E-06
1.888448E-06
2.200231E-06
2.511916E-06
2,823504E-06
3.134995E-06
3+757686E-06
4.379988E-06
5.001902E-06
5.623426E-06
6+244561E-06
7+ 4856 T2E~06
8. 725228E-06

COMPUTER OUTPUT
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DEPENDENT VARIABLE G(6) = 9+999999E-04
X YC1) Y(2) Y(3)
94999999E~-04 5.001200E-04 2+499300E-07 9¢999999E-04
1+156250E-03 5.001265E-04 3.280294E~-07 1156250E-03
1.312500E-03 5.001419E-04 4.061180E-07 1.312500E-03

1. 468749E-03
1.624999E-03
1. 781249E-03
1.937499E-03
2.093749E-03
2. 406249E-03
2. 718749E-03
3.031249E-03
3.343749E-03
3.656249E-03
4.281245E-03
44906245E-03
54531244E-03
6+156243E-03
6+781243E-03
8+031242E-03
9.281240E-03
1.053124E-02
1.178124E-02
1.303124E-02
1.553123E-02
1.803123E-02



VVVVVVV VYV VVVVYVVYVVVYVVVVVVVVVVVVVVVVYVYVYVVY

2.053123E-02
2.303123E-02
2.553122E-02
3.053122E-02
3.553122E-02
4.053122E-02
4.553122E-02
5.053122E-02
6.053122E~-02
7.053119E-02
8.053118E-02
92.053117E~-02
1.005312E-01
1.205311E-01
1.405311E-01
1.605311E-01
1.805311E-01
2.005311E-01
2+ 405310E-01
2.805310E-01
3.205310E-01
3.605309E-01
4.005309E-01
4.805309E-01
5¢605308E-01
6+405308E-01
7.205308E-01
8.005308E~01
9.605308E-01
1.120530E 00
1.280530E 00
1.440530E 00
1.600530E Q0
1.920529E 00
2.240529E 00
2.560529E 00
2.880528E 00
3.200528E 00
3.840528E 00
4. 480527E 00

5.048583E~-04
5.054765E~04
S5+060937E-04
5.073270E-04
5.085573E-04
S5¢«097836E~-04
5¢.110074E-04
Se122274E~04

S¢146612E-04.

S«170791E-04
S¢194889E~-04
S5.218831E-04
5.242690E-04
5.289924E-04
S5+336907E-04
5+.383205E-04
5¢429175E-04
S+474603E-04
S«564245E-04
5¢651971E-04
5.738169E-04
5¢822424E-04
5¢905265E-04
6+065653E-04
6.220061E-04
6¢368090E-04
6+510646E-04
6+647294E-04
6+905228E-04
7.143167E-04
7¢362934E-04
T74565685E-04
7«752941E-04
8.085738E~-04
8¢369293E-04
84610785E-04
8+816605E-04
84991791E~04
9.269945E-04
9.471201E-04

9.963241E-06
1.119971E-05
1+243463E-05
1. 489984E-05
1. 735889E-05
1.981182E-05
2.225861E-05
2. 469930E-05
2.956245E-05
3. 440131E-05
30921604E-05
4. 4006 78E-05
4.877364E-05
5.823614E-05
6+ 760456E=05
7.687985E-05
8.606281E-05
9+515442E-05
1.130676E-04
1+306262E-04
1.478372E-04
1.647075E-04
1.812439E-04
2.133440E-04
2.441856E-04
2.738182E-04
3.022887E-04

3¢296430E-04

3.811962E-04
4.287849E-04
4.727137E-04
S¢132644E-04
5¢506966E-04
6¢172450E-04
6+739367E-04
T7.222313E-04
7.633730E-04
T+984205E-04
8¢540163E-04
B+942788E~04

COMPUTER OUTPUT, CONT.
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2.053123E~-02
2.303123E-02
2.553122E-02
3.053122E-02
3.553122E-02
4.053122E-02
44553122E-02
5¢0S3122E-02
6.05S3122E-02
7.053119E-02
8.053118E-02
9.053117E-02
1.005312E-01
1.205311E-01
1.405311E-01
1.605311E-01
1.805311E-01
2.005311E-01
2.405310E-01
2.805310E-01
3¢205310E-01
3.605309E~01
4.005309E-01
4.805309E-01
5+.605308E-01
6+ 405308E-01
7.205308E-01
8+4005308E~01
9+605308E-01
1.120530E 00
1.280530E 00
1+ 440530E 00
1.600S30E 00
1+920529E 00
24 240529E 00
2+560529E 00
2.880528E. 00
3.200528E 00
3.840528E 00
4. 480527E 00



IX. COMPARISON TO OTHER METHODS

It is of interest to compare AMPLCT with other methods devised
to integrate stiff equations. Lapidus and Seinfeldv, p. 286, have tabu-
lated the running time and accuracy of nuinerical experiments on several
examples of stiff differential equations. Their results were obtained
with an IBM %094 while the results reported here for AMPLCT were
obtained using an IBM 360/67. IBM 7094 and 360/67 machine times are
not directly comparable, so to make the run time comparisons meaning-
ful the results for each example on each machine have been normalized
by their respective CPU times. required for the classical fixed step
4th order Runge Kutta technique using the same step size over the same
range of independent variable, If only a portion of the Runge Kutta solu-
tion was computed due to excessive run time, the full run time was es-
timated on the basis that the time per step was approxima tely constant.

Two of Lapidus and Seinfeld's four examples were chosen, the
example numbers being theirs.

Example 1

y' = -200(y - F(x)) + F'(x)
where F(x) = 10 - (10 + x) e* with y(0) = 10. The solution is desired be-
tween x = 0 and x = 15. The exact solution is
y=Fx)+ 10 ¢ 200%
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Example 1 has two components, the eigenvalues being -200 and -1 and
is only moderately stiff and not parasitic. The solution component

o~ 200% decays very rapidly compared to e .

Example 4
y! = -. 04y +1x104y y
1 "1 273

2

4 7
t - -
y2—.04y1 1x10 Y9¥3 3x10 Yy

7.2
| -
y3-3x10 Yy

with YI(O) =1, y2(0) =0, y3(0) =0. The solution is wanted be-

tween x = 0 and x = 40. The eigenvalues are A, =0 and,

1

A2 4 (. 04+ 1x10%y, + 6x107y ) e (. 24x10' y,+ 6x10'1y2) = 0

At x = 0 the eigenvalues are (0,0, and -. 04) while for large X they become
(0, 0, and -1 x 104) with the absolute value of the largest eigenvalue
changing from . 04 to 2405 in the range x = 0 to . 02. The system is fairly
stiff,

The various implicit methods use the following basic equation to

advance the step

Vo1 =YtV k. + wok

n+1 171 7272
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where

k, =h[f(y) + 2, Al k]

k, = h[f(y_+ b,k

1 1)+ a2 A(yn+ c kl)h

1 2]

for the equation y' = f(y) with A(y) = 9f/0y being either a scalar or the
Jacobian matrix. The values of al, 2y, bl’ cys Wy and Wy depend on the
particular method. The trapezoidal rule uses

a1=1/2, wy =1, w,=0

Some of the better methods cited by Lapidus and Seinfeld were:

RK4 Classical, fixed step fourth order Runge Kutta,
used for the time normalization.

TR Trapezoidal procedure in which from Y, at X
the trapezoidal rule is used twice to give two suc-
cessive values Vo1’ T2 and then the first new
value Vi1 is replaced by (yn + 2yn+1 + yn+2)/ 4

TR-EX Trapezoidal rule using the input filtering described
above and global extrapolation. In global extrapola-
tion after integration over the whole interval, the step
size is decreased by a factor of 2 and the whole prob-
lem is redone. The values at a particular point were
then obtained by Romberg extrapolation to the limit

after three such cycles of halving.
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CAL Calahan's method using a, = a, = . 788675134,

1 72

b, = -1.15470054, ¢, =0, w, = 3/4, W, = 1/4.

1

The characteristic root p is given by

_1-.578h) - . 456 (ny)°

1-1.578hA+ . 622 (hn)>

n

LW1 Liniger and Willoughby's method using exponential

fitting. The step is advanced using
- - ' t
Ynep = Yo+ B - Byr o+ By: ]
which has a characteristic root

_ 14+ 8hx
=T Td-pm

The constant 8 is determined by requiring p to ap-
proximate the exponential  p(h)) = eh2 which

yields

1 1

Y S
e -1

The largest negative eigenvalue is chosen to make
the exponential fit. The backwards Euler method

uses 8 = 0 which corresponds to a fit at hA - -w0.

ARK A classical fixed step fourth order Runge-Kutta method,

set up so as to use the same calling conventions as
AMPLCT and used for the time normalization.
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The numerical results using these methods are summarized in
Tables 1-4. The relative accuracy R is given by [yn - Yix) | /¥(x)
where Y, is the computed value and Y is the true value. The errors
are shown at two values of x. The CPU times, normalized by the clas-
sical fourth order Runge-Kutta method using the step size noted, are
given in the last column,

For example 4, the solution obtained with RK4 or ARK using a step
size h = . 001 was assumed exact. The parameter V(1) noted with
AMPLCT is the relative accuracy parameter which controls the step
size.

In addition to the previous methods, a recent stiff method developed

ar7’ 13,14 was run with the 360/67 using example 4. Gear's method

by Ge
is a predictor and iterated corrector method in which both the order and
step size are automatically selected to give the largest step and hence re-
duce the overall calculation time.

A FORTRAN 1V listing of the alogrithm is given in Ref. (14). The
result of Gear's .method is given in Table 5.

Table 2 shows the almost linear increase of computing time with ARK
that occurs with decreasing step size. The largest relative error in
example 1 occurs near x =. 016 for all methods. Even though a step size
of h =. 01 was small enough so that a stable solution was possible using
ARK , the accuracy at x = . 016 is unacceptable for this step size. For

example 1, AMPLCT appears to offer no marked advantage over the stiff

methods cited by Lapidus and Seinfeld.
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Iﬁ example 4 AMPLCT shows up quite well compared to the methods
discussed by Lapidus and Seinfeld even considering that ARK took about
3 times longer than RK4 to integrate this example. It was found that.
the run time of AMPLCT depends almost entirely on the relative accuracy
parametef V(1) and is independent of the initial step size. In example 4
the errors at 7. 40 and 10 were similar; the point of error evaluation at
X = 7. 40 being a matter of convenience. The results of RK4 or ARK using
h =. 001 were taken as exact for example 4. ARK and RK4 both become
unstable using h =. 001 for x > 16 where [Am a.xl = 2780. The generally
higher accuracy of TR-EX has been obtained at the expense of an increased
run time.

Gear's method is faster than AMPLCT by about a factor of 5 for

t and an up

example 4 using EPS =.0001. The order varied between 1%
to x =. 70 at which point it selected 3rd order for the remainder of the

problem. Using EPS =.001, Gear's method was unstable.
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