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Abstract

In this paper we present exact solution procedures for a special discrete layout problem;
namely, the Circular Layout Problem (CLP) where the "facilities" are arranged around a
simple closed loop path and flows between “facilities” occur only in one direction (e.g.,
clockwise). Given a flow matrix and a distance matrix, the problem is a special case of the
Quadratic Assignment Problem where the objective is to assign each "facility" to one of the
predetermined sites such that the total "cost" (defined by flows times distances) is
minimized. As described in the paper, many practical applications of the CLP, such as
arranging workstations around an AGV or conveyor loop, can be found in modern

manufacturing systems.

The CLP can be divided into four subproblems based on whether the sites are equally
spaced around the loop or not, and whether flow is conserved at each "facility" or not. We
present an LP relaxation which optimally solves three of the subproblems. For the fourth
subproblem where the sites are arbitrarily spaced and flow is not conserved, we present a
branch and bound scheme based on a tight lower bound which is obtained by taking

advantage of the circularity of the distance matrix.



The problem of determining the optimum locations of a set of facilities, while satisfying
certain constraints, is generally known as the facility layout (or facility location) problem.
It has many applications in the design of manufacturing systems, service facilities, office
space, etc. In those cases where only a finite number of predetermined sites are

considered, it is called the discrete layout/location problem.

Given certain "interactions" between the facilities to be located, the discrete layout problem
has often been modeled as the Quadratic Assignment Problem (QAP). Since the QAP has
been shown to be NP-complete (see Sahni and Gonzalez 1976), obtaining an optimal
solution generally requires excessively high computation times. For example, Finke,
Burkard and Rendl (1985) have reported that a QAP with 15 facilities requires about 50
minutes of CPU time on a CDC Cyber 76. Hence, more efficient solution procedures are

required to optimally solve discrete layout problems of moderate size.

In this paper we will present exact solution procedures for a special discrete layout problem;
namely, the Circular Layout Problem (CLP) where the facilities are arranged around a
simple closed loop path and flows between "facilities" are handled only in one direction
(e.g., clockwise). As motivated in the following paragraphs, such a configuration has
many applications in manufacturing. To facilitate problem description we will use a
manufacturing system as an example throughout the paper, although all the results would

apply in other contexts.
1. PROBLEM DESCRIPTION AND APPLICATIONS

Consider a manufacturing system with automated guided vehicles (AGVs) or similar
devices serving as the material handling system. Suppose the vehicles (or the devices)

operate on a simple closed loop path with no "shortcuts" as shown in Figure 1, and that



there are n predetermined sites and n stations to be assigned to each site. Each station

represents either an Input/Output (I/O) station or a "processor” station.

Jobs that arrive from outside the system are received through one of the I/O stations.
Likewise, jobs that require no further processing are delivered to an I/O station through
which they exit the system. A processor station, on the other hand, represents a machine
(or a group of machines, or a cell) where jobs are processed. At a processor station, jobs
are picked up from the input buffer; when processing is completed they are placed on the
output buffer (see Figure 1) where they are eventually picked up by a vehicle and delivered
to the input buffer of the next station. The example shown in Figure 1 contains one I/O
station and 11 processor stations. Vehicles are assumed to move the jobs one at a time, and
travel unidirectionally around the loop. Throughout the paper, without loss of generality,

the vehicles are assumed to travel clockwise.
Figure 1

Let F=(fj;) denote the flow matrix, where f;;20 represents the average number of jobs to be
moved from station i to station j over a given length of time, for i=1,..-,n, j=1,...,n, and
fii=0 for all i. Also, let R=(ryy) denote the site distance matrix, where ryy>0 is the
clockwise distance from site u to site v, for u=1,...,n, v=1,...,n, and ry,=0 for all u. The
most important characteristic of the CLP is that, for any pair of sites u and v, the distance
from site u to site v and the distance from site v to site u sum up to the total loop length, C.
That is, ryy+ryy;=C for all u and v, u#v. Such a distance matrix is called a circular distance
matrix. Lastly, let S=(s(1),s(2),--,5(n)) denote a layout of n stations, where s(i) denotes

the site occupied by station i.

Conceptually, any closed loop path with no shortcuts can be represented as a circle, around

which there are n predetermined sites with the same distances as in the original closed loop



path. As shown in Figure 2, in general, ryy#ryy, €xcept for those pairs of sites that are
symmetrically located around the circle. Note that those problems that contain shortcuts

cannot be modeled as a CLP.
Figure 2

We will next define the material handling requirement in a system as the total quantity of

material to be moved over a given length of time, multiplied by the corresponding travel
n n

distance, i.e., ¥ Y fijrs(i)s(j), for @ given flow matrix F, site distance matrix R, and
i=1 j=1

1=
layout S. In the above example based on AGVs, the material handling requirement is equal

to the total Joaded vehicle travel distance over a given length of time.

We want to find the layout S* which minimizes the material handling requirement for a
given flow matrix F and site distance matrix R for the following reasons: if the required
throughput is high and the number of vehicles is fixed, then only the optimal layout S may
meet the throughput, while other layouts may not. If required throughput is not so high,
then several alternative layouts may meet the throughput. However, S would still be the
preferred layout because it will lower the average vehicle utilization so that (1) a higher
throughput requirement in the future can be met without purchasing additional vehicles; or
(2) more stations can be added to the system with the same number of vehicles; or (3)
capital investment can be reduced by using a smaller number of vehicles and/or less

expensive, slower vehicles.

Hence, for a given flow matrix F=(fjj) and a circular site distance matrix R=(ryy), the CLP
is defined as assigning n stations to n predetermined sites around a circle so as to minimize

n n
the material handling requirement givenby Z= 3 ¥ firsi)sj). Throughout the paper, the
i=1 j=1

fixed cost of assigning a station to any site is assumed to be negligible, or nearly equal

among the sites.



An increasing number of problems arising in modern manufacturing applications can be
modeled as a CLP. Depending on the type of application, the material handling requirement
may be interpreted in different ways. For example, consider the case where material flow
between individual stations is supported by a closed loop conveyor, as shown in Figure
3(a). In such an application the site distance matrix is clearly a circular one. Furthermore,
the material handling requirement can be defined as the total distance all jobs have to travel
on the conveyor. Hence, given a uniform conveyor speed around the loop, minimizing the
material handling requirement effectively minimizes the total time jobs spend on the

conveyor (which would minimize congestion on the loop).
Figure 3

Other examples include a station layout for a robot arm rotating in one direction only
(clockwise or counterclockwise) to serve stations located around a circle as shown in
Figure 3(b); and tool layout on a turret (in flexible manufacturing systems) to minimize the
total turret rotation time for switching the tools (during which time the machine is idle),
provided that the slots are of equal size and the turret rotates in only one direction as shown

in Figure 3(c).
2. LITERATURE REVIEW

The CLP has been studied independently by several researchers over the last few years
under various names. In formulating the CLP two types of objective functions have been
used in the literature: (1) minimizing the total flows times distances per unit time; and (2)
minimizing the total number of parts that cross the I/O station per unit time. The former has
been used in the classical QAP formulation (Koopmans and Beckmann 1957) since it best
represents the total interaction (or material handling requirement). A few studies have used

this objective function in formulating the CLP. Kiran and Karabati (1988) develop a



polynomial time algorithm for a special case of the CLP where material flow is allowed
only between a refixturing station and all other stations. They also present a branch and
bound algorithm with dominance rules for the general case. Assuming that flow is
conserved, Kiran, Unal and Karabati (1989) formulate the problem as a station sequencing
problem and present an integer programming formulation. Based on empirical results, the
authors report that the LP relaxation of the IP formulation yields integer optimal solutions
for over 3,600 randomly generated problems. However, they were unable to prove that

one would always obtain integer solutions.

The objective function of the second type defined above has been used in a few studies.
Afentakis (1989) first formulates the problem as an integer programming problem. A
heuristic algorithm using block interchanges as opposed to pairwise interchanges is also
presented. Kouvelis and Kim (1989) present dominance rules, three constructive heuristic
algorithms, and a branch and bound algorithm with decomposition principles for large flow
matrices. Both Afentakis (1989) and Kouvelis and Kim (1989) show that the problem with

the objective function of the second type is still NP-complete.

Lastly, Bartholdi and Platzman (1989) and Bozer and Srinivasan (1989) analyzed the
throughput capacity of an AGV loop such as the one shown in Figure 1. Neither study,
however, addressed the layout problem.

3. THE CIRCULAR LAYOUT PROBLEM

The CLP can be formulated as a quadratic assignment problem (QAP). Letting I, denote

the set of first n positive integers, the QAP formulation of the CLP can be given as follows:

) n n n n
Min. 2 Z 2 X fijfuvxiuxjv (D
i=l j=1 u=l v=1
n
(QAP) s.t. Y xju=1, for all u in Ip, (2)
i=1



n
3 Xiy = 1, for all i in Iy, 3)

u=1

xjy=0orl, foralliand uin Iy, 4)

where xj,=1 indicates that station i is located at site u. In order to develop an efficient
solution procedure for the CLP, we will first present a special case, namely, the Equi-

Distance CLP. Subsequently, we will extend the results to more general cases of the CLP.
3.1. The Equi-Distance Circular Layout Problem (ED-CLP)

Consider n equally spaced predetermined sites arranged around a circle as shown in Figure
4(a). Without loss of generality, we will assume that adjacent sites are unit length apart,
and that the length of the circumference is equal to n. Recall that R=(r,) is a (circular) site
distance matrix, where ryy denotes the clockwise distance from site u to site v. Let us
define D=(djj) as a matrix of decision variables for the CLP, where djj denotes the
clockwise distance from station i to station j, i#j. For example, given the set of sites shown
in Figure 4(a), we have rjp=1, rj3=2, and so on. However, given a corresponding layout
shown in Figure 4(b), we have ds2=1, ds6=2, and so on. Note that D=(d;;) is also a

circular distance matrix, that is, d;j+dji=n for all i and j in Ip, i#.
Figure 4

The flow matrix F=(fjj) can be calculated as follows: suppose there are K types of jobs,
each of which has its own routing, that is, the sequence of stations they visit. Let Qy
denote the average number of jobs of type k (k=1,..-,K) to be processed over a given
length of time and Vij(k) be the total number of times that job type k is moved from station i

to station j before it leaves the system. Then the flow matrix is obtained as

K
F=(fjj), where fjj= ¥ Q,Vij(k), for all i and j in Ip, and fji=0 for all i in Ip. 5)
k=1



Given the special structure of the problem, we will attempt to formulate the ED-CLP as a
Linear Programming (LP) problem. Although the CLP is defined for n23, for notational
convenience, we will consider CLPs only with n24 in the remainder of the paper. (It is
straightforward to obtain the optimal solution for n=3.) As shown in Figure 4(b), regard-
less of the sequence of stations, the distances from station i to all other stations sum up to a

constant. That s,

n -

Tdj=1+2+4 -+ (@-1)= “(“2 D foralliint, ©6)
-

jA

By the same argument, the distances to station j from all other stations sum up to the same

constant. That is,

n -
Tdj= 142+ +@-1) = “(“2 D foralljinT,. ™
1=

i#]
Furthermore, since D=(djj) is a circular distance matrix,
djj + dji = n, foralliand j in Iy, i#). (8)
The next set of constraints proved to be critical for our study. These constraints are
concerned with the precedence relationship of any three stations around a circle. As shown
in Figure 5, starting at station i, either j precedes k (i.e., djj+djk=dik), or k precedes j (i.e.,
dij+djk=dik+n). Hence,

dij+ dgk = (dik or dik+n), forall distincti, j, and k in Ip. )
Figure §

Unfortunately, if we attempt to employ (9) as a constraint set, the formulation would have
to include 0-1 integer variables. Hence, the following relaxed inequality will be used

instead of (9):

dik < djj + djk <dik +n, for all distinct i, j, and k in Ip. (10)



As defined earlier, the objective is to minimize the material handling requirement. The

decision variables are dij's, where dj; denotes the clockwise distance from station i to

station j, i#j. Hence, the LP relaxation for the ED-CLP is constructed as follows:

Min. 3 ¥ fjjdij

i j#

LP) st 3 &= "0 foraliil,
JA

s dj = U foraljinly,
i#j

djj + dji = n, foralliand jin Iy, i#j,
djj + djx <djk + n, forall distincti, jand kin Iy,
djj + djk 2 dik, for all distinct i, j and k in I,

dij 20, for all i and j in I, i.

(11)

(12)

(13)

(14)
(15)
(16)
(17)

Note that the above model represents a LP relaxation because constraints (15) and (16) are

used instead of (9), and djj's are not restricted to integer values.

An important characteristic of a feasible solution D=(d;;) to LP° is that all dij's implicitly

have the same upper and lower bounds. Consider an arbitrary djj (1<i<j<n) in D and a set

of precedence constraints which contain djj as listed in (18) below:
di1 <djj+dj1 <di1+n
dij-1  <dj+dji1  Sdia+n
dij+1 Sdij+djis1  Sdijer+n
dijq1 <djj+djj1 <djji+n
dije1 Sdij+djje1  Sdiger+n
din < djj +djn Sdipn+n
Summing up the above (n-2) constraints, we obtain:

Y dik S(n-2)djj+ I djk < I dik + n(n-2).
k#ij kai,j k#i,j

(18)

(19)



Theorem 1. In any feasible solution D=(dj;) to LP°, 1<djj<n-1 for all 1<i#j<n.

Proof. Since Y dik =n(n-1)/2 - djj by (12), constraint (19) can be rewritten as:
ki
n(n-1)/2 - djj < (n-2)djj + n(n-1)/2 - dji < n(n-1)/2 - dj; + n(n-2).
By (14), the above constraint can be simplified to 1<djj<n-1 for all 1<i<j<n. Also, since

dji=n—djj, we have 1<djj<n-1 for all 1<j<i<n as well, which completes the proof. [ ]

To facilitate the following proofs, we will simplify LP° to obtain an equivalent formulation,
say, LP* as follows: 1. constraints (13) can be eliminated since they are redundant due to
(12) and (14); 2. only those indices i, j, and k such that 1<i<j<k<n need to be considered in
(15) and (16) since precedence constraints with other indices are redundant due to (14); 3.
dji in (11) and (12) can be replaced by n—d;j for 1<i<j<n, and (14) can be eliminated; and 4.
any one row among the rows given by (12) can be eliminated since, after replacing djj in
(11) and (12) with n—d;j, both sides of the summation of all constraints given by (12) are
equal to zero. This implies that the n rows in question are linearly dependent. Without loss

of generality, we will eliminate the last row. Consequently, the resulting LP (relaxation for

the ED-CLP is given by:
o1 n |
Min. ¥ ¥ fidij+C (20)
i=l j=i+l
i-1 n -
(LP') s.t. -3 dji+ X dijj= n(nTl)_ (i-Dn, for 1< <n-1, 21)
=1 jeitl
djj + djk Sdik +n, forl<i<j<k<n, (22)
dij + djk 2 dik, for1<i<j<k<n, (23)
dij 2 0, for1<i<j<n, (24)
, n-1 n
where fij=fjj-fj,andC=n ¥ Y fji.
=l jeitl



Let B denote a basis of LP". Asshownin Figure 6(a), B can be divided into four matrices
labeled P, C, 0, and the identity matrix I, where P is further divided into E and -G, and C
is further divided into H and G. For each triplet (i,j,k) where 1<i<j<k<n, there is a pair of
rows in B given by (22) and (23). In LP withn stations, there are n(n-1)/2 columns (or
decision variables), (n—1) rows in E given by (21), and 2('31) = n(n-1)(n-2)/3 rows in -G,
H, and G given by (22) and (23). Since all the djj's must be basic variables in any basis
by Theorem 1, only (n—1)(n-2)(2n-3)/6 out of the n(n-1)(n-2)/3 slack variables can be

selected as basic variables in B.

Let H denote the matrix which consists of the pairs of rows whose slack variables are both
selected as basic variables, and let G denote the matrix which consists of the rows for
which only one slack (out of a pair) is selected as a basic variable. Let r(M) denote the
number of rows in a matrix M. Since P is a square matrix, r(-G) = n(n-1)/2 - (n-1) =
(n=1)(n-2)/2. Hence, r(H) = n(n-1)(n-2)/3 - 2r(-G) = (n-1)(n-2)(n-3)/3. Within the
submatrices H and G, respectively, the rows are arranged in the lexicographically

increasing order of the indices; that is, (1,2,3), (1,2,4), -+, (1,2,n), (1,3,4), and so on.

Figure 6

Recall that, P=(%) and C=(%). It is known that (Bazaraa and Jarvis 1977, p.52):

-1

(25)
o)

-CP = (26)

10



In order to prove that LP" solves the ED-CLP, we will show that the optimal solution of
LP" actually yields an equi-distance layout. However, we will first show (using the
following four lemmas) that —CP! consists of U, V, W, and X as shown in Figure 6(b),
where U=V=0, X=I, and W is composed of 0 or £1's. Subsequently, we will show that
for any basic feasible solution of LP*, exactly one of the two constraints given by (22) and
(23) holds at equality for all 1<i<j<k<n; that is, a pair of slack variables associated with

(22) and (23) must assume the values (0,n) or (n,0) in any basic feasible solution of LP*.

Recall that, for each triplet (i,j,k) where 1<i<j<k<n, there is a pair of rows (given by (22)
and (23)) in B. Let the first and second row in the pair associated with the triplet (i,j,k) be
labelled r+(i,j,k) and r (i,j,k), respectively. In other words, let r+(i,j ,k) denote the row
from (22) in which the coefficients of djj, dik, and djk are 1, -1, and 1, respectively, and let
r (i,j,k) denote the matching row from (23); that is, r (i,j,k)= —-r(i,j,k). Also, let r°(j,k)

denote either r'(i,j,k) or r (i,j,k).

Consider next a quadruplet (i,j,k,1) where 1<i<j<k<I<n. There are exactly four triplets
associated with this quadruplet: (i,j,k), (ij,1), (i,k,1), and (j,k,1). Let r;(i,j,k,l) denote one
of the two rows associated with the m th triplet of the above four; that is, rcl’(i,j,k,l) =

r*(i,.k) or £°(G,jk), rYAjkl) = r*(i,jl) or r(ij)), and so on.

Lemma 1. For any quadruplet (i,j,k,]) where 1<i<j<k<I<n, there exists q=(q;,q7,q3.d4)

4

such that § qm ra(ijkl) =0if and only if gm =% ® for some w>0 (1Sm<A4).
m=1

Proof. See Appendix.

Lemma 2. Every row of H can be represented as a linear combination of the rows of G.
Proof. Since G is included in C, it is sufficient to show that rank(G) = rank(C). Recall

that, for the ED-CLP with n stations, r(G) = (n-1)(n-2)/2. Also, all the rows of G are

linearly independent. (Otherwise, due to -G, matrix B would not represent a basis.)

11



Hence, rank(G) = r(G). On the other hand, consider a quadruplet (i*,j,k,l) where
lSi*<j<k<ISn. By Lemma 1, r°(j,k,l) can be expressed as a linear combination of

r°(i*,j,k), r°(i*,j,l), and r°(i*,k,1). Hence, the maximum number of independent rows in
C is given by (™3!) = (n-1)(n-2)/2 when i'=1. That is, rank(C) < (n-1)(n-2)/2 =

rank(G). However, since C includes G, rank(C) 2 rank(G). Therefore, rank(C) =
rank(G). |

Lemma 3. Let R}S denote the matrix P in which the s th row of E is replaced by the r th

row of H. Then, det R%S = for 1<r<(n-1)(n-2)(n-3)/3 and 1<s<n-1.

Proof. See Appendix.

Lemma 4. Let R%s denote the matrix P in which the s th row of E is replaced by the r th
row of G. Then, det R%s = ( for 1<r<(n-1)(n-2)/2 and 1<s<n-1.

Proof. Since R%S contains two identical rows with opposite signs, det R%S =(0forallr

and s. [ |

Lemma S. Let R%S denote the matrix P in which the s th row of —G is replaced by the r th
row of H. Then, det R?.s = 0 or det P for 1<r<(n-1)(n-2)(n-3)/3 and 1<s<(n-1)
(n-2)/2.

Proof. See Appendix.

Lemma 6. Let R‘:S denote the matrix P in which the s th row of -G is replaced by the r th

row of G. Then, det R‘is is equal to —det P if r=s, and 0 otherwise, for 1<r,s<

(n-1)(n-2)/2.

Proof. Straightforward.

Using the last four lemmas (Lemmas 3 through 6), we will next prove a theorem which is a

critical one for the paper.

12



Theorem 2. Consider a triplet (i,j,k) where 1<i<j<k<n and the corresponding pair of
precedence constraints given by (22) and (23). In any basic feasible solution of LP*,
exactly one of these two constraints will hold at equality.

Proof. Obviously, in any feasible solution of LP*, constraints (22) and (23) cannot both
hold at equality. However, both constraints may hold as strict inequalities in some feasible
solutions. We will show that, in a basic feasible solution, both constraints cannot hold as
strict inequalities; that is, a pair of slack variables associated with (22) and (23) must be

equal to either (0,n) or (n,0).

Let the g,h minor of P, denoted by Pgp, be the matrix obtained by eliminating the g th row
and the h th column of P. Also, let M(i,j) denote the element in the i th row and the j th

column of a matrix M. Then, by (26), we have:

UG = § - ChbP k). (273)
=

That is,

R (DR det Py
UG = 3 - ik g gk

= % [ é_l 1" C(ik) det Py ], (27b)

where p = n(n-1)/2. Note that the expression within the brackets defines the determinant of
a matrix obtained by replacing the j th row of P with the i th row of C. Such a matrix was
defined earlier as R%j in Lemma 3 where it was shown that det R} i = 0 for all i and j.

Hence, U(i) = Ao detRY, =0 foralli andj.

Likewise, V(i) = d(;l;, det R%j , Where R%j is as defined in Lemma 4. By Lemma 4, det
1)

R%j =0 for all i and j. Therefore, V = 0. Following a similar approach, W(i,j) = det P

13



det R?j, where R%j is as defined in Lemma 5. Thus, by Lemma 5, W(i,j) is equal to 0 or

*1 foralliandj.

Consider next the matrix H. Recall that H is composed of pairs of rows. Let H; and H;
denote two rows in a pair. Then, H i =-H; by definition. Using an expression similar to
(27a), one may obtain a row in W, say, W; by using H(i,k) in place of C(i,k). Likewise,
one can obtain another row in W, say, Wi' by using H'(i,k) in place of C(i,k) in (27a).
Since H'(i,k) = -H(i,k) for all i and k, it is straightforward to show that Wi'= -W,; for all

i. Thus, W also is composed of pairs of rows with opposite signs. Lastly, X(i,j) = d(;tli’

det R%.

ijp where R‘}j is as defined in Lemma 6 . Thus, by Lemma 6, X=I.

Let bl, b2, b3, and b4 denote the subvectors of b associated with E, -G, H, and G,
respectively, as shown earlier in Figure 6(c). Then, bl(i) =n(n-1)/2 - (i-1)n for 1<i<n-1,
and b® = (n, 0,0, 0, -, n, 0). Also, b°G) and b*() is either 0 or n, where b%(i) + b*() =
n for all i. Also, let Y={(Ym1,Ym2) | m=1,--, (n-1)(n-2)(n-3)/6} denote the set of pairs
of slack variables associated with H. Recall that a basic feasible solution of LP is equal to
B 'b. Let Y(i) denote the i th slack variable in Y. Then, Y(i) = U;b' + W b + Lb°.
Hence, Y1 = kn + n and Y2 = -kn for all m, where k is an integer unrestricted in sign.
Since all slack variables must be ﬁomcgaﬁve, we have (k+1)n20and -kn 2 0. Thus, k =
-1 or 0, which implies that (Ym1,Ym2) = (0,n) or (n,0) for all m. Similarly, let T =
{(Tm1,Tm2) | m=1,~, (n~1)(n-2)/2} denote the set of pairs of slack variables associated
with G and -G. Since the slack variables associated with -G are equal to 0 by definition,
(Tm1,Tm2) = (0,n) or (n,0) for all m. Hence, in any basic feasible solution of LP*, exactly

one of the two precedence constraints in a given pair will hold at equality. [

Recall that a solution D=(d;;) of LP’ yields an upper-right triangular matrix since only those
dij's with 1<i<j<n are considered in LP. However, since the elements in the lower-left

triangular matrix can be uniquely determined by (14), in the remainder of the paper, "a

14



solution of LP"" refers to the complete solution matrix. Using the following lemma and a

. * . . .
corollary, we will next show that any basic feasible solution of LP is an integer solution.

Lemma 7. Let D be a feasible solution of LP". If there exists at least one fractional value
in D, then there exists at least one pair of precedence constraints given by (22) and (23),
both of which hold as strict inequalities.

Proof. Let dj; = o be a fractional value in D. Suppose there is no pair of constraints both
of which hold as strict inequalities. That is, every constraint in (18) holds at equality on
one side. Further suppose that m out of n—2 constraints in (18) hold at equality on the right
side, and the remaining (n—2-m) constraints hold at equality on the left side of the

constraint (0Sm<n-2). Then, regardless of which m constraints hold at equality on the

right side, by summing up (n-2) equalities, we obtain (n-2)djj + kZ_ dik = kz fiik + mn,
i #1,) #1,j

or equivalently, (n-2)a + n(n-1)/2 - (n—-a) = n(n-1)/2 - o + mn. Simplifying the above
equation, we obtain o = m+1, which is contradictory. Hence, there exists at least one pair

of precedence constraints both of which hold as strict inequalities. [ |

Corollary 1. Let D be a feasible solution of LP". If either (22) or (23) holds at equality
for all 1<i<j<k<n, then D is an integer solution.

Proof. The above corollary is the contra positive of Lemma 7 .

Theorem 3. Any basic feasible solution of LP" isan integer solution.

Proof. By Theorem 2, we showed that in any basic feasible solution of LP’ exactly one
of the two constraints given by (22) and (23) will hold at equality for all triplets (i,j,k)
where 1<i<j<k<n. Furthermore, it was shown in Corollary 1 that in a feasible solution of
LP*, if exactly one of the two precedence constraints in a given pair holds as an equality for
all 1<i<j<k<n, then the solution is an integer solution. Hence, any basic feasible solution of

* . . .
LP is an integer solution. ]
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. . . * . .
It is straightforward to show that the coefficient matrix of LP is not unimodular.
. * . .
However, as shown above, due to the special structure of LP , all its extreme points are

integer.

Lastly, we will prove that if a feasible solution D of LP isan integer matrix, and either
(22) or (23) holds at equality for all 1<i<j<k<n, then D actually yields an equi-distance
layout. To do so, let us define an element matrix ﬁ:(&i,-) of size n as a square matrix,
where all diagonal elements are 0, and each element of I.1={1, 2,---, n—1} appears once
and only once in each row and each column of D. An example of an element matrix is
shown in Table I(a). An element matrix 'D=(&i,~) of size n is called a circular element matrix
if ai,-+a,-i =n, for all i and j, i#j. An example of a circular element matrix is shown in Table
I(b). Let us next define the standard matrix D°=(d?j) of size n as a square matrix where d?j
= j-i for 1<i<j<n, and n—(i-j) for 1<j<i<n, and 0 for 1<i=j<n as shown in Table I(c). Note

that a standard matrix is also a circular element matrix.
Table I

Theorem 4. Any basic feasible solution D of LP’ is an element matrix.

Proof. Suppose D is not an element matrix. Then either there exists at least one row or a
column of D in which a value'K appears more than once, or there exists at least one row or
a column of D in which a value K does not appear, for some integer K (1<K<n-1).

1) Without loss of generality, suppose that K appears more than once in the i th row of D.
Let djj =dik =K. Since either (22) or (23) holds at equality by Theorem 2, dj is equal to 0
or n; which contradicts Theorem 1 .

2) Without loss of generality, suppose that K does not appear in the i th row of D. Recall

n-1
that (21) is equivalent to (12) due to (14). Since Y k = n(n-1)/2, either the row cannot
k=1
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sum up to n(n-1)/2, or some other integer M (1sM#K<n-1) has to appear more than once

in the row. From 1) above, this also contradicts Theorem 1. [ ]

Using the following two lemmas and a corollary, we will finally show that LP’ optimally
solves the ED-CLP. Recall that, in the station distance matrix D=(djj), djj denotes the
clockwise distance from station i to station j. By "interchanging stations i and j" in D, we
mean interchanging columns i and j of D and, at the same time, interchanging rows i and j

of D.

Lemma 8. Consider an element matrix D. If any pair of stations in D are interchanged,
the resulting matrix D' is also an element matrix.

Proof. See Appendix.

Corollary 2. If any pair of stations in a circular matrix are interchanged, the resulting
matrix is also a circular matrix.

Proof. The proof is straightforward by the proof of Lemma 8.

Lemma 9. Consider a feasible solution D of LP". If D is an element matrix, then the
standard matrix can be obtained by a series of pairwise interchanges of stations in D.

Proof. Since D is an element matrix, the value 1 appears once and only once in each
column and each row of D. Suppose we perform a series of pairwise interchanges of
stations in D to obtain D'=(di' j) where di',i+1=l, for i=1,2,--,n-1, and consequently dr',,l
=1. Since D'is also an element matrix by Lemma 8, and we know that d2'3=1, d i3 must
assume one of the values in {2,3,-,n-1}. By (22) and (23), diz<d 12 +d §3 <d i3 +
n. Sinced iz + dé3 =2,d i3 must assume the value 2. By the same argument, di' i+2 =2,
for i=1,2,-+,n-2. Similarly, since we know that d34=1 and d24=2, d 14 must assume one
of the values in {3,4,n-1}. By (22) and (23),d14 $d12 +d24<d 14 +n. Sinced o

+d 54 =3,d '14 must assume the value 3. By the same argument, d i',i+3 = 3, for
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i=1,2,~-,n-3. Repeating this procedure, the upper-right triangular matrix of D' can be
obtained as given in Table I(c). Since D is a circular matrix by (14), D' is also a circular
matrix by Corollary 2. Hence, the lower left triangular matrix of D' can be also obtained as

given in Table I(c), which is the standard matrix. [ |

Theorem §. LP*optimally solves the Equi-Distance Circular Layout Problem.

Proof. By Theorem 4, we showed that any basic feasible solution of LP" is an element
matrix. Furthermore, it is shown in Lemma 9 that if a feasible solution D of LP is an
element matrix, then the standard matrix can be obtained by a series of pairwise
interchanges of stations in D. It is straightforward to show that if D is a standard matrix,
then D yields a layout in which the stations are equally spaced along a circle in the same

sequence as in D. Therefore, LP" optimally solves the ED-CLP. [ ]
3.2. The Non-Equi-Distance, Conserved-Flow CLP

Consider a CLP in which flow is conserved at each station, but adjacent sites are not
equally spaced around a circle (namely, the NED-CF CLP). Flow is said to be conserved

at station k if total flow entering station k is equal to total flow leaving station k, i.e., if

n n
> fik = ¥ fkj. A flow matrix is called a conserved flow matrix if flow is conserved at
i=1 Fl

each station. Note that flow may not be conserved at some stations if there are more than

one I/O stations, or if defective jobs are scrapped at some stations.

InLP" (presented in Section 3.1), the flow values do not appear in any of the constraints.
Hence, the flow values do not affect the feasible space of LP". Therefore, LP" solves the
ED-CLP, regardless of whether flow is conserved or not at each station. However, flow
conservation plays an important role in analyzing the Non-Equi-Distance CLP as shown

below. The Equi-Distance CLP with conserved flow is clearly a special case of the NED-
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CF CLP. Although LP’ cannot be directly applied to the NED-CF CLP, it is shown by
Theorem 6 that the optimal solution of the NED-CF CLP can be obtained by solving LP".

Theorem 6. LP" yields the optimal solution for the NED-CF CLP.
Proof. Consider an arbitrary non-equi-distance layout with conserved flow. Let A(i) =

n n :
Y fiiand (i) = Y fik denote the total in-flow and total out-flow of station i, respectively.
k=1 k=1

Suppose station i is moved clockwise a small distance, say, >0 units along the
circumference. As a result, the material handling requirement is increased by OA(i), while it
is decreased by dj(i). Since flow is conserved at station i, that is, A(i) = pu(i), the above
increase and decrease in the material handling requirement cancel each other out, and the
objective function value does not change. The same argument holds if station i is moved

counterclockwise.

Moreover, the result holds for any 8>0 as long as station i remains between the two
adjacent stations j and k. (If station i is moved beyond either j or k, then the objective
function value may change due to a new sequence of stations. This issue will be further
mentioned in Theorem 7.) Note that the above result holds for any station, independent of
the locations of the other stations. Therefore, the objective function value does not change
even if all the stations were moved in either direction as long as the sequence of stations

remains unchanged.

Therefore, for any NED-CF layout, there exists an Equi-Distance CF layout with the same
sequence of stations, and hence, the same objective function value. Let S*(ED) denote an
optimal layout for an ED-CLP obtained from LP". Since LP’ optimally solves the ED-
CLP, all layouts having the same sequence of stations as in S*(ED) are optimal layouts for

the original NED-CF CLP, regardless of which site the sequence of stations starts from. W
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Corollary 3. If flow is conserved at each station, then the sequence of stations in a
circular layout completely determines the objective function value, regardless of the exact
site locations.

Proof. The proof is straightforward by the proof of Theorem 6.

In proving Theorem 6, station i was not allowed to move beyond either one of the two
adjacent stations. However, under a certain condition stated below, this restriction can be

relaxed.

Theorem 7. Consider a pair of adjacent stations i and j in an arbitrary circular layout with
conserved flow. If fijj=fj;, then interchanging stations i and j does not change the objective
function value of the layout.

Proof. See Appendix.

In particular, if there is a pair of adjacent stations i and j such that fjj=fjj in an optimal layout
S’ with conserved flow, then, by Theorem 7, an alternative optimal layout can be obtained

by interchanging stations i and j in S".

Theorem 8. If the flow matrix is symmetric, then any layout is optimal for the CLP.

Proof. The proof is straightforward by the proof of Theorem 7.
3.3. The Non-Equi-Distance, Non-Conserved-Flow CLP

For the Circular Layout Problem in which neither the sites are equally spaced nor the flow
is conserved at each station, the LP relaxation shown in Section 3.1 does not apply.
Hence, the problem must be formulated as a QAP. Presently, the most successful exact
solution procedure for the QAP is a branch and bound technique based on matrix reductions
and Gilmore-Lawler bounds (Finke, Burkard and Rendl 1987). Note that the NED-NCF

CLP still has a circular distance matrix. By taking advantage of the circularity, we can
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obtain a new lower bound which is at least as tight as the Gilmore-Lawler bound. For
details on the Gilmore-Lawler lower bound, the reader may refer to Burkard and Derigs

(1980) or Bazaraa and Elshafei (1979).

Consider the flow between stations i and j. Due to the circularity given by (8), regardless
of the locations of stations i and j, a certain amount of flow, which is given by the
minimum of fjj and fj;, has to travel around the circle once. Given a flow matrix F=(fj), let
H=(hjj) denote the net flow matrix, where h;j = fjj — min(fjj,fj)). Let W denote the sum of

smaller flows in each pair (fjj, fji), thatis, W = ¥ ¥ min(f;;,fj;). Also, let K denote the
i joi

lower bound obtained by applying the Gilmore-Lawler lower bound scheme to the net flow
matrix H. Then, given that the total length of the circle is equal to n, i.e., the number of

stations, the net flow lower bound is equal to K + nW.

Theorem 9. The net flow bound is at least as tight as the Gilmore-Lawler bound.

Proof. Let ®=((i,j) | fij 2 fj; }. Also, let S={s(i), i=1,--,n} be the layout vector where
s(i) denote the site occupied by station i. Recall that R=(ryy) denotes the site distance
matrix as defined in Section 1. Then, the objective function value Z given by (11) can be

written as follows:
nn
Z =% % fijrssg)

=l j=1

= fir Torineliy + i Tegs
(i,%:e Birsose) (iji S0

= fi: Tetiveriy + f"(ﬂ—l’ . )
(igé JSirss0) G’i)ze Jj (-Tsistiy

= 3 G s +n T f
(i\%s Siy-f3D) Tst)s() OI)ZG 5

= 2 X hjj rs(i)s() + nW, (28)
ij
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where nW represents the fixed "cost” (i.e., flows times distances) which is independent of
the layout. Since a nonnegative constant is subtracted prior to computing the lower bound,
the net flow lower bound will be at least as tight as the Gilmore-Lawler bound. If W is
equal to zero, that is, if at least one element in each pair (fjj, fji) is equal to zero, then the net

flow bound is identical to the Gilmore-Lawler bound. [ |

To evaluate the performance of the net flow bound relative to the Gilmore-Lawler bound,
we compared the CPU times that each corresponding branch and bound code required to
solve a set of randomly generated problems. The parameters considered in generating the
random problems are: 1. the number of stations (N = 5, 8, or 12); 2. the density of the flow
matrix: dense (no 0's), medium (20% O's), or sparse (40% 0's); 3. symmetry of the flow
matrix: random or close to symmetric (in the latter case fji is generated from a uniform
distribution over the range [.8fj;, 1.2f;;]); and 4. distribution of the site locations around the

circle: even, medium, or uneven. Unlike the other parameters listed above, it is difficult to
control the evenness of the site locations. Hence, instead of directly controlling the
evenness, we will choose a relatively even, medium and uneven distance matrix among 50

randomly generated distance matrices using the following scheme.

Recall that the total length of the circle is n for a problem with n stations, and R=(ryy) is the

n
site distance matrix. Let Q = Y Iry y4+1-1l, where ry n41 =15,1, denote the degree of
u=1

unevenness of the site distance matrix R. (Note that in a perfectly even distance matrix,
ryu+1=1 for all u=1,-,n.) Then, the distance matrix whose Q value is the smallest, 25th,
and the largest among the 50 randomly generated distance matrices is taken as the even,
medium, and uneven distance matrix, respectively. Flow matrices are also randomly
generated where eéch fij is a random integer between 0 and 100. For each parameter set,
three problems with random flows are solved by the branch and bound code developed by

Burkard and Derigs (1980) using the net flow bound and the Gilmore-Lawler bound.
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Comparison of the CPU times between the two bounding schemes is summarized in Table
II.
Table II

Although the net flow bound is not a fundamentally new bound, the branch and bound code
with the net flow bound clearly outperforms the same code with the Gilmore-Lawler bound
over all the parameter values tested. For problems with 12 stations, a dramatic
improvement has been achieved: most problems took less than a minute with the net flow
bound whereas all the problems exceeded the one hour time limit with the Gilmore-Lawler
bound. Note that, as the flow matrix approaches a symmetric one, a larger amount of fixed
"cost" can be subtracted a priori; this yields a tighter lower bound and results in a larger
improvement over the Gilmore-Lawler bound. As an extreme case, if the flow matrix is
perfectly symmetric, then any layout is an optimal layout (as stated earlier in Theorem 8)
and the net flow lower bound is equal to the optimum objective function value. Also, based
on Table II, neither the distribution of site locations nor the flow density appears to be a

critical parameter.
4. CONCLUSIONS

In this paper, we studied a special case of the Quadratic Assignment Problem, namely, the
Circular Layout Problem in which the "sites" are located around a simple closed loop path
with no shortcuts. Assuming that all the flows occur in one direction only (i.e., clockwise
or counterclockwise), we showed that, if the sites are equally spaced and/or flow is
conserved at each "facility", then the problem can be solved as a linear programming
problem (which can be implemented as a polynomial time algorithm). Although the sites
are not likely to be equally spaced in most cases, flow is usually conserved at each "facility"
in manufacturing applications. For those cases where neither condition holds, however,

we derived a lower bound by modifying the well-known Gilmore-Lawler bound. The
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resulting bounds were reasonably strong and they become tighter as the flow matrix

approaches a symmetric one.

Currently, we are in the process of extending the above results to the bidirectional Circular
Layout Problem. Although conveyor-based systems are unidirectional, some automated

guided vehicle systems and robot arm applications can be bidirectional.
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Appendix

4
Proof of Lemma 1. (¢=) Consider q=(00,~0,0,-®) and A = (3jj) = T qmr m@ijk)) =
m=1
ar’(1,jk) - or*@Q,j,) + or*(ik.) - or'(.k,]) where ajj is the coefficient associated with
dij. Then, as shown in Table ITI, a;; = ajk = aj = ajx = aj] = ag) =0, and consequently A =
0. The proof can be generalized by noting that, if any one of the above four terms of A,

say, r*(i,j,k) is replaced by r (ij,k), then we can maintain A equal to 0 simply by

reversing the sign of q;.
4 0
(=») Suppose there exists ¢=(q;,q,,q3,q4) such that A = (ajj) = ¥ qmr'm(ij.k.l) = 0.
m=1

Since each column in Table III contains exactly two nonzero elements, they must be of

equal magnitude with opposite signs. Therefore, qm = 0 for some ©>0 (1Sm<4). [ |

Table ITI
Coefficients of A.
dij di di  dx di dua
or'ijk) | o - ®

—ortig) | o o -
ortik,)) ® -0 o
—ort(k,l) 0 0 -0
A 0 0 0 0 0 0

Proof of Lemma 3. By Lemma 2, the r th row of H can be represented as a linear

combination of the rows of -G as well. Thus, det R}s =0forallrands. ]

Proof of Lemma 5. Let M; denote the i th row of a matrix M. Also, let ¥(r) be the set
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of row numbersin G suchthat Hr= Y aka, where ak:eO. (Note that ¥(r) cannot be
ke ¥(r)

an empty set due to Lemma 2.) Recall that Hy and G, ke '¥(r), are both composed of 0
or t1. Furthermore, neither Hy nor Gy, ke '¥(r), is equal to 0, and by Lemma 1, all the
o, 's are equal in magnitude. Hence, o is equal to *1 for all ke \P(r).

Consider the i th row of a matrix M. As shown in Finkbeiner (1966, p.102), if M; can be
expressed as the sum of two vectors, say, R and R», then det M = det Mm! + det M2
where M! (Mz) is obtained by replacing the i th row of M by R (R2). Consequently, det

Rfs = Y det Rgs, where Rgg denotes the matrix P in which the s th row of -G is
ke ¥(r)

replaced by aka, ke ¥(r). Hence, if se¢ ¥ (r), then det R = 0 for all ke ¥ (r),
which implies that det R?s = (0. However, if s€ ¥(r), then det Rig = —akdet P if k=s, and
0 otherwise. Thus, det R?s = —-asdet P =*det P. Therefore, det R 13.8 =(0orzdetPforallr

and s. |

Proof of Lemma 8. Consider an element matrix 13=(ai,-). Suppose stations i and j in D
are interchanged to obtain 13'4&-},-). Let us define the element column (row) of size n as
the column (row) in which each element of {0,1,2,...,n-1} appears once and only once.
For all k except k=i or j, column k in D' remains an element column, since only djx and
djx are interchanged within column k. The elements in columns i and j in D move to
columns j and i inD', respectively, zilthough the positions of djj and d;; are interchanged.

Two diagonal elements dj; and dj; become d 31 and d ;;, respectively, and hence maintain
all diagonal elements inD' as 0. Hence, columns i and j in D' are also element columns.
Therefore, all columns inD' are element columns. By the same argument, all rows in D
are element rows. Furthermore, all diagonal elements in D' remain 0. Therefore, D' is

also an element matrix. ]
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Proof of Theorem 7. Let
S(i,j) be a layout in which station i immediately precedes station j in the
clockwise direction,
S(j,i) be the same layout as S(i,j) except that the station i and j are interchanged,
Z[S] denote the material handling requirement of layout S,
D=(dj;) be the station distance matrix determined by S(i,j),
© denote the set of all stations except stations i and j, and

C denote the length of circumference. Then,

Z[S@i,j)] =fidij+ Xfidik + I fikdik + fii(Cdij) + Tfiidki+ X fijdkj+

ke® ke ® ke® ke®
2 2 fimdkm.
ke® me®
Z[S(.D] = £ij(C-djj) + X fik(dik-dij) + X fix(djk+dij) + fidij+ T fii(di+dyy) +
ke® ke® ke®

2fjdgdi) + T 3 fimdkm-
ke® ke®me®

Hence, Z[S(i,j)] - Z[SG,i)]

= 2jdij - Cfij + X fikdyj- 2 fidij + Cfji - 2fjidij - 3 fladij + 2 figdij
ke® ke® ke® ke®

= 2djj(fij-f) - Cfijrfji) + dig{ T fix- T fix- T fia+ I fig}
ke® ke® ke®  ke®

= (£ (2d-C) + dij { k(D) - RG) - M+ AG) - 2(E-£5) }
=-Clfij-fj) =0, if iy = fj;

where A(i) = )rffki, and p(i) = )'ffik. u
k=1 k=1
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Figure 1. A closed loop manufacturing system with two vehicles and 12 stations.

Figure 2. The circular representation of a CLP with five sites, where r, is equal to
141, since site 1 and site 4 are symmetrically located around the circle.
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(a) Machine layout in a conveyor-supported manufacturing system.
(Adapted from Tompkins and White 1984, p.407.)

E switcher

(b) Machine layout for a (c)Tool layout on a turret.
unidirectional robot arm.

Figure 3. Applications of the circular layout problem.
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(a) sites (b) stations

Figure 4. A layout example in the ED-CLP with eight stations.

(a) djj+djk=dix (b) dij+dj=dix+n

Figure §. Precedence relationships of three stations around a circle.

E . b
0 P 0

-G b2

-1

H Ul w B
I I

G V| X b

@ (b) ©

Figure 6. The structure of the basis of LP*.

31




a

(N=5) M

(N=12) M

D

Table I
Examples for three types of matrices.

01234 02431 01234

20341 30214 40123

42013 13042 34012

34102 24103 23401

13420 41320 12340

(a) an element matrix  (b) a circular element matrix ~ (c) a standard matrix
Table 11
Comparison of CPU seconds between Net Flow (NF) bound
and Gilmore-Lawler (GL) bound.
Symmetric Flow Random Flow

Even Medium Uneven Even Medium Uneven
NF |GL | NF | GL | NF | GL | NF | GL | NF | GL | NF | GL
)j 006 | 019 009 010 | 006 | 015 ] 005 ] .005 ]| .006 | .006 | .006 | .006
008 1 024 ] 005} 023 | 004 | 019 ] 002 ] 002 ] .002 | .002 | .003 | .003
002 ] 0211 002 | 019 ] 002 )] 018 ) .00S | .005 | .002 | .004 | .002 | .003
003 ] 021 ] 005 ] 023 | 005 ] 017 | 002 | .006 | .003 | .005 | .004 | .007
004 | 017 ] 0041 020 002 | 017 | 008 | 016 | .006 | 014 | .006 | .011
004 | 023 ] 002 ] 023 ] 002 ) 025 | .007 | .014 | .004 | .010 | .002 | .008
006 | 024 | 004 ] 022 | 002 | 017 | .006 | .012 | .005 | .011 | .004 | .008
004 1 017 ] 003 ] 010 004 | 013 | 003 | 006 | .003 | .003 | .002 | .003
008 | 017 | .004 | 013 | 004 | 012 | 006 | .008 | .004 | .006 | .002 | .005
285 15621 | 146 [ 5037 | .152 | 4945 | 075 | 204 | .070 | .182 | .044 | .107
071 | 5781 | 075 | 5625 | .109 | 5.188 | 209 | 406 | .183 | .258 | .127 | .336
128 | 6860 | 052 | 6447 | .069 |5.800 | .089 | .165 | .099 | .192 | .065 | .085
086 | 5429 | .081 |5.222 | .068 gé% 339 | 747 | 256 | 482 | 225 | 490
146 | 5.161 | .186 | 5400 | .073 . Jd14 | 415 | 102 | 402 | .068 | .365
200 16236 | .170 | 5859 | 074 | 4979 | 344 | 722 | .138 | 469 | .133 | .350
069 | 4446 | 029 | 4398 | .040 | 4209 | 292 | 642 | .304 | 421 | .161 | .370
150 [ 4.861 | 124 14945 | 064 | 4465 | .155 | 460 | .090 | 322 | .054 | .238
148 14639 | 088 |4.612 | 056 |4.041 | 196 | 489 | 209 | 402 | .163 | .420

11.7 | NA®@) 8,4 NA 157 | NA 18.8 | 1428 | 11.0 | 1119 | 15.0 |156.3
294 19.6 9.3 239 11450 | 27.0 | 1820 | 11.6 |129.5
412 338 18.8 109.5 | 626.4 | 46.0 | 3634 | 94.2 |391.7
388 | NA | 462 | NA | 283 | NA | 273 |242.8 | 334 [2358 | 263 | 355.3
18.6 323 8.5 623 | 311.7 | 45.1 | 2150 | 33.7 |2704
234 204 177 684 |402.1 | 542 | 3172 | 356 | 1139
803 | NA | 501 | NA | 529 | NA | 563 | 3442 | 64.9 |249.5 | 26.6 | 151.7
43.7 38.5 28.0 459 1307.0 | 32.0 | 238.1 | 22.0 |110.8
279 249 27.1 442 | 2809 | 31.6 |2312 | 193 | 2234

(1) Flow Density: S = sparse, M = medium, D = dense.
(2) exceeds one hour time limit.

32




