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Abstract

In an earlier paper we presented an analytical model which can be used to estimate
the expected device utilization and the expected station cycle times (i.e., the average
time between two successive arrivals of a device at each station) in a manufacturing
system served by trip-based material handling devices. Assuming that empty
devices are dispatched according to the Modified First-Come-First-Served rule, the
model provides the expected device utilization, which the analyst can use to
determine whether the system is stable; that is, whether a proposed handling
system meets the required throughput.

In this paper we present an analytical model to estimate the expected waiting times
for move requests that occur in single-device, trip-based handling systems such as
cranes, freight elevators, microload AS/RS, unit load tandem AGVs, etc. The
model not only represents a conceptual contribution but it also considerably
enhances the original model from a practitioner's viewpoint since expected waiting
times (and the associated mean queue lengths) can play an important role in
deciding whether the system performance is "acceptable" even if the device
utilization indicates that the system is "stable."



1. Introduction

Material handling technology has changed dramatically during the last decade, mostly due to
the introduction of computers and automation. White [1987] states that "the changes of the past
will seem small in comparison with the changes anticipated in the next decade." According to
Industrial Engineering [1986], the sales of nonautomated material handling equipment produced
by U.S. manufacturers alone will grow 8.1% per year to a total of $12.1 billion in 1994,

The significance and role of material handling systems are understood better today and, both in
research and practice, more time is being devoted to the design and analysis of handling systems.
However, primarily due to a lack of general-purpose analytical design models, many handling
systems used today are designed through simulation models. Although simulation is a powerful
analysis tool, it is often an expensive and time consuming undertaking.

In an earlier paper (Srinivasan, Bozer and Cho [1989]), we presented an analytical model to
estimate the throughput capacity of trip-based material handling systems for a wide range of
handling and layout alternatives. In this paper, we present an analytic model to estimate the
expected Waiting times experienced by move requests that occur in single-device, trip-based
handling systems. The performance of the analytic model is evaluated through simulation.

There are several examples of single-device, trip-based handling systems. Unit load automated
guided vehicles (AGVs) in tandem AGV systems, the storage/retrieval (S/R) machine in microload
automated storage/retrieval (AS/R) systems, industrial robots, freight elevators, and cranes are
good examples of such systems. Although the authors do not classify it as such, the interested
reader may refer to Tompkins and White [1984, p.143] for a fairly extensive list of single-device
and multiple-device trip-based handling equipment.

In the paper, a container or load moved by the device is referred to as a "job" or "move
request.” Trip-based handling systems where the device can concurrently move multiple jobs with
different destinations are beyond the scope of this study. Tractor-trailer AGV systems and people
moving elevators, for example, fall in this category. (Note that with such systems the definition
of a "rip" may take several forms.)

1.1. Problem Environment

Consider a 4-station trip-based material handling system depicted in Figure 1, where the
input/output (I/O) stations are represented by stations 1 and 2, and the processor stations are
denoted by stations 3 and 4. There is an input queue and an output queue for each station



including the I/O stations. We assume that all the input and output queues have sufficient capacity
so that the device or the processors seldom get blocked.
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Figure 1. Typical trip-based handling system.

Jobs from outside the system enter through one of the [/O stations and, when all the operations
have been completed, they exit through one of the I/O stations. An incoming job arrives directly at
the output queue of an I/O station while an outgoing job is deposited at the input queue of an I[/O
station where it is assumed to exit from the system instantly. That is, no processing takes place at
the I/O stations.

A processor station represents either one machine, or a group of machines (a cell), or a
department. Jobs to be processed are removed from the corresponding input queue and later,
when processing is complete, they are placed in the corresponding output queue without delay.
(Material handling needs within a station is beyond the scope of our study.) Although certain job
characteristics may change after processing, we assume that as far as the material handling system
is concerned, flow is conserved at each processor station.

The dispatching rule used for the device when it becomes empty is the Modified First-Come-
First-Served (MOD FCFS) rule introduced by Srinivasan, Bozer and Cho [1989]. Under this rule
the device, upon delivering a job at the input queue of station i, first inspects the output queue of
that station. If one or more move requests are found, then the device is assigned to oldest move
request. If the output queue of station i is empty, the device serves the oldest move request in the



system (regardless of its location). However, if the device finds no move requests in the system, it
stays idle at station i until a job is completed at one of the stations. Using simulation, Srinivasan,
Bozer and Cho [1989] show that the MOD FCFS rule is comparable in throughput performance to
the Shortest-Travel-Time-First (STTF) rule.

2. Literature Review

We first review previous studies that fall within our definition of trip-based handling systems.

Subsequently, we review a related area, namely, polling models.
2.1. Trip-Based Handling Systems

To the best of our knowledge, in the manufacturing arena, there is no general-purpose
analytical model which can be used to determine the expected waiting times in trip-based material
handling systems. Those that are reported in the literature have certain shortcomings and they are
developed for specific types of material handling equipment, primarily microload AS/R systems
and (pick&drop) AGV systems. '

Consider first the microload AS/R system. Chow [1986a] presents an approximate analytical
model to predict the utilization of the S/R machine and the expected waiting time by modeling the
system as an M/G/1/FCFS queue. That is, the arrival of the move requests (from the stations) are
assumed to follow a Poisson process while the S/R machine has a general service time distribution.
Assuming that the S/R machine never finds the destination buffer full, approximate values for the
first and second moments of the S/R machine service time are obtained from the flow matrix by a
simple probabilistic argument. The S/R machine is assumed to serve each move request according
to this distribution regardless of the actual origin and destination of a move request (and the
position of the S/R machine before it begins service). The performance of the approximate model
is not fully explored in the paper. Furthermore, the FCFS rule leads to unnecessary empty travel
for the S/R machine. In a subsequent paper, Chow [1986b] uses a simulation model to evaluate
alternative dispatching rules for the S/R machine.

In the context of an industral robot or microload AS/R systems, Toro-Ramos and McGinnis
[1990a and 1990b] study the performance of a single-device system where the capacity of both the
input and output queues is finite. While the first study [1990a] assumes that a full input queue
blocks the sending station, the second study [1990b| assumes that each station has a temporary
storage area which is used when the S/R machine finds the input queue becomes full. In both
studies, the authors estimate the expected device service time per job and the expected waiting time
for the move requests. In the first study, they approximate empty device travel by a model



suggested in Egbelu [1987]. That is, the empty device dispatching rule is not explicitly taken into
account. In the second study, the authors use an iterative scheme to obtain the empty device travel
time. To estimate the expected waiting time for the move requests, they use a network of queues

with a central server station, which has certain limitations as described later in this section.

Consider next AGV systems. Relative to microload AS/R systems (where a single S/R
machine serves a set of workstations), AGV systems are generally more difficult to analyze since
all stations are served by a fleet of AGVs. However, due to the relatively large number of current
and potential AGV applications in manufacturing, AGV systems have received considerably more
attention in the literature. We will limit our discussions to AGV studies that are concerned with or
applicable to single-vehicle systems.

A new concept for designing AGV systems is suggested by Bozer and Srinivasan [1988]. The
authors propose a tandem AGV system which is based on partitioning all the stations into non-
overlapping, single-vehicle loops, thereby eliminating possible congestion. They develop an
analytical model to estimate the throughput capacity of a single vehicle serving a set of stations
under the first-encountered-first-served (FEFS) rule as described by Bartholdi and Platzman
[1985]. With FEFS, an empty vehicle continues to travel and polls each station according to a
predetermined sequence. The vehicle serves the first job that it encounters while polling. This is a
decentralized rule as opposed to FCFS, STTF, and MOD FCFS which are centralized dispatching
rules. That is, with FEFS, the vehicle needs only local information in "deciding" which move
request to serve next. With the other dispatching rules, however, the vehicle generally needs to
"know" the oldest or closest move request in the system.

Hodgson, King and Monteith [1987] develop a heuristic empty vehicle dispatching rule for a
single-vehicle system. This dispatching rule, labeled "rule", is based on certain characteristics
they observed in an analytical model that was developed for very simple systems (where the
maximum number of stations is equal to four and the buffer space for each output queue is limited
to one). Although the rule is truly dynamic in the sense that the destination of the empty vehicle is
reevaluated at every station it passes, three scaling factors are required for reevaluation. (Each
scaling factor is determined subjectively.) In the study, the performance of "rule" is tested against
the Vehicle Looks For Work (VLFW) rule, which is equivalent to the STTF rule. The authors
empirically observe that "rule” provides shorter expected output queue lengths.

Yao and Buzacott [1985, 1986, and 1987] model a flexible manufacturing system as a network
of queues with a central server station, which represents the material handling system. (Jobs
traveling between processing stations go through the central station by definition.) Each station has



one or several (parallel) servers. In all three studies the authors assume that all the stations have
limited local buffers, except for the [1986] study where the buffer of the central station has infinite
capacity. Since the material handling system is modeled as a central station, it is difficult to use the
above models to capture the performance of the handling system with reasonable accuracy. This is
primarily because in central server models delivery times between all the stations are the same
regardless of where the job is picked up and where it needs to be delivered next, and the
probability that a job will be routed to a particular station does not depend on the previous station.

2.2. Polling Models

In trip-based handling systems discussed in this paper, a single device serves a set of stations
in a non-deterministic order. Recall that, under the MOD FCFS rule, when the device delivers a
job at the input queue of a station, it immediately inspects the output queue of that station. If the
output queue is empty, the device is dispatched to pick up the oldest move request elsewhere in the
system. A related system is a polling system in which a single server polls and serves multiple
stations. However, there is a fundamental difference between polling systems and trip-based
handling systems as explained below.

Polling systems have received considerable attention from researchers primarily in computer
science and have served as an analysis tool for data transfer from terminals to a central computer
and for token passing schemes in local area networks. An excellent survey of polling models can
be found in Takagi [1990]. Four types of service disciplines have typically been modeled and
studied: exhaustive, gated, limited, and decrementing.

In a limited service system, which is the appropriate service discipline for material handling
systems, the server serves upto k > 0 requests at a station each time the station is polled. The case
where k = 1 is generally known as the non-exhaustive service discipline. These systems are more
difficult to analyze than exhaustive and gated service systems (Takagi [1990]), and the exact
analysis for the expected waiting times at the stations in systems with more than two stations is
unknown at present. Consequently, there has been considerable work on developing
approximation techniques to estimate the expected waiting times (see, for example, Boxma and
Meister [1987] and Srinivasan [1988]).

The fundamental difference between a "traditional" polling model and our model is that, in a
traditional polling model, the server moves continuously to find and serve a customer. In other
words, polling occurs continuously until a customer is found. However, in our model, polling
occurs only at instances of loaded device arrival. Due to this fundamental difference in the



modeling assumptions, it is not possible to directly apply the results of polling models to evaluate
single-device trip-based material handling systems.

3. The Model

In this section we develop an approximation for the expected waiting times in the output
queues of single-device material handling systems. We consider a system with M stations. Let ¢

denote the set of processor stations, and let 2 denote the set of I/O stations in the system. (Recall

that every station in the system is assumed to have both an input and an output queue.) The rate at
which jobs arrive at the output queue of station i is denoted by A;.

To perform a trip, the device picks up a job from the output queue of a station and delivers it to
the input queue of some other station. Let A; denote the rate at which the device delivers jobs to
the input queue of station i. We assume that A; equals A; in steady state at the processor stations.
(This also implies that a processor station may never be a bottleneck in the system.) For [/O
stations, A; need not equal A; in general. However, from conservation of flow, provided that the
device is able to meet the demand placed on it, we must have Fica Ai=Yica A Recall that when a

job is delivered at the input queue of an /O station, it is assumed to exit from the system instantly.

Let p;j denote the probability that a job, which is picked up by the device from the output queue
of station i, is destined for station j. (It is implicit that p;; = 0.) The values for A; are obtained

from the unique solution to the system of equations:
M

A = 2 Ap;i, for i€Q,  and A
=

A;, for ie V. (3.1)

Let A; denote the total arrival rate at the output queues of all stations. Note that from
. M M .
conservation of flow, A = Zi=l A= z =1 Ai. Recall that we assume each station has

sufficiently large input and output buffers so that the device and the processors seldom get
blocked. We also assume that the distance between the input and output queues of a station is
negligible. (It is straightforward to extend the model to include non-negligible distances between
these two queues.)

Recall that under the MOD FCEFS discipline, whenever a device delivers a job at the input
queue of a station, it "inspects" (the output queue of) that station. The time taken by the device to
pick up a job from the output queue of station i, transport it from station i to station j, unload it at

station j, and then inspect station j, is collectively assumed to be a random variable with mean T,

and second moment ‘C‘f}. The empty device travel time from the output queue of station i to the



output queue of station j is a random variable, with mean 6;; and second moment 6, which

includes the time taken to "inspect” station j. (Strictly speaking, when the device arrives at a
station empty, it knows that there should be a job waiting at the station; however, we will still use
the term inspect.) It is implicit that T;=T?=0, and that 6;=6%=0.

In the following discussion, unless specified otherwise, the index for any summation is
assumed to be over the range 1 through M. Let af (ae) denote the proportion of time that the
device is traveling loaded (traveling empty) and let p = af + ote denote the utilization of the
device. Clearly, if the device is to meet the required throughput, we must have p < 1. Observe
that the term o is easily computed from the input data as

of = 2 Ai 2 PijTij- (3.2)
i

Let g, denote the probability that the output queue of station i is empty at the instant it is
inspected by the (loaded) device and let ﬁif denote its complement, i.e., qif = l—qif. An expression
for Qe in terms of p and the data parameters, is presented in Srinivasan, Bozer and pho [1989].

We present the expression below, without proof:

;ui )"i
g, = A—i';()w—ki)(p"af“@i) +}V—T(1~p), (3.3)
where
x = XXl (3.4a)
ij
and
Am
Om = LZZ(APM—) A; G- (3.4b)
}‘Ti j }\m

Equation (3.3) presents an expression for g, in terms of the unknown p. An approximate

expression for p in terms of q;, is obtained as follows. We assume that the term q;, represents the
probability that the output queue of station i is empty at an arbitrary instant in time, and that the g, S

are independent. (This implies that the loaded device inspects the output queues at arbitrary
instants in time.) Thus, the product [] qj, gives the probability that all output queues are empty at
1

an arbitrary instant in time, and so we obtain

i



Equations (3.3) and (3.5) suggest the following iterative algorithm to compute p. We start
with an initial estimate for p and compute the g, values from equation (3.3). Next, using these g,
values, we compute the new value of p from equation (3.5), and so on, until two successive
estimates for p are reasonably close. It is shown in Srinivasan, Bozer and Cho [1989] that this
algorithm will always converge, and return a value of p < 1, if and only if o + ™3 @; < 1.

To guarantee that the solution is unique, we further require that A; + A; < A (which is true by

definition), and Y/AT = Zi A Zj xrloji < 1. The latter condition is a sufficient condition, and

not a necessary one. We were unable to prove that the latter condition always holds if o + ™ o;

is less than 1. Therefore, we generated 66,000 problems with o + M3 @; very close to 1, and o;;
i ¢ j

set equal to T;; for all i,j. (Note that the uniqueness condition is more likely to be violated for such

problems.) However, none of the problems violated the condition. Also, except for 24 cases
which were generated with a sparse routing matrix, in all the problems y/At was less than o.

Provided that the device meets the required throughput, the value of p and the values for qif,i =

1,...,M, obtained above are next used to derive the expected waiting times in the output queues.
3.1. Expected Waiting Times in the Qutput Queues

The basic approach followed here is similar to the one presented by Srinivasan [1988] who
obtains the expected waiting times in polling systems with non-exhaustive service. Note,
however, that the system with the MOD FCFS rule has characteristics that are quite different from
a polling system.

To obtain the expected waiting times in the output queues, we assume that the arrival process
of jobs at each output queue is Poisson, and that these processes are independent of each other.
This implies that jobs are delivered (arrive) at the output queues at arbitrary instances in time.

Consider a tagged job that arrives at output queue i. Since Poisson arrivals see time averages
(Wolff [1982]), the tagged job finds the steady state distribution of jobs present at output queue i.
Let P;(n) denote the probability that the tagged job finds n jobs already present at output queue i,
and let WO,(n) represent the conditional expected waiting time for the tagged job, given that it finds
n jobs at output queue i upon arrival. Let WO, denote the expected waiting time for the tagged job
arriving at output queue i. Then



WO; = . Pi(mWOi(n). (3.6)
n=0

If we can estimate the values of Pj(n) and WOj(n), we can determine WO; from equation (3.6).
To estimate WO;(n), we consider two cases: n=0 and n>0.

If the tagged job finds no jobs at output queue i upon arrival, the device is either busy or it is

idle at station j, j=1,...,M. Let x; denote the probability that the device is busy when the tagged job
arrives. For this case let C? denote the expected time for the device to return to station i. On the

other hand, if the tagged job finds the device idle, then the tagged job automatically becomes the
oldest job in the system, and the idle device is dispatched to station i. Let CIidenote the expected

time for the device to arrive at station i from the idle state. Thus, for n=0,

wo0) =  xCB+ (1w (3.7)

If the tagged job finds n>0 jobs at output queue i upon arrival, we define the job at the head of

this output queue as the Head-Of-Line (HOL) job. The expected waiting time for the tagged job is
the sum of two quantities: (i) the expected time, Cf’, starting from the time of its arrival until the

time the device arrives at that station to pick up the HOL job, and (ii) the expected time for the
device to pick up the n—1 remaining jobs, followed by a visit to pick up the tagged job; that is, the

expected time for the device to complete n successive cycles where the expected value of a cycle is
denoted by Cf . Thus,

WOom = Cl'+nC’, n>0 (3.8)

Hence, from equations (3.6), (3.7) and (3.8),

e

PiO)[xiC® +(1-x)C'] + Y P(n)(CH+nCP)
n=1

PO)[xCE +(1-x)Cl] + Y P + C¥ Y nPi).
n=1 n=]

Noting, from Little's law, that ¥ n Py(n) = A;WO;, we have
. n=1

PO)(xC® + (1-xpCl] + [1-PyO))CH

3.9
1 -2,C3 G2

WO, =




Note that we had determined p by assuming that q;, represents the probability that the output
queue of station i is empty at an arbitrary instant in time. Hence, P;(0) is approximated by G
Therefore, to estimate WO, the values of x;, Cli, CE{, C?, and C? need to be determined. Since the
probability that the device is busy is p, the expression for x;is derived by conditioning on the
number of jobs present at output queue i when the tagged job arrives as follows:

Probability that the device is busy

P

P(device busy | n=0) P;(0) + P(device busy I n > 0) (1-P;(0))

% Pi(0) + 1-Pi(0),
since the device cannot be idle when n > (. Hence,

L o 1-p o 1-p
i = 1 5 0) - 1 o (3.10)

The expected time for the device to arrive at station i from the idle state, CIl is determined- by

assuming that the location of the idle device is proportional to the rate at which a device delivers
jobs at the input queue of station i, that is,

zﬁo

Cl
AT !

1

(3.11)

Consider next, CH that is, the expected time required for the device to pick up the HOL job.

In this case, the tagged job always finds the device busy, i.e., traveling either loaded or empty.
Let El ik (L;k) denote the event that the device is traveling empty (loaded) from j to k at the time of

arrival of the tagged job at station i. Let C*l’ denote the time required for the device to pick up the

HOL job at output queue i. Then:

¢t = ECfl = ¥ % [ElC!1 E}) P(ES) + ELCY1 L) P(LL)]. (3.12)
J
Note that oug/p is the probability that the device is traveling loaded since the tagged job always
finds the device busy. Given that the device is traveling loaded, the proportion of time that it is
traveling (loaded) from j to k is obtained as A;pjx Tjx/ &tr. Therefore, P{L jik} is given by:
o APk Tik APk Tik

= - = (3.13)
p of Y

P(L}) =



The term P{Ejik} is obtained in a similar manner. Since the tagged job finds the device
traveling loaded with probability o/p, it is clear that it finds the device traveling empty with
probability 1 — ag/p. To determine the proportion of time that the tagged job finds the device
traveling empty from j to k, we proceed as follows. Each time the device delivers a job at station m
(which occurs at a rate Ap), it checks the output queue of that station and with probability Ay it
finds the output queue empty. Consequently, an empty trip is initiated from m at a rate of Amqu.

With probability A/(AT — Ar), the device next moves to station p to pick up a waiting job and the
expected travel time to station p i Opp.

Note that we are considering the case where the tagged job finds n > 0 jobs in the output queue
of station i. Hence, if the tagged job finds the device moving empty out of station i, this implies

that the n jobs must have all arrived during the empty trip out of station i (to some other station).
Since the probability of this is small, we exclude this case from further consideration and set
P{Eiik} = (. Therefore, given that the device is traveling empty, the probability, Hjik, that the
tagged job arriving at station i finds the device moving (empty) from j to k is
Ak
/\JqJ —-——0'
- ‘(AT - A))
Hy = . (3.14)

_P_
2 2 Antn 50

m#i P

The term P{ J.ik] is now determined from

p—-of
p

We next develop an expression for E[C‘i‘ I L}k]. Recall that this is the case where the tagged job

P(E}) = Hi, =i (3.19)

finds the device traveling loaded from station j to station k and there are n>0 jobs in output queue i
ahead of the tagged job. Let B} denote the expected time for the device to first visit station i from

the instant at which the loaded device arrives at station k. With this definition, we set B} = 0. The
term E[[ZH I Lk] is then simply obtained as

E[CYIL)] = TR2T+BL (3.16)
Equation (3.16) follows since the tagged job interrupts a loaded trip from j to k.

The expression for E[C*i' I Ejik] is obtained in a similar manner. Let FL denote the expected time

for the device to first visit station i from the instant at which the device arrives at station k and picks

11



up a job waiting there. (We are implicitly considering two possible situations here: either the
device arrives empty at station k to pick up a job waiting there, or the device arrives at station k
loaded and finds a job in the output.queue of the station.) Note that F = 0, by definition. Since
the tagged job interrupts an empty trip from j to k, we have

ECYIEL] =  of20+Fi (3.17)

The term B, is obtained by conditioning on the possible events that can occur when the
(loaded) device delivers a job at station k: (1) there is a job in the output queue of station k; (2)
there is no job in the system except the HOL job (at output queue 1); (3) there are one or more jobs
to pick up at output queue m, m = k (in addition to the HOL job), and the oldest job is located at
output queue m. Figure 2 depicts the above events graphically.

Finds a job at k.
(Event 1)

No job in the system
except for HOL job at i.
(Event 2)

Loaded device arrives
at station k.

Some jobs to

pick up in addition to The job at m is

HOL job ati the oldest job.
(Event 3)

Figure 2. The possible events encountered by a loaded device arriving at station k.

We obtain the probabilities of the above events, and the expected time for the device to return to
station i for each event, as follows:

Event 1: The expected time for the device to return to station i is Fj. Recall that T, is the

conditional probability that the device finds a job in the output queue of station k, given that it just
delivered a job at its input queue. Hence, Event 1 occurs with probability q .

Event 2: The expected time for the device to return to station i is Oy, since the HOL job is the only

job in the system. The probability of this event is approximated by [] Gny
n#i

Event 3: The expected time for the device to return to station i is Oxpy + Fi. To determine the
probability of this event, let Q, denote the expected queue length at output queue n, and let Q,

denote the expected queue length at output queue 1, given that there is at least one job at output
queue i. The term Q, is approximated as follows:

12
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Let R = Q;/(X,4;, Qn + Q;) denote the conditional probability that the HOL job is the oldest

job, given that output queue k is empty, and there is at least one job at output queue n, n#i,k. Let
Rnilk =Qn/(X, 4ik Qn+ QT) denote the conditional probability that the job at station m, mai, is the
oldest job, given that output queue k is empty, and there is at least one job at output queue n, n#i,k.
(Clearly, output queue i is non-empty.) In other words, the above conditional probabilities are
assumed to be proportional to the length of the output queues. Then the probability that output

queue k is empty, at least one job is present at station n, n#i,k, and the job at output queue m is the
oldest job to serve, is approximated by (qk{ - rgian ) Rmk. Hence, we obtain

Bi = T Fk + ﬂqnfck, + (q, - ﬂqnf) Y Rk Okm+ Fh), k=i (3.19)

n#i mzk

Conditioning on the destination of the device which is arriving at station k, Fi is obtained from

Ff( z pkj(Tkj + B}) (3.20)
J

Recall that F = 0 by definition. So, from equations (3.19) and (3.20), we have a system of
M-1 independent equations in the M—1 unknown variables, F}, k#i, which can be solved to obtain

these values for a given i. Following this, equation (3.19) can be used to obtain B, .

The term C? is obtained, analogous to C*!, as

¢t =  Ech = ZZ[ EC?1 E3) P(E,) + EIC®1 LL) PLL)], (3.21)
where E[C} | Lj"k] , E[C}1 Ejik], and P{Ljik} are given by equations (3.16), (3.17) and (3.13)
respectively, and C? is the time required for the device to pick up the tagged job.

In equation (3.21), the term P{E}k} is obtained using similar arguments as was used to derive
equations (3.14) and (3.15). When the tagged job arrives at output queue i, no empty trip toward
this station is in progress. This is because the tagged job sees no jobs waiting at output queue i
Hence P{E}i] = (. As a consequence, we should also modify the probability that the device
moves from station m to station p as Ay/(At — A; - Ar), when m = i, to account for the fact that if
the device becomes empty at station m, then it will not move to station 1. Hence, the term H! " is

obtained as:
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Am, .
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where 8(i,m) = 0 if m=i, and is equal to 1 otherwise. The term P[Eni(} is now obtained as

p(Ei) = P2—%yi ki (3.23)
j j

Y
Finally, the term C? is estimated as follows. Since the device picks up a job from output queue

i, it travels loaded to station j with probability p;;, following which it takes a time B} to next return
to 1. Hence,

¢ = Z pij (Tij + BY). (3.24)
j

Substituting equations (3.10), (3.11), (3.12), (3.21), and (3.24) into equation (3.9), we may
obtain the expected waiting times in the output queues. However, to compute the conditional
probabilities for event 3 in equation (3.19), we assumed that the expected output queue length at
each station was known. Therefore, we propose the following iterative method to find the
expected waiting times in the output queues:

Step 0: Assign the initial values of the expected output queue lengths, that is, old Q;, i=1,...,M.
Step 1: Compute the expected waiting times, WO, i=1,...,M, from equation (3.9).

Step 2: Compute new set of expected output queue lengths, new Q;, i=1,...,M, using Little's law.
Step 3: If lold Q; - new Qjl < € for i=1,...,M, then

the WO;s obtained in step 1 are the expected waiting times, stop,
else

set old Q; = new Q; for i=1,...,M, and go to step 1,
endif.

In order to test the conditions under which the above algorithm converges, we randomly
generated 500 problems. From these problems we observed empirically that the above algorithm
fails to converge only if the estimated fraction of time that the device is busy, p, is very high, i.e.,
p 20.99. We also observed that the above algorithm, if it converges, always returns a unique set

of expected waiting times, regardless of the initial values for the expected output queue lengths.



4. Experimental validation

In order to test the performance of the analytical model, we simulated two different layouts
with various processing time and traveling time distributions. The first layout, namely, L1, is
shown in Figure A1 where stations 1 and 2 are the [/O stations. Note that no jobs are received
through station 2. The routing matrix and the distance matrix for L1 are presented in Table A1 and
Table A2, respectively. The interarrival time for jobs received through station 1 is equal to 30
minutes. Similar data for layout 2, that is, L2 (shown in Figure A2), are presented in Table A3
and Table A4. In L2 we have four I/O stations numbered one through four. The interarrival time
is equal to 4.9, 9.8, and 14.7 minutes for stations 1, 2, and 4, respectively. Note that no jobs are
received through station 3. In both layouts, it is assumed that the arrival of jobs from outside the
system follows a Poisson process.

It is also assumed that the device travels at a speed of 15 and 75 distance units per minute in L1
and L2, respectively. The pick-up or deposit time is assumed to be equal to 1/3 and 1/15 minutes
in L1 and L2, respectively. While a device is allowed to move in only one direction in L1, a device
in L2 can move in both directions. Both loaded and empty travel times are computed by assuming
that the device always follows the shortest path. The travel time from the input queue (o the output
queue of a station is assumed to be negligible. The first layout could represent a single vehicle
AGYV system (that operates as part of a tandem AGV system), while the second layout can be
viewed as a shop which is served by an overhead crane. Obviously, these are only examples of
potential single-device applications.

For both layouts, the expected processing time at each processor station is set equal to that
value which yields an expected processor utilization of (.75. For each layout, we examine three
travel time distributions and two processing time distributions. The empty travel time distributions
considered are deterministic, uniform with a coefficient of variation (CV) equal to 0.4, and
exponential. (The loaded travel time is obtained by simply adding the (constant) pick-up and
deposit times.) The processing time distributions considered are exponential and uniform with a
CV equal to 0.4.

In order to obtain steady state statistics, we first make a single simulation run starting with an
empty system and the device idling at an I/O station. For "warm-up" purposes appropriate
statistics are cleared when 10,000 loaded trips are performed. After the warm-up period, ten
observations (i.e., replications) on each measure of performance are recorded. Each observation is
based on 10,000 loaded trips.



Table 1 shows o, O, and o+, obtained from the simulation model under different

combinations of travel and processing time distributions. As we anticipated, the results indicate
that the expected device utilization is not affected by either the processing time or travel time
distributions.

The expected waiting times in the output queues obtained from the analytical model and the
simulation model are shown in Table 2. Figure 3 graphically depicts the results obtained for
several problems selected from Table 2 for both layouts. The simulation results indicate that the
analytical model performs reasonably well for both layouts and travel time/processing time
distributions examined. Note that, in addition to the overall (weighted) expected waiting time, the
analytical model provides reasonably accurate estimates for each output queue.

Table 2 also indicates that, on a relative scale, the analytical model appears to provide more
accurate estimates if the processing times are exponentially distributed. This is perhaps a
consequence of assuming Poisson arrivals of jobs at the output queues. In other words, since the
analytical model does not explicitly consider the processing time distribution, the expécted waiting
times predicted by the model remains the same for alternative processing time distributions. Thus,
as can be seen from Table 2, when the processing time distribution is changed from exponential to
uniform (while the travel time distribution is kept the same), the analytical model generally
overestimates the expected waiting times. The same is not true for the travel time distribution
since the analytical model accounts for both the first and second moments of the empty and loaded
travel time distributions.

5. Conclusions

In this paper we developed an analytical model to estimate the expected waiting times for move
requests that occur in a manufacturing system served by a single-device, trip-based material
handling system. We assume that the empty device is dispatched according to the Modified First-
Come-First-Served (MOD FCFS) rule which is comparable in performance to the Shortest-Travel-
Time-First (STTF) rule.

In an earlier study (see Srinivasan, Bozer and Cho [1989]), we derived an analytical model to
estimate the expected device utilization. Using this model, one can evaluate a proposed system to
determine whether the single device will be able to satisfy all the move requests, that 1s, whether
the system is stable. Although system stability is the primary concern in designing material
handling systems, given that a proposed design is stable, the device utilization alone does not fully
explain the performance of the system. Obviously, as the expected device utilization increases, the
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expected waiting times (and the corresponding mean queue lengths) will increase as well.
However, this relationship is usually highly non-linear and "predicting" the expected waiting times
directly from the expected device utilization can generate misleading results.

Hence, we believe the analytical waiting time model presented here can be used to further
evaluate the performance of stable systems by examining the expected waiting times at each
station. In fact, even if the expected device utilization is less than 1.0 and the system is said to be
stable, the expected waiting times (and the corresponding mean queue lengths) can be
unacceptably long. Note that, due to the non-linear relationship mentioned earlier, a relatively
small increase in the expected device utilization may very well render the system performance
"unacceptable" even though it may be a "stable" system. Thus, in our view, the expected waiting
time expressions derived in this study are not only useful from a theoretical point of view, but they
also play a significant role in practice. Using our waiting time model, combined with the earlier
model which determines the expected device utilization, the analyst can rapidly evaluate a large
number of layout and handling alternatives at an early stage of the design process.



Table 1. Simulated device utilization with various combinations of
processing and travel time distributions.

Processor util. = 0.75

Layout |Utlizaton| Deter/ | Deter/ | Unifo/ | Unifo/ | Expon/ | Expon/
Expon(!)| Unifo | Expon | Unifo | Expon | Unifo
o4 0.433 0.433 0.433 0.433 0432 0.432
L1 o 0.270 0.270 0.268 0.269 0.262 0.260
O + O 0.703 0.703 | 0.701 0.701 0.694 0.693
o 0.564 0.563 | 0.565 0.565 0.566 0.566
L2 0 0.314 0.322 0313 0.321 0.305 0.311
a+a, | 0877 | 0885 | 0878 | 0.886 | 0871 | 0877

(1) A/B: Ais the travel time distribution and B is the processing time distribution.

The travel time distribution applics to both cmpty and loaded travel. For example, a uniform
"travel time" distribution implics uniformly distributed empty travel times and uniformly

distributed loaded travel times; the two travel times are indcpendent.




Table 2. Expected waiting times in the output queues: simulation and analytical results.

(Layout 1)
Processor util. = 0.75
Station Deter/Expon® Deter/Unifo Unifo/Expon
No. Simulation Analytical Simulation Analytical Simulation Analytical
model model model
1 7.96, 8.67(2) 8.30 691, 7.44 8.30 8.32, 9.09 8.54
2 0.0, 0.0 0.0 0.0, 0.0 0.0 0.0, 0.0 0.0
3 6.51, 7.32 6.78 4.49, 474 6.78 6.76, 7.60 7.01
4 7.87, 8.51 8.12 591, 6.14 8.12 8.09, 8.85 8.33
5 7.54, 8.18 7.38 562, 592 7.38 7.97, 8.69 7.58
6 7.00, 7.68 7.35 4.84, 5.07 7.35 7.33, 8.07 7.58
7 8.80, 9.65 8.91 6.75, 7.07 8.91 9.20, 9.91 9.10
Weighted
veE ) 745, 8.3 7.65 5.65, 5.96 7.65 7.78, 8.50 7.87
Processor util. = 0.75
Station Unifo/Unifo Expon/Expon Expon/Unifo
No. Simulation Analytical Simulation Analytical Simulation Analytical
model model model
1 7.21, 7.89 8.54 9.88, 10.73 9.77 8.99, 9.60 9.77
2 0.0, 0.0 0.0 0.0, 0.0 0.0 0.0, 0.0 0.0
3 4,68, 5.02 7.01 8.24, 9.09 8.21 6.06, 6.47 8.21
4 6.17, 6.40 8.33 9.55, 10.51 9.44 7.51, 7.85 9.44
5 5.75, 6.25 7.58 9.10, 9.86 8.64 7.19, 7.64 8.64
6 5.17, 543 7.58 8.60, 9.68 8.76 6.45, 6.76 8.76
7 7.00, 7.51 9.10 10.65, 11.97 10.10 8.48, 9.07 10.10
Weighted
w{?;:'g 5.90, 6.30 7.87 9.20, 10.03 9.03 7.40, 17.77 9.03

(1) A/B: A s the travel time distribution and B is the processing time distribution.

(2) A,B: A (B) is the lower (upper) limit of the 95% confidcnce interval.




Table 2. (Contd.) Expected waiting times in the output queues: simulation and analytical results.

(Layout 2)
Processor util. = 0.75
Station Deter/Expon® Deter/Unifo Unifo/Expon
No. Simulation Analytical Simulation Analytical Simulation Analytical
model model model
1 2.02, 2.55(2) 231 1.68, 2.13 2.31 2.13, 2,61 2.34
2 1.84, 2.31 1.99 1.55, 2.00 1.99 1.95, 241 2.02
3 0.0, 0.0 0.0 0.0, 0.0 0.0 0.0. 0.0 0.0
4 1.85, 2.29 1.94 1.56, 197 1.94 1.95, 2.33 1.96
5 1.72, 2.13 1.73 1.28, 1.60 1.73 1.84, 2.22 1.76
6 1.65, 2.04 1.68 1.24, 1.54 1.68 1.74, 2.09 1.71
7 1.90, 2.32 1.96 1.44, 1.80 1.96 2.00, 2.38 1.99
8 1.72, 2.13 1.76 1.31, 1.63 1.76 1.83, 2.20 1.78
9 1.62, 2.03 1.67 1.21, 1.48 1.67 1.71, 2.09 1.70
10 1.77, 2.23 1.81 1.33, 1.67 1.81 1.87, 2.31 1.84
11 1.80, 2.19 1.80 1.31, 1.61 1.80 1.90, 2.28 1.83
Weighted
"’3‘;‘23 1.78, 2.1 1.86 1.38, 1.72 1.86 1.89, 2.28 1.89
Processor util. = 0.75
Station [| Unifo/Unifo Expon/Expon Expon/Unifo
No. || Simulation Analytical Simulation Analytical Simulation Analytical
model model model
1 1.82, 2.19 2.34 2.43, 296 2.50 2.14, 2.61 2.50
2 1.69, 2.05 2.02 2.24, 2.70 2.16 2.00, 2.42 2.16
3 0.0, 0.0 0.0 0.0, 0.0 0.0 0.0, 00 0.0
4 1.68, 2.05 1.96 2.16, 2.67 2.09 1.94, 237 2.09
5 1.36, 1.65 1.76 2.08, 248 1.90 1.59, 1.89 1.90
6 1.32, 1.60 1.71 1.97, 2.40 1.85 1.54, 1.86 1.85
7 1.53, 1.85 1.99 2.26, 2.65 2.12 1.79, 2.12 2.12
8 1.39, 1.64 1.78 2.05, 251 1.92 1.63, 1.92 1.92
9 1.30, 1.55 1.70 1.93, 2.39 1.84 1.52, 1.80 1.84
10 1.44, 1.70 1.84 2.10, 2.60 1.97 1.67, 197 1.97
11 1.42, 1.67 1.83 2.12, 2.52 1.97 1.67, 1.97 1.97
Weighted
W;‘:;‘g 1.48, 1.77 1.89 213, 2.57 2.03 1.73, 2.06 2.03

(1) A/B: A is the travel time distribution and B is the processing time distribution.

(2) A,B: A (B) is the lower (upper) limit of the 95% confidence interval.
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Figure 3. Expected waiting times in the output queues.
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Table Al. Routing matrix of jobs in Layout 1.
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Figure Al. Layout 1 with 2 I/O and 5 processor stations.

O: [/O station
E]: Processor station

Station No. 1 2 3 4 5 6 7
1 0.0 0.0 0.5 0.5 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.5 0.0 0.0 0.0 0.5 0.0 0.0
4 0.0 0.0 0.0 0.0 0.3 0.7 0.0
5 0.0 0.5 0.1 0.0 0.0 0.4 0.0
6 0.2 0.0 0.5 0.0 0.0 0.0 0.3
7 0.0 0.3 0.1 0.6 0.0 0.0 0.0

Table A2. Travel distance matrix for Layout 1 (distance units).

Station No. 1 2 3 4 5 6 7
1 0 62 16 42 36 28 48
2 58 0 38 64 44 36 16
3 64 46 0 26 50 42 62
4 38 50 18 0 24 16 36
5 50 26 30 56 0 28 42
6 22 84 38 64 58 0 70
7 42 54 58 84 28 56 0
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Figure A2. Layout 2 with 4 [/O and 7 processor stations.

Table A3. Routing matrix of jobs in Layout 2.

Station No. 1 2 3 4 5 6 7 8 9 10 11
1 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2
2 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.2 0.1 0.1 0.2
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.2 0.4 0.0 0.1 0.1 0.1 0.1
S 0.1 0.1 0.1 0.2 0.0 0.1 0.0 0.1 0.1 0.1 0.1
6 0.0 0.0 0.1 0.1 0.1 0.0 0.2 0.1 0.2 0.2 0.0
7 0.0 0.1 0.2 0.1 0.0 0.2 0.0 0.1 0.2 0.0 0.1
8 0.2 0.0 0.0 0.0 0.2 0.1 0.1 0.0 0.2 0.1 0.1
9 0.0 0.2 0.1 0.0 0.1 0.2 0.1 0.2 0.0 0.1 0.0
10 0.0 0.2 0.2 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.2
11 0.2 0.0 0.1 0.1 0.2 0.0 0.1 0.0 0.1 0.2 0.0

Table A4. Tavel distance matrix for Layout 2 (distance units).

Station No. 1 2 3 4 S 6 7 8 9 10 11
1 0 22 47 30 14 32 46 8 27 31 17
2 22 . 0 36 29 23 24 38 14 16 20 14
3 47 36 0 33 37 19 12 39 27 16 41
4 30 29 33 0 16 14 21 25 13 28 27
5 14 23 37 16 0 18 32 16 17 32 18
6 32 24 19 14 18 0 14 27 8 23 29
7 46 38 12 21 32 14 0 41 22 18 43
8 8 14 39 25 16 27 41 0 19 23 9
9 27 16 27 13 17 8 22 19 0 15 21
10 31 20 16 28 32 23 18 23 15 0 25
11 17 14 41 27 18 29 43 9 21 25 0
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