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ABSTRACT

Several heuristic procedures based on geometric concepts have been developed for
the Chebyshev Traveling Salesman Problem (CTSP) which has numerous applications in
materials handling and information storage-retrieval. The following study is
concerned with evaluating the performance of geometric approaches as a function of
the shape of the service region and the number of points to be sequenced. A new
approach, namely, the band insertion heuristic is also introduced and compared with
existing procedures. Trade-offs in tour quality and runtime is the primary focus of
the study which is empirical in nature; however, the results generally apply to a

wide range of configurations.



GEOMETRIC APPROACHES TO SOLVE THE CHEBYSHEV
TRAVELING SALESMAN PROBLEM

I. INTRODUCTION

A significant number of heuristic procedures have been developed for solving the
planar Traveling Salesman Problem and its variations. The following study is
concerned with a subset which can be best described as "geometric approaches." Such
approaches capitalize on the geometric properties of the optimum tour or the

"cities." As opposed to using a cost matrix to obtain a solution, they are driven by

' They are also recognized as relatively fast procedures

the location of the "cities.'
that are conceptually simple and easy to implement.

In the Chebyshev Traveling Salesman Problem (CTSP), the distance between two
points is measured by the Chebyshev metric (also known as the 1, - norm). As far as
the planar TSP literature is concerned, the Euclidean metric or a given distance
matrix that meets the triangular inequality appear to be the two types of problems
studied most often in the past. The Chebyshev TSP and the rectilinear TSP have
received little attention in comparison.

Furthermore, a number of results have been reported on the worst-case and
average performance of various "matrix driven'" TSP heuristics. On the other hand,
only a limited number of results are available for geometric approaches. The studies
reported for such approaches tend to represent isolated cases where a newly developed
heuristic procedure is compared against a previous one or the optimum solution.
Hence, aside from evaluating a new geometric approach, the following study represents

a comprehensive study where major published geometric approaches are compared and

empirically evaluated.



In evaluating the above heuristic procedures, the main goal is to empirically study
certain "runtime" and "solution quality" trade-offs typically encountered in comparing
approximate algorithms. It is also important to identify those procedures that
consistently yield relatively inferior results under certain conditions. Conceptual
simplicity, ease of implementation and similar concerns are also addressed. Lastly, as a
reference point, the heuristic which yields the best results with respect to tour length

is compared with the exact procedure.

II. THE CHEBYSHEV TRAVELING SALESMAN PROBLEM

The principal incentive for studying the CTSP stems from numerous applications where
the only appropriate metric is the Chebyshev metric. For example, powered by two
separate motors, storage/retrieval (S/R) machines used in materials handling travel
simultaneously in the horizontal and vertical directions. Hence, travel time between two
points is equal to the maximum of the horizontal and vertical travel times.

Such machines are used quite extensively in warehousing and manufacturing. Examples
include raw materials and finished goods handling with Unit Load Automated Storage-
Retrieval Systems (AS/RS); small parts and work-in-process handling with Miniload AS/RS;
and order picking with Person-on-Board AS/RS. Also, component accumulation prior to
assembly (that is, kitting) can be performed by Miniload AS/RS, Person-on-Board AS/RS or
Carousel conveyors (where the vertical travel of a stationary extract-insert device is
overlapped with the rotation of a horizontal carousel). With the introduction of
Microload AS/RS, S/R machines are also being used to directly support material flow in
Flexible Manufacturing and Flexible Assembly systems as well.

The Chebyshev metric is also encountered in certain information storage-retrieval
systems known as two-dimensional mass storage systems. Powered by two separate drives in
the x and y axes, in some systems the read/write (R/W) head follows the Chebyshev metric
(see Wong[25] among others). Hence, in those cases where the requests are batched,
minimizing the total head movement in going through all the records requested in a single
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batch leads to the CTSP., Naturally, other factors such as record placement and batch
construction rules will affect the throughput capacity of the system.

The above application areas are also characterized by certain practical limitations.
First, only a limited amount of solution time is available. Order picking systems and
information systems typically have a high transaction rate and they, more or less,
operate on a continuous basis. Secondly, the number of requests to be served on one trip
(or batch) is quite limited. For example, in order picking, the maximum number of picks
made on a single trip typically varies between 12 and 20. Furthermore, the number of
picks is constrained by the capacity of the S/R machine which is usually defined by the
total weight and/or volume handled on a single trip.

As shown by Karp [15] and Papadimitriou [20], the Traveling Salesman Problem is NP-
complete. Thus, even for the relatively small problem sizes encountered in the above
areas, it is unlikely that an exact procedure will meet the solution time requirements.
(A further discussion on the difficulty of obtaining an exact solution to the CTSP will
be presented later). More importantly, if "fast and effective" heuristic procedures are

developed, there will be little or no incentive to use an exact procedure.

ITT. LITERATURE REVIEW

The TSP literature has progressed in several directions. This section will be
limited to studies based on heuristic procedures, particularly those concerned with
performance evaluation.

A review and evaluation of several TSP heuristics is presented by Golden et al.
[13]. As tour construction heuristics, the authors study the following procedures:
nearest neighbor, Clark and Wright savings, insertion procedures (nearest insertion,
minimum cost insertion, arbitrary insertion, farthest insertion), Christofides' heuristic
[9] and Stinson's heuristic [23]. As part of the above study, they also evaluate the
convex hull heuristic. For tour improvement, they study the 2-way and 3-way exchange

procedures developed by Lin [16]. The above procedures are tested on two types of



matrices: those that satisfy the triangle inequality and those that are randomly
generated.

According to Golden et al., composite heuristics (a tour construction heuristic
followed by 2-way and 3-way exchanges) yield excellent results. Extensive computational
tests are performed to compare resulting tour lengths. However, no runtimes are reported
since the codes used were "reasonably inefficient."

The convex hull heuristic coupled with various insertion strategies was also studied
by Norback and Love [18] for the Euclidean metric, by Allison and Noga [1] for the
Rectilinear metric, and by Goetschalckx [11] for the Chebyshev metric. Goetschalckx
compared the performance of the hull heuristic with the band heuristic as a function of
the rack shape and the number of points. Based on his results, the composite band
heuristic yields tour lengths comparable to those obtained from the hull heuristic
without improvement. However, the hull heuristic runs nearly twice as fast on the
average. Both heuristics will be described shortly.

The band heuristic was used by Gudehus [14] and Barrett [4] who studied order
picking systems based on Person-on-Board AS/RS. However, the above authors did not
evaluate the band heuristic against other procedures. The throughput capacity of Person-
on-Board AS/R systems was also studied by Bachers et al. [2] who compared the nearest
neighbor, minimum cost insertion and band heuristics. They also considered sorting the
x-coordinate of each point as well as sequencing the orders on a FCFS basis.

The authors studied the performance of the above procedures relative to eachother
and the exact solution. They varied the rack dimensions as well as the speed of the S/R
machine and the maximum number of points visited on a single trip. Based on their
results (displayed only in graphical mode), it appears that the minimum cost insertion
heuristic generally yields better tour lengths. However, according to Bachers et al.,
the performance of each method depends on the above parameters and therefore an
"evaluation of the methods can only be given generally and in rough outlines."

For each heuristic considered in this study, additional references are provided



along with their description. Lastly, it may be noted that the reader may refer to a
survey paper by Parker and Rardin [21] for reviewing results associated with various

exact and "matrix driven" heuristic procedures.

IV. DEFINITIONS AND ASSUMPTIONS

For ease of reference, the study will be presented within the framework of order
picking based on Person-on-Board AS/RS. Note that, in information systems, the S/R
machine is replaced by the R/W head and the storage rack is represented as an array of
cartridges housed in compartments.

It is assumed that each trip originates and terminates at an Input/Output (I/0)
point located at the lower left-hand corner of a rectangular storage rack. After
visiting each opening once, the picker returns to the I/0 point which is generally used
for discharging the containers of the current order and obtaining the pick list and empty
containers for the next order. (With Unitload AS/RS or Miniload AS/RS, the I/0 point
serves a slightly different purpose. However, when the motion of the empty S/R machine
is traced, a tour similar to the one described above for Person-on-Board AS/RS is
obtained; see Bozer [7]).

In mass storage systems, an I/0 point does not necessarily exist. Within a single
batch of records, starting from its last location, the R/W head travels directly from one
record to the next. That is, the R/W head must follow a Hamiltonian path rather than a
circuit. However, one can first determine a sequence to visit all the record locations
(including the I/0 point). Once a tour is obtained, it can be transformed to a path by
removing the two edges connecting the "unused" I/0 point. Needless to say, additional
error is introduced when the above approach is used. However, its impact is anticipated
to diminish as the batch size is increased.

Consider next the parameters used for the study. Suppose the S/R machine travels at
x fpm and y fpm in the horizontal and vertical directions, respectively. Further sippose

that the storage rack is L (>0) feet long and H (>0) feet high. Ignoring the



acceleration and deceleration of the S/R machine, let TX=L/x and TY=H/y. Following the
approach presented by Bozer and White [8], the scaling factor, T and the shape factor, b
can be computed as follows:

T = max(TX,TY) and  b=min(TX/T,TY/T) (1)
Note that 0 < b ¢ 1, by definition,

If TX=TY, then b=1 and the rack is "square-in-time." That is, the time to reach the
most distant row is equal to the time to reach the most distant column. If TX>TY or
TX<TY, then b<1. Suppose TX>TY. If the rack size and the S/R machine travel velocities
remain constant, then, as H is decreased, b approaches to zero and the rack becomes
"flatter" or "narrower."

The heuristic procedures described in the following section apply to any rack and
S/R machine combination. Since they are based on geometric concepts, their relative
performance is likely to vary with the shape of the rack. The size of the rack, however,
is not relevant as long as a reasonably large number of openings exist. Hence, results
derived for a particular size rack by varying its shape factor will apply to other racks
with similar shape factors.

The principal assumptions for the study can be summarized as follows:

1. Each trip originates and terminates at the I/0 point located at the lower left-
hand corner of a rectangular storage rack. The Chebyshev distance from the I/0 point to
the closest opening is one distance unit.

2. The S/R machine follows the Chebyshev metric with unit travel speed in either
direction. The travel speed is constant; that is, acceleration and deceleration are not
considered.

3. A pre-determined number of randomly distributed openings are visited on each
trip. The S/R machine stops at the center of each opening.

4. The rack is a discrete rack with 2500 openings. Each opening is represented as
a unit distance square. As the shape factor is varied, approximately 2500 openings are

retained.



V. TOUR CONSTRUCTION PROCEDURES

Each heuristic is briefly described in the following paragraphs. For further
details, appropriate references are presented along with each heuristic. (Note: for
convenience, all the points in the following Figures are connected by straight lines
which does not necessarily correspond to the path followed by the S/R machine).

The Convex Hull Heuristic (H)

The convex hull heuristic was first proposed independently by Stewart [22] and Or
[19]. Subsequently, it was altered by Goetschalckx [11] (for the Chebyshev metric) and
Allison and Noga [1] (for the rectilinear metric). A detailed description of the version
used in this study is given by [11]. Parallel to the results derived for the Euclidean
metric by Barachet [3], Goetschalckx [11] has shown for the Chebyshev metric that the
order in which the points appear on the boundary of the convex hull is identical to the
order in which they appear in the optimum tour. Hence, if point i precedes point k on
the hull boundary, it will still precede point k in the optimum tour.

In reference to Figure 1, the procedure consists of two phases. In the first phase,
the convex hull of all the points is determined. In doing so, the maximum number of
points are placed on the boundary by using the "free point" insertion scheme (see [11]).
For example, as shown in Figure 1, due to the nature of the Chebyshev norm, point 8 may
be inserted between points 5 and 6 with no increase in travel time. In fact, any point
that falls within the parallelogram shown in dashed line can be considered to be a "free
point,"

In general, traveling from point p to point s, if the travel time in the horizontal
direction is not equal to the travel time in the vertical, then another point, say, point
q can be visited with no increase in travel time as long as it falls within a certain
parallelogram. If the above two travel times are equal, then the parallelogram becomes a
straight line. (A similar case exists for the rectilinear metric where the parallelogram

is replaced by a rectangle).



1 (1/0)

1 (1/0)

Figure 1. The Convex Hull Heuristic



Note that, considered individually, there could be multiple "free points" in
traveling from p to s. Suppose two such points are labeled q and r. Depending on the
locations of q and r, if the picker follows the sequence p-q-r-s, then point r may no
longer be a "free point" in traveling from q to s. However, it may be possible to follow
the sequence p-r-q-s without increasing the travel time between p and s. Naturally, many

' For such cases, Goetschalckx [11]

possibilities exist for two or more '"free points.'
formulated and solved a sub-problem to maximize the number of "free points'" inserted
between two adjacent vertices of the convex hull,

At the end of phase one, if all the points have been visited, then the tour obtained
is optimum. Otherwise, the second phase consists of an insertion procedure where the
remaining points are added to the current partial tour one at-a~time. The procedure used
by Goetschalckx is the minimum cost insertion scheme where a given point is inserted
between adjacent points on the partial tour such that incremental travel time is
minimized. For example, in Figure 1, inserting point 9 between points 1 and 2 would

cause the minimum increase in travel time.

The Band Heuristic (B)

The band heuristic appears to have been first proposed by Gudehus [14]. Perhaps due
to its simplicity, the band heuristic is widely used in industry. It is based on
dividing the rack into two equal width horizontal bands. In the lower band, the points
are sorted in the increasing x-coordinate direction, while in the upper band they are
sorted in the opposite direction. An example is shown in Figure 2.

Note that any even number of bands can be used. However, Bozer [7] has shown that,
approximately up to 25 points, using two bands minimizes the expected tour length
obtained from the band heuristic. Since 25 points is considered a practical upper iimit
for nearly all the applications described earlier, the band heuristic considered ir “his

study is limited to two bands.



The Band Insertion Heuristic (B9 and B2)

The band insertion heuristic is a new geometric approach developed as a result of
this study. It was derived by comparing the strengths and weaknesses of the previous two
approaches. From this standpoint, it may not appear to be a novel approach. However, as
shown later in the study, the band insertion heuristic performs quite well and its
simplicity makes it attractive.

The convex hull heuristic generally yields a reasonably good partial tour (obtained
at the end of the first phase). However, coupled with the procedure to maximize the
number of "free point" insertions, the first phase of the convex hull procedure is quite
complicated in comparison to the band heuristic. The band heuristic, on the other hand,
is simple yet it may cause some unnecessary '"vertical travel" especially in sequencing
those points close to the center of the rack.

It is instructive to note that, the "best" way to sequence such points seems to be
the least obvious. As a point is moved closer towards the center of the rack, not only
will the travel time to reach that point increase, but the plausible ways it can be
reached from other points will increase as well,

The band insertion heuristic proceeds as follows: a certain portion of the rack is
initially blocked out. A1l the points in the unblocked portion are seduenced according
to the band heuristic to obﬁain a partial tour. Subsequently, the remaining points in
the blocked region are inserted using the minimum cost insertion scheme described
earlier,

Two alternative approaches are shown in Figure 3 where the blocked region is cross-
hatched. Note that both approaches generate partial tours "similar" to those obtained
from the convex hull heuristic. As shown in Figure 3, one may block either the center
one-ninth of the rack or the center one-half strip. Naturally, other choices of si:e and
shape exist. However, such refinements (which are likely to yield relatively minor

improvements) will not be considered in this study.
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1 (1/0)

Figure 2. The Band Heuristic

(1/0) (1/79)
e - Point in outer region of rack

4 - Interior point to be inserted using minimum cost
point insertion scheme

Figure 3. Alternative Insertion Regions for the
Band Insertion Heuristic
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The Sweep Heuristic (CS)

The sweep heuristic was originally proposed by Gillett and Miller [10] for
constructing delivery routes in vehicle routing problems., Although the sweep heuristic
has performed reasonably well in the past, it has not been evaluated under the Chebyshev
metric. In reference to Figure 4, the procedure can be summarized as follows: each point
is connected to the I/0 point with a straight line. Subsequently, all the points are
sorted according to the angle they make with the x-axis. Note that the procedure is
based on "sweeping" a straight line (pivoted at the I/0 point) through the rack. Hence,
it will be termed the "corner sweep'" heuristic.

Using the I/0 point as the pivot point may cause "zigzagging" when certain points
located towards the opposite ends of the rack have similar angles (see points 3 and 4 in
Figure 4). An alternate location is the centroid of the rack where the magnitude and
occurence of "zigzagging" is likely to decrease. In fact, based on a preliminary
experiment, it was empirically shown that using the centroid as the pivot point (that is,
the "center sweep" heuristic) outperforms the corner sweep heuristic by a fairly wide
margin which increases with the number of points.

As shown in Figure 5, with the center sweep heuristic, the I/0 point is treated like
another pick point. Note that the picker does not visit the centroid of the rack which
is only used as a pivot point.

The Spacefilling Curve (SF)

Spacefilling curves have been studied by mathematicians for a long period of time,
However, it was recently proposed by Bartholdi and Platzman [6] as a sequencing
heuristic. As shown in Figure 6, a spacefilling curve connects all the openings in the
rack based on their proximity. Although alternative curves exist, the one shown in
Figure 6 was recommended by Bartholdi [5].

Generating the initial spacefilling curve is a fairly time consuming operation:
however, it is only performed once for a given rack. After the spacefilling curve 1s

constructed, each opening is assigned a sequence number based on its relative position on
12



Figure 4. The (Corner) Sweep Heuristic

/s

(1/0)

Figure 5. The (Center) Sweep Heuristic
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the curve. Thus, a given set of openings are sequenced simply by sorting the
corresponding set of sequence numbers. An example is shown in Figure 6.

VI. TOUR IMPROVEMENT PROCEDURES

The heuristic procedures descfibed above are considered to be "construction"
routines. That is, given a set of points, each procedure is terminated as soon as a tour
is obtained. Before designating the above tour as a final solution, however, one may
attempt to improve it by varying the sequence in which certain points are visited.
Composite procedures, that is, heuristic procedures that consist of a construction phase
followed by an improvement phase have been shown to be quite effective; see, for example,
Golden et al. [13].

A well-known improvement procedure due to Lin [16] is based on systematically
replacing two or three edges in the current tour with alternative edges. For example, in
Figure 7, a two-way exchange is accomplished by temporarily replacing the two edges (3-4)
and (1-6) by (3-6) and (1-4). If the resulting tour is shorter, then the change is made
permanent and the procedure is restarted.

The number of all possible 2-way and 3-way exchanges grow rapidly with the number of
points. Also, there are more possible 3-way exchanges than there are two, and compared
to the speed of the construction phase, the computational effort required to evaluate all
possible 3-way exchanges could quickly become unreasonable. Hence, the following
restrictions are placed on 3-way exchanges.

First, 3-way exchanges are considered only after all possible 2-way exchanges have
been considered. This implies that generally, the 3-way exchange procedure will be
restarted less often. Secondly, only those triplets in which two of the links are
adjacent will be considered. The above approach has the effect of removing a point from
its current position in the tour and inserting it between two other points. It was used
by Goetschalckx [11] for the convex hull heuristic where non-optimum tours can occur only

due to incorrect "free point" or minimum cost insertions.
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Figure 7. The Two-Way Exchange Procedure
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Iri an attempt to further explore the potential for reducing the runtime associated
with the improvement phase, a specialized 2-way exchange routine similar to the one
reported by Norback and Love [18] was developed. It considers only those cases where the
two links are one removed from each other. For example, in a tour given by 1-2-3-4-5-1,
it first considers the tour 1-3-2-4-5-1, If no improvement is obtained it next considers
the tour 2-4-3-5-1-2 followed by 3-5-4-1-2-3, 4-1-5-2-3-4 and 5-2-1-3-4-5,

At any point, if an improvement is obtained, the change is made permanent and the
procedure continues from the next point in the new tour. For example, starting with 1-2-
3-4-5-1, if the tour 1-3-2-4-5-1 is shorter, then the change is made and the next tour to
be considered is 3-4-2-5-1-3 since point 3 now follows point 1. On the other hand,
starting with 1-2-3-4-5-1 again, if the first improvement was obtained with 2-4-3-5-1-2,
then the next tour to be considered would be 4-5-3-1-2-4 and so on. The procedure is not
terminated until n consecutive exchanges yield no improvement (where n is the total
number of points, including the I/0 point).

VII. THE MONTE CARLO EXPERIMENT

A Monte Carlo experiment was conducted to compare the construction and improvement
procedures described earlier. The basis of comparison is the tour length and runtime (or
solution time). Six construction heuristics are considered: the convex hull (H), the
band (B), the 1/9 band insertion (B9), the 1/2 band insertion (B2), the center sweep (CS)
and the spacefilling curve (SF). Each heuristic is considered with each one of four
improvement options: no improvement, specialized 2-way exchanges, (all possible) 2-way
exchanges, and 2&3-way exchanges (that is, all possible 2-way exchanges followed by
restricted 3-way exchanges). Thus 24 construction-improvement combinations were studied.

Four rack shapes (b=1.00, 0.75, 0.50, 0.25).and five pick levels (5, 10, 15, 20 and
25 points) were used in the study. Each pick level was used with each rack shape,
resulting in 20 rack-pick combinations. Fifty problems were randomly generated and
assigned to each rack-pick combination. Thus, each problem set was solved with 24
construction-improvement combinations for a total of 24x20x50, or 24,000 problem
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solutions.

A11 the routines were coded in Pascal by the same individual. To the greatest
extent possible, the same program modules and programming techniques were used in all
programs (including a module used for sorting). The only exception is a code for the
first phase of the hull heuristic which was obtained from Goetschalckx. Hence, no claim
is made regarding the absolute efficiency of the programs. However, care was exercised

to maintain comparable efficiency throughout the study.

VIII. COMPARISON OF CONSTRUCTION PROCEDURES

The above experiment is a factorial design in which rack shape and pick level are
factors nested within problem sets, and the problem sets are completely crosssed with the
construction heuristic and improvement factors. However, interactions between problem
sets and the heuristic and improvement factors were not significant. The nested factor
could thus be removed, and the experiment analyzed as having a completely crossed
factorial design with four factors (heuristic, improvement, rack shape, pick level) and
50 replicates.

An analysis of variance was applied to the tour lengths obtained through the
experiment. The ANOVA indicates that all factors and almost all interactions have a
significant effect on tour length. Consequently, a factor's main effect is determined by
observing changes in tour length as that particular factor is varied while the other
three are held constant.

The first set of investigations is aimed at examining the mean tour length obtained
from the above procedures for each rack-pick combination. Given a set of results for a
particular combination, pairs of sample means were compared using Duncan's multiple range
test.

The results are shown in Table 1 where percent differences are given relative to the
shortest tour length. Also, if the absolute difference between two means is less than a

critical value (determined at a significance level of 1%), then they are underscored to
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Table 1. Effect of Heuristics on Mean Tour Length - Duncan's
Test Results and Percent Differences (No Improvement)

b/Pick I Mean Tour Lengths Ranked from Best to Worst

H 82 CS SF B9 B
1.00/5 121.94 122.60 124,16 125,72 127,68 130.84

- 0.5% 1.82 3.7 4,7% 7.3%

J—— ‘_w

H B2 CS SF B9 8

1.00/10 | 148,24 152.24 154,54 155,78 170,16 174,52

1.00/15

1.00/20

1.00/25

0.75/5

0.75/10

0.75/15

0.75/20

0.75/25

- 4.0% 4,22 5,12 14.8% 17.7%
H B2 cs SF B9 B

174,34 178.86 187.06 189.60 206.18 214,40
- 2.6% 7.3% 8.8% 18,32 23,07
H 82 SF csS 89 8
193.32 203.60 213.00 215.70 236,72 251,36
- 5.32 10.2% 11.62 22.4% 30.02
M
H B2 SF cs 89 8
211,94 224,72 236,38 246,72 274,46 298,12
- 6.0% 11,52 16.42 29,52 40.7%
H 82 () SF B9 B
123,16 124,20 125.58 127.56 127.64 128.30
- 0.8% 2.0% 3.62 3.62 4,22
2 tEEEEEEEEEEEEEEEEEEEEEEEEE——— e
H B2 €S B9 SF 8
154,74 156.80 162.90 168.48 169.56 170,46
- 1.32 5.32 8.9% 9.6% 10.27%
2
H B2 s 89 SF B
174,96 179.26 194,08 195,24 200.10 200.84
- 2.5 10.92 11,62 14,43 14,87
M
Ho B2 cs SF B9 B
195,66 200.98 223,58 227,26 227,88 234,72
o —————
H 82 SF CS B9 8
216.60 225,04 253.42 259,40 263,50 274,50
- 3.9% 17.0% 19.82 21.7% 26.7%

HaHy11

B=Band

B9=1/9 Band Insertion
B2=1/2 Band Insertion

CS=Center Sweep
SF=Spacefilling Curve

(Underscored means were not found to be significantly different at 17)
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Table 1., Effect of Heuristics on Mean Tour Length - Duncan's
(Cont'd) Test Results and Percent Differences (No Improvement)

b/Pick Mean Tour Lengths Ranked from Best to Worst

H B2 89 8 CS SF
0.50/5 138,02 138.40 140,54 141.14 142,80 143,62

- 0.3% 1.8% 2.3% 3.5% 4.1%

H B2 89 8 SF S
0.50/10 | 160.84 162,70 168.80 170,20 177.54 179.88
- 1.22 4,9% 5.82 10.4% 11.82

H B2 89 8 SF S

0.50/15 | 179.54 182.90 192.12 195, 32 205,02 213.02

- 1.92 7.0% 8.82 14,22 18.6%

0.50/20 192.68 198?50 212?18 22?.82 22§f64 258?96
- 2.02 9.5% 13.42 16.3% 28.3%
H B2 B9 8 SF )

0.50/25 | 211.56 215.64 234,38 244,42 250,26 287.16
- 1.92 10.82 15,52 18,32 35.7%

H B2 89 B SF S
0.25/5 175.76 175.78 176.66 176.88 181.52 184,54
- <0,1% 0.5% 0.62 3.3% 5.0%
H 82 ‘89 B8 SF )
0.25/10 | 196.26 196.62 200.00 200,62 223,08 230,58
- 0.2: 1.92 2.2z 13.7z 17.52
82 H 89 8 SF S
0.25/15 | 211.02 211,14 216.94 218,18 252.28 280,30
- 0.1% 2.82 3.42 19,62 32.8%
82 H 89 8 SF CS

0.25/20 | 220.80 222,04 230,04 233.76 278,34 329.48

- ‘ O.Gz 4. Zz 5. gz 26. ]z 49. zz

B2 H 89 8 SF S
0.25/25 | 233.08 234.10 244,78 249,06 302.80 377.34

- 0.42 5,02 6.9t  29.9T 61,97 |

HeHu11 B9=1/9 Band Insertion CS=Center Sweep
B=Band B2=1/2 Band Insertion SFaSpacefilling Curve

(Underscored means were not found to be significantly different at 17)
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indicate that the difference in question is not statistically significant. If a pair or
set is not underscored, it indicates that the right element is significantly greater than
the left element.

From Table 1 it can be readily observed that, regardless of the shape factor, none
of the mean tour lengths are significantly different at 5 picks. However, at 25 picks,
all the differences observed are significant for b=1.00 and certain groupings occur as
the shape factor is decreased. For 10 or more picks, heuristics H and B2 yield the
shortest tour lengths for the entire range of b values considered for the study.
Heuristic H appears to perform better for larger b values while the opposite is true for
heuristic B2.

The results shown in Table 1 are graphically illustrated in Figure 8 and Figure 9
for b=1.00 and b=0.25, respectively. Note that the worst performing heuristics at b=1,00
(that is, B and B9 in Figure 8), exchange positions with heuristic CS when b is decreased
to 0.25 (see Figure 9). The above is mainly due to the fact that as the rack becomes
"flatter," the impact of unnecessary vertical travel typically found in B and B9
diminishes while increased "zigzagging" (described earlier) is observed for CS.

Figure 10 is a graphical representation of mean tour lengths as a function of b,
averaged over all pick levels as well as over 50 replicates. Except for heuristics B and
B9, all the heuristics yield shorter tour lengths when the rack is square-in-time; that
is, b=1.00. The ideal rack shape for B and B9, however, appears to be b=0.50. (Recall
that the total number of openings is kept fixed approximately at 2500 as the shape factor
is varied).

IX. EFFECT OF IMPROVEMENT PROCEDURES

Recall that four options are considered in the improvement phase. Suppose TL(.)
designates the final tour length obtained from the corresponding option. Then, us:~g the
same initial tour obtained at the end of the construction phase,

TL(2&3-way) < TL(2-way) < TL(NONE) (2)
and TL(spec.2-way) < TL(NONE) (3)
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by definition. Hence, no statistical tests will be applied. Also, the number of
exchanges considered by the specialized 2-way routine is only a subset of those
considered by the 2-way routine. Hence, one would generally expect the 2-way routine to
outperform its specialized version (except for certain "pathological" cases where the
specialized 2-way exchange yields a shorter tour due to the particular order in which the
exchanges are considered and executed).

The results of the experiment are shown in Table 2 where percent differences are
given relative to 2&3-way improvement. It can be clearly observed that, for all rack
shapes and pick Tevels considered, the marginal reduction obtained in tour length by
using the 2&3-way routine instead of the 2-way routine is almost negligible.

Furthermore, for heuristic H, little or no reduction in tour length is obtained with
any one of the improvement routines. As shown later, heuristic H generally yields near-
optimum tours. Hence, it is difficult to improve the initial tour. Likewise,
improvement routines yield relatively small reductions under heuristic B2 where they
become somewhat effective only as the pick level and the shape factor are increased.

The performance of all the remaining heﬁristics (B, B9, CS and SF) considerably
improve when the specialized 2-way exchange routine is used. However, further
improvement is obtained when (all possible) 2-way exchanges are considered. The
improvement is noticeably smaller for heuristics B and B9 when b=0.25. For heuristics CS
and SF, it is relatively small if b=1.00. Referring back to Figure 8 and Figure 9, it is
clear that improvement routines become more effective as the quality of the initial tour
deteriorates. (A result that was anticipated). However, as seen in the next section,
they also start consuming more computer time.

Observing the columns of Table 2 across the heuristics reveals another result: for
all the pick levels and b values considered, applying the 2-way exchange routine to 8,
B9, CS and SF yields final tour lengths that are comparable to those obtained from 4 and

B2 without improvement.
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Table 2. Effect of Improvement on Mean Tour Length
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X. EFFECT OF RUNTIME ON PERFORMANCE EVALUATION

Runtimes for each heuristic, averaged over the four rack shapes, five pick levels
and 50 replicates, are given in Table 3. Considering the results given earlier in Table
2, it is clear that the additional time required by the 2&3-way exchange routine is not
justified. Also note that, with no improvement, heuristics B and SF are the fastest
while heuristic H is the slowest by a wide margin. However, when the improvement
routines are executed, heuristics H and B2 display the smallest increase in runtime since
they generate better initial tours. Excluding heuristic H, the runtime required by the
2-way exchange routine is approximately 1.5 to 3 times longer than the specialized
version,

As far as construction routines are concerned, heuristic H yields the shortest tour
lengths while it has the longest average runtime. Hence, in the remainder of the study,
other procedures will be compared against heuristic H.

The results are summarized in Table 4 where each heuristic, coupled with an
improvement.routine obtained from Table 2, is compared with heuristic H. The 2-way
exchange routine was applied to each heuristic since it generates tour lengths comparable
to those obtained from heuristic H. Note that, at 5 picks, no improvement routines are
considered necessary. Furthermore, for 10 or more picks, heuristic B2 is evaluated in
three forms: B2, B2+spec and B2+2-way where "spec" refers to the specialized 2-way
exchange routine.

Suppose AL(.) represents the AVERAGE tour LENGTH obtained from the corresponding
heuristic procedure for a given number of picks and shape factor. For 5 picks, AL(B2) is
always within 17 of AL(H) and it runs 2.71 times faster. Heuristic SF, on the other
hand, runs 12,18 times faster than heuristic H with a maximum mean difference of only
4.17.

The following observations can be made for 10 or more picks:

1. AL(B+2-way) is always within 2,17 of AL(H). Up to 15 picks, it is 1.54 to 2.09
times faster. However, beyond 20 picks, its runtime is comparable to heuristic H.

26



Table 3. Average Runtime per Problem in Milliseconds
(CDC Cyber 6400)
Improvement

Heuristic None Special 2-way 2&3-way
Hull 14.403 14,783 17.054 24,883
Band 0.919 4,297 12.391 22.106
1/9 Bins 4.638 5.223 11.982 21.415
1/2 Bins 5.490 5.937 9,341 17.787
Csweep 1.687 5.176 13.913 23,246
Sfcurve 0.792 4,159 12.350 22.950
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Table 4. Mean Runtime and Tour Length Compairson with Hull

P Heuristic AngFi!:'kfsor P :ia's'l:: % Diff from Avg Hull TL
than Hull 1.00 0.75 0.50 0.25
Fs a2 | -1 o1 o1 o1 o1
0.31 8.65 7.3% 4.2% 2.3% 0.6%
B9 0.91 2.95 4.7% 3.6% 1.8% 0.5%
B2 0.99 2.71 0.5% 0.8% 0.3% <0.1%
cs 0.62 432 1.8% 2.0% 3.5% 5.0%
SF 0.22 12.18 3.1% 3.6% 4.1% 3.3%
10 H 7.04 0 0 0 0
B +2-way 3.37 2.09 1.0% 0.2% 0.4% -0.1%
B9 + 2 - way 3.79 1.86 0.6% -0.2% <0.1% -0.1%
B2 2.53 2.78 2.7% 1.3% 12% 0.2%
B2 + spec 2.81 2.51 1.3% 0.7% 0.8% 0.1%
B2 +2 - way 3.65 1.93 0.2% <0.1% 0.1% -0.1%
CS +2-way 3.76 1.87 0.2% 0.4% 0.6% 0.1%
SF +2-way 3.24 217 0.6% 0.3% 0.7% <0.1%
15 H 12.83 . 0 0 0 0
B+2-way 8.32 1.54 1.7% 1.0% 0.5% -0.4%
B9 + 2 - way 8.62 1.49 0.8% 0.7% 0.1% -0.4%
B2 4.66 2.75 3.2% 2.5% 1.9% -0.1%
B2 + spec 5.10 2.52 1.6% 1.5% 1.2% -0.2%
B2 +2-way 7.31 1.76 0.4% 0.3% <0.1% -0.5%
CS +2 - way 8.93 1.44 0.9% 0.5% 0.9% -0.2%
SF +2 - way 8.60 1.49 1.7% 0.8% 1.1% -0.2%
20 H 20.33 0 0 0 0
B +2-way 17.21 1.18 1.1% 0.8% 1.4% -0.2%
B9 +2 - way 16.82 1.2 1.4% 0.6% 0.6% -0.3%
82 7.68 2.65 5.3% 2.7% 2.0% -0.6%
B2 + spec 8.24 2.47 3.1% 1.1% 1.0% -0.6%
B2 +2-way 12.82 1.59 0.9% <0.1% 0.1% -0.8%
CS +2-way 18.57 1.09 0.9% -0.2% 1.1% <0.1%
SF +2 - way 17.79 1.14 1.4% 1.5% 1.7% -0.1%
25 H 29.15 0 0 0 0
B +2-way 32.01 0.91 2.1% 0.7% 0.4% -0.1%
B9 +2 - way 29.43 0.99 1.7% 0.5% 0.4% -0.3%
B2 11.61 2.51 6.0% 3.9% 1.9% -0.4%
B2 + spec 12.42 235 39% 1.7% 0.9% -0.6%
B2+ 2-way 21.69 1.34 1.1% -0.3% 0.1% -0.9%
CS +2-way 36.92 0.79 0.6% 0.8% 1.0% -0.1%
SF + 2 - way 31.15 0.94 2.0% 0.7% 2.5% 0.2%
H-Hull B9-1/9 Band Insertion  CS-Center Sweep
B-Band  B2-1/2Band Insertion  SF-Spacefilling Curve 28




2. AL(B9+2-way) is always within 1.7Z of AL(H). Up to 15 picks, it is 1.49 to 1.86
times faster. However, beyond 20 picks, its runtime is comparable to heuristic H.

3. The maximum mean deviation observed for B2 is 6Z. However, it runs 2,51 to 2.78
times faster and up to 15 picks, AL(B2) is approximately within 3% of AL(H).

4, The maximum mean deviation observed for B2+spec is 3.9%. It runs 2.35 to 2.52
times faster and up to 20 picks, AL(B2+spec) is approximately within 37 of AL(H).

5. AL(B2+2-way) is always approximately within 1% of AL(H). It also runs 1.34 to
1.93 times faster.

6. AL(CS+2-way) is always approximately within 12 of AL(H). Up to 15 picks it runs
1.44 to 1.87 times faster. However, for 25 picks, its runtime is 1.27 times longer than
that of heuristic H.

7. AL(SF+2-way) is always within 2.5%2 of AL(H). Up to 15 picks, it is 1.49 to 2.17
times faster. However, beyond 20 picks, its runtime is comparable to heuristic H.

Hence, heuristics E+2—way. B9+2-way and SF+2-way are similar in performance.
However, from an implementation standpoint (that is, programming, debugging, documenting,
etc.), B+2-way and SF+2-way are more attractive. As far as tour quality is concerned,
heuristic B2+spec can also be included in the above group. However, it runs
approximately 1.25 times faster than the above three procedures.

Heuristic B2+2-way is clearly a strong alternative to heuristic H. Compared to
heuristic H, it runs 1.34 to 1.93 times faster and it is easier to implement especially
if a pre-coded 2-way exchange routine is available. Furthermore, heuristic B is widely
used in industry and converting it to heuristic B2 is a relatively straightforward task.

XI. THE EXACT PROCEDURE

As a reference point, heuristic H will be compared with the exact solution.
However, it must be noted that using a branch-and-bound approach to solve the CTSP leads
to considerably long execution times due to "free points" discussed earlier. As “re rack

becomes flatter and/or the number of picks increase, the number of "free points" lscated
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towards the center portion of the rack increase as well. In most cases, such points lead
to alternative optimum solutions since they can be visited in a number of ways without
increasing travel time.

In fact, consider a hypothetical rack where b=0,00 and n is the total number of
points (including the I/0 point). Then, there are 2n-2 alternative optimum solutions
which consist of traveling to the farthest point and back. Using a branch-and-bound
approach will obviously require a considerable amount of computer time since the
algorithm will not terminate until all optimum solutions have been identified.

Using dynamic programming instead and/or perturbing some of the points may be
helpful. However, such concerns are beyond the scope of this study. Consequently, only
a subset of the problems were solved using the branch-and-bound code presented by Syslo
et al. [24] (which is based on the algorithm developed by Little et al. [17]).

The results are shown in Table 5. Due to excessively long execution times, it was
not possible to study sma]]\b values for 20 and 25 picks. For the remaining rack-pick
combinations, the performance of heuristic H is quite remarkable. Up to 10 picks, it
almost always obtained the optimum solution. For 15 picks, the maximum mean deviation
from the optimum tour length is 1.11Z. For 20 or more picks, the above figure increases
to 3.497. Hence, within the range studied, heuristic H (on the average) generates
optimum or near-optimum solutions. The same conclusion can be extended to heuristic
B2+2-way since it was observed to be always within 1% of AL(H).

The results shown in Table 5 can be extended to other heuristics. For example,
consider the case where b=1.00 with 15 picks. From Table 5, AL(H) is 1.11% above optimum
and (from Table 4) AL(B2+2-way) is 0.40% above AL(H). Hence, for b=1.00 and 15 picks,
AL(B2+2-way) is 1.514447 above optimum.

In evaluating the performance of each heuristic, one must also consider the croblem
environment. For example, in order picking, the system throughput is a function »f total
trip time which is defined as the sum of travel time, total picking time at selec-=2d

openings and time spent at the I/0 point. In many instances, the time associatec w~ith
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Table 5.

Comparison of the Hull Tour Length and the Optimum Solution

Shape Picks
Factor 5 10 15 20 25
0.007 0.157 1.11% 1.34% 1.017
1.00 1.00 0.98 0.75 0.67 0.80
50 50 24 12 5
50 47 13 5 2
0.00% 0.257 0.547 1.512 3.497
0.75 1.00 0.96 0.92 0.72 0.57
50 50 25 18 7
50 45 17 7 3
0.007% 0.017 0.557 1.207
0.50 1.00 1.00 0.92 0.81
50 50 24 16
50 49 17 10
0.007 0.13% 0.557%
0.25 1.00 1.00 0.87
50 50 15
50 47 10

Cell Entries:
Line 1 - Average percent above optimum solution

Line 2 - Proportion of observations which are within

Line 3 - Number of observations

2% of the optimum solution

Line 4 - Number of exact solutions obtained by heuristic
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the latter two activities is independent of the sequence in which the openings are
visited. Hence, as far as sequencing is concerned, they represent "fixed costs."

' a sizable reduction in travel time may represent only a

Due to "fixed costs,'
marginal reduction in total trip time. The final outcome depends on the rack size and
shape, the velocity of the S/R machine (in both directions), the pick level (that is, the
number of picks/trip), the picking time and the time spent at the 1/0 point.

XII. CONCLUSIONS

Six tour construction heuristics, along with three improvement routines, were
compared with one another. The heuristics were tested on problems ranging from 5 to 25
picks in four different rack shapes.

Given a fixed rack size, the mean tour length obtained from the band and the 1/9
band insertion heuristics appears to be minimized approximately at b=0.50. For the hull,
1/2 band insertion, center sweep and spacefilling heuristics, the mean tour length
decreases as b goes to 1.00.

The hull heuristic, which is relatively the most complex and time consuming
heuristic among those studied, has the best overall performance in tour length. The only
construction heuristic comparable to the hull in tour quality is the newly developed 1/2
band insertion. Coupled with the 2-way exchange routine, its average tour length is
within 1Z of the average hull tour length and it runs 1.34 to 1.93 times faster. With no
improvement, the above difference is within 67 and it runs 2.5 to 2.8 times faster. The
1/2 band insertion heuristic is also conceptually simpler and easier to implement.

Improvement routines are not effective with the hull heuristic which already
generates optimum or near-optimum solutions. They are also quite ineffective with the
1/2 band insertion routine. However, with the remaining heuristics (band, 1/9 band
insertion, center sweep and spacefilling curve), the improvement in tour length can be
substantial depending on the shape factor and the number of picks.

The above four heuristics yield tour lengths comparable to those obtained from the
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hull and 1/2 band insertion when 2-way and specialized 2-way exchange routines are
applied. The corresponding increase in runtime, however, is proportional to the
improvement in tour length. Little or no further improvement is observed when the 2&3-
way exchange routine is applied.

Since the completion of this experiment, in an independent study, Goetschalckx [12]
improved the hull heuristic by using a more efficient approach to determine the convex
hull, He also evaluated the impact of deleting the "free point" insertion scheme by
using the minimum cost insertion technique for such points. Subsequently, the author
compared the hull heuristic with the band and 1/2 band insertion heuristics. Contrary to
the results he reported in [11], Goetschalckx concluded that "differences in efficiency
and effectiveness between the (above) heuristics are ﬁot considered very significant for

practical purposes." For further details the reader is referred to [12].
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