AN IMPROVEMENT-TYPE LAYOUT ALGORITHM
FOR MULTIPLE FLOOR FACILITIES

Yavuz A. Bozer
Russell D. Meller
Steven J. Erlebacher
Department of
Industrial & Operations Engineering

University of Michigan
Ann Arbor, MI 48109-2117

Technical Report 91-11

April 1991
Revised December 1991

AN IMPROVEMENT-TYPE LAYOUT ALGORITHM
FOR MULTIPLE FLOOR FACILITIESt

Yavuz A. Bozer
Russell D. Meller

Steven J. Erlebacher

Department of
Industrial and Operations Engineering
The University of Michigan
Ann Arbor, MI 48109, USA

ABSTRACT

In this paper we extend a well-known facility layout algorithm (CRAFT) to facilities with
multiple floors, and we introduce the use of spacefilling curves in facility layout. Such
curves make it possible to exchange any two departments and to use more powerful ex-
change routines than two-way or three-way exchanges. Also, for both single and multiple
floor facilities, we considerably enhance CRAFT by allowing “flexible” departmental area
requirements and by controlling department shapes. Although the algorithm we present
can be used for any multi-floor facility layout problem, its primary target is production
facilities. A tailored version of the algorithm was successfully tested and used in a large,
multi-floor production facility. The algorithm differs significantly from two previous ex-
tensions of CRAFT to multi-floor facilities.

1. INTRODUCTION

According to Tompkins and White [29], the “generation of layout alternatives is a
critical step in the facilities planning process, since the layout selected will serve to estab-
lish the physical relationships between activities.” Physical relationships such as distances
between activities, material flow patterns, entry and exit points, etc. that result from a
layout largely determine its “cost” and “desirability.” Given certain interactions that oc-
cur among the activities, generally speaking, the facility layout problem is concerned with
determining the “most efficient” arrangement of the activities (i.e., departments) subject
to constraints imposed by the site plan, the building, the departmental area/service re-
quirements, and the decision-maker.

TThis study was partially supported by Dr. Bozer's Presidential Young Investigator Award under NSF
Grant DMC-8858562 and a research grant from General Electric Company, DRDA 90-0083.

Obtaining optimal solutions to the facility layout problem is not straightforward pri-
marily for two reasons. First, there are no generally accepted objective functions which
capture all the relevant aspects of the facility layout problem. Second, with commonly ac-
cepted objective functions, finding the optimal solution is currently near-impossible since
it often leads either to a large-scale Quadratic Assignment Problem (QAP) or a large-scale
mixed integer programming problem (see Montreuil [24]).

Without exact procedures to solve the facility layout problem, most of the research has
been aimed at developing heuristic procedures. Generally speaking, the multi-floor layout
problem is more complicated than the single-floor layout problem since the former involves
vertical flow and lifts. Also, in single-floor layout problems, as long as the total usable floor
space is greater than or equal to the total area required by all the departments, any layout
is area feasible. However, in a multi-floor layout problem, the number of departments that
can be assigned to any floor is limited by available space on that floor. Consequently,
certain layouts may not be area feasible. Of course, there are some additional constraints
imposed by a multi-floor building. We will discuss some of these constraints in section 4.2.

Most production facilities constructed today are single-story buildings. However,
multi-floor production facilities are still in use in many parts of the United States, and
some new production facilities are constructed as multi-floor buildings (see, for example
(30], among others). According to [30], the company “saved on land and construction costs
by going up three floors.” Also, quite often an older facility is renovated to avoid building
a new facility. According to [32], “... one major (factor) which recommends renovation
is its low cost compared to that of a new building ... (and) ... most old buildings are
multi-story.” In fact, in [19] it is stated that “a refurbished old industrial plant ... is likely
to cost as little as a tenth as much per square foot of building as a new factory today.”
We are not arguing that renovating a multi-floor plant is always the preferred alternative.
Rather, we are stressing that there are many older multi-floor industrial buildings that
have been (and are being) renovated. Coupled with recent advances in vertical material
handling technology (see, for example, [31], (33], [34], [35], and [36]), many firms are likely
to consider renovating or constructing multi-floor buildings.

In this paper we present an improvement-type algorithm based on spacefilling curves to
solve the multi-floor facility layout problem. More specifically, we extend CRAFT ([1] and
4]) to multi-floor facilities. In the process, we enhance some of the features of CRAFT by
increasing the number of department exchanges considered at each iteration and allowing
flexible departmental area requirements. We also add new features such as shape control
for departments and the consideration of additional constraints which are described later.
The remainder of the paper is organized as follows. In section 2 we present the literature
review. In sections 3 and 4 we present our layout improvement algorithm for multi-floor
facilities. In sections 5 and 6 we demonstrate the new algorithm with an example layout
problem in a multi-floor and a single-floor setting, respectively. In section 7 we present
certain extensions which would further enhance the algorithm. Lastly, in section 8 we
present our conclusions and some of the practical issues we encountered in implementing
the proposed algorithm in a real-life multi-floor production facility.

2. LITERATURE REVIEW

A number of computer-based heuristic layout algorithms, such as ALDEP [27], BLOC-
PLAN [8], COFAD [28], CORELAP [20], CRAFT (1],4], and PLANET [7], have been
developed over the years. There are also a number of algorithms based on graph theory
(see [9], [10], and [11], among others), where the area and shape of the departments are ini-
tially ignored since each department is first represented as a node. After a planar graph is
developed to identify adjacent departments, a heuristic procedure is applied to construct
a block layout that satisfies these adjacency relationships (see, for example, Montreuil,
Ratliff and Goetschalckx [23]).

As remarked in the previous section, CRAFT ([1] and [4]) — Computerized Relative
Allocation of Facilities Technique — is a well-known algorithm which has become one of
the most often referenced improvement-type layout algorithms in the literature. Despite
some of its shortcomings, CRAFT represents the cornerstone of improvement-type layout
algorithms. It has been shown to give reasonably good solutions to a wide range of (single-
story) layout problems (see Ritzman [26]). Also, CRAFT can capture in reasonable detail
the building shape and related constraints (such as unusable areas) as well as the current
layout including fixed departments.

CRAFT begins with an initial layout and performs two-way and/or three-way ex-
changes of department centrotds to identify those that potentially reduce the layout cost,
which is based on (flow) X (unit cost) x (rectilinear distance between department cen-
troids). At each iteration, the exchange that leads to the largest estimated reduction in
total cost is selected and new centroids are computed after the department locations are
actually exchanged. The process of seeking improvements is restarted with the new layout
and it continues until there are no 2-way or 3-way exchanges that lead to a reduction in
the estimated cost. Of course, like most steepest descent improvement-type algorithms,
CRAFT is a “path dependent” heuristic; that is, the initial layout as well as the number
and types of exchanges considered at each iteration largely determine the quality of the
final solution obtained.

It is well-known that CRAFT can exchange only those departments that are either
adjacent or equal in area. If two non-adjacent departments (with unequal areas) are
exchanged, all the other departments in the layout must “shift” to accommodate the
exchange; otherwise, one of the departments being exchanged will be “split.” CRAFT is
not capable of shifting the other departments, and splitting a department would not be
acceptable in a production facility. Also, in most real-life layout problems, only a few, if
any, of the departments will have exactly the same area requirements. Consequently, the
above constraint significantly reduces the number of exchanges CRAFT would consider at
each iteration. Due to the path dependency of steepest descent algorithms, this is likely
to adversely affect the overall quality of the final solutions obtained by CRAFT.

The remainder of the literature review is limited to layout algorithms that can be
used in multi-floor facilities. SPACECRAFT is the first multi-loor, improvement-type
layout algorithm that appeared in the refereed literature (see Johnson [17]). Except for
two modifications, SPACECRAFT is similar to CRAFT. First, the non-linearity imposed
by vertical travel is incorporated in the objective function, and second, the facility is
“transformed” into a single floor to identify department exchanges. The transformation

is performed (at each iteration) by “appending” each floor, one at a time, to the first
floor. (Note that, without such a transformation, SPACECRAFT will not exchange any
two departments located on different floors, unless they are equal in area.) Once the
layout is transformed, potential exchanges are identified as in CRAFT. To evaluate each
exchange, the exchange is performed on the single-floor layout and subsequently the layout
is separated back into muitiple floors to compute the objective function.

When the layout is separated into multiple floors, a department may be split across
two or more floors. Although this may be acceptable for some office buildings or banks,
in a production facility a department represents an indivisible entity, by definition. Also,
since the detatled layout has not yet been determined, it is not clear how one would allocate
the incoming flow and the outgoing flow among two or more pieces of a split department.
Furthermore, if a department is split across two or more floors, it creates additional vertical
handling within the department, which is not captured in the objective function.

In evaluating the objective function for the multi-floor layout, SPACECRAFT cap-
tures the non-linear nature of vertical travel by assigning an expected waiting time for each
lift. If two departments are located on separate floors, the flow between them is assumed to
go through the lift which minimizes the total travel time. However, SPACECRAFT does
not explicitly consider the utilization of the lifts and the expected waiting time associated
with each lift as a function of the workload. Rather, it is assumed that the user enters the
expected waiting times a priors for each lift.

A similar adaptation of CRAFT to multiple floor facilities, namely, CRAFT-3D, is
presented by Cinar [6]. Some of the details of CRAFT-3D are not explained in [6] and
we have not located a refereed, archival publication by the author on multi-floor layout.
Nevertheless, SPACECRAFT and CRAFT-3D appear to be similar. For details, the reader
may refer to Jacobs [16] who provides a brief comparison of the two algorithms.

Other layout algorithms developed for multi-floor facilities are of the construction
type; i.e., they start with an empty building and construct a layout “from scratch.” Four
algorithms fall into this category: Automated Layout Design Program (ALDEP) by Seehof
and Evans (27|, Space Planning Systems (SPS) by Liggett and Mitchell [22], Multi-Story
Layout Program (MSLP) by Kaku, Thompson and Baybars (18], and BLOCPLAN by
Donaghey and Pire [8]. Typically, these algorithms are based on a two-stage approach:
in the first stage, a heuristic procedure is used to assign each department to a particular
floor, and in the second stage, a layout is developed for each floor, one floor at a time.

With SPS, each stage of the problem is formulated as a QAP, which is solved by
applying an expected value approach proposed by Graves and Whinston [13]. At the end
of the first stage, a department may be split between two floors. Also, the authors assume
that there is only one lift (or a centrally located single group of lifts). MSLP, on the other
hand, is similar to SPS except that: 1. it is assumed that all the departments are equal in
area; 2. the assignment of departments to K floors is solved as a K-median problem; and 3.
an improvement heuristic (which considers exchanging only those departments located on
different floors) is applied after the QAPs have been solved for each floor. As acknowledged
by the authors (18], due to the QAP and the K-median problem, it is not straightforward
to extend MSLP to the case where departments have unequal area requirements.

ALDEP, which to our knowledge is the first construction-type multi-floor layout al-

gorithm reported, can generate layouts for up to three floors. It is not clear how ALDEP
is used in a multi-floor setting since neither the original paper [27] nor subsequent publi-
cations address the topic in detail. In fact, in [27] it is not specified how the departments
are assigned to floors. Once the assignment is made, however, ALDEP uses the “sweep
method” to layout each floor independently of the others. All interactions that occur be-
tween departments on different floors are ignored (Ginar [6], p. 25). BLOCPLAN (8] uses
an adjacency-based heuristic method to assign departments to floors (see Pire [25]). All
the departments on the same floor are considered adjacent while those on different floors
are considered non-adjacent. The score does not reflect the number of floors that separate
non-adjacent departments. After the departments have been assigned to floors, BLOC-
PLAN determines the layout of each floor independently (with no provisions for existing
or potential lift locations).

In short, although a few improvement or construction-type layout algorithms that
can be used in multiple floor facilities exist, certain factors would limit their use in a
multi-floor production facility. Except for the throughput capacity of the lifts and the
resulting waiting times, the improvement-type algorithm we present here overcomes these
limitations and seems to generate reasonably good layouts for single and multiple floor
facilities. Before we formally present the algorithm, in the next section we present the use
of specefilling curves, flexible areas, and departmental shape constraints in facility layout.
These concepts and their integration into one algorithm represent our main contribution.

3. SPACEFILLING CURVES, FLEXIBLE AREAS, AND SHAPE CONTROL

In this section we describe basic concepts which lead to the development of the new
improvement algorithm, namely, MULTIPLE (MULTI-floor Plant Layout Evaluation).
After discussing layout representation with spacefilling curves, we illustrate how spacefilling
curves and flexible department areas allow MULTIPLE to increase the number of exchanges
within a floor and the number of exchanges across floors (without splitting departments).
We also show how MULTIPLE controls department shapes.

3.1. Spacefilling Curves and the Facility Layout Problem: Spacefilling curves
(or Peano curves) were first viewed as mathematical oddities since a spacefilling curve is
a continuous function with no unique derivative at any point. More recently, however,
spacefilling curves were proposed as a Traveling Salesman Problem (TSP) heuristic by
Bartholdi and Platzman (2], who also used such curves to locate items in a storage rack
(see [3]).

In most computer-based layout algorithms (including MULTIPLE), the layout is rep-
resented as a matrix. Each element of the matrix corresponds to a grid square (or grid)
of specified area, and the space required by each department is expressed as an integer
number of grids. To construct and manipulate the layout, we propose to use a spacefilling
curve which simply visits all the grids on a floor (except for the grids that correspond to
fixed departments and/or unusable areas). To ensure that a department is not split (within
a floor or across two floors), all the grids assigned to a department must be contiguous,
i.e., each grid must be adjacent to another grid that has been assigned to the same depart-
ment. By its very construction, a spacefilling curve can guarantee that no departments

will be split because a separate curve is used for each floor and, within each floor, the
curve visits the “neighbors” of a grid before visiting other grids. As we demonstrate later,
using spacefilling curves offer significant advantages.

A six-department example with no fixed departments or unusable areas is shown in
Figure 1a. Note that, with a given spacefilling curve and department area values, a layout
is uniquely determined only by a sequence of department numbers. Suppose departments
1 through 6 require 15, 10, 9, 7, 9 and 25 grids, respectively. Then, a possible layout is
shown in Figure 1a where the sequence of department numbers, say, the layout sequence, is
given by 1-2-3-4-5-6. The layout was constructed by allocating the first 15 grids visited
by the spacefilling curve to department 1, the next 10 grids to department 2, and so on.

3.2. Exchanging Departments Within a Floor: Unlike CRAFT, spacefilling curves
allow MULTIPLE to exchange any two departments whether or not they are adjacent
and/or equal in area. For example, in Figure la, to exchange departments 2 and 5 we
simply exchange their positions in the layout sequence and reconstruct the layout to obtain
the new layout shown in Figure 1b. Note that, since departments 1 and 6 are not between
departments 2 and 5 in the original layout sequence, their locations are not affected by the
exchange. In contrast, the locations of departments 3 and 4 have shifted since they fall
between departments 2 and 5.

3.3. Generating Spacefilling Curves: In a rectangular building with no fixed de-
partments or unusable areas, the spacefilling curve can be obtained by using the recursive
procedure presented in the Appendix. This procedure is based on the Hilbert curve (shown
in Figure A3 and described in [15]). If the building shape is quite irregular and many obsta-
cles (such as load-bearing walls) and/or fixed departments are present, one may consider
generating a spacefilling curve by hand. Although such a curve is not necessarily a spacefill-
ing curve in a mathematical sense, functionally it may be viewed as one. Using MULTIPLE
in a large, four-floor production facility, for example, we opted for hand-generated curves.
In doing so, we fully captured the current layout and all the obstacles as well as the exact
building shape (although it was not rectangular).

In fact, any curve (hand-generated or otherwise) which visits all the grids by taking
horizontal, vertical, or diagonal steps (from one grid to an adjoining grid) can be used
with MULTIPLE. Such alternate curves can be generated with relative ease on a personal
computer using the “cursor keys” or a “mouse.” We have also generated some curves by
solving a TSP, where one can minimize the number of diagonal steps in favor of horizontal
and vertical steps. Regardless of the method employed, we must stress that spacefilling or
alternate curves are generated once for each floor only at the start.

A spacefilling curve may be tailored to a particular building. If some departments are
fixed, the curve simply bypasses all the grids assigned to those departments; that is, when
we generate the curve we do not route it through fixed departments. Otherwise, even if
we disallow all pairwise exchanges that involve a fixed department, it may still shift when
other departments on that floor are exchanged. In reference to Figure 1a shown earlier, if
department 2 is fixed, we simply reroute the spacefilling curve so that none of the grids
assigned to department 2 are visited. On the other hand, if department 5 is fixed, it would
divide the floor into two disjoint sections. Consequently, we would generate two spacefilling

END

1 1] 1] 183 | 3/3 | BRS | 546 1 6 61 6
| 1]]l 3 S | 584] 6/6 [61 6
1 1 R | 2 4 | ARS | SE6 | 614 | 6| 6
1 1p R 22 | P4 | 4 >4 | 616 |61 6

START Layout Sequence =1, 2,3,4, 5,6

(a) Initial Layout.

START Layout Sequence =1, 5,3,4,2,6
(b) Department 2 and Department 5 Exchanged.

START Layout Sequence =1,2,3,4,7,6
(c) Department 5 and Department 7 Exchanged.

Figure 1. Using Spacefilling Curves to Construct Layouts.

7

curves, one for each section of the floor. Of course, with such a fixed department, some
within-floor exchanges may no longer be area feasible.

The initial layout may also affect curve generation. Curves that fully conform to
the initial layout can be generated by solving a clustered TSP [5], where all the grids
assigned to a particular department in the initial layout will be visited before the salesman
is permitted to visit any other grid. Lastly, it is instructive to note that the sweep method
used by ALDEP [27] can also be viewed as a “spacefilling curve.” Although the sweep
method can determine a layout quickly and represent it as a sequence of department
numbers, it may split departments around fixed departments or obstacles. The sweep
method is too rigid; it does not possess the flexibility of spacefilling curves.

3.4. Flexible Departmental Areas and Multiple Floors: Perhaps the most chal-
lenging task in extending CRAFT to multi-floor facilities is to exchange unequal area
departments across two floors without splitting the departments. According to Tompkins
and White [29], primarily due to uncertainty, “... perhaps the most difficult determination
in facilities planning is the amount of space required in the facility.” A similar observa-
tion is made in architecture by Lew and Brown [21] who stated that “in any architectural
design process, area requirements have a range of acceptable values.” Hence, instead of
supplying a single estimate for the departmental area requirements (as in other layout
algorithms), we propose to use a range of acceptable values specified for each department.
That is, we let A* and AV designate the minimum acceptable and the maximum allowable
floor space to be allocated to department 1, respectively. The area of a department in the
initial /current layout, say, A;, is assumed to fall within the range specified by A¥ and AV.
Consider exchanging two departments, say, ¢ and j, located on different floors. With-
out loss of generality, suppose 4; > A;. If A¥ < A; and Ag-f > A;, then the exchange is
area feasible and the two departments represent an even ezchange. That is, A; simply as-
sumes the value of A; (and vice versa) and the two departments can be exchanged without
having to relayout either floor. If the above two conditions are not met, one might still be
able to exchange departments ¢ and j after “compressing” all the departments currently
located on the same floor with department j by setting their areas equal to their lower
limits. (We need not compress the departments currently located on the same floor with
department ¢ since A; > A;.) If department 1 fits in the space that becomes available,
then the exchange is area feasible. Otherwise, departments ¢ and j cannot be exchanged
in the current layout. Of course, an exchange will never be area infeasible due to upper
limits on department areas. Following an exchange, any additional floor space will be left
unused at the end of the spacefilling curve. The above procedure is formally presented in
Figure 2, where k(j) denotes the floor number of department j, Sk(;) denotes the set of
departments located on floor k(j), and Ti(;) denotes the total area available on floor k(7).
Consider the previous example shown in Figure la. Suppose the lower, current, and
upper limits on the area for each of the six departments have been specified as follows:

12<A4, (=15) <17 8< A, (=10)<12 T< As(= 9) <12,
6<As(= 7) <10 6< As(= 9) <12 20 < Ag (= 25) < 30.

Consider next exchanging departments 5 and 7, where the latter is currently located
on a different floor and 12 < A7 (= 14) < 17. Since As < A7 we need not be concerned

Yes

I and J on the same floor?

Suppose A = A,

» Exchange Feasible

Yes

No

Exchange Feasible;
AI A.l

A, +——A47]

Exchange Feasible
(Even Exchange);
A &,
A, +—A,

Exchange Feasible;

A, .—— min(A,, Al,j)

L

A

A, <«—round —
2 AN * AJ +
NeSkn

LTK(J) y MeSyy, M=, M=l

!

Exchange Infeasible

Figure 2. Procedure to Determine Area Feasibility and Department Areas.

with space availability on the floor where department 7 is currently located. However, since
A% > Ag, an even exchange is not possible and we must try compressing other departments.
If each department is reduced to its lower limit, the total area required by departments 1,
2,3, 4,7, and 6 would be equal to 65 grids, which implies that exchanging departments
5 and 7 is area feasible. Expanding each department to fill the floor is accomplished by
multiplying the lower area limit of each department with 75/65 = 1.1538 and rounding
it off to the nearest integer (while observing the upper limit on each department). The
resulting layout is shown in Figure 1c. Note that, without spacefilling curves, compression
would not be possible. Many of the departments which are compressed must shift to
accommodate the entering department which is larger than the exiting department.

3.5. Controlling Department Shapes: As a department becomes more irregular in
shape, it becomes impractical or more difficult to develop an efficient arrangement of work-
stations within that department. That is, constructing the detasled layout becomes more
difficult. With MULTIPLE, after exchanging two departments, the new shape assumed
by some departments may not be acceptable. (The same problem has also been reported
for CRAFT; see [14] and [21], among others. Presently, there is no mechanism to control
department shapes in CRAFT.) For example, in Figure 1c, although one can easily smooth
the border between departments 2 and 3 when the grid structure is replaced by the actual
layout, the resulting shape of department 2 may not be acceptable.

While the human eye is very adept at making judgments concerning shape, a computer
program requires a formal measure, which must also be easy to compute since shape
measurements must be performed after each possible exchange. Freeman [12] notes that,
for a fixed area, the perimeter of an object increases as it becomes more irregular in shape.
Letting P; denote the perimeter of department ¢, we propose to use P;/A; as a measure
of shape irregularity. (With the matrix representation of the layout, it is possible to
compute P; without much effort.) Since a circle is not an acceptable department shape,
the perimeter of an object would be minimized if the object is square shaped. Hence, for
a given area of A;, we can compute the minimum perimeter for department ¢, say, P},
simply from P} = 4/4;.

To compare department shapes, it would be more desirable to use a unitless measure of
irregularity that improves as the department shape approaches an ideal shape. Assuming
that a square represents the least irregular, ideal shape for a department, the unitless (or
normalized) measure of irregularity for department 1, say, ();, is given by:

P:/A¢ Pi Pi 1 -0.5
:——:—-—-:——-:—IJ‘-A‘.'_ 1
PiA P iA 4 W

With the above normalized shape measure, as the shape of a department becomes more
irregular, its (; value increases. Hence, the analyst must specify an upper limit on {}; that
he/she is willing to tolerate for each department. Our experience suggests that reasonable
shapes are generally obtained if the upper limit on £; is kept under 1.50. If the ideal shape
for a department is not a square, one needs to redefine the minimum perimeter and impose
a lower limit on ; if square shaped departments are to be avoided.

Two alternative shape measures were proposed by Liggett and Mitchell [22]. The
first one is obtained by dividing the area of the smallest rectangle that fully encloses a

0;

10

1.25

1.50 1.625

U

(a) Measure 1: Encl. Rect. Area - 25/16 =1.5625

Department Area

1.25

1.50

1.0

(b) Measure 2: Encl. Rect. Length
Encl. Rect. Width

1.0

Figure 3. Comparison with the Liggett and Mitchell Shape Factors.

11

department by the area of the department itself. The second measure is obtained by
dividing the length of the smallest enclosing rectangle by its width. As shown in Figure
3, neither measure is as effective as ;. Consider first Figure 3a, where the department
area is assumed to be fixed at 16 grid squares and the ideal shape is assumed to be a
square. Using the first shape measure proposed in [22], we obtain 25/16 = 1.5625 for
all three shapes shown in Figure 3a. In contrast, the {; value (which is shown within
each department) starts at 1.250 for the L-shaped department and increases to 1.625 to
correctly capture the deteriorating shape of the department. In Figure 3b, under the same
assumptions stated above, a similar observation is made. In this case, the second shape
measure proposed in [22] is equal to 1.00 for all three shapes, while (1; starts from 1.00 for
a square and increases to 1.50 as the department shape becomes more irregular.

Of course, the measure we propose will not guarantee that a department will attain
its ideal shape in the final layout since shapes other than the ideal one may have perimeter
values that are close to P. In that sense, {}; does not allow one to directly and explicitly
specify the shape of a department. (That would be quite difficult to implement within
an improvement-type algorithm). However, in general, the proposed measure will enable
the program to reject some exchanges which result in irregular department shapes that
are likely to have perimeter values far greater than P}. Also, the proposed measure is a
general one; that is, it can be used to control department shapes in any layout algorithm
as long as department perimeters can be computed with relative ease.

The spacefilling curve may also affect the final department shapes. However, the shape
of a department is jointly determined by the area of the department itself and the total
area of the departments that precede it in the layout sequence. Therefore, until all the
department areas are computed and the layout is constructed, it is not possible to predict
department shapes from the spacefilling curve alone. Nevertheless, as far as department
shapes are concerned, one advantage of using spacefilling curves is that the department
shapes do not necessarily deteriorate from one iteration to another. (As mentioned earlier,
the department shapes in CRAFT have a tendency to deteriorate fairly rapidly with the
number of iterations.)

4. THE LAYOUT IMPROVEMENT ALGORITHM

The new layout algorithm we developed, MULTIPLE, is presented in this section. The
algorithm is based on integrating the concepts described in section 3 within the framework
of a steepest descent search heuristic. After presenting additional assumptions and defi-
nitions relevant to this section, we discuss additional constraints that apply to multi-floor
facilities. We then present MULTIPLE in flow chart form.

4.1. Assumptions and Definitions: The overall approach we use is similar to CRAFT.
That is, the objective function is a distance-based measure (rather than an adjacency-based
measure) and we attempt to improve the layout through departmental exchanges. Let f;;
denote the flow from department ¢ to department 7, and let cfj (CYJ) denote the horizontal
(vertical) cost of moving one unit load from department i to department j by one distance
unit. (It is assumed that both the f;;’s and the ¢;;’s are supplied by the analyst.) The

12

objective is to

N N
min ZZ (ciidff + clydl)) fij (2)

i=1lj5=1

where N denotes the number of departments and dH (d7,) denotes the horizontal (vertical)
distance from department 7 to department j. Note that the d;;’s are the decision variables
and their values are obtained from the layout.

Like CRAFT, all horizontal distances are assumed to be measured rectilinearly be-
tween department centroids. However, when two departments are located on different
floors, the flow is forced to go through one of several lifts. (Here we define a lift as a
generic vertical handling device.) The location of each existing or potential lift is assumed
to be specified in the initial layout. Letting £ designate a lift, the flow is assumed to go
through the lift which minimizes total horizontal travel; that is,

4} = min(df7 + d}), (3)

where d;-'i designates the horizontal distance from the centroid of department 1 to lift ¢.
We do not consider the throughput capacity of each lift. Rather, we allow each f;; that
involves vertical flow to use the lift that minimizes dﬁ’ Also, we implicitly assume that c
does not vary from one lift to another; however, this assumption can be easily relaxed. In
addition to the f;;, c, ,and c - values, for each floor k, the analyst is assumed to supply the
total usable floor space, T} (m grids), an initial layout (in matrix form), and a spacefilling
curve. The analyst must also supply the range of acceptable area values (in grids) for each
department; that is, AL AU, and A; for1=1,2,...,N.

4.2. Additional Constraints: In addition to the area and shape constraints discussed
in section 3, there may be certain constraints associated with the location of a (non-fixed)
department. One such constraint is concerned with the particular floor a department is
assigned to. It can take one of the following two forms: department ¢ must be assigned to
floor k, or department 1 cannot be assigned to floor k. A good example for the first case is
the receiving/shipping department which (almost always) must be assigned to the ground
floor. (Of course, if there are existing docks, one can also designate the receiving/shipping
department as a fixed department.) The second case may arise if the floor loading capacity
and/or the floor-to-ceiling distance varies from one floor to another. In this case, a partic-
ular department may not be located on some floors due to heavy equipment or the vertical
clearance required by some workstations. Both cases can be easily treated by disallowing
an exchange if one or both of the departments involved violates either constraint as a result
of that exchange. Note that exchanges that occur within a floor will not violate the above
constraint.

Another type of constraint that one may encounter is concerned with the particular
region (or section of a floor) a non-fixed department may not be assigned to. For example,
it may be acceptable to locate a particular department anywhere on the second floor,
except for, say, the west wing. If such regional constraints are in effect for a particular
department, the analyst simply indicates which grid squares these regions cover. After an

13

exchange, if a department occupies a grid square that falls into its forbidden region, the
exchange is disallowed.

In a multi-floor setting, being able to accommodate the above constraints adds con-
siderable realism to the proposed algorithm. In the real-life, multi-floor production facility
where we applied MULTIPLE, we encountered all of the above constraints. (In fact, the
regional constraint was proposed by the plant manager.) Provided that it starts at a fea-
sible point, MULTIPLE is able to observe the above constraints as it attempts to improve
the layout.

4.3. The Algorithm: MULTIPLE is presented in Figure 4, where r is the iteration
counter and DEP designates the number of non-fixed departments. Starting with a given
initial or current layout, at each iteration MULTIPLE considers all two-way, area feasible
exchanges between non-fixed departments. The impact on layout cost is measured accord-
ing to equations (2) and (3). The current-best layout cost for each iteration is maintained
under MIN. When all exchanges have been evaluated, the algorithm selects the feasible
exchange which yields the maximum reduction in the layout cost and the exchange proce-
dure is restarted with the new layout. The search procedure terminates when no feasible
cost improving exchanges are identified in the current layout.

Note that, at any given iteration, MULTIPLE considers all exchanges within each
floor as well as all area feasible exchanges across two or more floors. Hence, the type of
exchange selected may vary from one iteration to the next. In general, we believe this is
a better strategy than a two-stage approach where one would first consider all exchanges
across two or more floors, followed by all possible exchanges within each floor.

5. NUMERIC EXAMPLE FOR MULTIPLE FLOORS

In this section we present a simple example to demonstrate MULTIPLE. The example
problem is based on a three-floor facility composed of fifteen departments and six exist-
ing (or potential) lift locations. The current area requirements and the minimum area
requirements for each department are presented in Table 1. We assume there are no upper
bounds imposed on the floor space occupied by any department. Department 15 represents
the receiving/shipping department and is fixed in its current location in the initial layout,
which is presented in Figure 5.

The spacefilling curve used for the second and third floors is shown in Figure la.
(Note that the layout shown in Figure la corresponds to the third floor in Figure 5.) The
spacefilling curve for the first floor, on the other hand, is identical to the other two except
that it does not cover the last 25 grids of the layout because department 15 is fixed. The
flow matrix for the problem is shown in Table 2. For simplicity, the cost to travel a distance
unit for any product is assumed to be $1.00 if the distance is horizontal and $5.00 if it is
vertical. This is true for all pairs of departments except the receiving/shipping department,
which assumes a cost of $0.25 for horizontal travel and $1.25 for vertical travel due to, say,
more efficient material handling equipment and larger unit loads. The distance between
adjacent floors is assumed to be 10 distance units.

The cost of the initial layout is $281,702.35. Using MULTIPLE on a 25 MHz DOS-
based 386 personal computer (PC) with a 387 coprocessor, we obtained the final layout

14

Read Data
Setr=20

I

Set MIN = cost of
current (possibly

initial) layout
Setr= rl+ |

Consider (next) exchange:
I=1toDEP-1 -

J=1+1to DEP
Exchange I and J

Exchange

Area Feasible ? No

(See Figure 2)

Set ¢; y = cost of
layout with I and J
exchanged

Violate any other
constraints (shape
factors, regional

Last exchange
for iteration r ?

At least
one exchange
that improves the

Layout with cost
MIN becomes
current layout for
next iteration

STOP,
no further improvements
possible for current layout

Figure 4. Flow Chart of MULTIPLE.

15

Table 1. Area Requirements for the Multi-Floor Example Problem.

Minimum Area

12

22
22
13

22

13

17
25

Current Area

15
10

25

25

15
10
25

10
15

19
25

Department

10
11
12
13
14
15

Table 2. Flow Matrix for the Mult-Floor Example Problem.

14

13

12

11

10

1

Q

From/

i =
OOOO@OOOOOOOOOO
OOOOOOOOOOOOOO%
OOOOOOOOOOOOOO@
N
—
OOOOOOOOOOOOOOB
OOOOOOOOOOOOOO@
OOOOOOOOOOOOOOB
OomOOOOOOOOOOOO
N
i
OOOOOOOOOOOOOOB

OOOOOOOOOOOOOOm

O%OOOOOOOOOOOOO
(o}

— N TN ORI~ TN
— e o ——

16

3

.1]—|L 6 m
24
1_|

Third Floor |
|| | |
" 8 9 10
Second Floor. W
[| ||
13
"Bk 14 5 B
12
First Floor W L

B Lift Initial Layout Cost: $281,702.35

Figure 5. Initial Layout for the Multi-Floor Example Problem.

17

shown in Figure 6. The final cost is $125,822.50, which represents a decrease of $155,879.85
(or a 55.33% reduction in layout cost). The final layout was obtained in seven iterations,
which took 37.9 seconds.

The effect of department compression was explored by using the above example prob-
lem with the compression feature removed from the algorithm. The final layout (obtained
in eight iterations) is shown in Figure 7. The final cost is $126,733.92, which represents a
decrease of $154,968.43. Hence, department compression accounts for an improved savings
of only $911.42. The runtime without compression was 20.16 seconds, which represents
a decrease of 47% over the runtime with compression enabled. Although the number of
iterations increased without compression, the runtime decreased. This is primarily due to
a smaller number of feasible exchanges at each iteration with compression disabled. With
the example problem, compression does not greatly improve the final layout cost. However,
with larger and more realistic problems, compression may be essential.

Suppose we now impose a shape constraint on department 10 and assume that its ideal
shape is a square. Inspecting the final layout shown in Figure 7, it is clear that department
10 violates this constraint. To obtain a final layout that meets this constraint, we set the
upper limit on ;¢ equal to 1.0 and rejected any layout that violated this constraint. (In
general, setting the upper limit on any (1; value equal to 1.0 is too restrictive since near-
square shapes will not be acceptable. This may severely limit the number of exchanges
considered by the algorithm.) The final layout with the above shape constraint imposed
is presented in Figure 8. Clearly, for the example problem the shape constraint had little
impact on the cost savings. The percentage reduction in cost fell from 55.01% to 54.32%,
which is a net difference of only $1,935.37. The final layout was still obtained in eight
iterations. The runtime was 20.09 seconds (without compression).

We now consider the impact of imposing additional constraints. Suppose department
9 may not be located on the third floor due to the weight of the machines involved. Further
suppose department 14 may not be located on the left-hand side of the first floor because
of the unusually low floor-to-ceiling distance in that section of the building. Both of these
constraints are violated in Figure 7, and they are both representative of location restrictions
that may arise in practice. The final layout obtained from MULTIPLE is shown in Figure
9. The algorithm reduces the cost of the layout by $99,293.27 (or 35.25% of the initial
layout cost) in 11 iterations. The runtime was 24.96 seconds (without compression). No
shape constraints were imposed on any department.

For comparison purposes, we ran SPACECRAFT with the same data and obtained
the layout shown in Figure 10. (Setting the expected waiting time at each lift equal to zero
forces SPACECRAFT to use the closest lift.) The layout shown in Figure 10 was obtained
in 12 iterations. (We will not report the runtime since SPACECRAFT currently runs on a
mainframe.) In the final layout, SPACECRAFT split departments 8 and 10, and the cost
is $129,168.00. (The cost of the final layout obtained by MULTIPLE is $125,822.50 and
$126,733.92 with and without compression, respectively.) Note that, when a department is
split, the objective function of SPACECRAFT underestimates the cost of the layout since
vertical flow within the split department is not considered in computing the layout cost.

We would have preferred to make a more equitable comparison between MULTIPLE
and SPACECRAFT. However, if one attempts to stop SPACECRAFT from splitting a

18

|
4
m |, Y 10 s’ N
3
B
Third Floor1 LI
| | B
l_| 13 |
[| 2 6 |
8
Second Floor.
|| | |
5
. R 14 15 n
12
First Floor] L
B Lift Final Layout Cost: $125,822.50

Reduction in cost: $155,879.85

Unassigned
Area % Reduction in cost: 55.33%

Figure 6. Final Layout Obtained by MULTIPLE with Compression.

19

|3
B2 |1 10 ° m

4
1
Third Floor W L
m_ T
¥ 7 8 6 |
Second Floor. W
T | "
13
W 14 15 N
12
First Floor |]
B L Final Layout Cost: $126,733.92

Reduction in cost: $154,968.43
% Reduction in cost: 55.01%

Figure 7. Final Layout Obtained by MULTIPLE without Compression.

20

3
4
H: : | 10]
9 L]
Third Floor B L
|| | |
CRY 7 . s M
Second Floor. |
| |
13
W s| 4 12 5 W
First Floor | |
W Lift Final Layout Cost: $128,669.34

Reduction in cost: $153,033.01
% Reduction in cost: 54.32%

Figure 8. Final Layout Obtained by MULTIPLE with Shape Constraint.

n 1 10 3 2 1 M
"5
Third Floor W w
| | B
i 9
7 8 6 N
Second Floor. i
| n
5
B 14 15 |
13 12
First Floor L |

B Lift Final Layout Cost: $182,409.08
Reduction in cost: $99,293.27

% Reduction in cost: 35.25%

Figure 9. Final Layout Obtained by MULTIPLE with Regional Constraints.

(3%
(3]

|
: 4
| 10 | 9 N
3
Third Floor Ll
[| |
8*
! 14 6 2 N
5
[i04
Second Floor L
|| |
_RIN 7 15 B
8* 13
First Floor '

* - split department

B Lift Final Layout Cost: $129,168.00
Reduction in cost: $152,534.35

% Reduction in cost: 54.15%

Figure 10. Final Layout Obtained by SPACECRAFT.

23

department across two or more floors, it essentially transforms the algorithm back to
CRAFT. That is, no two departments will be exchanged across floors unless they are
equal in area. Also, SPACECRAFT cannot handle flexible areas. Therefore, we had to
run it with the A; values fixed. (These values were obtained from the initial layout.)

6. NUMERIC EXAMPLE FOR SINGLE FLOOR

Although MULTIPLE’s principal strength lies in multi-floor facility layout problems,
in this section we use it on a single-floor example problem and compare the final layout
with the one obtained by CRAFT. Recall that MULTIPLE can exchange any two de-
partments whether or not they are adjacent and/or equal in area. Consequently, the set
of exchanges considered by CRAFT at each iteration is a subset of those considered by
MULTIPLE. However, since both algorithms are path dependent heuristics, one cannot
conclude that MULTIPLE will always outperform CRAFT. Rather, provided that both
heuristics are started with the same initial layout, in general, MULTIPLE is likely to obtain
a lower-cost layout simply because it considers more exchanges at each steration. In other
words, MULTIPLE represents a substantive improvement of CRAFT because it relaxes a
significant constraint. Due to the heuristic nature of the search process, this improvement
is likely but not guaranteed to produce a lower-cost solution, and its impact on the final
layout cost may show significant variation from one problem to another.

The following 20-department problem was taken from [1], where CRAFT was origi-
nally proposed. The spacefilling curve used by MULTIPLE is shown in Figure 11. (Note
that the spacefilling curve fully conforms to the initial layout to ensure that both algo-
rithms start with the same layout.) The cost of the initial layout is $101,643.37. In seven
iterations CRAFT reduced the layout cost to $78,620.90 whereas MULTIPLE reduced
the layout cost to $68,578.83 in 13 iterations. Hence, in this particular case, MULTIPLE
increases the savings in material handling costs by 44%. The final layout obtained from
MULTIPLE is shown in Figure 12. The shapes of departments V and M in the final layout
are probably not acceptable. This is due, in part, to the conforming spacefilling curve
we used. One may readily generate alternative spacefilling curves and/or impose shape
constraints to obtain better department shapes in the final layout.

We also present the runtimes to give both a relative and an absolute measurement
of the solution times required by both algorithms. Both programs were run on a 25 MHz
DOS-based 386 PC with a 80387 coprocessor. The runtime for CRAFT was 2.1 seconds
while MULTIPLE required 2.5 minutes. There are four reasons behind the above significant
difference in runtimes. First, at each iteration, MULTIPLE considers more exchanges than
CRAFT. Second, unlike CRAFT, MULTIPLE evaluates the actual cost of each exchange.
(CRAFT first obtains a cost estimate for each exchange by exchanging only the department
centroids.) Third, although we did not impose any shape constraints in MULTIPLE (to
keep the comparison equitable), the algorithm automatically computes the shape measure
for each department in evaluating each exchange. Lastly, our copy of CRAFT was written
in FORTRAN while MULTIPLE was implemented with PASCAL. Benchmark problems we
ran (on the above PC) indicate that our FORTRAN compiler generates object codes that
run about 2.25 times faster than those generated by our PASCAL compiler. (Rewriting
CRAFT in PASCAL — or MULTIPLE in FORTRAN - is not a feasible avenue to pursue.)

24

START

T T
mu
1 n|
E_l u)
— .
|
N L - -
T
N ui
T T
N HE)
mlmlm uE
T EERENEE R RS NS E NS RN
END

Figure 12. Final Layout Obtained by MULTIPLE for the Single-Floor Example Problem.
25

After adjusting for this compiler/language difference, solving the above example problem
with MULTIPLE would require approximately 30 times more CPU time than CRAFT.
Although this is a substantial increase in runtime, obtaining a solution for a 20-department
layout problem in 2.5 minutes on a PC is well within reason.

CRAFT has the ability to consider three-way as well as two-way exchanges. To
maintain equity in the above comparison, CRAFT was restricted to consider two-way ex-
changes only. MULTIPLE could be modified to consider three-way exchanges like CRAFT.
In fact, the use of spacefilling curves allows MULTIPLE to consider the exchange of any
three departments, while CRAFT is still limited to exchange only adjacent or equal area
departments. Therefore, including three-way exchanges is likely to further improve the
performance of MULTIPLE over CRAFT. However, this would also increase the runtime,
and as we discuss in the next section, there are more promising extensions to MULTIPLE
than adding three-way exchanges.

7. EXTENSIONS TO MULTIPLE

MULTIPLE may be extended in several directions. One extension to MULTIPLE
concerns the number of (real) departments on each floor. Due to the pairwise exchange
routine, the number of departments on each floor remains constant. Using dummy depart-
ments (which have negligible area requirements and no flow), MULTIPLE can vary the
number of (real) departments on a floor. We have found dummy departments to be quite
effective in most problems and recommend placing several dummy departments on each
floor in the initial layout. Another method that would allow the number of departments
on a floor to vary is based on exchanging two departments on a particular floor for one
department on another floor; that is a “two—for-one” exchange.

In general, even if dummy departments are used, some two—for-one exchanges will
not be possible to achieve through two or more two-way exchanges. Therefore, the cost
of the final layout obtained with two-way and two—for-one exchanges is very likely to be
less than that obtained with two-way exchanges only. We must stress that the potential
improvement obtained by two—for-one exchanges is not limited to exchanges across floors.
Although any two-for-one exchange within a floor may also be achieved with two two-
way exchanges, since MULTIPLE is a steepest descent algorithm, if either one of the
above two-way exchanges does not reduce the cost of the layout, the two—for-one exchange
(which may still reduce the layout cost) will never be realized. Unfortunately, the number
of two—for-one exchanges increases rapidly with the number of floors and the number of
departments on each floor. For example, in a two floor facility, the number of two-for-one
exchanges to be considered is equal to (’;‘)ng + (';’)nl, where n; (> 2) and ny (> 2)
denote the number of departments on floors 1 and 2, respectively. As a result, in general,
the runtime with two—for-one exchanges will increase considerably.

The cost reductions that might be obtained with two—for-one exchanges, combined
with the inability of MULTIPLE to temporarily accept solutions that do not improve the
layout cost, suggests the use of a fundamentally different search procedure. We believe
that extending MULTIPLE in a simulated annealing framework may be a very effective
approach to the multi-floor facility layout problem. Simulated annealing may reduce the
path dependency of MULTIPLE which is due, in part, to the steepest descent nature of

26

the algorithm. Moreover, since we use spacefilling curves to rapidly revise the layout, any
(feasible) exchange can be accommodated simply as a new layout sequence on each floor.
Spacefilling curves allow the analyst to use a very general exchange structure. Not only
may two—for-one exchanges be considered along with three-for-one or three-for-two, but
combinations of n;-for-n, exchanges may be performed in a single iteration. Of course,
the exact type of exchanges to consider at each iteration and how to generate them is a
topic for future research in multi-floor layout.

8. IMPLEMENTATION AND CONCLUSIONS

A tailored version of MULTIPLE was implemented in a large, four-floor production
facility that produced a variety of products in large quantities. The facility had nearly
70 departments some of which were fixed. There were certain obstacles and some unused
areas as well. The building was non-rectangular and had several adjoining sections built
at different time periods. Hence, the floor loading capacity as well as the floor-to-ceiling
distance varied from one floor to another, and from one section of the building to another.
There were five elevators located at various points in the building.

Although management understood the data requirements of MULTIPLE, they were
reluctant to generate a 70 by 70 flow matrix “from scratch” and preferred to have a more
convenient way of converting their production figures to a flow matrix. To accommodate
this need, we developed a “flow matrix generator” for MULTIPLE which we believe is a
unique application of a well-known method used in production planning.

Suppose there are three types of finished products produced in a facility. As shown
in Figure 13, we first determine the production route (i.e., the sequence of departments
visited) for each finished product and its subassemblies. For each subassembly we next
determine the number of subassemblies required for each unit of the finished product. For
example, in Figure 13, the first product type has only one subassembly type and each
finished product requires two subassemblies of that type. Lastly, for all the flows, we
determine the basic units of flow. For example, in Figure 13, the subassembly of the first
product flows from department 1 to department 6 in 25 pieces per container. Hence, the
material flow from department 1 to department 6 (due to the first product) is equal to
2(100/25) = 8 containers per time unit since the first product is assumed to be produced
at a rate 100 units per time unit. Repeating the same computation for each flow, we
automatically generate the entire flow matrix.

Of course, the data required for the above production facility was more extensive than
that shown in Figure 13. However, once the data was collected, the flow matrix generator
became a very useful tool. Simply by varying the planned production rates for all or some
of the products, the plant manager was able to gauge the impact of the production plan
on material flow within the facility. Subsequently, the flow matrix generator was also used
to quantify vertical flow in the facility as a function of planned production rates and the
current layout. Note that generating a flow matrix with the above approach is similar to
the well-known “backward explosion” technique used in MRP systems.

We also collected data on the area requirements of each department. We were encour-
aged by the plant manager to compress the storage departments by up to 50%. Several
shape and regional constraints were also considered. As mentioned earlier, given the na-

Subassembly Department Sequence Production
Rate

1% @10**52720 s ol 4 555710»@ 100
10
D257

[\

[—

@50%750 10 o 10&57109»@ ‘200
@25&9710

50
5 @100’@725

[u—

Pt

@ 10@20 ' 20 <15> 10>W 10>® 400

v denotes storage Q denotes production department
department

* Number in front of subassembly department sequence corresponds to the
number of subassemblies in the final product.

** Number on top of the arrow between two departments corresponds to the size of
the unit load moved between the two departments.

Figure 13. Sample Product Flow Chart to Generate a Flow Matrix.

28

ture of the building, we opted for a hand-generated “spacefilling curve” for each floor of
the facility. Management also expressed their concerns over the steepest descent nature
of MULTIPLE. Given their concern for department relocation costs, simply picking only
the best exchange at each iteration was not the preferred approach. Therefore, instead of
picking the best exchange and proceeding to the next iteration automatically, the program
displayed the best twenty exchanges in decreasing order of layout cost savings. This pre-
sented the analyst with an opportunity to evaluate each exchange in terms of relocation
costs and practical considerations.

In [14] relocation costs are considered within the model. Such an approach was not
considered to be realistic by management since specifying the relocation cost a priort for
each department would be time consuming and not possible without knowing where a
department is to be relocated. With our approach, since the analyst observes the changes
required to implement a particular exchange, he/she can evaluate its desirability based on
layout cost savings and relocation costs. This feature was viewed as essential by manage-
ment who had to economically justify major changes in the layout.

The tailored version of MULTIPLE was implemented on a 20 MHz DOS-based 386
PC (located at the site of the study) with a 387 coprocessor and a DOS-Extender. (The
latter was required due to the large problem size.) Each iteration of the tailored algorithm
required about 25 minutes. Given that layout problems are not solved on a daily basis, and
that the PC offers portability and ease—of-use, the above runtime seems very reasonable.
Using the tailored version of MULTIPLE and working jointly with the technical staff at
the site, we were able to identify several cost-justified improvements in the layout.

In conclusion, MULTIPLE offers several advantages over CRAFT in single-floor ap-
plications. It also generates reasonably good layouts for multiple floor facilities without
splitting departments. MULTIPLE’s primary strength is derived from its use of spacefill-
ing curves to rapidly re-layout one or two floors after an exchange. These curves provide
considerable speed and flexibility. They also make it possible to consider more powerful
exchange routines than two-way or three-way exchanges.

Two other key features of MULTIPLE is its ability to effectively handle a range of area
requirements for each department and its use of a “new” shape measure to avoid irregular
department shapes. Also, MULTIPLE explicitly considers the location of each existing
and potential lift in the facility; however, it does not consider the throughput capacity of
each lift. This aspect of the problem is subject to further research. Lastly, MULTIPLE
is based on the “conventional” assumption of travel between department centroids. We
would like to stress that MULTIPLE can be easily modified to accommodate alternative
measures of layout efficiency. For example, one may use the “adjacency score” instead of
the layout cost used by CRAFT. With appropriate modifications, it seems possible to use
MULTIPLE in conjunction with other recent approaches such as the one proposed in [24],
where a department may have several input/output (I/O) points and the layout design is
integrated with the design of the flow network (which connects all the I/O points).

ACKNOWLEDGEMENT

The authors would like to thank Professor Roger V. Johnson for providing an updated
copy of SPACECRAFT which was used in section 5.

29

APPENDIX

A spacefilling curve for a rectangle may be generated by the procedure shown in
Figure A1. The rectangle is defined by r rows and ¢ columns, while n (restricted to integer
values) is determined such that the 2*~! by 2" rectangle (shown in Figure A2) is the
largest rectangle to be contained in the r by ¢ area. (If ¢ is not greater than or equal to
r, the rectangle should be reoriented.) Once n is determined, rectangles A, B and C are
defined. If r = ¢ = 1, both rectangles B and C are undefined and the procedure simply
connects the appropriate points.

The original call to the SFC procedure will fill rectangle A with the appropriate Hilbert
Curve (see [15] and Figure A3). Once rectangle A is filled, it will mirror image itself onto
rectangle B, and then call the SFC procedure recursively to fill rectangle C. The difference
between r and 2”~! determines whether the spacefilling curve that begins at point 1, ends
at point 2 or point 3. If the curve ends at point 2, then the SFC procedure will be called
recursively to fill the remainder of rectangle A. Finally, each successive recurvsive call to
the SFC procedure will link point 2 (or 3) from the previous rectangle to point 1 in the
recursively defined rectangle. Figure A4 shows the spacefilling curve generated when the
SFC procedure is applied to an 11 by 18 rectangle. It also shows rectangles A, B and C
obtained with n = 4.

Procedure SFC (7 x ¢) | ¢ must be > r; if not reonent;
find max k such that (2 < ¢) I I:ieﬁping areas A, B & C
find max m such that (2™/ <r) | in Figure A2;
n=min(k,m) :
if n =0, then | degenerate SFC (1 x 1) - point;
only one possible solution, Return I
else I
Continue l |
draw 2n-/ x 2n-1 Hilbert Curve beginning at point 1 (Figure A2) | decide where curve will end
if 7 - 2n-1 > 0, then | based on r and c values;
end Hilbert Curve at point 2 (Figure A2) I | -
SFC (min{r- 271,201 } :max {r- 21,2 }) | recursively call SFC with additional
else | area above curve;
end Hilbert Curve at point 3 (Figure A2) I '
mirror image 7 x 2%/ A onto r x 2"/ B : now A and B filled,
if ¢ > 27, then | recursive call to SFC for C;
SFC (min{r,c-2"} ;max{r,c-2"}) |
else ({ ’ lif C is empty, then
Return | return to last SFC call,
End Procedure SFC |

Figure Al. Procedure to Generate a Spacefilling Curve for an r by ¢ Rectangle.

30

—u
[] |
@ .
[
, n
2n-1 .
|
.
@© @ -
L — |
2" |
1
c
Figure A2. The Rectangles A, B and C as Defined by the SFC Procedure.
6 7 10 11
5 8 9 12
4 3 1 13
2 3
1 2 1 16
1 4
(a) Area= 16 (b) Area=64
Figure A3. Examples of the Hilbert Curve (1891).
A B C | end
-
I 111 1.LT 11 r =
T T L I T I 1 | R - r__]
'! I 11T 1 11T] {"' I-"l
TS -
m 1 =it T m il
| | L L | L | | 1 FJ
11 I 19] 1Ll Lﬂ
| - = D - =
Lir Ml "l 1L |
J | | | 1 | | 1 | L | B h _[
begin

e Originally,n=4
Figure A4. Spacefilling Curve Generated for an 11 by 18 Rectangle.

31

BIBLIOGRAPHY

(1] Armour, G. C. and Buffa, E. S., “A Heuristic Algorithm and Simulation Approach
to Relative Location of Facilities,” Management Science, Vol. 9, No. 2, 1963, pp.
294-309.

2] Bartholdi, J. J. and Platzman, L. K., “An O(nlogn) Planar Traveling Salesman
Heuristic Based on Spacefilling Curves,” Operations Research Letters, Vol. 1, No. 4,
1982, pp. 121-125.

3] Bartholdi, J. J. and Platzman, L. K., “Design of Efficient Bin-Numbering Schemes
for Warehouses,” Material Flow, Vol. 4, 1988, pp. 247-254.

(4] Buffa, E. S., Armour, G. C., and Vollman, T. E., “Allocating Facilities with CRAFT,”
Harvard Business Review, Vol. 42, 1964, pp. 136-158.

[5] Chisman, J. A., “The Clustered Traveling Salesman Problem,” Computers and Oper-
ations Research, Vol. 2, 1975, pp. 115-119.

[6] Cinar, U., “Facilities Planning: A Systems Analysis and Space Allocation Approach,”
Spatial Synthesis in Computer-Aided Building Design, Charles M. Eastman (Ed.),
Wiley, 1975, pp. 19-40.

[7) Deisenroth, M. P. and Apple, J. M., “A Computerized Plant Layout Analysis and
Evaluation Technique (PLANET),” Technical Papers 1962, American Institute of
Industrial Engineers, Norcross, Georgia, 1972.

(8] Donaghey, C. E. and Pire, V. F., “Solving the Facility Layout Problem with BLOC-
PLAN,” Industrial Engineering Department, University of Houston, Houston, TX,
1990.

(9] Drezner, Z., “DISCON: A New Method for the Layout Problem,” Operations Research,
Vol. 20, 1980, pp. 1375-1384.

[10] Foulds, L. R., “Techniques for Facilities Layout: Deciding Which Pairs of Activities
Should be Adjacent,” Management Science, Vol. 29, 1983, pp. 1414-1426.

[11] Foulds, L. R. and Robinson, D. F., “Graph Theoretic Heuristics for the Plant Layout
Problem,” International Journal of Production Research, Vol. 16, 1963, pp. 27-37.

[12] Freeman, H., “Computer Processing of Line- Drawing Images,” Computing Surveys,
Vol. 6, 1974, pp. 57-97.

(13] Graves, G. W. and Whinston, A. B., “An Algorithm for the Quadratic Assignment
Problem,” Management Science, Vol. 17, 1982, pp. 453-471.

(14] Hicks, P. E. and Cowen, T. E., “CRAFT-M for Layout Rearrangement,” Industrial
Engineering, Vol. 8, 1976, pp. 30-35.

[15] Hobson, E. W., The Theory of Functions of a Real Variable and the Theory of Fourier’s
Series, Volume I, 3rd Edition, Cambridge University Press and Harren Press, Wash-
ington D.C., 1950.

[16] Jacobs, F. R., “A Note on SPACECRAFT for Multi-Floor Layout Planning,” Man-
agement Science, Vol. 30, No. 5, 1984, pp. 648-649.

(17] Johnson, R. V., “SPACECRAFT for Multi-Floor Layout Planning,” Management
Science, Vol. 28, No. 4, 1982, pp. 407-417.

(18] Kaku, K., Thompson, G. L., and Baybars, 1., “A Heuristic Method for the Multi-
Story Layout Problem,” European Journal of Operational Research, Vol. 37, 1988,
pp. 384-397.

(19] King, J. and Johnson, R. E., “Silk Purses From Old Plants,” Harvard Business Review,
Vol. 61, No. 2, 1983, pp. 147-156.

20] Lee, R. C. and Moore, J. M., “CORELAP- Computerized Relationship Layout Plan-
ning,” Journal of Industrial Engineering, Vol. 18, No. 3, 1967, pp. 194-200.

(21] Lew, P. and Brown, P. H., “Evaluation and Modification of CRAFT for an Archi-
tectural Methodology,” Proceedings of the Design Methods Group First International
Conference, Gary T. Moore (Ed.), 1968, pp. 155-161.

[22] Liggett, R. S. and Mitchell, W. J., “Optimal Space Planning in Practice,” Computer
Aided Design, Vol. 13, 1981, pp. 277-288.

(23] Montreuil, B., Ratliff, H. D., and Goetschalckx, M., “Matching Based Interactive
Facility Layout,” IIE Transactions, Vol. 19, 1987, pp. 271-279.

[24] Montreuil, B., “A Modeling Framework for Integrating Layout Design and Flow Net-
work Design,” Proceedings of the Material Handling Research Colloquium, Hebron,
Kentucky, 1990, pp. 43-58.

(25] Pire, V. F., “Automated Multistory Layout System,” Unpublished Master’s thesis,
Industrial Engineering Department, University of Houston, Houston, TX, 1987.

[26] Ritzman, L. P., “The Efficiency of Computer Algorithms for Plant Layout,” Manage-
ment Science, Vol. 18, 1972, pp. 240-248.

[27] Seehof, J. M. and Evans, W. O., “Automated Layout Design Program,” Journal of
Industrial Engineering, Vol. 18, 1967, pp. 690-695.

[28] Tompkins, J. A. and Reed, R. Jr., “An Applied Model for the Facilities Design Prob-
lem,” International Journal of Production Research, Vol. 14, No. 5, 1976, pp. 583-
595.

(29] Tompkins, J. A. and White, J. A., Facilities Planning, John Wiley & Sons, New York,
N.Y., 1984.

[30] “Candy Maker ’Sweetens’ Efficiency with Pflow Lifts,” Industrial Engineering, Vol.
22, No. 10, 1990, p. 60.

[31] “Pflow Conveyors Are an Alternative for Material Handling Needs,” Industrial Engi-
neering, Vol. 21, No. 1, 1989, pp. 63.

(32] “Plant Renovation: The Low-Cost Road to Success,” Material Handling Engineering,
Vol. 43, No. 2, 1988, pp. 41 - 51.

[33] “Vertical Conveyor Eliminates Need for New Construction,” Material Handling Engi-
neering, Vol. 40, No. 7, 1988, pp. 84-86.

[34] “Vertical Conveyors Increase Plant’s Efficiency 33%,” Modern Materials Handling,
Vol. 40, Casebook Directory, 1985, pp. 113.

[35] “Vertical Lift Grows with New Distribution Center,” Industrial Engineering, Vol. 22,
No. 9, 1990, p. 81.

[36] “Vertical Reciprocating Conveyors: Flexible Handling Devices,” Material Handling
Engineering, Vol. 45, No. 9, 1990, pp. 81-85.

33

IIIIIIIIIIIIIIIIIIII

