Normal Vibrations of Polyglycine II

YASUAKI ABE and S. KRIMM,* Harrison M. Randall Laboratory of Physics and Macromolecular Research Center, University of Michigan Ann Arbor, Michigan 48104

Synopsis

A valence force field has been refined for single-chain polyglycine II using the known structure and four isotopic derivatives. The calculated frequencies are in good agreement with the observed. The force field is compared with that derived from polyglycine I and for the nylons.

INTRODUCTION

Normal coordinate calculations of polyglycine II (PG II) have been carried out by Miyazawa and Tsuchida,^{1,2} Small, Fanconi, and Peticolas,³ and Singh and Gupta.⁴ In these calculations, however, only one or two isotopic molecules were treated and/or the CH_2 group was replaced by a single mass.

We have recalculated the normal vibrations of five isotopic species of the PG II chain in the crystal without replacing the CH_2 group by a single mass, and have determined a valence force field in a manner similar to that for the polyglycine I (PG I) crystal in the preceding paper.⁵ The results are presented herein.

CALCULATION OF NORMAL VIBRATIONS

Structure. The X-ray study of Crick and Rich⁶ indicated that PG II is a threefold helical chain which is hydrogen bonded via N—H···O=C' bonds to adjacent chains in the crystal. A small modification regarding the packing of chains was subsequently proposed by Ramachandran, Sasisekharan, and Ramakrishnan.⁷ In this modified structure one third of the C'=O groups are also involved in a C—H···O=C' hydrogen bond. Evidence for such hydrogen bonds was presented in the infrared studies of Krimm, Kuroiwa, and Rebane.^{8,9} It was also noted¹⁰ that antiparallel chain arrangements must exist in the crystal. This requirement was subsequently incorporated into a revised crystal structure.¹¹

The present calculations were done for the parallel-chain structure. The unit cell in this case contains one chain, and thus a single-chain treat-

^{*} To whom correspondence should be addressed.

^{© 1972} by John Wiley & Sons, Inc.

ment was adopted. The results are probably very similar for antiparallel chain arrangements. The same structural parameters as given in Table I of the preceding paper⁵ were used. The repeat of the helix is 9.30 Å, which corresponds to bond rotation angles of $\varphi(N-C) = -76.89^{\circ}$ and $\psi(C-C') = 145.32^{\circ}$.

Coordinates and Selection Rules. The internal coordinates and the local symmetry coordinates were defined in the same way as in Tables II and III of the preceding paper,⁵ except for the interchain coordinates which were not considered here.

The optically active symmetry coordinates are classified into two species, A and E, and are given by

$$\begin{split} \mathbf{S}(\mathbf{A}) &= C \sum_{i} (\mathbf{S}_{\mathbf{I}}^{i} + \mathbf{S}_{\mathbf{II}}^{i} + \mathbf{S}_{\mathbf{III}}^{i}) \text{ for the A species } (\delta = 0), \\ \mathbf{S}^{c}(\mathbf{E}) &= C' \sum_{i} (2 \cdot \mathbf{S}_{\mathbf{I}}^{i} - \mathbf{S}_{\mathbf{II}}^{i} - \mathbf{S}_{\mathbf{III}}^{i}), \quad \text{and} \\ \mathbf{S}^{s}(\mathbf{E}) &= C'' \sum_{i} (\mathbf{S}_{\mathbf{II}}^{i} - \mathbf{S}_{\mathbf{III}}^{i}) \text{ for the E species } (\delta = \pm \frac{2}{3}\pi), \end{split}$$

where \mathbf{S}_{I}^{i} , \mathbf{S}_{II}^{i} , and \mathbf{S}_{III}^{i} are the vectors consisting of the local symmetry coordinates for the three repeating units, as designated by I, II, and III in Figure 1, of the *i*th unit cell, δ is the phase angle between neighboring units along a helix, and the *C*'s are normalization coefficients. The sums are taken over unit cells along a helix. $\mathbf{S}^{c}(\mathbf{E})$ and $\mathbf{S}^{s}(\mathbf{E})$ are a pair of *real* symmetry coordinates for the degenerate species with $\delta = \pm \frac{2}{3\pi}$, by use of which all numerical calculations can be carried out using real numbers.¹² There are nineteen A species modes and twenty E species modes, all of these being both Raman- and infrared-active.

Valence Force Field. The valence force field of PG II was defined in the same way as for PG I. Since calculations were made for a single chain, seventy-two intrachain force constants out of the seventy-eight constants listed in Table V of the preceding paper were considered here.

The observed frequencies used for adjusting the force constants are considered not to involve the effects of $CH \cdots O = C'$ hydrogen bonding. All chains, however, are assumed to be involved in $N - H \cdots O = C'$ hydrogen bonding. Therefore, the effects of the latter type of hydrogen bonding are included in the seventy-two intrachain force constants. Although such hydrogen bonding effects depend on temperature,⁹ the force constants determined in the present work correspond to those at room temperature.

Adjustment of Force Constants. The force constants were adjusted so that they give the best fit with the infrared spectra of $-NHCH_2CO-$, $-N^{15}HCH_2CO-$, $-NDCH_2CO-$, $-NHCD_2CO-$, and $-NDCD_2CO-$ reported by Suzuki, Iwashita, Shimanouchi, and Tsuboi¹³ and the Raman bands reported by Small et al.³

The assignments of the observed bands adopted here are almost the same as those of previous workers.^{1,3,4,13} Minor modifications were made

Fig. 1. Structure of the polyglycine II chain.

according to preliminary calculations. For example, the infrared band at 901 cm⁻¹ and the Raman band at 884 cm⁻¹ of --NHCH₂CO--, which had been assigned to the CH₂ rocking vibrations, were reassigned to the symmetric stretching vibration of the N==C==O skeleton. This assignment is consistent with the fact that the 884 cm⁻¹ Raman band is very strong. The assignment of each band to either the A or the E species was made in such a way that all the assignments were consistent for all the isotopic molecules.

ABE AND KRIMM

	PGII	PGI ^a	Nylons ¹⁴
1. <i>f</i> (N—C) ^b	4.855(0.109)°	5.025	5.278
2. $f(C - C')$	4.513(0.216)	4.419	5.174
3. $f(C' - N)$	6.741(0.330)	6.304	6.117
4. $f(C'==0)$	9.167(0.184)	9.496	8.780
5. $f(N-H)$	5.992(0.023)	5.998	5.98
6. $f(C-H)$	4.569(0.012)	4.564	4.545
7. $f(C'NC)$	0.806(0.160)	1.050	1.475
8. f(NCC')	1.00	1.00	1.028^{*d}
9. $f(CC'N)$	1.40†	1.40	1.045
10. $f(CC'=0)$		1 000	1.331
11. $f(NC'=0)$	1.218(0.111)	1.269	1.495
12. $f(C'NH)$	j.		0.848
13. $f(CNH)$	0.575(0.010)	0.496	0.306
14 f(NCH)	0.810(0.039)	0 600	0.798*
f(C'CH)	0.693(0.034)	0.673	0.128
$f(\mathbf{HCH})$	0.533(0.034)	0.588	0.054
f(C' - O op)	0.555(0.014)	0.566	0.000
$18 f(N_{\rm em}H_{\rm op})$	0.302(0.030)	0.014	0.70
$10 f(\mathbf{N} - \mathbf{C} \text{ tor})$	0.027	0.191	0.114
$19. f(C = C' + c_{1})$	0.037	0.037	0.037
20. f(C' = 0 tor)	0.037 0.604/0.061	0.057	0.037
21. f(C - N W)	0.004(0.001)	0.090	0.071
22. f(N - C, C - C)	0.3	0.3	0.091
23. f(C - C, C - N)	0.3	0.5	0.038
24. $f(C - N, N - C)$	0.5	0.3	0.332
(C_{-}, C_{-})	0.3	0.5	0.704
$\frac{1}{20} \int (C - N, C = 0)$	0.5	0.5	0.230
$\frac{27. f(C - N, C NC)}{f(N - C C'NC)}$	0.3	0.3	-0.108
28. f(N=0, C NC)	0.3	0.3	0.015
$\frac{19}{100} \frac{1}{100} 1$	0.3	0.3	0.312
$\frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} \right)$	0.3	0.3	0.325
$\frac{1}{2} \int (C - C', C C' N) = \frac{1}{2} \int (C - C', C C' N)$	0.3	0.3	0.021
32. f(C'-N, CC'N)	0.3	0.3	0.521
33. f(U - U', UU' = 0)	0.2	0.2	0.258
34. $f(U' - N, NU' = 0)$	0.2	0.2	0.084
f(C'=0, CC'=0)	0.45	0.45	0.379
36. $f(C'=0, NC'=0)$	0.45	0.45	0.495
37. f(C'-N, C'NH)	0.232(0.036)	0.208	0.375
38. f(N-C, CNH)	J0.202(0.000)	0.200	0.324
39. f(N—C, NCH)	0.401(0.046)	0.520	0.365
40. f(N-C, C'CH)		0.044	-0.109
41. f(C-C', NCH)	0.005(0.039)	0.044	-0.073
42. f(C—C', C'CH)	0.205(0.062)	0.225	0.207
43. f(C'NC, NCC')	0.0	0.0	e
44. f(NCC', CC'N)	0.0	0.0	
45. $f(CC'N, C'NC)$	0.0	0.0	0.095
f(NCC', CC'=0)	0.0	0.0	
f(C'NC NC'=0)	0.0	0.0	0 103
f(CC/N, C/NH)	0.0	0.0	0.130
(0, j(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0.4	0.2	0.210
19. J(NCC', CNH)	-0.1†	-0.1	

 TABLE I

 Force Constants of PGII, PGI, and Nylons

	PGII	PGIa	Nylons ¹⁴
50. f(C'NC, NCH)	0.0	0.0	-0.010
51. f(C'NC, NCH')	0.0	0.0	-0.010
52. $f(CC'N, C'CH)$	0.0	0.0	-0.023
53. f(CC'N, C'CH')	0.0	0.0	-0.023
54. f(NCH, NCH')	-0.037(0.030)	0.018	-0.013*
55. f(C'CH, C'CH')	0.047(0.033)	-0.022	0.056*
56. f(NCH, C'CH)	0.093(0.025)	0.022	0.033*
57. f(NCH, HCH)	0.05	0.05	0.046*
58. f(C'CH, HCH)	0.05	0.05	0.051*
59. $f(NC'=0, C'NH)$	0.140(0.046)	0.238	0.181
60. $f(CC'=0, C'CH)$	0.1^{+}	0.1	0.132
61. $f(CC'=0, C'CH')$	0.0	0.0	0.132
62. f(CNH, NCH)	0.077(0.030)	0.076	0.056
63. f(CNH, NCH')	0.002(0.028)	0.068	0.056
64. f(C'=0 op, NCC')	-0.05^{\dagger}	-0.05	_
65. f(C'=O op, C'CH)	0.1†	0.1	0.04
66. f(C'=O op, C'CH')	0.0	0.0	0.04
67. f(N—H op, NCC')	0.0	0.0	—
68. f(N-H op, NCH)	0.0	0.0	0.00
69. f(N—H op, NCH')	0.1†	0.1	0.00
70. f(C'=0 op, N-H op)	-0.06^{+}	-0.06	-0.034
71. f(C'=0 op, C'-N tor)	0.07†	0.07	0.162
72. f(N—H op, C'—N tor)	-0.08^{\dagger}	-0.08	-0.034

 TABLE I (continued)

* Set I-3 of Ref. 5.

^b See Ref. 5 for definitions of these internal coordinates.

^o Numbers in parentheses are the uncertainties in the force constants. The values followed by their uncertainties were obtained by least squares, those marked by † were adjusted by trial and error, and the others were transferred from paraffins and amides (see Ref. 5).

 d The values marked by * are the averages of the corresponding values for the CCH₂C' and the NCH₂C groups of nylons.

• — indicates that the force constant cannot be estimated (note there is no NHC₂C' group in nylon-p with p > 2).

The force constants were determined following the same procedure as in the preceding paper, ie, thirty-four force constants were fixed to the same value as the corresponding ones of PG I, nine constants were adjusted by trial and error, and twenty-nine constants, of which four pairs were set identical with each other, were refined by least squares.

The final values of the force constants are listed in Table I, together with those of PG I⁵ and the nylons¹⁴ obtained by the single-chain treatment. (Some of the definitions of the coordinates and the force constants adopted in Ref. 14 are different from those in the present work. Their values were modified according to the present definitions and are given in Table I.) The frequencies calculated with the final set of force constants, and the potential energy distributions, are given in Table II. The agreement with the observed frequencies is seen to be quite satisfactory.

ABE AND KRIMM

	Observed Calculated			
	A E	Α	Е	Assignment
		1. –	-NHCH₂C′O-) n
	3304(-15) ^a	3297(-8)	3297(-8)	NH str.: 5(99) ^b
	2942	2935(0)	2935(0)	CH ₂ asym. str.: 7(99)
	2858	2859(0)	2859(0)	CH ₂ sym. str.: 6(99)
1654	1644(-1)	1648(-4)	1646(-3)	Amide I: 3(30) 4(64) 10(10) 3(25) 4(69) 10(11)
	1554(-13)	1566(-12)	1541(-14)	Amide II: $\frac{2(11)}{2(11)} \frac{3(14)}{3(20)} \frac{12(63)}{12(65)}$
	1420(-1)	1420(0)	1423(0)	$CH_2 \text{ bend: } \frac{13(100)}{13(95)}$
	1000	1377(0)		2(22) 12(15) 14(62)
1283	(-3)	1290(-4)	1374(-1)	$\begin{array}{c} \text{CH}_2 \text{ wag} \\ + \text{ amide} \end{array} \begin{array}{c} 2(21) 12(18) 14(55) \\ 3(14) 12(12) 14(17) \\ 15(37) \end{array}$
1249	(-4)	1254(-3)	1313(-3)	$\begin{array}{ccc} 111 \\ + CH_2 \\ twist: & 1(14) 12(11) 14(38) \\ 1(14) 12(11) 14(12) \\ 15(42) \end{array}$
	1261		1263(-3)	15(74)
1133		1134(-11)		(1, 1,, 1(55)) 2(14)
			1065(-6)	Skel. str. A ^c $+$ CH $1(33)$ 16(35)
	1000	1039(-3)		16(64)
001	1028	QQ2(A)	1024(-7)	$1(40) \ 16(30)$ $2 \ 1 \ 2 \ \pm \ 4(58) \ 0(11)$
004	901(-1)	000(-4)	893(-6)	Skel. str. B^d : $2 + 3 + 4(50) = 4(11)$
	001(1)	758(-9)	300(0)	9(14) 11(12) 18(35)
				Amide V 21(15)
	740		732(-5)	+ Amide 9(10) 18(43) 21(37)
		704(-3)		IV: 11(17) 18(24) 21(55)
	698(-3)		696(-4)	11(21) 18(11) 21(34)
		566(-2)	F40(0)	Amide VI: $\frac{11(14)}{17(62)}$
940	570(-2)	947(-1)	563(-3)	16(11) 17(54) 18(11)
340		347(-1)	409(-5)	Skel. def. $B^{\circ}: 8(37) 10(11) 11(23)$ Skel. def. Af: $10(28) 11(12) 17(18)$
272		272(-4)	492(-5)	9(21) 17(21) 18(13)
212		212(1)		$\begin{array}{c} \text{Amide VII} \\ \text{VII} \\ 21(10) \end{array}$
	363		357(-4)	$\begin{array}{c} + \text{ NCC'} \\ \text{def:} \\ 21(10) \end{array} 9(26) 10(11) 11(14) \\ 21(10) \end{array}$
217		202(-2)		Skel. def. A: 1(15)8(19)10(52)
			250(-2)	Skel. def. B: 8(57) 10(12)
		70(0)		NCC' def. $9(24) 18(25) 20(14)$
			82(-1)	$\begin{array}{c} + \text{ amide} \\ \text{VII:} \\ \text{VII:} \\ 21(12) \end{array} \overset{21(13)}{9(26)} 18(27) 19(16) \\ 21(12) \end{array}$
			42(0)	Torsion: 19(41) 20(53)

TABLE II Observed and Calculated Frequencies of Polyglycine II (in $\rm cm^{-1}$)

POLYGLYCINE. II

Observed		Calculated		
A	Ε	A	E	Assignment
		2.	+NDCH₂C′	$0 \rightarrow_n$
	2940	2935	2935	CH ₂ asym. str.: 7(99)
	2858	2859	2859	CH_2 sym. str.: $6(99)$
	$2466 \\ 2417$	2426	2426	ND str.: 5(98)
1640		1643		Amide I: $3(27) 4(67) 10(10)$
	1639		1641	
		1479		$2(27) \ 3(29) \ 4(12)$
	1473		1 467	Amide II: $11(16) 12(15)$ 1(11) 2(31) 3(27) 4(10) 11(15) 12(11)
1490		1420		CH. bond. 13(100)
1420			1416	13(94)
	1349	1343	1344	CH_2 wag: 14(84)
1277	1262	1263	1258	CH_2 twist: 15(80)
1131		1133		1(48) 2(18)
			1117	Skel. str. A $1(17) 2(16) 12(38)$ + CH ₂ $16(17)$
		1050		rock 12(18) 16(50)
005	1032		1022	+ amide 1(22) 15(11) 16(46)
995	007	996	0.00	111: $12(51) 16(18)$
975	987	979	986	$1(31) \ 12(39)$ $2 + 2 + 4(57) \ 0(11)$
010	886	012	883	Skel. str. B: $2 + 3 + 4(51) = (11)$
734	000	732	000	3(10) 8(14) 9(18)
		•••=		11(24) 16(10)
	693		701	Amide $1V: = 8(11) 9(18) 11(28)$
				17(10)
		584		2(10) 11(20) 17(40)
				Amide VI 18(27)
	576		577	+ amide 17(36) 18(16) 21(19)
		519		V: 17(23) 18(27)
005	520		522	17(29) 18(47) 21(43)
335		345	470	Skel. def. B: $8(37) 10(11) 11(22)$
			479	Skel. def. A: $10(42)$ $11(12)$
		266		+ NCC' 9(22) 17(20) 21(16)
	356		350	def.: $9(24) 11(14) 21(17)$
		200		Skel. def. A: 1(15)8(19)10(52)
		-	246	Skel. def. B: 8(55) 10(12)
		70		9(24) 18(25)
				\pm amide 20(14) 21(13)
			81	VII: $9(27) 18(27)$
				19(16) 21(12)
			41	Torsion: 19(41) 20(53)

 TABLE II (continued)

(continued)

ABE AND KRIMM

(Observed Calculated				
A	Е	Α	\mathbf{E}	A	ssignment
		3.	+NHCD ₂ C'	$0 \rightarrow n$	
	3290	3297	3297	NH str.: 5(99)
	2172	2197	2196	CD ₂ asym. st	r.: 7(97)
	2112	2094	2095	CD ₂ sym. str	.: 6(97)
	2111	1640	2000	3(3	0) 4(67) 10(10)
	1630	1010	1639	Amide I: $\frac{3}{3}$	5) 4(71) 10(11)
	1000	1564	1000	2(10) 3(15) 12(63)
	1551	1001	1539	Amide II: $\frac{7}{30}$	21) 12(66)
1200		1318	1340	Amide III · 2	(32) 3(13) 11(13)
1009		1010	1013	7111100 111. 2	19(34)
1905		1208		Skel str A	12(01) 1(65) 14(20)
1200		1200	1194	$\pm CD$. we	1(00) 1 + (20) 1(22) 2(11) 1/(A0)
	1057	1056	1061	$T OD_2 way$	2(79)
	1057	1030	1001	OD_2 benu. 1.)(10) - 19(95) 15(17) 16(11)
	1010	1015	1010	CD hand	10(20) 10(11) 10(11) 0(10) 12(90) 12(91)
000	1016	0.95	1010	UD_2 bend	-3(10) $13(20)$ $10(21)- 14(40) 15(12)$
920	<u>.</u>	925	054	$+ CD_2 was$	g 14(49) 10(13)
	943		954	$+ CD_2$	1(27) 13(17) 14(16)
		901		twist	15(31) $16(27)$
				$+ CD_2$	17(19)
	866		873	rock:	15(51) $16(14)$
					17(12)
		807			2 + 3 + 4(37)
				Skel str. B:	15(17) $16(11)$
			808	SROIL SULL DI	2 + 3 + 4(29)
					$14(12) \ 16(24)$
		716		Amide V. ¹⁵	$(11) \ 18(48) \ 21(50)$
	715		717	20	$(43) \ 21(50)$
		673		9	(10) 11(28) 16(21)
				Amida IV:	21(19)
	670		663	Annue IV. 9	(13) 11(21) 15(14)
					$17(11) \ 21(17)$
		530		2	(10) 15(11) 16(12)
				Amida VI.	17(52)
	502		511	Annue VI. 1	0(10) 14(10) 16(15)
					17(41) 18(11)
		323		Skel. def. B:	8(33) 9(14) 10(12)
					11(27)
			466	Skel. def. A:	10(27) 11(16) 17(16)
		074		Amide VII	0(14) 17(10) 10(10)
	9.47	254	007	+ NCC'	9(14) 17(19) 18(10) 9(98) 10(14) 11(11)
	347		337	def.:	9(28)10(14)11(11)
		199		Skel. def. A:	1(14) 8(19) 10(51)
			232	Skel. def. B:	8(61) 10(13)
		60			0/94) 18/95) 90/14)
		09		NCC' def.	91(12)
			70	+ amide	41(10) 0(96) 18(97) 10(17)
			19	VII:	$\sigma(20) 10(21) 10(11)$ 91/11)
					21(11)
			41	Torsion: 19(40) 20(53)

TABLE II (continued)

(Observed	d Calculated		
A	Е	A	E	Assignment
		4.	+NDCD ₂ C	$0 \rightarrow n$
	2485			
	2451	2426	2426	ND str.: 5(97)
	2417			
	2173	2196	2196	CD_{2} asym. str.: 7(97)
	2108	2094	2095	CD_2 sym. str.: 6(97)
	1632	1635	1634	Amide I: 3(27) 4(70) 10(10)
		1471		$2(25) \ 3(33) \ 11(17)$
				12(16)
	1462		1460	Amide II: $1(14) 2(29) 3(33) 11($
				12(13)
1222		1233		1(57) 2(26) 14(
			1171	Skel. str. A $1(23) 2(23) 12($
				$+ CD_2$ wag: $\frac{1}{14(36)}$
		1061		13(68)
	1065		1066	$CD_2 \text{ bend:} 13(57) 14(15)$
		1005	2000	12(23) $13(27)$
	1034		1029	12(38) 13(23) 14(1)
993		990	1010	Amide III $12(46) 14(16) 15(10)$
			988	$+ CD_2 = \frac{15(24)}{15(24)} \frac{16(17)}{16(17)}$
917		920	000	wag $14(43) 15(23)$
	935	020	928	$+ CD_2 = \frac{11(10)}{1(25)} \frac{10(20)}{12(13)}$
	000	895	020	twist $15(22) 16(30) 17(2)$
	866	000	869	$+ CD_2 = \frac{15(22)}{15(50)} \frac{16(17)}{17(12)} \frac{17(12)}{17(12)}$
	000	803	000	rock $2 + 3 + 4(39)$
		000		+ skel. $\frac{1}{15(20)}$
	794		801	str. B: $2+3+4(31)$
	101		001	14(12) 16(24)
		673		3(10)9(12)11(26)
		0.0		Amide IV: $16(23)$
	667		667	9(16) 11(24) 15(13)
	001	554		11(13) 15(11) 17(1)
		004		18(44) 21(23)
	534		549	Amide V $17(11) 18(30) 21(4)$
	001	508	0.20	+ amide 17(36) 21(52)
	497		494	VI: $16(19) 17(43) 18(3)$
				21(15)
		320		Skel. def. B: 8(34) 9(12) 10(12)
				11(25)
			456	Skel. def. A: 10(33) 11(13)
		249	200	9(15) 17(19) 18(12)
				Amide VII $21(14)$
	345		330	+ NCC' 9(27) 10(12) 13(1
	010		000	def.: $21(16)$
		197		Skel def A: 1(14) 8(20) 10(51)
		101	990	Skel def $\mathbf{B} \cdot 8(60) = 10(12)$
			449	ORCI. UCI. D. 0(00) 10(13)

TABLE II (continued)

(continued)

Calculated		Calculated		Observed	
E	E	A	E	A	
NCC' de +	, , , , , , , , , , , , , , , , ,	68			
78 Amide V	78				
41 Torsion:	41				

TABLE II (continued)

^a () = $\nu(N^{16}) - \nu(N^{14})$.

^b The first number refers to the symmetry coordinate (see Table III of Ref. 5 for a detailed description of these coordinates), the number in parenthesis to the fractional potential energy in this coordinate (if it is 10 or greater). Qualitatively, the symmetry coordinates are: 1: N-C str.; 2: C-C' str.; 3: C'-N str.; 4: C'=O str.; 5: N-H str.; 6: CH₂ sym. str.; 7: CH₂ asym. str.; 8: C'NC def.; 9: NCC' def.; 10: CC'N def.; 11: C=O ip bend; 12: N-H ip bend; 13: CH₂ bend; 14: CH₂ wag; 15: CH₂ twist; 16: CH₂ rock; 17: C=O op bend; 18: N-H op bend; 19: N-C tor; 20: C-C' tor; 21: C'-N tor.

^o Skeletal stretch A is mainly the N-C stretching vibration.

^d Skeletal stretch B is mainly a symmetric stretching vibration of the C-C'-N skeleton.

0

^e Skeletal deformation B is mainly the C'NC deformation vibration slightly mixed with the CC'N deformation.

 $^{\rm f}$ Skeletal deformation A is mainly the CC'N deformation vibration slightly mixed with the C'NC deformation.

DISCUSSION

The potential energy distributions of the modes of PG II show that extensive mixing occurs. In particular, it is seen that for $(\text{NHCH}_2\text{C}'\text{O})_n$ the CH₂ wagging and twisting vibrations are mixed with the amide III mode to an even greater extent than in the case of PG I. For other isotopic species amide III is relatively pure (cf, $(\text{NHCD}_2\text{C}'\text{O})_n$) or even more extensively mixed with other modes (cf, $(\text{NDCD}_2\text{C}'\text{O})_n$).

Force constants for the hydrogen-bonded CH₂ group were estimated by Krimm et al.⁸ from an approximate calculation on a CH₂···O system. It was found that the CH₂ stretching frequencies observed at 2980 and 2800 cm⁻¹ for the hydrogen-bonded group could be reproduced by changing the force constant f(C-H) by +6% for the free C-H and by -6% for the hydrogen-bonded C-H, and that the -14 cm⁻¹ shift of the CH₂ bending vibration could be explained by a 3% decrease in f(HCH). We have repeated this calculation using the entire chain and the complete force field. Again a 6% change in f(C-H), i.e, f'(C-H) = 4.843 and $f'(C-H_0) = 4.295$ md/Å, gives $\nu'(C-H) = 2991$ and $\nu'(C-H_0) = 2801$ cm⁻¹, where the primed quantities pertain to the hydrogen-bonded CH₂ group and H_0 is the hydrogen in C—H···O. The shift in the CH₂ bending frequency is given by $\Delta\nu \cong 586$ ($\Delta f(HCH)/f(HCH)$). The observed shift of -14 cm⁻¹ corresponds to a 2.4% decrease in f(HCH). In evaluating the differences in force constants between PG II and PG I, as listed in Table I, the following facts should be kept in mind. First, the force constants were determined using a single-chain treatment, and they therefore include the effects of interchain N—H···O=C' hydrogen bonding. These effects are probably different for PG II than for PG I. Second, the bond rotation angle φ (N–C) differs from PG II ($\varphi = -77^{\circ}$) to PG I ($\varphi = -140^{\circ}$). This can influence the force constants somewhat.¹⁵ Third, some force constants have large uncertainties due to the interdependence of force constants.

The differences in values of $f(C'NH) \equiv f(CNH), f(C'=0 \text{ op}), f(C'=0 \text{ op})$ N, C'NH) $\equiv f(NC, CNH)$, and f(NC'=0, C'NH) between PG I and PG II are probably due to differences in hydrogen bonding, which directly affect these force constants. The difference in f(C'NC) may be due to the same reason, since the C'NC deformation vibration is considerably coupled with the $H \cdots O$ stretching vibration, as was seen in the case of PG I.⁵ The difference in f(NCH) and in f(NC, NCH) between PG I and PG II may be due to the different bond rotation angles $\varphi(N-C)$. Actually, the diagonal term f(NCH) should itself not be very different, and some other force constants, probably interaction constants between the CH_2 group and the neighboring NH group, perhaps account for the effects of rotation about the N–C bond. Unfortunately, not enough experimental data were available, and we had to assume the same values for most of the interaction constants of both PG I and PG II. The force constant f(HCH) of PG II is smaller than that of PG I by $\sim 10\%$. As mentioned above, the effect of hydrogen bonding on f(HCH) accounts for only a 2.4% decrease. The remainder may be due to some difference in the environment of the CH_2 group itself between PG I and PG II, for example, associated with intermolecular interactions.

Some differences in the force constants between PG I or PG II and the nylons may arise from the same reasons as given above. In this case, the correlation of force constants also enters in. For example, for the nylons f(C'NH) = 0.848 and f(CNH) = 0.306, the average of which is 0.572 and is very close to the value for PG II.

Two problems may bear further examination. One concerns the assignment of amide III of $(NHCH_2C'O)_n$. Three possible assignments for the three bands observed at 1283, 1261, and 1247 $\rm cm^{-1}$ suggest themselves, Assignment 1 is the one used in the present calcuas shown in Table III. lation. The force constants were also determined for assignments 2 and For assignment 2 f(C'N) = 6.949, $f(C'NH) \equiv f(CNH) = 0.557$, 3. and $f(C'N, C'NH) \equiv f(NC, CNH) = 0.251$ were obtained, and for assignment 3 these constants were 6.597, 0.573, and 0.211, respectively. There are reasons to believe that the first assignment is the most probable First, in the infrared spectra of the model compounds CH₃COone. (NHCH₂CO)_nNHCH₃ and CH₃CO(NHCH₂CO)_nNHC₂H₅,^{16,17} two amide III bands are observed at ca 1305 and 1285 cm⁻¹. In most cases the amide III frequency of the A species is calculated at a lower value than

	Α	E
	Assignment 1	
Amide III	$\binom{1283(IR)}{1283(R)}$?
CH ₂ twist.	1249(IR) 1244(R)	1261(R)
	Assignment 2	
Amide III	$\int 1261(R)$	$\binom{1283(\text{IR})}{1283(\text{R})}$
CH ₂ twist.	$\left(\begin{pmatrix} 1249(IR) \\ 1244(R) \end{pmatrix} \right)$	$\begin{pmatrix} 1249(IR) \\ 1244(R) \end{pmatrix}$
	Assignment 3	
Amide III	$\binom{1283(IR)}{1283(R)}$	$\binom{1283(IR)}{1283(R)}$
CH ₂ twist.	$ \begin{pmatrix} 1249(IR) \\ 1244(R) \end{pmatrix} $	1261(R)

TABLE III Possible Assignments^a for Amide III of (-NHCH₂C′O),

* IR, observed infrared bands; R, observed Raman bands.

that of the E species. Accordingly, the 1283 cm^{-1} band of PG II should be assigned to the A species rather than the E species. Secondly the calculated frequencies using the force constants based on assignments 2 or 3 are not in as good agreement with the observed values as for assignment 1. While we therefore favor it, more experimental evidence may still be needed in order to establish this assignment conclusively.

The second problem is that we could not determine many of the force constants for the skeletal vibrations, and we had to assume approximate values for these. This problem is not particular to polyglycine, but rather is common to all molecules of relatively large size. Experimental data on frequency shifts due to isotopic substitution of skeletal atoms is required in order to solve the problem, since isotopic substitution of the pendant atoms does not yield observably different skeletal frequencies.

This work was supported by grants GP-10922 and GB-15682 from the National Science Foundation. A postdoctoral fellowship from the Macromolecular Research Center at the University of Michigan to one of us (Y.A.) is gratefully acknowledged.

References

1. T. Miyazawa, in Poly- α -Amino Acids, G. D. Fasman, Ed., Marcel Dekker, Inc., New York, 1967.

2. T. Miyazawa and M. Tsuchida, unpublished results, 1966 (cited as Ref. 44a in Ref. 1).

- 3. E. W. Small, B. Fanconi, and W. L. Peticolas, J. Chem. Phys., 52, 4369 (1970).
- 4. R. D. Singh and V. D. Gupta, Spectrochim. Acta, 27A, 385 (1971).

5. Y. Abe and S. Krimm, Biopolymers, 11, 1817 (1972).

6. F. H. C. Crick and A. Rich, Nature, 176, 780 (1955).

7. G. N. Ramachandran, V. Sasisekharan, and C. Ramakrishnan, *Biochim. Biophys.* Acta, 112, 168 (1966).

8. S. Krimm, K. Kuroiwa, and T. Rebane, in *Conformation of Biopolymers*, G. N. Ramachandran, Ed., Academic Press, New York, 1967, p. 439.

9. S. Krimm and K. Kuroiwa, Biopolymers, 6, 401 (1968).

10. S. Krimm, Nature, 212, 1482 (1966).

11. G. N. Ramachandran and V. Sasisekharan, in *Conformation of Biopolymers*, G. N. Ramachandran, Ed., Academic Press, New York, 1967, p. 429.

12. T. Miyazawa, Y. Ideguchi, and K. Fukushima, J. Chem. Phys., 38, 2709 (1963). 13. S. Suzuki, Y. Iwashita, T. Shimanouchi, and M. Tsuboi, Biopolymers, 4, 337

(1966).

14. J. Jakeš and S. Krimm, Spectrochim. Acta, 27A, 19 (1971).

15. J. Jakeš and S. Krimm, Spectrochim. Acta, 27A, 35 (1971).

16. Y. Koyama and T. Shimanouchi, Biopolymers, 6, 1037 (1968).

17. M. Avignon and C. Garrigou-Lagrange, Spectrochim. Acta, 27A, 297 (1971).

Received February 18, 1972