# Vibrational Analysis of Peptides, Polypeptides, and Proteins. XV. Crystalline Polyglycine II 

A. M. DWIVEDI and S. KRIMM, Biophysics Research Division, The<br>University of Michigan, Ann Arbor, Michigan 48109

## Synopsis


#### Abstract

A force field has been refined for the $3_{1}$-helix structure of polyglycine II, using the polyglycine I force field plus previous $\mathrm{C}^{\alpha} \mathrm{H}^{\alpha} \cdots$ O force constants as a starting point. Besides force constants associated with the hydrogen bonds, which must change since the hydrogen-bond characteristics are different in the two structures, we have had to modify only 10 force constants from the polyglycine I force field to make it suitable for reproducing the polyglycine II frequencies. Most involve the $\mathrm{NC}^{\alpha}$ bond, which is the torsion angle that changes from the I to the II structure. Calculations were done for parallel chain and antiparallel chain crystal structures of polyglycine II, the observed spectra being found to agree best with the latter structure. Since this provides strong evidence for the loss of strict threefold symmetry in the chain, our analysis strengthens the support for the existence of $\mathrm{C}^{\alpha} \mathrm{H}^{\alpha} \cdots \mathrm{O}$ hydrogen bonds in the structure of polyglycine II.


## INTRODUCTION

Early powder x-ray studies ${ }^{1}$ of the structure of polyglycine II [(Gly) ${ }_{n}$ II] led to the proposal that the polypeptide chain is a $3_{1}$-helix. Subsequent work has supported this conclusion, and thus this molecule serves as a useful model for polypeptides with a threefold helical backbone symmetry. It is therefore important that all aspects of its structure and spectrum be understood in detail.

The originally proposed crystal structure ${ }^{1}$ consisted of a hexagonal array of parallel chains hydrogen-bonded to each other via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ bonds, although it was noted that the lattice could accommodate an inverted chain. In a small modification of the original structure, it was suggested ${ }^{2}$ that the $\mathrm{C}=\mathrm{O}$ group could also participate in $\mathrm{C}^{\alpha}-\mathrm{H}^{\alpha \cdots} \mathrm{O}=\mathrm{C}$ hydrogen bonds. Subsequent ir studies ${ }^{3,4}$ provided experimental support for the presence of such bonds. On the basis of mechanical transformation of (Gly) ${ }_{n}$ II to (Gly) ${ }_{n} \mathrm{I}$, as well as morphological considerations, it was pointed out ${ }^{5}$ that (Gly) II must contain antiparallel chains, and a specific crystal structure was subsequently proposed for such an arrangement. ${ }^{6}$

Normal mode analyses of (Gly) ${ }_{n}$ II to date ${ }^{7-10}$ have been based on the isolated chain. This is not completely satisfactory, since even with explicit inclusion of the $\mathrm{CH}_{2}$ group, ${ }^{10}$ these calculations cannot predict a fairly large number of observed frequencies and splittings. ${ }^{4,8,11-13}$


Fig. 1. Parallel chain structure of polyglycine II.

We have calculated the normal modes of crystalline (Gly) ${ }_{n}$ II, for both parallel and antiparallel structures, and we are able to predict and assign most of the frequencies that are not accounted for by the single-chain calculations. Our results also indicate that the antiparallel chain arrangement is the more likely one in the crystal.

## NORMAL-MODE CALCULATION

## Structure, Symmetry, and Selection Rules

The single-chain geometry that we used is based on the same bond lengths and angles as were used for (Gly) ${ }_{n} \mathrm{I} .{ }^{14,15}$ The backbone is a $3_{1}$-helix with an axial repeat of $c=9.30 \AA$, which corresponds to dihedral angles of $\varphi=-76.89^{\circ}$ and $\psi=145.32^{\circ}$.

The parallel chain crystal structure ${ }^{2}$ is based on a hexagonal cell with $a=4.80 \AA$; a $c$-axis projection with up-directed chains is shown in Fig. 1. The antiparallel chain crystal structure may be variable, ${ }^{6}$ but for purposes of the normal-mode calculation, it can be satisfactorily represented by an


Fig. 2. Antiparallel chain structure of polyglycine II.
orthorhombic cell with two oppositely directed chains. ${ }^{6}$ This unit cell, having $a=8.487 \AA$ and $b=4.80 \AA$, is shown in Fig. 2, and it has the chains related by a twofold screw axis at $a / 4$ and perpendicular to the $a c$ plane. In order to have optimum hydrogen bonds and other intermolecular contacts, the chains are arranged as follows. ${ }^{2,6}$ The chains are first fixed with $\alpha$-carbon atoms located on the lines connecting the lattice of helix axes. Each chain is then rotated $10^{\circ}$ about the helix axis from this position. For the parallel chain structure, all the chains are rotated counterclockwise as viewed in Fig. 1. For the antiparallel chain structure, the up-chains have a counterclockwise rotation of $10^{\circ}$, while the down-chains have a clockwise rotation of the same amount. In both cases, all $\mathrm{N}-\mathrm{H} \cdot \mathrm{O}=\mathrm{C}$ hydrogen bonds can be formed, although their characteristics are slightly different (see Table I for details). In the parallel chain arrangement, all $\mathrm{CH}_{2}$ groups can participate in $\mathrm{C}^{\alpha}-\mathrm{H}^{\alpha \cdots} \mathrm{O}=\mathrm{C}$ bonds; in the antiparallel chain arrangement, however, only a third of the $\mathrm{CH}_{2}$ groups are involved in such interactions (the parameters of these bonds are also given in Table I). It should be noted that $\mathrm{C}^{\alpha}-\mathrm{H}^{\alpha} \cdots \mathrm{O}=\mathrm{C}$ bonds in the antiparallel chain structure are made only between like-directed chains. As we will see, the loss of strict threefold chain symmetry in the latter case has important consequences with respect to the spectrum of this structure.

For the parallel chain structure there is one chain per unit cell, and since the three residues are equivalent, the smallest unit for purposes of the calculation is a single chemical residue of the chain. The unit cell has $C_{3}$ symmetry, and the optically active symmetry coordinates are therefore classified into A and E species, given by ${ }^{10}$

TABLE I
Interchain Hydrogen Bonds in Crystalline Polyglycine II

${ }^{a}$ Interchain bond distances and angles correspond to chain bond lengths and angles given in Ref. 14.

$$
\begin{aligned}
S(\mathrm{~A}) & =C \sum_{i}\left(S_{\mathrm{I}}^{i}+S_{\mathrm{II}}^{i}+S_{\mathrm{III}}^{i}\right) \\
S^{c}(\mathrm{E}) & =C^{\prime} \sum_{i}\left(2 S_{\mathrm{I}}^{i}-S_{\mathrm{II}}^{i}-S_{\mathrm{III}}^{i}\right) \\
S^{s}(\mathrm{E}) & =C^{\prime \prime} \sum_{i}\left(S_{\mathrm{II}}^{i}-S_{\mathrm{III}}^{i}\right)
\end{aligned}
$$

where $S_{\mathrm{I}}^{i}, S_{\mathrm{II}}^{i}$, and $S_{\mathrm{III}}^{i}$ are local symmetry coordinates of the three chemical residues of the chain in the $i$ th unit cell, and $C, C^{\prime}$, and $C^{\prime \prime}$ are normalization constants. $S^{c}(\mathrm{E})$ and $S^{s}(\mathrm{E})$ are a pair of real symmetry coordinates for the degenerate E species, corresponding to phase differences of $\pm 2 \pi / 3$, respectively, between adjacent residues. (The A species corresponds to a phase difference of zero.) There are 20 A -species modes and 20 E -species modes, all ir and Raman active.

For the antiparallel chain structure, since each chain no longer has strict threefold symmetry, the smallest unit for purposes of calculation consists of the three residues in the structural repeat of a single chain. The unit cell has $C_{2}$ symmetry, and the optically active symmetry coordinates are classified into A and B species, given by

$$
\begin{aligned}
& S(\mathrm{~A})=C^{\prime} \sum_{i}\left(S_{\mathrm{I}}^{i}+S_{\mathrm{II}}^{i}\right) \\
& S(\mathrm{~B})=C^{\prime \prime} \sum_{i}\left(S_{\mathrm{I}}^{i}-S_{\mathrm{II}}^{i}\right)
\end{aligned}
$$

where $S_{\mathrm{I}}^{i}$ and $S_{\mathrm{II}}^{i}$ are the local symmetry coordinates of chains I and II of the $i$ th unit cell, and $C^{\prime}$ and $C^{\prime \prime}$ are normalization constants. Of the total
of 123 normal modes, 62 are $A$ and 61 are B species. All of these are both ir and Raman active.

The local symmetry coordinates used in this calculation are the same as those used previously. ${ }^{15}$ In addition, we required coordinates for the $\mathrm{C}^{\alpha}-\mathrm{H}^{\alpha \cdots} \mathrm{O}=\mathrm{C}$ interaction. These were taken to be $\mathrm{H}^{\alpha \cdots}{ }^{\alpha} \mathrm{O}$ stretch, $\mathrm{C}^{\alpha} \mathrm{H}^{\alpha \cdots} \mathrm{O}$ in-plane bend, and $\mathrm{CO} \cdots \mathrm{H}^{\alpha}$ in-plane bend, and were applicable to all $\mathrm{CH}_{2}$ groups of the parallel chain structure and every appropriate third $\mathrm{CH}_{2}$ group of the antiparallel chain structure.

## Force Field

The starting point for the refinement of the (Gly) ${ }_{n} I I$ force field was the recently revised force field for (Gly) ${ }_{n} \mathrm{I},{ }^{15}$ plus the $\mathrm{C}^{\alpha} \mathrm{H}^{\alpha} \cdots \mathrm{O}$ constants used in an earlier simplified calculation. ${ }^{3}$ Frequencies were obtained for both parallel chain and antiparallel chain structures, and when it became clear that the latter were favored by the data, the refinement was concentrated on this structure. The final list of force constants is given in Table II. Subsequent calculations for the parallel chain structure then made use of the appropriate subset of these force constants.

As noted above, in the antiparallel chain structure, every third residue in a chain is involved in a $\mathrm{C}^{\alpha}-\mathrm{H}^{\alpha \cdots} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bond. It is therefore necessary to allow for peptide-group force constants that are associated with bifurcated hydrogen bonds, as well as those associated with typical $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds. Neither of these kinds of force constants will be expected to have values identical to those in $(\mathrm{Gly})_{n} \mathrm{I}$, since the hydrogen bonds in the two structures have different strengths. The $\mathrm{C}^{\alpha}$ $\mathrm{H}^{\alpha \cdots} \mathrm{O}=\mathrm{C}$ hydrogen bond, of course, introduces force constants not present in $(\mathrm{Gly})_{n} \mathrm{I}$ [just as the $\mathrm{H}^{\alpha \cdots} \mathrm{H}^{\alpha}$ interaction in (Gly) ${ }_{n} \mathrm{I}$ is absent in (Gly) $\left.)_{n} \mathrm{II}\right]$. With respect to the remaining intramolecular force field, we have tried to transfer without change as many force constants as possible, making adjustments only where required by the spectral data. Ten such changes were needed, which is a surprisingly small number in view of the significant conformational difference between a $\beta$-sheet chain and a $3_{1}$-helical chain. [For (Gly) ${ }_{n} \mathrm{I}, \varphi=149.9^{\circ}$ and $\psi=146.5^{\circ}$, compared to $\varphi=-76.9^{\circ}$ and $\psi=$ $145.3^{\circ}$ for (Gly) ${ }_{n}$ II.] We present below some of the considerations involved in guiding our choice of various force constants.

The existence of two kinds of NH groups (involving typical and bifurcated hydrogen bonds) should be detectable through the presence of two NH stretching bands in the spectrum. Although the ir spectrum ${ }^{4,11}$ shows only one band, near $3303 \mathrm{~cm}^{-1}$, the Raman spectrum ${ }^{8}$ definitely exhibits two amide A modes, at $3305 \mathrm{~cm}^{-1}$ (weak) and $3278 \mathrm{~cm}^{-1}$ (medium). These have relative frequencies and intensities consistent with an assignment to a bifurcated and a typical hydrogen bond, respectively. In order to obtain the unperturbed frequencies, it is necessary to do a Fermi resonance analysis. ${ }^{14}$ For this, we have taken amide B, at $3086 \mathrm{~cm}^{-1,8,11}$ to be the same for both amide A bands (since no splitting is observed in this band),

TABLE II
Force Constants for Crystalline Polyglycine II

| Force Constant ${ }^{\text {a }}$ | Value ${ }^{\text {b }}$ | Force Constant ${ }^{\text {a }}$ | Value ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: |
| 1. $f\left(\mathrm{NC}^{\alpha}\right)^{* c}$ | 4.843 | 27. $f(\mathrm{NH} \cdots \mathrm{O} \mathrm{ib})_{\mathrm{b}}^{*}$ | 0.050 |
| 2. $f\left(\mathrm{C}^{\alpha} \mathrm{C}\right)$ | 4.409 | 28. $f\left(\mathrm{CO} \cdots \mathrm{H}^{\alpha} \mathrm{ib}\right)^{\ddagger}$ | 0.020 |
| 3. $f(\mathrm{CN})$ | 6.415 | 29. $f\left(\mathrm{C}^{\alpha} \mathrm{H}^{\alpha} \cdots \mathrm{Oib}\right)^{\dagger}$ | 0.020 |
| 4. $f(\mathrm{CO})^{*}$ | 9.621 | 30. $f(\mathrm{CO} \mathrm{ob})^{*}$ | 0.487 |
| 5. $f(\mathrm{NH})^{*}$ | 5.720 | 31. $f(\mathrm{CO} \mathrm{ob})_{b}^{*}$ | 0.537 |
| 6. $f(\mathrm{NH})_{\mathrm{b}}{ }^{\text {d }}$ | 5.856 | 32. $f(\mathrm{NH} \mathrm{ob})$ | 0.129 |
| 7. $f\left(\mathrm{C}^{\alpha} \mathrm{H}\right)$ | 4.564 | 33. $f\left(\mathrm{NC}^{\alpha} \mathrm{t}\right)$ | 0.037 |
| $f\left(\mathrm{C}^{\alpha} \mathrm{H}^{\alpha}\right)$ | 4.564 | 34. $f\left(\mathrm{C}^{\alpha} \mathrm{Ct}\right)$ | 0.037 |
| 8. $f\left(\mathrm{C}^{\alpha} \mathrm{H}\right)_{\mathrm{b}}^{*}$ | 4.780 | 35. $f(\mathrm{CN} \mathrm{t})$ | 0.680 |
| 9. $f\left(\mathrm{C}^{\alpha} \mathrm{H}^{\alpha}\right)_{\mathrm{b}}^{*}$ | 4.430 | 36. $f(\mathrm{NH} \mathrm{t})^{*}$ | 0.0035 |
| 10. $f(\mathrm{H} \cdots \mathrm{O})^{*}$ | 0.160 | 37. $f(\mathrm{COt})$ | 0.001 |
| 11. $f(\mathrm{H} \cdots \mathrm{O})_{\mathrm{b}}^{*}$ | 0.110 | 38. $f\left(\mathrm{NC}^{\alpha}, \mathrm{C}^{\alpha} \mathrm{C}\right)$ | 0.300 |
| 12. $f\left(\mathrm{H}^{\alpha \cdots} \cdots \mathrm{O}\right)^{\text {+e }}$ | 0.050 | 39. $f\left(\mathrm{C}^{\alpha} \mathrm{C}, \mathrm{CN}\right)$ | 0.300 |
| 13. $f\left(\mathrm{NC}^{\alpha} \mathrm{C}\right)^{*}$ | 1.150 | 40. $f\left(\mathrm{NC}^{\alpha}, \mathrm{CN}\right)$ | 0.300 |
| 14. $f\left(\mathrm{C}^{\alpha} \mathrm{CN}\right)^{*}$ | 1.300 | 41. $f\left(\mathrm{C}^{\alpha} \mathrm{C}, \mathrm{CO}\right)$ | 0.500 |
| 15. $f\left(\mathrm{CNC}^{\alpha}\right)^{*}$ | 0.487 | 42. $f(\mathrm{CN}, \mathrm{CO})$ | 0.500 |
| 16. $f(\mathrm{NCO})^{*}$ | 1.166 | 43. $f\left(\mathrm{C}^{\alpha} \mathrm{H}^{\alpha}, \mathrm{C}^{\alpha} \mathrm{H}\right)^{*}$ | -0.015 |
| 17. $f\left(\mathrm{NC}^{\alpha} \mathrm{H}\right)$ \} | 0.715 | 44. $f\left(\mathrm{C}^{\alpha} \mathrm{H}^{\alpha}, \mathrm{C}^{\alpha} \mathrm{H}\right)_{\text {b }}$ | -0.050 |
| $f\left(\mathrm{NC}^{\alpha} \mathrm{H}^{\alpha}\right)$ | 0.75 | 45. $f\left(\mathrm{C}^{\alpha} \mathrm{H}^{\alpha}, \mathrm{H}^{\alpha} \cdots \mathrm{O}\right)^{\dagger}$ | 0.080 |
| 18. $f\left(\mathrm{NC}^{\alpha} \mathrm{H}\right)_{\mathrm{b}}$ | 0.715 | 46. $f\left(\mathrm{NC}^{\alpha}, \mathrm{CNC}^{\alpha}\right)$ | 0.300 |
| 19. $f\left(\mathrm{NC}^{\alpha} \mathrm{H}^{\alpha}\right)_{b}{ }_{b}$ | 0.785 | 47. $f\left(\mathrm{NC}^{\alpha}, \mathrm{NC}^{\alpha} \mathrm{C}\right)$ | 0.300 |
| 20. $f\left(\mathrm{C}^{\alpha} \mathrm{NH}\right)^{*}$ | 0.537 | 48. $f\left(\mathrm{NC}^{\alpha}, \mathrm{C}^{\alpha} \mathrm{NH}\right)$ | 0.294 |
| $f\left(\mathrm{C}^{\alpha} \mathrm{NH}\right)^{*}$ | 0.532 | 49. $f\left(\mathrm{NC}^{\alpha}, \mathrm{NC}^{\alpha} \mathrm{H}\right)$ ) | 0.517 |
| 21. $f\left(\mathrm{C}^{\alpha} \mathrm{CO}\right)$ | 1.166 | $\left.f\left(\mathrm{NC}^{\alpha}, \mathrm{NC}^{\alpha} \mathrm{H}^{\alpha}\right)\right\}$ | 0.517 |
| $\text { 22. } f\left(\mathrm{CC}^{\alpha} \mathrm{H}\right),$ |  | 50. $f\left(\mathrm{NC}^{\alpha}, \mathrm{CC}^{\alpha} \mathrm{H}\right),\left\{\begin{array}{l}f\left(\mathrm{NC}^{\alpha}, \mathrm{CC}^{\alpha} \mathrm{H}^{\alpha}\right)\end{array}\right\}$ | 0.026 |
| $\left.f\left(\mathrm{CC}^{\alpha} \mathrm{H}\right)_{\mathrm{b}}\right\}$ | 0.684 | 51. $f\left(\mathrm{C}^{\alpha} \mathrm{C}, \mathrm{NC}^{\alpha} \mathrm{C}\right)$ | 0.300 |
| $\left.f\left(\mathrm{CC}^{\alpha} \mathrm{H}^{\alpha}\right)_{\mathrm{b}}\right)$ |  | 52. $f\left(\mathrm{C}^{\alpha} \mathrm{C}, \mathrm{C}^{\alpha} \mathrm{CN}\right)$ | 0.300 |
| 23. $f(\mathrm{CNH})^{*}$ | 0.537 | 53. $f\left(\mathrm{C}^{\alpha} \mathrm{C}, \mathrm{C}^{\alpha} \mathrm{CO}\right)$ | 0.200 |
| $f(\mathrm{CNH})_{\text {b }}{ }^{\text {b }}$ | 0.532 | 54. $\left.f\left(\mathrm{C}^{\alpha} \mathrm{C}, \mathrm{NC}^{\alpha} \mathrm{H}\right)\right\}$ | 0.026 |
| 24. $f\left(\mathrm{H}^{\alpha} \mathrm{C}^{\alpha} \mathrm{H}\right)^{*}$ | 0.560 | $\left.f\left(\mathrm{C}^{\alpha} \mathrm{C}, \mathrm{NC}^{\alpha} \mathrm{H}^{\alpha}\right)\right\}$ | 0.026 |
| 25. $f(\mathrm{CO} \cdots \mathrm{Hib})$ | 0.010 | 55. $f\left(\mathrm{C}^{\alpha} \mathrm{C}, \mathrm{CC}^{\alpha} \mathrm{H}\right)$ | 0.205 |
| 26. $f(\mathrm{NH} \cdots \mathrm{Oib})^{*}$ | 0.057 | $\left.f\left(\mathrm{C}^{\alpha} \mathrm{C}, \mathrm{CC}^{\alpha} \mathrm{H}^{\alpha}\right)\right\}$ | 0.205 |

(continued)
and we have assumed that the observed ir band contains an overlap of both amide A modes. Using an overall area intensity ratio $I_{\mathrm{B}} / I_{\mathrm{A}}=0.125,{ }^{4}$ and assuming that this is equally applicable to the two modes, we find for the above amide A bands that $\nu_{\mathrm{A}}^{\circ}=3279 \mathrm{~cm}^{-1}, \nu_{\mathrm{B}}^{\circ}=3110 \mathrm{~cm}^{-1}$ and $\nu_{\mathrm{A}}^{\circ}=3257$ $\mathrm{cm}^{-1}, \nu_{\mathrm{B}}^{\circ}=3108 \mathrm{~cm}^{-1}$, respectively. (It is interesting that the overtone of the observed amide II band at $1554 \mathrm{~cm}^{-1}$ is $3108 \mathrm{~cm}^{-1}$, suggesting that resonance occurs between such overtones and each of the two NH fundamentals.) The lower $\nu_{\mathrm{A}}^{\circ}$ frequency is significantly below that for (Gly) $)_{n} \mathrm{I}$, viz., $3272 \mathrm{~cm}^{-1},{ }^{15}$ which is reasonable in terms of the much shorter hydrogen bond in $(\mathrm{Gly})_{n} \mathrm{II}[r(\mathrm{~N} \cdots \mathrm{O})=2.69 \AA]$ than in $(\mathrm{Gly})_{n} \mathrm{I}[r(\mathrm{~N} \cdots \mathrm{O})=2.91 \AA]$. Similarly, the higher frequency $\nu_{\mathrm{A}}^{\circ}$ value suggests that the bifurcated bond is slightly weaker than that in $(\mathrm{Gly})_{n} \mathrm{I}$.

TABLE II (continued)

| Force Constant ${ }^{\text {a }}$ | Value ${ }^{\text {b }}$ | Force Constant ${ }^{\text {a }}$ | Value ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: |
| 56. $f\left(\mathrm{CN}, \mathrm{C}^{\alpha} \mathrm{CN}\right)$ | 0.300 | 72. $f\left(\mathrm{NC}^{\alpha} \mathrm{H}^{\alpha}, \mathrm{NH}\right.$ ob) | 0.1022 |
| 57. $f\left(\mathrm{CN}, \mathrm{CNC}^{\alpha}\right)$ | 0.300 | 73. $f\left(\mathrm{NC}^{\alpha} \mathrm{H}, \mathrm{NH}\right.$ ob) | 0.0456 |
| 58. $f(\mathrm{CN}, \mathrm{NCO})$ | 0.200 | 74. $f\left(\mathrm{C}^{\alpha} \mathrm{CO}, \mathrm{CC}^{\alpha} \mathrm{H}^{\alpha}\right)$ | 0.150 |
| 59. $f(\mathrm{CN}, \mathrm{CNH})$ | 0.294 | 75. $f\left(\mathrm{C}^{\alpha} \mathrm{CO}, \mathrm{CC}^{\alpha} \mathrm{H}\right)$ | 0.100 |
| 60. $f\left(\mathrm{CO}, \mathrm{C}^{\alpha} \mathrm{CO}\right)$ | 0.450 | 76. $f(\mathrm{NCO}, \mathrm{CNH})$ | 0.251 |
| 61. $f(\mathrm{CO}, \mathrm{NCO})$ | 0.450 | 77. $f\left(\mathrm{C}^{\alpha} \mathrm{NH}, \mathrm{CNH}\right)$ | 0.0065 |
| 62. $f\left(\mathrm{CO}, \mathrm{C}^{\alpha} \mathrm{CN}\right)$ | -0.150 | 78. $f\left(\mathrm{C}^{\alpha} \mathrm{NH}, \mathrm{NC}^{\alpha} \mathrm{H}^{\alpha}\right)^{*}$ | 0.051 |
| 63. $f\left(\mathrm{NC}^{\alpha} \mathrm{C}, \mathrm{C}^{\alpha} \mathrm{NH}\right)$ | -0.100 | 79. $f\left(\mathrm{C}^{\alpha} \mathrm{NH}, \mathrm{NC}^{\alpha} \mathrm{H}\right)^{*}$ | 0.061 |
| 64. $f\left(\mathrm{NC}^{\alpha} \mathrm{C}, \mathrm{NC}^{\alpha} \mathrm{H}\right)$ \} | -0.031 | 80. $f\left(\mathrm{CC}^{\alpha} \mathrm{H}, \mathrm{CC}^{\alpha} \mathrm{H}^{\alpha}\right)$ | -0.032 |
| $\left.f\left(\mathrm{NC}^{\alpha} \mathrm{C}, \mathrm{NC}^{\alpha} \mathrm{H}^{\alpha}\right)\right\}$ | -0.031 |  | 0.0398 |
| 65. $f\left(\mathrm{NC}^{\alpha} \mathrm{C}, \mathrm{CO}, \mathrm{ob}\right)$ | -0.0725 | $f\left(\mathrm{CC}^{\alpha} \mathrm{H}^{\alpha}, \mathrm{HC}^{\alpha} \mathrm{H}^{\alpha}\right)$, | 0.0398 |
| 66. $f\left(\mathrm{NC}^{\alpha} \mathrm{C}, \mathrm{NH} \mathrm{ob}\right)$ | 0.1092 | 82. $f\left(\mathrm{CC}^{\alpha} \mathrm{H}, \mathrm{CO}\right.$ ob) |  |
| 67. $f\left(\mathrm{C}^{\alpha} \mathrm{CN}, \mathrm{CNH}\right)$ | 0.200 | $f\left(\mathrm{CC}^{\alpha} \mathrm{H}^{\alpha}, \mathrm{CO}\right.$ ob $\left.)\right\}$ | 0.100 |
| 68. $f\left(\mathrm{CNC}^{\alpha}, \mathrm{C}^{\alpha} \mathrm{NH}\right)$ | -0.040 | 83. $f(\mathrm{CO} \mathrm{ob}$,NH ob) | 0.010 |
| 69. $f\left(\mathrm{CNC}^{\alpha}, \mathrm{NC}^{\alpha} \mathrm{H}\right)^{*}$ | 0.270 | 84. $f(\mathrm{NH} \cdots \cdot \mathrm{Oib}, \mathrm{NH} \mathrm{ob})^{*}$ | -0.005 |
| 70. $f\left(\mathrm{NC}^{\alpha} \mathrm{H}, \mathrm{CC}^{\alpha} \mathrm{H}\right)$ | 0.019 | 85. $f(\mathrm{CO} \mathrm{ob}$,CN t) | 0.0111 |
| $\left.\begin{array}{l} f\left(\mathrm{NC}^{\alpha} \mathrm{H}^{\alpha}, \mathrm{CC}^{\alpha} \mathrm{H}^{\alpha}\right) \\ \text { 71. } f\left(\mathrm{NC}^{\alpha} \mathrm{H}, \mathrm{HC}^{\alpha} \mathrm{H}^{\alpha}\right) \\ f\left(\mathrm{NC}^{\alpha} \mathrm{H}^{\alpha}, \mathrm{HC}^{\alpha} \mathrm{H}^{\alpha}\right) \end{array}\right\}$ | 0.0615 | 86. $f(\mathrm{NH} \mathrm{ob}, \mathrm{CN} \mathrm{t})$ | -0.1677 |

${ }^{\mathrm{a}} f(\mathrm{AB})=\mathrm{AB}$ bond stretch, $f(\mathrm{ABC})=\mathrm{ABC}$ angle bend, $f(\mathrm{X}, \mathrm{Y})=\mathrm{XY}$ interaction; $\mathrm{ib}=$ in plane bend, $\mathrm{ob}=$ out-of-plane bend, $\mathrm{t}=$ torsion.
${ }^{\text {b }}$ Units are mdyn/ $\AA$ for stretch and stretch, stretch force constants, mdyn for stretch, bend force constants, and mdyn $\AA$ for all others.
${ }^{c}$ Asterisk denotes force constants whose values in polyglycine II are different from those in polyglycine I (cf. Ref. 15).
${ }^{\text {d }}$ Subscript b denotes force constants applicable to bifurcated hydrogen bond.
${ }^{e}$ Dagger denotes new force constants applicable to polyglycine II.

The values of $f(\mathrm{NH})$ and $f(\mathrm{NH})_{\mathrm{b}}$ depend on the choice of $f(\mathrm{H} \cdots \mathrm{O})$ and $f(\mathrm{H} \cdots \mathrm{O})_{\mathrm{b}}$ (the subscript b designates the group involved in the bifurcated bond). Since a priori knowledge of force constants for hyrogen bonds is still very limited, we were guided in these choices by our experience with other polypeptide systems. For $f(\mathrm{H} \cdots \mathrm{O})$, we selected a value, 0.160 $\operatorname{mdyn} / \AA$, slightly higher than that for $\beta$-poly(L-alanine), viz., 0.150 $\operatorname{mdyn} / \AA,{ }^{16}$ and consistent with the variation in this force constant with $r(\mathrm{~N} \cdots \mathrm{O})$ from $\beta-(2.73 \AA)$ to $\alpha$-poly(L-alanine) (data to be published) (2.86 $\AA$ ). For $f(\mathrm{H} \cdots \mathrm{O})_{\mathrm{b}}$, we chose a smaller value, since this bond is expected to be weaker, ${ }^{17}$ and then set $f\left(\mathrm{H}^{\alpha \cdots} \cdot \mathrm{O}\right)$ so that the sum of these was 0.160 . This was influenced by the determination that the observed amide I splitting could be accounted for completely by transition dipole coupling ${ }^{18,19}$ using the same value of $f(\mathrm{C}=\mathrm{O})$ for all three groups in the helix repeat, and therefore the hydrogen-bonding effect on $\mathrm{C}=0$ should be about the same whether it participates in a typical or in a bifurcated bond. Although the choices are slightly arbitrary, they are certainly reasonable ones at this stage. Changes in other force constants associated with the N $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bond, namely, $f(\mathrm{NH} \cdots \mathrm{O}$ ib), $f(\mathrm{CO}$ ob), $f(\mathrm{NH} \mathrm{t})$, and
TABLE III
Observed and Calculated Frequencies (in $\mathrm{cm}^{-1}$ ) of Crystalline Polyglycine II

| Observed ${ }^{\text {a }}$ |  | Calculated |  |  |  | Potential Energy Distribution ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Antiparallel |  | Parallel |  |  |
| Raman | IR | A | B | A | E |  |
| $3279 \mathrm{~W}^{\text {c }}$ | $3279 \mathrm{~S}^{\text {c }}$ | 3281 | 3281 | 3281 | 3281 | NH s(98) |
|  |  | 3254 | 3254 |  |  | NH s(97) |
| $3257 \mathrm{M}^{\text {c }}$ |  | 3253 | 3253 |  |  | $\mathrm{NH} \mathrm{~s}(97)$ |
| 2979S | 2977W | 2980 | 2980 | 2981 | 2980 | $\mathrm{CH}_{2}$ as(78), $\mathrm{CH}_{2} \mathrm{ss}(18)$ |
| 2940 VS | 2935 MW | 2936 2936 | 2936 2936 |  |  | $\mathrm{CH}_{2}$ as(99) |
|  | 2850MW | 2853 | 2853 |  |  | $\mathrm{CH}_{2} \mathrm{ss}$ (99) |
|  | 2850MW | 2853 | 2853 |  |  | - ${ }_{2} \mathrm{ss}$ (コ) |
|  | 2805W | 2803 | 2803 | 2803 | 2804 | $\mathrm{CH}_{2} \mathrm{ss}(82), \mathrm{CH}_{2}$ as(22) |
|  |  |  |  | 1658 |  | COs(71), CN s(20), $\mathrm{C}^{\alpha} \mathrm{CN} \mathrm{d}(10)$ |
| 1654VS | $\sim 1655 \mathrm{~W}$ |  | 1654 |  |  | CO s(74), $\mathrm{CN} s(20), \mathrm{C}^{\alpha} \mathrm{CN} d(10)$ |
|  | $\sim 1655$ |  | 1653 |  |  | CO s(72), CN s(20), $\mathrm{C}^{\alpha} \mathrm{CN}$ d(10) |
|  |  | 1651 |  |  |  | COs(73), CNs s(19), $\mathrm{C}^{\alpha} \mathrm{CN} d(10)$ |
|  |  | 1649 |  |  | 1649 | CO s(73), CN s(20), $\mathrm{C}^{\alpha} \mathrm{CN}$ d(10) |
|  | 1640 VS |  | 1645 |  |  | CO s(74), CN s(19), $\mathrm{C}^{\alpha} \mathrm{CN} \mathrm{d}(10)$ |
| 1560W | $\sim 1560 \mathrm{~W}$ | 1565 | 1565 |  |  | NH ib(59), CN s(18) |
|  |  | 1555 | 1552 |  |  | NH ib(56), CN s(20), $\mathrm{C}^{\alpha} \mathrm{C}$ s(10) |
|  | 1550 S |  |  |  | 1551 | NH ib(51), CNs s(21), $\mathrm{C}^{\alpha} \mathrm{C} \mathrm{s} \mathrm{s(13)}$ |
|  |  | 1548 | 1548 |  |  | NH ib(54), CN s(21), $\mathrm{C}^{\alpha} \mathrm{C}$ s (12) |
|  |  |  |  | 1533 |  | NH ib(55), $\mathrm{CN} \mathrm{s}(18), \mathrm{C}^{\alpha} \mathrm{C} \mathrm{s} \mathrm{(12)}$ |
|  | 1432W | 1433 | 1433 | 1435 | 1431 | $\mathrm{CH}_{2} \mathrm{~b}(90)$ |
| 1421S |  |  | 1423 |  |  | $\mathrm{CH}_{2} \mathrm{~b}(80)$ |
|  | 1420M | 1422 |  |  |  | $\mathrm{CH}_{2} \mathrm{~b}$ (82) |
|  |  | 1421 | 1421 |  |  | $\mathrm{CH}_{2} \mathrm{~b}(79)$ |
| 1383MS | 1377M | 1383 | 1380 |  |  | $\mathrm{CH}_{2} \mathrm{w}(58), \mathrm{C}^{\alpha} \mathrm{C}$ s(15), $\mathrm{NH} \mathrm{ib}(13)$ |
|  |  |  |  | 1374 |  | $\mathrm{CH}_{2} \mathrm{w}(58), \mathrm{NH} \mathrm{ib}(18), \mathrm{C}^{\alpha} \mathrm{C} \mathrm{s}(13)$ |
|  |  |  |  |  | 1374 | $\mathrm{CH}_{2} \mathrm{w}(68)$, NH ib(12), $\mathrm{C}^{\alpha} \mathrm{C} \mathrm{s}(11)$ |


| $\sim 1332 \mathrm{VW}$ |
| :---: |
| 1283 M |
| 1249 M |
| 1132 W |
| 1028 M |
| 971 VW |
| 901 M |
| 862 VW |
| 751 W |

1334 VW
1283 M
1261 S

1244 MS
1134 M
1031 VS
968 VW
952 W
897 VW
884 VS
864 W
752 VW
742 VW
TABLE III (continued)

$\mathrm{CNC}^{\alpha} \mathrm{d}(60), \mathrm{CO} \mathrm{ib}(13), \mathrm{H}^{\circ} \cdots \mathrm{Os}(12)$ $\mathrm{CNC}^{\alpha} \mathrm{d}(35), \mathrm{H} \cdots \mathrm{O}(24), \mathrm{C}^{\alpha} \mathrm{CN} \mathrm{d}(20)$ $\mathrm{CNC}^{\alpha}$ d(66), CO ib(12)
$\mathrm{CNC}^{\alpha} \mathrm{d}(55), \mathrm{C}^{\alpha} \mathrm{CN}$ d(21)
${ }_{\mathrm{C}^{\alpha} \mathrm{CN}^{\alpha} \mathrm{d}(45), \mathrm{CNC}^{\alpha} \mathrm{d}(22), \mathrm{NC}^{\alpha} \mathrm{s}(12)}$
H $\cdots$ O s(34), CN t(23)
$\mathrm{CN} \mathrm{t}(31), \mathrm{H}^{\alpha} \cdots \mathrm{O} \mathrm{s}(30), \mathrm{NH}$ ob(14), NH$\cdots \mathrm{O}$ ib(11) $\mathrm{CN} \mathrm{t}(29), \mathrm{CNC}^{\alpha} \mathrm{d}(17), \mathrm{NH} \cdots \mathrm{O} \mathrm{ib}(15), \mathrm{H}^{\alpha} \cdots \mathrm{O}$ (15)
CN $\mathrm{t}(38)$, NH ob(19), $\mathrm{H} \cdots \mathrm{O}(13), \mathrm{NH} \cdots \mathrm{O}$ ib(11)
$\mathrm{CN} \mathrm{t}(38), \mathrm{NH} \cdots \mathrm{O}$ ib(12), NH ob(10), $\mathrm{H}^{\alpha \cdots} \mathrm{O}$ s(10)
$\mathrm{H} \cdot \cdots \mathrm{O}(28), \mathrm{NH}$ ob(17), CN $\mathrm{t}(17), \mathrm{CO} \mathrm{t}(14), \mathrm{NH} \mathrm{t}(11), \mathrm{C}^{\alpha} \mathrm{C} t(11)$
NH ob(35), $\mathrm{CO} \mathrm{t}(18), \mathrm{NC}^{\alpha} \mathrm{t}(14), \mathrm{N}^{\alpha} \mathrm{Cd}(13), \mathrm{CN} \mathrm{t}(10)$
NH ob(35), $\mathrm{CO} \mathrm{t}(18), \mathrm{NC} \mathrm{C}^{\alpha} \mathrm{t}$ (
NH ob(24), $\mathrm{NC}^{\alpha} \mathrm{C}$ d(16), $\mathrm{H}^{\alpha}$.

NH ob(35), $\mathrm{NH} \mathrm{t}(23), \mathrm{C}^{\alpha} \mathrm{H}^{\alpha \cdots} \mathrm{O}$ ib(19)
NH ob(41), $\mathrm{NC}^{\alpha} \mathrm{Cd}(16), \mathrm{C}^{\mathrm{C}} \mathrm{Ct}(14), \mathrm{NH}$
NH (4), $\mathrm{NC}^{\alpha} \mathrm{C} d(20) \mathrm{C}^{\alpha} \mathrm{C} t(15)$
NH ob(49), $\mathrm{NC}^{\alpha} \mathrm{Cd}(20), \mathrm{C}^{\alpha} \mathrm{Ct}(15)$
NH ob(45), $\mathrm{C}^{\alpha} \mathrm{Ct}(18), \mathrm{NC} \mathrm{C}^{\alpha} \mathrm{Cd}(17), \mathrm{NH} \cdots \mathrm{Oib}(10)$
NH ob(38), NH $\cdots \mathrm{O}$ ib(31), $\mathrm{CNt} \mathrm{t}(13), \mathrm{NH}(10)$
$\mathrm{C}^{a} \mathrm{C}$ t(24), NH ob(18)

${ }^{\mathrm{a}} \mathrm{VS}=$ very strong, $\mathrm{S}=$ strong, $\mathrm{M}=$ medium, $\mathrm{W}=$ weak, $\mathrm{VW}=$ very weak.
$\mathrm{b}_{\mathrm{S}}=$ stretch, as $=$ antisymmetric stretch, $\mathrm{ss}=$ symmetric stretch, $\mathrm{b}=$ angle bend, $\mathrm{ib}=$ in-plane angle bend, ob=out-of-plane angle bend, $\mathrm{w}=$ wag, $\mathrm{r}=$
 A and B modes differ by less than $3 \%$ the average value has been given for both frequencies.
令


[^0]$f(\mathrm{NH} \cdots \mathrm{O}$ ib, NH ob ), are not surprising, nor is the necessity of introducing additional force constants associated with the $\mathrm{C}^{\alpha}-\mathrm{H}^{\alpha} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bond, namely, $f\left(\mathrm{CO} \cdots \mathrm{H}^{\alpha} \mathrm{ib}\right), f\left(\mathrm{C}^{\alpha} \mathrm{H}^{\alpha \cdots \mathrm{O}} \mathrm{ib}\right)$, and ( $\left.\mathrm{C}^{\alpha} \mathrm{H}^{\alpha}, \mathrm{H}^{\alpha \cdots \mathrm{O}}\right)$.

With respect to the force constants for the $\mathrm{CH}_{2}$ group, different values are obviously required for the nonbonded and bonded groups. For the former, using the assignments proposed previously, ${ }^{3}$ we found that $f\left(\mathrm{C}^{\alpha} \mathrm{H}\right)$ and $f\left(\mathrm{C}^{\alpha} \mathrm{H}^{\alpha}\right)$ could be kept the same as in $(\mathrm{Gly})_{n} \mathrm{I}$, but $f\left(\mathrm{H}^{\alpha} \mathrm{C}^{\alpha} \mathrm{H}\right)$ had to be reduced slightly. This is reasonable because of the absence of the $\mathrm{H}^{\alpha} \cdots \mathrm{H}^{\alpha}$ interaction of $(\mathrm{Gly})_{n} \mathrm{I}$. In addition, the larger separation between the antisymmetric and symmetric $\mathrm{CH}_{2}$ stretch frequencies in (Gly) ${ }_{n}$ II has necessitated a change in sign for $f\left(\mathrm{C}^{\alpha} \mathrm{H}^{\alpha}, \mathrm{C}^{\alpha} \mathrm{H}\right)$. For the bonded $\mathrm{CH}_{2}$ group, we have, as before, ${ }^{3}$ made the bonded force constant, $f\left(\mathrm{C}^{\alpha} \mathrm{H}^{\alpha}\right)_{\mathrm{b}}$, lower than the nonbonded, $f\left(\mathrm{C}^{\alpha} \mathrm{H}\right)_{\mathrm{b}}$, and allowed $f\left(\mathrm{C}^{\alpha} \mathrm{H}^{\alpha}, \mathrm{C}^{\alpha} \mathrm{H}\right)$ to adjust to the observed separation of $\mathrm{CH}_{2}$ stretch frequencies. It is also possible that the change in $f\left(\mathrm{NC}^{\alpha} \mathrm{H}^{\alpha}\right)_{\mathrm{b}}$ is associated with this hydrogen bond, as is the absence of $f\left(\mathrm{NC}^{\alpha} \mathrm{H}, \mathrm{NC}^{\alpha} \mathrm{H}^{\alpha}\right)$.

Of about 70 intramolecular force constants in $\left(\mathrm{Gly}_{n} \mathrm{I}\right.$ that do not involve the hydrogen bonds directly, only 10 have required adjustment, and of these the largest percentage changes occur in 7 force constants associated with the $\mathrm{N}-\mathrm{C}^{\alpha}$ bond. This is undoubtedly significant, since the $\varphi$ dihedral angle undergoes a large change between (Gly) ${ }_{n} \mathrm{I}$ and $(\mathrm{Gly})_{n} \mathrm{II}$, while the $\psi$ angle is essentially the same. The 10 force constants that change, with their (Gly) ${ }_{n} \mathrm{I}$ and (Gly) ${ }_{n} \mathrm{II}$ values, are $f\left(\mathrm{NC}^{\alpha}\right): 5.043,4.843 ; f\left(\mathrm{NC}^{\alpha} \mathrm{C}\right): 0.819$, $1.150 ; f\left(\mathrm{C}^{\alpha} \mathrm{CN}\right): \quad 1.400,1.300 ; f\left(\mathrm{CNC}^{\alpha}\right): \quad 0.687,0.487 ; f(\mathrm{NCO})=f\left(\mathrm{C}^{\alpha} \mathrm{CO}\right)$ : 1.246, 1.166; $f\left(\mathrm{CNC}^{\alpha}, \mathrm{NC}^{\alpha} \mathrm{H}\right): \quad 0.000,0.270 ; f\left(\mathrm{C}^{\alpha} \mathrm{NH}, \mathrm{NC}^{\alpha} \mathrm{H}^{\alpha}\right): \quad 0.100,0.051 ;$ $f\left(\mathrm{C}^{\alpha} \mathrm{NH}, \mathrm{NC}^{\alpha} \mathrm{H}\right): \quad 0.031,0.061 ; f\left(\mathrm{NC}^{\alpha} \mathrm{H}, \mathrm{NC}^{\alpha} \mathrm{H}^{\alpha}\right): \quad 0.0463,0.000$. This shows that while the force field is substantially independent of conformation, there definitely are some conformation-dependent force constants. This has already been seen for $\beta$-poly(L-alanine) $)^{12,16}$ as compared to $\alpha$-poly(L-alanine) (data to be published and Ref. 21) and is an important subject for further detailed elucidation.

## RESULTS AND DISCUSSION

The calculated frequencies for (Gly) $)_{n}$ II in the antiparallel chain and parallel chain structures are given in Table III and compared with observed Raman and ir data. ${ }^{3,4,8,11,13}$ In Table IV we present the calculated frequencies for the N -deuterated molecule, (Gly) ${ }_{n} \mathrm{II}-\mathrm{ND}$, in the antiparallel chain structure and compare these with published Raman ${ }^{8}$ and ir ${ }^{11}$ results.

Most of the assignments are similar to those of Abe and Krimm, ${ }^{10}$ although because their calculation was for a single chain without explicit hydrogen bonds, some assignments and particularly potential-energy distributions differ. In addition, we calculate many more frequencies, which are, in fact, observed. This is particularly evident on comparing the results for the antiparallel chain and parallel chain structures given in Table

III and is the main reason for suggesting that (Gly) ${ }_{n}$ II adopts the former structure. It should be noted that this difference in the number of bands is not a result of the presence of two chains in the unit cell of the former as compared to only one in the latter; as can be seen from Table III, crystal splittings are very small. Rather, the difference arises from the fact that in the parallel chain structure all three residues in the repeat of a single chain are equivalent (all having bifurcated hydrogen bonds), thus giving rise to A - and E-species helical chain modes. In the case of the antiparallel chain structure the three residues are not equivalent (only one participates in a bifurcated hydrogen bond), and this loss of strict threefold symmetry in a single chain gives rise to significant intrachain frequency splittings. The larger number of observed bands than expected for an exact $3_{1}$-helical structure is a strong qualitative argument for the loss of threefold symmetry and, therefore, for the presence of $\mathrm{C}^{\alpha}-\mathrm{H}^{\alpha \cdots} \mathrm{O}=\mathrm{C}$ hydrogen bonds in only some of the residues, as is predicted for the antiparallel chain structure. ${ }^{2,6}$ We discuss the various assignments in greater detail below.

## Polyglycine II

The NH stretch modes have already been considered. We only note here that each frequency is localized in a single NH bond in the repeating unit of three residues, with the $3281-\mathrm{cm}^{-1}$ mode being associated with the bifurcated bond.

The four observed $\mathrm{CH}_{2}$ stretch bands in the ir spectrum, as well as their counterparts in the Raman spectrum, are well accounted for by the calculation. (A very weak band is observed at $2868 \mathrm{~cm}^{-1}$ in the Raman, ${ }^{8}$ but it is not clear that it is assignable to $\mathrm{CH}_{2}$ stretch.) The 2980 - and $2803-\mathrm{cm}^{-1}$ modes are associated with the $\mathrm{C}^{\alpha}-\mathrm{H}^{\alpha \cdots} \mathrm{O}=\mathrm{C}$ bonded $\mathrm{CH}_{2}$ group, and as can be seen from the potential-energy distribution, they are no longer pure group modes. As a result of the hydrogen bond, the local $C_{2 v}$ symmetry of the $\mathrm{CH}_{2}$ group is lost, and it is therefore not surprising that the stretching modes are not strictly antisymmetric and symmetric combinations of CH stretch.

The amide I frequencies are shifted by transition dipole coupling ${ }^{18,19}$ [for which we used the same parameters as for ( Gly$\left.)_{n} \mathrm{I}\right]$, but not by as much as in the $\beta$-sheet. ${ }^{15}$ [The calculated uncoupled frequencies (and their shifted values) are: A species-1649 (1656), 1652(1651), 1652(1649); B species$1650(1654), 1654(1653), 1649(1645)$.] This is due in part to the fact that although each mode contains contributions from each of the three $\mathrm{C}=\mathrm{O}$ groups, there is partial localization of the vibration and therefore less of an interaction effect. The $1649(\mathrm{~A})-\mathrm{cm}^{-1}$ mode is associated predominantly with the bifurcated $C=O$ group, but in the $B$ species both the 1653 - and $1645-\mathrm{cm}^{-1}$ modes contain about equal contributions from bifurcated and nonbifurcated groups. As mentioned earlier, since the observed splitting (the strong ir band shows a distinct shoulder at $\left.\sim 1655 \mathrm{~cm}^{-1}\right)^{4}$ can essentially
TABLE IV
Observed and Calculated Frequencies (in $\mathrm{cm}^{-1}$ ) of Antiparallel Chain Crystalline Polyglycine II-ND

| Observed ${ }^{\text {a }}$ |  | Calculated |  | Potential Energy Distribution ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Raman | IR | A | B |  |
| 2980 VS | 2975W | 2980 | 2980 | $\mathrm{CH}_{2}$ as(78), $\mathrm{CH}_{2} \mathrm{ss}(18)$ |
| 2940 VS | 2940W | $\left\{\begin{array}{l}2936 \\ 2936\end{array}\right.$ | $\left.\begin{array}{l}2935 \\ 2935\end{array}\right\}$ | $\mathrm{CH}_{2}$ as(99) |
| 2866 VW | 2850W | $\left\{\begin{array}{l}2853 \\ 2853\end{array}\right.$ | $\left.\begin{array}{l}2853 \\ 2853\end{array}\right\}$ | $\mathrm{CH}_{2} \mathrm{ss}(99)$ |
| 2809 VW |  | 2803 | 2803 | $\mathrm{CH}_{2} \mathrm{ss}(82), \mathrm{CH}_{2}$ as(22) |
|  |  | 2408 | 2408 | ND s(97) |
| $\sim 2430{ }^{\text {c }}$ |  | $\left\{\begin{array}{l}2387 \\ 2387\end{array}\right.$ | $\left.\begin{array}{l}2387 \\ 2387\end{array}\right\}$ | ND s(96) |
|  |  | $\left\{\begin{array}{l}1649 \\ 1647\end{array}\right.$ | 1651 | $\begin{aligned} & \mathrm{COs}^{(72), \mathrm{CN}} \mathrm{~s}(22) \\ & \operatorname{COs}(74), \mathrm{CN} s(22), \mathrm{C}^{\alpha} \mathrm{CN} \mathrm{~d}(10) \end{aligned}$ |
| 1640VS | 1639 VS | \{ 1645 | $\left.\begin{array}{l}1645 \\ 1644\end{array}\right\}$ | $\mathrm{COs}(74), \mathrm{CNs}(22)$ |
|  | 1476S | $\left\{\begin{array}{l}1479 \\ 1477\end{array}\right.$ | 1478 1477 | $\begin{aligned} & \mathrm{C}^{\alpha} \mathrm{C} s(28), \mathrm{CN} s(21), \mathrm{CO} \mathrm{ib}(13), \mathrm{CH}_{2} \mathrm{~b}(12) \\ & \mathrm{C}^{\alpha} \mathrm{C} s(29), \mathrm{CN} s(22), \mathrm{CO} \mathrm{ib}(13), \mathrm{CH}_{2} \mathrm{w}(11) \\ & \mathrm{C}^{\alpha} \mathrm{C} s(29), \mathrm{CN} s(21), \mathrm{CO} \mathrm{ib}(13), \mathrm{CH}_{2} \mathrm{w}(10), \mathrm{CO} s(10) \\ & \mathrm{C}^{\alpha} \mathrm{Cs}(29), \mathrm{CN} s(21), \mathrm{CO} \mathrm{ib}(13), \mathrm{CH}_{2} \mathrm{~b}(12) \end{aligned}$ |
| 1470M |  | 1471 | 1472 | $\mathrm{C}^{\alpha} \mathrm{C} s(28), \mathrm{CNs}(25), \mathrm{CO} \mathrm{ib}(14), \mathrm{ND}$ ib(12), $\mathrm{CH}_{2} \mathrm{w}(10), \mathrm{COs}(10)$ |
| 1419 S | 1420 M | 1427 | 1427 | $\mathrm{CH}_{2} \mathrm{~b}$ (86) |
| 1412W |  | 1409 | 1409 | $\mathrm{CH}_{2}$ b(83) |
|  |  | 1404 | 1404 | $\mathrm{CH}_{2} \mathrm{~b}$ (82) |
| 1347W | 1350M | 1344 | 1344 | $\mathrm{CH}_{2} \mathrm{w}(69), \mathrm{CH}_{2} \mathrm{tw}(11)$ |
| 1333 VW |  | 1316 | 1316 | $\mathrm{CH}_{2} \mathrm{w}$ (77) |
|  |  | 1296 | 1296 | $\mathrm{CH}_{2} \mathrm{w}(79), \mathrm{NC}^{\alpha} \mathrm{s}$ (18) |
| 1267 S | 1277M | 1266 | 1266 | $\mathrm{CH}_{2}$ tw(87) |
|  | 1262M | 1252 | 1252 | $\mathrm{CH}_{2} \mathrm{tw}$ (87) |
| 1231W |  | 1249 | 1249 | $\mathrm{CH}_{2} \mathrm{tw}(89)$ |
| 1131M |  | 1128 | 1128 | $\mathrm{NC}^{\alpha} \mathrm{s}$ (61), $\mathrm{C}^{\alpha} \mathrm{C} \mathrm{s}(1.3)$ |
|  |  | 1069 | 1072 | ND ib(43), $\mathrm{NC}^{\alpha} \mathrm{s}(24), \mathrm{C}^{\alpha} \mathrm{C} s(14)$ |
|  |  | 1065 | 1064 | ND ibs (38), $\mathrm{NC}^{\alpha} \mathrm{s}(29), \mathrm{C}^{\alpha} \mathrm{C} \mathrm{s}(14)$ |
|  | 1034M |  | 1029 | $\mathrm{ND} \mathrm{ib}(46), \mathrm{CH}_{2} \mathrm{r}(16), \mathrm{C}^{\alpha} \mathrm{C} s(13)$ |


$\stackrel{N}{\otimes}$

象范 令令象
承
令 $\stackrel{\rightharpoonup}{\circ} \stackrel{8}{8}$
$\stackrel{8}{9}$

$\sum_{\substack{\infty \\ \infty}}^{\infty}$
8
$\infty$
$\infty$
$\infty$
\％
N

$\underset{\substack{\infty \\ \infty}}{\substack{\infty \\ \infty}} \sum_{\substack{\infty \\ \infty}}^{\substack{\infty \\ \infty}}$
$\sum_{i 0}^{i n}$
491W
TABLE IV (continued)


[^1]be accounted for by such coupling, we feel justified in assuming the same value of $f(\mathrm{C}=\mathrm{O})$ for all of the peptide groups.

The amide II modes are also shifted by only a small amount as a result of transition dipole coupling, for reasons similar to those for the amide I modes. [The calculated uncoupled frequencies (and their shifted values) are: A species-1567(1565), 1559(1555), 1549(1548); B species1569((1565), 1557(1552), 1549(1548).] The modes at $1555(\mathrm{~A})$ and 1552(B) $\mathrm{cm}^{-1}$ have major, but not sole, contributions from the bifurcated group. The observed splittings are reasonably well reproduced; in fact, the observed structure on the amide II band ${ }^{4}$ may be explained by transition dipole coupling splittings.

The $\mathrm{CH}_{2}$ bend region shows a definite splitting in the ir spectrum, ${ }^{3}$ which is well accounted for by our calculation. [A splitting is not seen in the Raman spectrum of (Gly) ${ }_{n}$ II but is observed in that of (Gly) ${ }_{n} \mathrm{II}-\mathrm{ND}^{8}$; as we shall see later, we also predict a larger splitting for the deuterated molecule.] In distinction to the previous simplified calculation, ${ }^{3}$ our present complete calculation predicts the frequencies of the bonded $\mathrm{CH}_{2}$ groups at $1433 \mathrm{~cm}^{-1}$. This is more consistent with the intensity distribution in the ir band, as well as the expectation that hydrogen bonding should raise the frequency of the bending mode.
The predominantly $\mathrm{CH}_{2}$ wag modes, which also contain an NH in-plane bend component, occur in the $1330-1390-\mathrm{cm}^{-1}$ region, the bonded $\mathrm{CH}_{2}$ groups being predicted to contribute primarily at 1383(A) and 1380(B) $\mathrm{cm}^{-1}$. Two assignable bands are found in the spectra, near 1380 and 1333 $\mathrm{cm}^{-1}$; these are observed to shift on N -deuteration, ${ }^{8,11}$ confirming the NH contribution to the mode. More significantly, only one band is predicted for the parallel chain structure, thus adding support for the presence of antiparallel chains.

The $\mathrm{CH}_{2}$ twist mode contributes predominantly in the region of about $1240-1290 \mathrm{~cm}^{-1}$, heavily mixed with $\mathrm{CH}_{2}$ wag and some NH in-plane bend. Four bands are found that can be assigned to predicted modes, and although they do not select between the two structures, the frequency agreement is better for the antiparallel chain structure.

Skeletal $\mathrm{NC}^{\alpha}$ stretch, with a contribution from $\mathrm{C}^{\alpha} \mathrm{C}$ stretch, is found in the region of about $1030-1130 \mathrm{~cm}^{-1}$. The dominant Raman bands at 1031 VS and $1134 \mathrm{M} \mathrm{cm}^{-1}$ are at significantly different frequencies from the essentially similar modes in $(\mathrm{Gly})_{n} \mathrm{I}$ at 1021 VS and $1162 \mathrm{M} \mathrm{cm}^{-1}$. The small downward shift in the average frequency and the large decrease in the splitting between these frequencies in $(\mathrm{Gly})_{n} \mathrm{II}$ as compared to $(\mathrm{Gly})_{n} \mathrm{~J}$ is undoubtedly a result of the conformational difference between these chains, both in terms of geometry as well as its effect on relevant force constants.

Bands in the $860-970-\mathrm{cm}^{-1}$ region are assignable to predicted $\mathrm{CH}_{2}$ rock modes that are in most cases heavily mixed with skeletal $\mathrm{C}^{\alpha} \mathrm{C}$ stretch and CN stretch. The presence of weak Raman bands at 864 and $952 \mathrm{~cm}^{-1} \mathrm{fa}$ vors the antiparallel chain structure, since in addition to other common
bands, bands in these regions are predicted by this structure but not by the parallel chain structure.

The observed bands in the region of about $670-750 \mathrm{~cm}^{-1}$ arise from modes containing contributions primarily from NH out-of-plane bend, CN torsion, $\mathrm{NH} \cdots \mathrm{O}$ in-plane bend, CO in-plane bend, and $\mathrm{NC}^{\alpha} \mathrm{C}$ deformation. The medium-intensity Raman band at $673 \mathrm{~cm}^{-1}$ can only be accounted for by the antiparallel chain structure, there being a large gap in predicted frequencies in this region for the parallel chain structure.

A relatively well-defined region between 560 and $590 \mathrm{~cm}^{-1}$ is contributed to primarily by CO out-of-plane bend, with some NH out-of-plane bend. Again, it should be noted that the medium-intensity Raman band at 566 $\mathrm{cm}^{-1}$ is reasonably accounted for only by the antiparallel chain structure. A narrow region near $500 \mathrm{~cm}^{-1}$ is associated with $\mathrm{C}^{\alpha} \mathrm{CN}$ deformation. It is interesting to note that in $(\mathrm{Gly})_{n} \mathrm{I}$, whereas CO out-of-plane bend is found in the range of $590-620 \mathrm{~cm}^{-1}, \mathrm{C}^{\alpha} \mathrm{CN}$ deformation is divided between modes near 590 and near $290 \mathrm{~cm}^{-1} .{ }^{15}$ This is undoubtedly due to the conformational differences between the two structures.

The $\mathrm{NC}^{\alpha} \mathrm{C}$ deformation coordinate contributes predominantly near 350 $\mathrm{cm}^{-1}$, compared to about $325 \mathrm{~cm}^{-1}$ in $(\mathrm{Gly})_{n} \mathrm{I},{ }^{15}$ a result that again probably reflects conformational differences. Mixed NH out-of-plane and CO out-of-plane bend modes near $270 \mathrm{~cm}^{-1}$ occur at significantly higher frequencies than in $(\mathrm{Gly})_{n} \mathrm{I}$, where they are found near $180 \mathrm{~cm}^{-1}$. This may, of course, be a result of the different hydrogen-bond characteristics. The calculated range for $\mathrm{CNC}^{\alpha}$ deformation is only slightly different: about $190-240 \mathrm{~cm}^{-1}$ for $(\mathrm{Gly})_{n} \mathrm{II}$ and $210-250 \mathrm{~cm}^{-1}$ for (Gly) $)_{n} \mathrm{I}^{15}$

The frequencies containing $\mathrm{H} \cdots \mathrm{O}$ stretch are difficult to assign. In (Gly) ${ }_{n} \mathrm{I}$ the frequency with the largest contribution [comprising $\mathrm{H} \cdots \mathrm{O}$ stretch (78), CN torsion (18)] is predicted at $111 \mathrm{~cm}^{-1}$ and assigned to 112 $\mathrm{M} \mathrm{cm}^{-1}$ (Raman). In (Gly) II this mode is calculated at $133 \mathrm{~cm}^{-1}$, consistent with our larger value for $f(\mathrm{H} \cdots \mathrm{O})$. No band has been observed at this position, although there is a shoulder in the far-ir spectrum ${ }^{13}$ at $\sim 150$ $\mathrm{cm}^{-1}$. The observed bands are found near $115 \mathrm{~cm}^{-1}$, and we can at this stage only bracket an appropriate range of calculated bands that contain the expected $\mathrm{H} \cdots \mathrm{O}$ stretch and CN torsion components. It is noteworthy that the $83-\mathrm{cm}^{-1}$ Raman band is of very similar character to the $82-\mathrm{cm}^{-1}$ band of (Gly) ${ }_{n} \mathrm{I}$, namely, mainly NH out-of-plane bend.

## Polyglycine II-ND

The calculated normal modes given in Table IV are for the antiparallel chain structure of (Gly) ${ }_{n}$ II-ND since this has been shown to be preferred for $(\mathrm{Gly})_{n} \mathrm{II}$. The same force constants (Table II) were used in this calculation.

The $\mathrm{CH}_{2}$ stretch modes follow the pattern for $(\mathrm{Gly})_{n} \mathrm{II}$. In this case, ir data are not available for all expected bands, ${ }^{11}$ but the Raman spectra do show four bands. ${ }^{8}$

The assignment of the ND stretch modes is complicated by the lack of detailed information on this region, ${ }^{8,11}$ together with the more complicated Fermi resonance possibilities that occur in deuterated polypeptides. ${ }^{22}$ Nevertheless, a fairly reasonable analysis of this mode seems possible.

The observed bands at 2472 MW and $2419 \mathrm{M} \mathrm{cm}^{-1}$ in the Raman ${ }^{8}$ and 2464 W and $2416 \mathrm{~S} \mathrm{~cm}{ }^{-1}$ in the ir ${ }^{11}$ are clearly assignable to ND stretch in Fermi resonance with a combination band. ${ }^{22}$ In distinction, however, to (Gly) ${ }_{n} \mathrm{I}-\mathrm{ND}$, the $2416-\mathrm{cm}^{-1}$ band is the stronger of the two, indicating that it should be assigned to $\nu_{\mathrm{A}}$ with the $2464-\mathrm{cm}^{-1}$ band being assigned to $\nu_{\mathrm{B}}$, as is the case for $\beta$-(L-Ala) $n_{n}$-ND. ${ }^{22}$ If we take $I_{\mathrm{B}} / I_{\mathrm{A}} \cong 0.3$ from the Raman ${ }^{8}$ (since no quantitative ir data are available ${ }^{11}$ ), neglecting for a moment the existence of two ND stretch modes, then we find ${ }^{22}$ that $\nu_{\mathrm{A}}^{\circ}=2431 \mathrm{~cm}^{-1}$ and $\nu_{\mathrm{B}}^{\mathrm{o}}=2460 \mathrm{~cm}^{-1}$ (these change to 2428 and $2463 \mathrm{~cm}^{-1}$, respectively, for an intensity ratio of 0.2). This value of $\nu_{\mathrm{A}}^{\circ}$ in comparison to that of (Gly) ${ }_{n} \mathrm{I}-\mathrm{ND}$, viz., $2457 \mathrm{~cm}^{-1},{ }^{14}$ shows that it must be associated with the typical N $\mathrm{D} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bond in (Gly) ${ }_{n} \mathrm{II}-\mathrm{ND}$, which, as we have seen, is expected to be stronger than that in (Gly) ${ }_{n} \mathrm{I}-\mathrm{ND}$. The value of $\nu_{\mathrm{B}}^{\circ}$ is compatible with combinations comparable to those in other N -deuterated polypeptides, ${ }^{22}$ namely, $1476+995=2471$ and $1476+987=2463(1470$ $+995=2465$ and $1470+987=2457$ may also be possible). It is interesting that the ND in-plane bend contribution to the $995-$ and $987-\mathrm{cm}^{-1}$ bands (see below) is associated entirely with the typical hydrogen bonds, thus justifying the assumption made above. The calculated value of $\nu_{\mathrm{A}}^{\circ}=2387$ $\mathrm{cm}^{-1}$ is in the range of $40-50 \mathrm{~cm}^{-1}$ lower than the observed value, as has been found for other N -deuterated polypeptides ${ }^{22}$ [being due to the transfer of $f(\mathrm{~N}-\mathrm{H})$ without compensation for anharmonicity]. The value of $\nu_{\mathrm{A}}^{\circ} \cong$ $2430 \mathrm{~cm}^{-1}$ for the typical ND hydrogen bond thus seems quite consistent with expectations, but the question is still left open as to the value of $\nu_{\mathrm{A}}^{\circ}$ for the bifurcated bond. Better experimental data in the ND stretch region will be needed to derive this value, but it is interesting to note that the ir spectrum of $\left(\mathrm{CD}_{2} \mathrm{CO}\right)_{n}$ II-ND (Ref. 11) shows a more complex structure than does that of $\left(\mathrm{CH}_{2} \mathrm{CO}\right)_{n}$ II-ND: $2485 \mathrm{~W}, 2451 \mathrm{~W}, 2417 \mathrm{~S}$. Incidentally, if we use the $40-50-\mathrm{cm}^{-1}$ "rule," we would expect $\nu_{\mathrm{A}}^{\circ}$ for the bifurcated bond to be in the range of $2408+(40-50)=2448-2458 \mathrm{~cm}^{-1}$.

The splitting in the amide I region due to transition dipole coupling is predicted to be somewhat less than that in (Gly) ${ }_{n}$ II. The presently available data ${ }^{8,11}$ do not indicate any splitting, but the region should be reexamined carefully.

Modes in the $1470-1480-\mathrm{cm}^{-1}$ region have the same general character as in (Gly) ${ }_{n} \mathrm{I}-\mathrm{ND}$. No clear single choice, however, is possible at present for the $1476 \mathrm{~S}-\mathrm{cm}^{-1}$ ir band, whereas the higher symmetry of (Gly) ${ }_{n}$ I-ND did make this feasible.

The $\mathrm{CH}_{2}$ bend modes are predicted to shift downward slightly on N deuteration; this seems to be observed in the Raman spectrum, although the intensity ratio is unexpected (the $1427-\mathrm{cm}^{-1}$ mode is associated with the bonded $\mathrm{CH}_{2}$ group). The observed large downward shift of the $\mathrm{CH}_{2}$
wag mode at $\sim 1380 \mathrm{~cm}^{-1}$ (to $\sim 1350 \mathrm{~cm}^{-1}$ ) is well predicted, as is the pattern of $\mathrm{CH}_{2}$ twist modes in the $1230-1280-\mathrm{cm}^{-1}$ region.

The character of the $\sim 1130-\mathrm{cm}^{-1}$ band is retained from (Gly) ${ }_{n}$ II to (Gly) ${ }_{n}$ II-ND, viz., mainly $\mathrm{NC}^{\alpha}$ with some $\mathrm{C}^{\alpha} \mathrm{C}$ stretch, but the nature and frequencies of the modes extending down to $\sim 900 \mathrm{~cm}^{-1}$ are altered as a result of the contribution of ND in-plane bend. Thus, although bands remain near $1030 \mathrm{~cm}^{-1}$, they have a very different character. New strong bands are found, and predicted, near $1000 \mathrm{~cm}^{-1}$ that contain a significant ND in-plane bend contribution. The frequency decrease of the very strong $884-\mathrm{cm}^{-1}$ Raman band of (Gly) ${ }_{n}$ II to $875 \mathrm{~cm}^{-1}$ in (Gly) $)_{n}$ II-ND is very well predicted despite the absence of any ND in-plane bend contribution to this mode.

The bands of $(\mathrm{Gly})_{n} \mathrm{II}$ in the $670-750-\mathrm{cm}^{-1}$ region that contain an NH out-of-plane bend contribution of course lose this in the ND compound, and a redistribution of internal coordinates occurs. It is interesting that the $698 \mathrm{~S}-\mathrm{cm}^{-1}$ ir band of $(\mathrm{Gly})_{n} \mathrm{II}$, which contains no NH out-of-plane bend, retains its character in (Gly) ${ }_{n}$ II-ND, and, in fact, its slight downward shift is well predicted. Although the main CO out-of-plane bend character of the $573 \mathrm{~S}-\mathrm{cm}^{-1}$ ir band of $(\mathrm{Gly})_{n} \mathrm{II}$ is retained in the $576 \mathrm{M}-\mathrm{cm}^{-1}$ Raman band of (Gly) $)_{n}$ II-ND, ND out-of-plane bend begins to contribute to the latter mode and becomes a significant contribution to the $520 \mathrm{~S}-\mathrm{cm}^{-1}$ ir band.

The bands below $500 \mathrm{~cm}^{-1}$ follow a pattern similar to that in (Gly) ${ }_{n}$ II, apparently not being influenced too much by the exchange of NH for ND. The slight decrease of frequencies to $356 \mathrm{~S} \mathrm{~cm}^{-1}$ (ir) and $335 \mathrm{~W} \mathrm{~cm} \mathrm{~cm}^{-1}$ (Raman) is predicted, and the presence of lower-frequency bands is well accounted for. The bands near $115 \mathrm{~cm}^{-1}$ are seen to be little affected by the change in contribution from $\mathrm{H} \cdots \mathrm{O}$ stretch to $\mathrm{D} \cdots \mathrm{O}$ stretch.

## CONCLUSIONS

Our detailed normal coordinate analysis of the vibrational spectrum of crystalline (Gly) ${ }_{n}$ II strongly supports the conclusion that this $3_{1}$-helical molecule crystallizes in an antiparallel chain structure in which every third residue participates in a $\mathrm{C}^{\alpha}-\mathrm{H}^{\alpha \cdots} \mathrm{O}=\mathrm{C}$ hydrogen bond. This derives from the fact that although the backbone forms a $3_{1}$-helix, strict symmetry is broken by the presence of the above hydrogen bonds, leading to the presence of additional bands in the spectrum. Some of these bands are clearly associated with the characteristically different NH and $\mathrm{CH}_{2}$ groups present, for example, localized group modes in the NH stretch, $\mathrm{CH}_{2}$ stretch, and $\mathrm{CH}_{2}$ bend regions. Others, however, clearly involve combined group and backbone vibrations, such as bands at $\sim 1333 \mathrm{~cm}^{-1}$ (primarily $\mathrm{CH}_{2}$ wag), $952 \mathrm{~cm}^{-1}$ ( $\mathrm{CH}_{2} \mathrm{rock}$ ), and $864 \mathrm{~cm}^{-1}$ (primarily $\mathrm{CH}_{2}$ rock). And still others are associated primarily with backbone modes, as is the case for bands at 673,566 , and $340 \mathrm{~cm}^{-1}$. The above bands cannot be accounted for by a parallel chain structure. The presence of extra bands, particularly in the low-frequency region, clearly establishes the loss of strict $3_{1}$ symmetry
and thus implies the existence of $\mathrm{C}^{\alpha}-\mathrm{H}^{\alpha \cdots} \cdots=\mathrm{C}$ hydrogen bonds independent of arguments based on additional NH and $\mathrm{CH}_{2}$ bands. ${ }^{3,4}$ Our results thus provide additional support for the presence of such hydrogen bonds in (Gly) ${ }_{n}$ II.

The agreement between observed and calculated frequencies is quite good (the average discrepancy between observed and calculated frequencies below $1700 \mathrm{~cm}^{-1}$ is about $4.3 \mathrm{~cm}^{-1}$ ). Force constants involving hydrogen bonds have had to be adjusted from the $(\mathrm{Gly})_{n} \mathrm{I}$ force field, which is not surprising since the hydrogen-bond characteristics are different in these two structures. There are, however, about 70 intramolecular force constants in (Gly) ${ }_{n}$ I that do not involve hydrogen bonds, and of these, only 10 required adjusting for (Gly) ${ }_{n}$ II. Studies such as these, as well as those on $\beta$-poly(L-alanine) ${ }^{16}$ and on $\alpha$-poly(L-alanine) (data to be published), should provide information on the dependence of the force field on conformation, which it is necessary to know in detail in order to use normal coordinate calculations as a tool in studying the conformations of polypeptide chains.
This research was supported by National Science Foundation grants PCM-7921652 and DMR-7800753.

## References

1. Crick, F. H. C. \& Rich, A. (1955) Nature 176, 780-781.
2. Ramachandran, G. N., Sasisekharan, V. \& Ramakrishnan, C. (1966) Biochim. Biophys. Acta 112, 168-170.
3. Krimm, S., Kuroiwa, K. \& Rebane, T. (1966) in Conformation of Biopolymers, Ramachandran, G. N., Ed., Academic Press, New York, pp. 439-447.
4. Krimm, S. \& Kuroiwa, K. (1968) Biopolymers 6, 401-407.
5. Krimm, S. (1966) Nature 212, 1482-1483.
6. Ramachandran, G. N., Ramakrishnan, C. \& Venkatachalam, C. M. (1967) in Conformation of Biopolymers, Ramachandran, G. N., Ed., Academic Press, New York, pp. 429438.
7. Miyazawa, T. (1967) in Poly- $\alpha$-Amino Acids, Fasman, G. D., Ed., Marcel Dekker, New York, pp. 69-103.
8. Small, E. W., Fanconi, B. \& Peticolas, W. L. (1970) J. Chem. Phys. 52, 4369-4379.
9. Singh, R. D. \& Gupta, V. D. (1971) Spectrochim. Acta 27A, 385-393.
10. Abe, Y. \& Krimm, S. (1972) Biopolymers 11, 1841-1853.
11. Suzuki, S., Iwashita, Y., Shimanouchi, T. \& Tsuboi, M. (1966) Biopolymers 4, 337350.
12. Smith, M., Walton, A. G. \& Koenig, J. L. (1969) Biopolymers 8, 29-43.
13. Fanconi, B. (1973) Biopolymers 12, 2759-2776.
14. Moore, W. H. \& Krimm, S. (1976) Biopolymers 15, 2439-2464.
15. Dwivedi, A. M. \& Krimm, S. (1982) Macromolecules 15, 177-185.
16. Dwivedi, A. M. \& Krimm, S. (1982) Macromolecules 15, 186-193.
17. Morokuma, K. (1977) Acc. Chem. Res. 10, 294-300.
18. Krimm, S. \& Abe, Y. (1972) Proc. Natl. Acad. Sci. USA 69, 2788-2792.
19. Moore, W. H. \& Krimm, S. (1975) Proc. Natl. Acad. Sci. USA 72, 4933-4935.
20. Moore, W. H. \& Krimm, S. (1976) Biopolymers 15, 2465-2483.
21. Rabolt, J. F., Moore, W. H. \& Krimm, S. (1977) Macromolecules 10, $1065-1074$.
22. Krimm, S. \& Dwivedi, A. M. (1982) J. Raman Spectrosc. 12, 133-137.

Accepted May 20, 1982


[^0]:    ${ }^{\mathrm{c}}$ Unperturbed frequency (see text).

[^1]:    ${ }^{a} \mathrm{VS}=$ very strong, $\mathrm{S}=$ strong, $\mathrm{M}=$ medium, $\mathrm{W}=$ weak, $\mathrm{VW}=$ very weak. rock, $t=$ torsion, $d=$ deformation, $t w=t w i s t$. Only contributions of $10 \%$ or greater are included. In some cases where contributions to the PEDs of related A and B modes differ by less than $3 \%$, the average value has been given for both frequencies.
    ${ }^{c}$ Unperturbed frequency (see text).
    ${ }^{\mathrm{c}}$ Unperturbed frequency (see text)

