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SYNOPSIS 

A general method is presented for constructing a potential function for approximate con- 
formational calculations on globular proteins. The method involves solving a nonlinear 
program that seeks to adjust the potential's parameters in such a way that a minimum 
near the native remains a minimum and does not move far away, while any alternative 
minima shift so as to remain local minima hut eventually rise higher than the level of the 
near-native minimum. Although the potential trades computational speed for detail by 
representing each amino acid residue as only a single point, correct secondary structural 
preferences and reasonable tertiary folding can be built into the potential in an entirely 
routine way. The potential has been parameterized to agree with the crystal structure of 
avian pancreatic polypeptide (having 36 residues) in the sense that the lowest minimum 
found (-407 arbitrary units) is reasonably close to the native ( 1.8 f% rms interresidue 
distance deviation ) . In contrast, the lowest nonnative conformation found after extensive 
searches by a variety of methods was -399 units and 7.5 f% away. Such potentials may 
prove to be useful in predicting approximate tertiary structure from amino acid sequence, 
if they can be generalized to apply to more than one protein. 

I NTRO D U CT 10 N 

It has long been established that many proteins will 
fold reversibly in vitro, starting from a rather dis- 
ordered state, and proceeding on a time scale of sec- 
onds or minutes to a unique conformational state 
indistinguishable from the native conformation.',' 
The native state must then be a global minimum of 
the free energy over the region of conformation space 
accessible to the protein during the course of re- 
folding. This region must be iess than the whole of 
conformation space, because the known rate of ro- 
tation about single bonds rules out the exploration 
of all combinations of all the protein's many torsion 
angles in the experimentally observed time for re- 
folding. In any case, there must be a correspondence 
between the amino acid sequence and the native 
conformation, relatively independent of external 
influences beyond reasonable solvent composition, 
pressure and temperature. 
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A long-standing goal among theoreticians is to 
compute the folding pathway or a t  least the native 
structure, given only the sequence. For small isolated 
molecules there are good quantum mechanical and 
empirical potential functions for calculating the in- 
ternal energy as a function of conformation. Coupled 
with a thorough global search, these computer pro- 
grams can successfully predict the conformations of 
a wide variety of molecules in the dilute vapor phase. 
With much more computational expense, classical 
molecular mechanics programs are becoming able 
to account for solvation effects as well. For molecules 
as large as proteins, quantum mechanical energy 
evaluations are out of the question, but there are 
good empirical potential functions available that 
treat each atom as a separate particle. It is possible 
to construct a potential function consisting only of 
attractive forces between atoms such that the po- 
tential has a unique global minimum, easily located 
from any arbitrary starting point by local minimi- 
zation algorithms, 3,4 but the moment repulsive forces 
are added (van der Waals contacts, minimal bond 
length and angle constraints, etc.) , the energy sur- 
face develops numerous local minima, very few of 
which have low enough energy to be physically rel- 
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evant. In fact, the number of local minima is thought 
to increase exponentially with the size of the mol- 
ecule, such that a global search of the conformation 
space for even a tetrapeptide is in fea~ib le .~  After all, 
even the ultimate special-purpose, microminiatur- 
ized, highly parallel, analogue computer-the pro- 
tein itself-takes shortcuts to solve the problem. 

Computational chemists have taken two general 
approaches to solving the protein folding problems: 
algorithmic and energetic. Algorithmic development 
takes the current state-of-the-art energy function 
as fixed and tries to locate very low-energy structures 
by cleverly moving the atoms in such a way that the 
number of energy evaluations is small. The ener- 
getics approach seeks to modify the energy function 
such that the performance of the search algorithm 
is improved while still favoring the experimentally 
observed conformations. For example Levitt and 
Warshel, in their historically significant paper, de- 
veloped a simple algorithm for hopping from one 
local minimum to the next, using a potential func- 
tion that was relatively smooth by simplifying the 
representation of the amino acid residues. The al- 
gorithmic innovation allowed them to proceed from 
an arbitrary initial conformation to a rather compact 
one, instead of just locally minimizing the energy 
and moving only a short distance thereby. Repre- 
senting each amino acid residue by a single point 
made the energy surface smooth enough that the 
algorithm was not faced with an astronomical num- 
ber of closely spaced local minima to explore. The 
flaw was that while the potential favored realistically 
compact structures, it did not discriminate very well 
between the native conformation and alternative 
compact conformations. 

In general, a major shortcoming in the state of 
protein folding theory is that while we have amassed 
a great list of rules (see Refs.7-” for a tiny sampling) 
from the over 100 available high-resolution protein 
crystal structures regarding how native proteins 
should look, these rules tend not to reject the many 
alternative conformations that the native state 
should not r e ~ e m b l e . ’ ~ ~ ’ ~  We have found the discrim- 
ination issue to be absolutely essential: not only 
must the potential favor the native, it must disfavor 
the alternatives, and the only way to test that is to 
examine many nonnative conformations. 

In this paper, we are concerned primarily with 
energetic development. Broadly speaking, our goal 
is to devise a potential function for folding any pro- 
tein, involving the smallest number of particles con- 
sistent with favoring the native conformation over 
alternative conformations. Regardless of the search 

algorithm, having to deal with fewer particles would 
generally be an advantage. There would be fewer 
degrees of freedom in the problem, and there would 
be fewer local minima. Clearly there are fewer ways 
to pack a cubic meter of bowling balls than a cubic 
meter of golf balls. Most work on the energetics side 
of the protein folding problem has concentrated on 
devising very accurate potentials that have a local 
minimum extremely close to the experimentally de- 
termined crystal structure for a number of com- 
pounds, as well as agreeing with observed vibrational 
and rotational spectra and enthalpies of sublimation. 
We, on the other hand, are willing to sacrifice local 
accuracy in order to facilitate global searches over 
conformation space. Note we do not presume that 
this potential function is necessarily “realistic” in 
terms of including correct dipole moments, standard 
van der Waals radii, and so on. Neither do we de- 
mand that the potential should be useful in simu- 
lating the folding process, but rather only the end 
result. In order to be applicable to many different 
proteins, the potential must take into account the 
amino acid sequence, so the coarsest subdivision of 
the polypeptide chain should be whole amino acid 
residues. In addition, the potential must have in- 
teractions depending on the amino acid types, as 
opposed to having a special interaction between res- 
idues 5 and 55, for example. The sequence separation 
between interacting residues can, however, be a fac- 
tor, so as to enforce reasonable secondary structure, 
which might differ from long-range packing pref- 
erences. In order to keep the polypeptide chain from 
collapsing to a point, some sort of steric repulsion 
is required between virtually all pairs of residues. 
This unfortunately forces the potential to have many 
local minima, but this is countered to some degree 
by using only a single particle per residue. To  main- 
tain a self-avoiding chain, we must have a potential 
that a t  least contains a sum of interactions between 
most pairs of residues, but some have argued that 
to properly represent the effects of solvation, inter- 
actions between triples of residues must also be in- 
~ l u d e d . ’ ~ ” ~  As we shall see, there is no detectable 
evidence for such interactions in protein crystal 
structures, so we have stayed with two-body inter- 
actions solely. 

In the functional form section, we will describe 
in detail the form of our proposed potential and how 
we were led to it. Then the parameter determination 
section explains our general method of adjusting the 
potential to agree with the native conformation of 
one small protein. Finally, the results section shows 
how the potential was tested. 
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FUNCTIONAL FORM 

As discussed above, the simplest representation of 
a polypeptide chain that is likely to  be generally 
usable for protein folding problems is to let each 
residue be a single “united atom.” We have chosen 
to  center that  single particle on the C“ atom, so that  
the virtual bond length between residues remains 
nearly constant a t  3.8 A. Although cis peptide bonds 
are known to exist in protein crystal structures, they 
are rare. and we neglect them. Side chains are rep- 
resented only to the extent that the residue particles 
have assigned amino acid types. Moreover, inter- 
dct ioiis t)et ween residues are taken to  depend on the 
distance between them, but not on orientation. 
Clearly one should be concerned whether this gross 
simplification of the polypeptide has made an ade- 
quate potential function possible. The answer is that 
lor the purposes of establishing approximate sec- 
ondary structure, such as tu-helices, and for tracing 
out the path o f the  backbone to  a resolution of 1.8 
A, we will see in the results section that i t  is suffi- 
cient. 

Three-Body Interactions 

Prelerences have long been observed in protein 
crystal structures for, say, hydrophobic residues to 
be near other hydrophobic residues more frequently 
than one would expect for random compact confor- 
mations of the same molecule.’”16 Can these pref- 
erences be adequately modeled in terms of pairwise 
interactions, or must one also consider clusters of 
three residues? 

Let I ’ (  ( I  I h )  be the conditional probability of event 
a occurring, given that event b has. Denote the 20 
different amino acid residue types by letters such as 
X ,  Y ,  and %, while 1 indicates two residues have a 
“iongrange” status with respect to each other (se- 
quence separation greater than 7 residues), and c 
indicates they are in contact ( C“-C” distance less 
than 10 A ) .  Then for any gven protein p ,  we eval- 
uate the conditional probability 

rz(XY1c;p) 
n(XY1; p )  

!’(XYlcJXYl;p) = (1) 

where r~ ( X  1.1~; p )  is the number of occurrences in 
protein p o t  pairs of residues of types X and Y that  
are Iongrange in sequence separation but in contact. 
Unfortunately, Eq. ( 1 ) depends on the geometry of 
protein p .  For example, if the chosen contact cutoff 
distance tl i = 10 A ) ,  and d % r p ,  the radius of p ,  

then P = 1, whereas P + d 3  / r :  for d + r,>.  Now the 
question at hand is whether P (  X YZlc I XYZI; p )  is 
significantly different from what one would expect 
on the basis of pairwise association conditional 
probabilities, but for any reasonable accuracy, this 
must be decided by a survey over many proteins, 
having a considerable range in sizes and >’napes. An 
approach we used earlier” was to fit each protein 
to a geometric model where one can calculate Eq. 
( 1 ) analytically, given the amino acid ctrmposition 
of the protein. Here we empirically determine the 
effect of protein size and shape for each protein, and 
then average together the adjusted results for all 
proteins. 

I t  is a general property of conditional prot)abilities 
that  the probability of three residues of types X, Y ,  
and 2, all longrange from each other, being all in 
contact with each other is given by 

P(XYZlcjXY’Z1;p) 

= P (  x Ylc 1 XYI; p )P (XZlc  I X Z l &  x Ylc; p 1 

x P ( Y Z l c j Y z 1 & x z l c & x Y 1 f ~ ; p )  ( 2 )  

but we need to express the two complex factors on 
the right side in terms of conditional probabilities 
we can evaiuate via Eq. i 1 1 .  Define protein-specific 
.:orrection factors f l  and f. Sy the equations 

and 

P (  Y Z k  YZ1& XZlC & XY1c;p) 

= f 2 P ( Y Z l c \ Y Z i : p )  ( 4 )  

One would expect f l  < 1 because Z and Y would tend 
to exclude each other sterically from the neighbor- 
hood of X. Similarly, there should he a more pro- 
nounced bias for f 2  > 1 because Y and Z are already 
restricted to  be near X. Thus u can rewrite Eq. ( 2 )  
in terms of f ; ,  f L ,  and conditional probabilities we 
can readily measure: 

P (  x YZlC I Xk’Z1; p )  

= P (  x Ylc I XY1; p )  P (  XZlC 1 XZI;  p )  

x P ( Y Z l c I Y Z l ; p i j , f 2  15) 

Now if each native protein conformation is such that 
apparently only pairwise residue association pref- 
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erences are important, f and f 2  should depend only 
on the conformation of p ,  and not on X ,  Y ,  and Z .  
Therefore for each p ,  we can estimate f l  and f z  by 
averaging over all residue types: 

P(YZ1cj YZ1& XZlC & X Y 1 c ; p )  
( 7 )  ( P(YZ1CI Y Z 1 ; p )  LYZ f p 2  = 

The procedure is now straightforward: for each 
protein p ,  estimate f p l  and f p z ,  and then for all triples 
of residue types estimate the right-hand side of Eq. 
( 5 ) ,  using Eq. ( 1). Alternatively, one can directly 
estimate the left-hand side of Eq. (5)  by surveying 
the crystal structures. In any case, we are making 
the best estimates" of the means of various ob- 
servations xi by the corresponding sample mean over 
a limited set of n proteins, and of the standard de- 
viations (T by 

over the sampling of proteins. In a survey over 22 
proteins from the Brookhaven Protein Data Bank l 9  

(identification codes labp, lapr, lctx, llyz, lpcy, 
lrhd, lsn3, Zadk, 2cna, 2fd1, Xsns, 3cpv, 3mbn, 3pgk, 
3rxn, 3tln, 4adh, 4cyt, 4fxn, 4pti, 5cpa, and 8pap), 
there was never a case where the left and right sides 
of Eq. (5)  differed by more than 2 standard devia- 
tions. We therefore conclude there is no compelling 
evidence at  present to include anything more than 
residue pair interactions in our rough potential 
function. 

Form of Terms 
Having now settled on a potential function that 
consists of a sum of pairwise interaction terms, we 
must decide on the functional form for each term. 
The guidelines are simplicity, ease of calculation, 
and at  least minimal simulation of physical reality. 
If two residues are distant enough in sequence, they 
can come close together in space, but never closer 
than 4 A for obvious steric reasons. On the other 
hand, when the a-carbons are more than 10 A apart, 
there is generally little interaction, and association 
preferences are not apparent. A simple and easy to 
calculate interaction term that fulfills these criteria 
is 

A B  
e ( d , ;  A ,  B )  = - - - 

d ;  d ;  

where d ,  is the distance between the two interacting 
residues, m > n > 0 are (generally even) integers, 
and A ,  B 2 0 are adjustable parameters discussed 
in the parameter determination section. The choice 
of A and B determines the optimal separation p and 
the well depth at  that separation t .  Clearly, e + -0 
as d ,  --* co and e - co as d,  + 0, but the rate of 
these trends is governed by m and n. When m = 1 2  
and n = 6, even for the best case of p = 4 A, the 
interaction a t  10 A is 0.8% as strong as a t  d,, = p. 
We have chosen m = 12 and n = 10, so that the 
strength a t  10 A is only 0.05%, and only close con- 
tacts have significant contributions to the total po- 
tential value. 

Instead of using A and B ,  one can easily rewrite 
Eq. ( 9 )  for our choice of m and n in terms of t and 
p directly: 

As we will detail in the next topic, there will be par- 
ticular values of t and p associated with certain res- 
idue types and sequence separations. It is easy to  
verify that for given protein crystal structures (i.e., 
fixed d , s ) ,  the choice of one of these ps that mini- 
mizes the sum of all terms where it is used is given 
by 

10 1 / 2  

P = [S] 
Suppose for a particular class of interaction, we 

let t = 1 and then adjusted the corresponding p so 
that the sum of the potentials of several crystal 
structures is a minimum with respect to p (not nec- 
essarily with respect to varying the residue coordi- 
nates!). If there is a wide spread in the d,s, then p 
will tend to be close to the smallest values of d,, and 
many interactions will contribute only small nega- 
tive values to the total potential. If we could choose 
the set of interactions such that there is little spread 
in the d ,  s, then the corresponding optimal p would 
tend to leave most interactions with little to be 
gained by moving the residues of the crystal struc- 
tures. 

There is one other technical detail concerning the 
functional form of the interaction terms. If we model 
the chain connectivity, that is, the interaction be- 
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tween sequentially adjacent residues, with Eq. ( l o ) ,  
then if the chain is somehow broken during a cal- 
culation with the ends widely separated, there is lit- 
tle force toward rejoining it. Therefore, for these 
interactions alone we use a simple harmonic func- 
tion: 

Residue Classification 

Having settled on a functional form for each painvise 
interaction term, the problem now is to group in- 
teractions according to the residue types involved 
and their sequence separation so that there will be 
a different t ,  p pair for each group, the values of 
which will be determined in the next section. It is 
desirable to keep the number of adjustable param- 
eters relatively low, both to avoid “overfitting” the 
data, and also to keep the fitting process from seizing 
on some statistically unusual feature of the training 
data set, resulting in a parameter set that misrep- 
resents the folding preferences of proteins in general. 
Our heuristic is to initially set all ts to 1, and then 
change the interaction groupings so that the poten- 
tial value resulting from Eq. ( 11 ) is minimal. 

As in our earlier work, 2o we make the assumption 
that all interactions between residues i and i + 1 for 
all i fall in the same unique group, regardless of the 
types of the two residues, and indeed the functional 
form is the special Eq. (12) .  Interactions between 
residues i and i + 2 are assumed to depend on the 
type of residue i + 1, resulting in 20 t ,  p pairs to be 
determined. Interactions i, i + 3 depend on the types 
of residues i + 1 and i + 2; all longer range inter- 
actions are grouped together as “longrange,” and 
depend on the types of the two residues themselves. 
There would be 20 X 2 1 / 2  = 210 residue pair types 
to consider for i, i + 3 interactions, and another 210 
for longrange, resulting in 420 more t, p pairs, an 
unacceptably high number. If, however, we lump 
residue types into classes, we could greatly reduce 
the number of adjustable potential parameters. 

Clearly, it would be desirable to have a systematic 
method for grouping residue types into classes in 
such a way as to facilitate constructing a good po- 
tential function. Our approach, called the minimum 
potential classification algorithm, is conceptually 
simple. Consider the crystal structures of 17 proteins 
(same as the 22 listed above plus lppt, except labp, 
lapr, 2cna, 2fd1, 3pgk, and 8pap each have a few 
C“-C“ distances less than 3.0 A that badly affect 
our short distance biased averages). Suppose we 

placed all residues into a single type class and hence 
only a single pair type class, so that all i, i + 3 in- 
teractions of these proteins a t  unit well depth and 
optimal p contribute -827.97 units to the sum of 
the proteins’ potentials. There are 2” = 1,048,576 
ways to group the 20 residue types into two classes 
and hence have three pair type classes ( 1 - 1, l -2 ,  and 
2-2). The best of these numerous but manageable 
combinations produces a summed potential of 
-850.03, a substantial improvement brought about 
by now having three ps instead of one, each being 
more closely representative of the sorts of distances 
observed in the crystal structures for that pair type 
class. The algorithm continues on to subdivide each 
of the two residue classes into two subclasses, and 
so on. We arbitrarily stopped the process with four 
residue classes (and hence 10 pair type classes) for 
i, i + 3 interactions and eight for longrange (hence 
36 pair type classes). Table I summarizes the op- 
timal residue classes, designating the classes by !I, 
1, 2, . . . , and gives the potential contributions. 

One should view these residue classes as simply 
an entirely empirical trick to reduce the number of 
adjustable parameters in the potential in such a way 
that these parameters, particularly the ps, can be 
estimated in advance, and that proteins would tend 
to be under relatively low stress according to this 
potential. For example, we find in the final 8-class 
subdivision of residues in longrange interactions, 
that the smallest optimal p is 3.99 A, namely for 
class 0 to class 0 interactions. The last row of Table 
I shows that class 0 is { G, P, R}  , a rather unlikely 
combination, but it turns out there are many close 
GG and G P  longrange contacts, and relatively few 
GR, PP,  PR, and RR interactions at  all. 

To summarize, we have chosen our potential 
function to be a sum of pairwise interactions, each 
term given by Eqs. (10)  and ( l a ) ,  and for i, i + 3 
and longrange interactions, the residue types t are 
mapped into the final classes c given in Table I, and 
these are in turn mapped into the 10 and 36 pair 
classes, respectively. The mapping of individual res- 
idue class numbers c, and c, into pair class pi/ is sim- 
PlY 

for c, 2 cl (13)  

For each of these 1 + 20 + 10 + 36 = 67 classes of 
interactions, there correspond an t and a p,  the val- 
ues of which will be determined in the next section. 
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Table I 
Pair Type Classes (See Text for Further Explanation) 

Grouping Residues into Classes for Minimal Scatter of Distances Within Residue 

Interaction Potential G A V L I C M F P Y H W S T K R D N E Q 

i , i + 3  -827.97 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0  
-850.03 0 0 0 0 0 0 1 0  0 0 0 0 0 0 0 1 0  0 0 0 
-866.80 0 2 2 2 0 2 1 0  0 2 0 0 0 0 0 1 2  0 2 2 

Final -874.01 0 2 2 2 3 2 1 3  0 2 3 0 0 3 3 1 2  3 2 2 

Longrange -1078.32 
-1379.84 
-1459.81 
-1525.05 
- 1550.89 
-1579.80 
- 1641.65 

Final -1659.39 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1  
0 1 1 2 1 1 2 2 0 1 2 1 1 1 1 0 2 1 2 1  
0 1 3 2 3 3 2 2 0 1 2 3 3 3 1 0 2 1 2 3  
0 1 4 2 3 3 2 2 0 1 2 4 4 3 1 0 2 1 2 4  
0 1 4 2 3 3 5 2 0 1 5 4 4 3 1 0 5 1 5 4  
0 1 4 2 3 3 5 2 0 6 5 4 4 3 6 0 5 1 5 4  
0 1 4  2 3 3 5 2 0 6 5 4 4 3 6 0 5 1 5  7 

Thus the total potential value of a protein, given its 
C" coordinates and amino acid sequence, is 

straints of three-dimensional geometry. The easiest 
way to see how this leads to trouble is by way of a 
simple example. Let R denote n-dimensional space, 
so that real molecules are in 3" and the real line is 
3'. Suppose we have a molecule in R1 consisting 
of three atoms placed in sequence a t  0, x > 0, and y 
> x .  Then our total potential is just E ( x ,  y ) = e ( x )  
+ e ( y )  t- e(V - x ) .  taking all three interactions 
to be of the same type. If the form of e is e ( r )  
= k (  r - p ) ? ,  then in order for the native structure 
xnat, ynat to be a potential minimum. we must have 
xnat = 2 p / 3  and yna! = 4p/3, independent of k > 0. 
Clearly this cannot aiways be done for an arbitrary 
native conformation. 

To  put i t  more generally, suppose we group the 
terms in Eq. ( 14)  according to the class of inter- 
action k = 1, . . . , 67 and call the sum of all terms 

where the subscripts on the parameters indicate 
what class of interaction they are involved in, and 
the dependency on residue type is indicated by t s  in 
parentheses. 

PARAMETER DETERMI NATlO N 

Exact local Agreement with Native 

The task now is to somehow adjust the 134 ts and 
ps so that the potential favors in some sense the 
native conformation of a t  least one protein, which 
we have chosen to be avian pancreatic polypeptide2: 
(Brookhaven file "lppt").  Since lppt has only 36 
residues, it would seem trivial to fit a structure hav- 
ing 3 X 36 - 6 = 102 degrees of conformational free- 
dom by adjusting 134 parameters. First. such an ar-  
gument is valid only locally in a nonlinear fittilig 
problem like this; second, there are some parameters 
that  are involved in many interactions; and third, 
the interresidue distances in these interactions are 
linked together in a complicated way by the con- 

for class R q,,. Thus Eq. ( 14)  becomes 

I n  

E ( x )  = C 171. (15) 
k -  1 

where x is the vector of all coordinates of all residues 
of the protein, and we have numbered the classes 
occurring in the protein 1 through m Consider D ,  
the analog of the rigidity m a t r i ~ , ~  defined as a Ja- 
cobian by 

( D ) ,  = - 

If the native structure is to be a minimum in the 
potential, the net force on each residue must be zero, 
or in other words, all row sums of D must be zero. 
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In fact, the null space of D is the set of all infini- 
tesimal motions that leave the potential unchanged. 
These include rigid translations and rotations, but 
thev mav include conformational changes as well. 
In our case with slightly less than 67 rows (some 
classes of interactions are not present in some small 
proteins ) and 108 columns for lppt,  we are unable 
to restrict. the null space to only rigid translations 
and rotations. Our experience over the years with 
several different native proteins and various clas- 
sificat ions of interactions having various functional 
forms has been that we are never able to force the 
gradient of the potential to zero a t  the native con- 
formation without making the potential fle.t every- 
where. Minimizing the magnitude of the gradient of 
the native lppt by adjusting the parameters starting 
from unit well depths and optimal ps from the pro- 
tein survey, results in a set of parameters such that 
minimization with respect to coordinates starting 
from the native moves 3.17 A away. In other words, 
reducing the gradient a t  the native does not, tend to 
even produce a perturbed structure near the native. 

Approximate Global Agreement with Native 

If  we cannot adjust the parameters to make exactly 
the n:iLive structure a potential minimum, then there 
must IW a minimum at least near the native thzt 
caii he reached by local unconst,rained optimizatior, 
starting ai the native. Denote this conformation bv 
“pert urbeci” or “pert.” Since steric repulsions pro- 
duc.e inany local minima that tend to be fairly closely 

spaced in conformation space, the existence of a 
perturbed structure is actually rather trivially true. 
What is much less trivial is that any alternative 
conformation (denoted by “alt”) should have a 
worse (higher) potential value than the perturbed 
one. In order to establish a general slope and some 
broad predictive power to the bumpy potential sur- 
face, we further demand that the further away the 
alternative structure is, the worse its potential 
should be. 

E(a1t)  - E ( p e r t )  2 fi(alt, per t )  ( 1 7 )  

where the measure of distance in conformation space 
we use is the rms interresidue distance deviation 

In our earlier work2’ we used many constraints of 
the form of Eq. (17)  as linear inequalities with re- 
spect to adjustable A ,  R parameters in Eq. ( 9 ) .  Al- 
though we never produced an infeasible set of in- 
equalities in this way, the syst,em tended to become 
ill-conditioned as successive alternative conforma- 
tions added their constraints. in  our hands, deaiinp 
with t and p parameters has proven to be much better 
behaved. Although E is iinear in the ts but nonlinear 
in the ps, we have found it essential to xijust both, 

A nontrivial 
,- .. . .  . .  

~ . .  E 

confomiation 
nat pert alt  

Figure 1 The original potential surface has an alternative conformer that is lower than 
the  perturbed one. A trivial type of parameter change merely shifts to  a new violating 
alternative conformer, whereas a nontrivial parameter change eliminates the offending 
conformer. 
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even though that means turning a linear program- 
ming problem into a nonlinear one. 

Suppose we have some reasonable starting values 
for the parameters, such as all t = 1, and p s  given 
by Eq. ( 11 ) from a protein survey. Then local min- 
imization of E starting a t  the crystal structure of 
lppt  produces a nearby perturbed structure (6 (  nat, 
pert) = 2.38 A ) ,  and minimization from many ran- 
dom starting conformations may eventually turn up 
an alternative conformation that violates Eq. ( 17) .  
It is usually easy to adjust the parameters so that 
the inequality, viewed as a function of just the pa- 
rameters for fixed conformations, is no longer vio- 
lated. However, the result is generally as shown in 
Figure 1, where the new potential surface has a new 
alternative conformation that still constitutes a vi- 
olation. One can iterate this procedure, building up 
a data base of hundreds of inequalities, a few of 
which are active in determining the next set of pa- 
rameters. We have found it much more effective to 
consider each inequality as a function of the param- 
eters, the coordinates of the alternative conforma- 
tion, and the coordinates of the perturbed confor- 
mation. Then the trivial solution of Figure 1 is 
avoided, and one can proceed with only a single al- 
ternative conformer. 

After trying many variations on this theme, we 
finally hit upon the following nonlinear program as 

the best formulation of the parameter determination 
task: 

minimize 6( nat, pert) 

E(a1t) - E(pe r t )  2 6(alt, pert) 
VE(per t )  = 0 

1 I t, I 10 
subject to VE(a1t) = 0 (19)  

Vi i Pmin.1 I pi I 10 vi 
where the coordinates of the alternative and per- 
turbed structures are variable (but not the coordi- 
nates of the native), as are all ts and ps. The prnln,& 
are derived from Eq. (11) and range from 4 to 6.5 
A. The restrictions on the ts and ps serve to avoid 
absurd and unbounded solutions, but they are not 
overly constraining since we indeed have found a 
suitable parameter set. The nonlinear program can 
be expressed in words as follows: “Find a reasonable 
set of parameters so that even allowing the alter- 
native and perturbed conformations to shift so as 
to remain minima, the alternative’s energy remains 
worse than that of the perturbed by a margin at  
least as great as their difference in conformation 
space; in addition, try to keep the perturbed con- 
formation close to the native.” We have solved Eq. 
(19)  by augmented Lagrangians’2,23 for lppt a t  a 
cost of about 110 h CPU time on a Sun 4/280. Since 

-\ 
‘7 

Figure 2 Stereo pairs illustrating the C”  traces for three conformations of lppt. At the 
top is a very compact nonnative structure typically favored by energy embedding (potential 
= -399.6, rms deviation to  the native = 7.52 A ) ,  the middle is the best conformation ever 
found (-406.9, rms 1.84 A ) ,  and the bottom is the crystal structure of lppt .  Structures are 
shown in roughly similar orientations with the N-terminus below, the C-terminus above, 
and the a-helix running from left to  right. 
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this is a nonlinear program, the result depends on 
the starting point, and although failure to converge 
is not proof that the constraints are mutually in- 
consistent, successfully finding a solution is proof 
that at least one does exist. One can begin by setting 
all c = 1 and all p s  from Eq. ( 11) , finding the per- 
turbed conformation by local minimization from the 
native, and locating the alternative conformation 
by minimizing from random structures until one is 
found that violates Eq. (17) .  Solving Eq. ( 19) pro- 
duces a new set of parameters and slightly revised 
( 6  around 0.2-0.3 A )  perturbed and alternative con- 
formers. Another random search might turn up a 
substantially different troublesome alternative, re- 
quiring resolving the nonlinear program with two 
alternative structures, etc. In practice, we find that 
simply substituting the new alternative for the old 
produces a second set of parameters that satisfy 
both. In fact, we generated a long series of parameter 
sets by solving other sorts of nonlinear programs, 
each time using the results of the previous try as 
the starting parameters for the next calculation. 
When we finally hit upon Eq. (19) ,  consideration 
of only two successive alternative conformations 
produced the final parameter set, starting from the 
best parameters we had found up until then. 

RESULTS 

In the course of developing Eq. (19) ,  we produced 
many alternative conformations of lppt, most of 
them clustered near the native, but many having 
quite different conformations ( 6  = 6-7 A ) .  The final 
parameter set resulted from solving the nonlinear 
program, using as reference two successive alter- 
native conformers belonging to this class of quite 
different structures. Native lppt has a long straight 
helix, a tight bend, and then an antiparallel extended 
strand packed alongside the helix. In general, the 
very different alternative structures that the poten- 
tial function tends to favor have the helix broken 
in the middle, the two halves packed together as an 
antiparallel helix-turn-helix cluster, and then the 
remainder wraps around the core in a rather ex- 
tended fashion ( see Figure 2 ) .  The final parameters 
are given in Table 11, where the interactions are la- 
beled as in Eq. ( 14) .  

Validating these parameters is necessarily some- 
what inductive, since one cannot thoroughly search 
the entire conformation space of lppt. Locally, we 
can safely say that the native has a potential value 
of -343.6, and it is not a local minimum. The per- 
turbed (near-native minimum) has depth -388.8 at 

Table I1 Final Parameter Set with Interaction Labels Corresponding to Eq. (14) 
~ 

Interaction t P Interaction t P Interaction f P 

I 

2,1 
" 2  
2,3 
2,4 
"5 
2,6 
2,7 
2,8 
2,9 
',I0 
2 , l l  
2.12 
2,1:3 
2,14 
2,15 
2,16 
?,I7 
, ,I8 
',19 
2,20 

1.01 

2.51 
2.22 
2.25 
3.32 
2.11 
1.00 
1.00 
1 .00 
1.88 
1.95 
2.29 
1.00 
3.58 
1.06 
1.00 
4.71 
2.09 
2.21 
2.00 
1.90 

3.82 

7.44 
6.62 
5.61 
5.57 
5.81 
5.57 
5.36 
5.47 
5.72 
5.81 
6.47 
5.43 
6.78 
5.96 
5.43 
5.37 
5.49 

5.73 
5.66 

5.88 

4.83 8.27 
1 .oo 5.30 
1.00 5.27 
1.00 5.05 
1.00 4.61 

10.00 5.17 
4.69 8.92 
5.53 4.99 
8.66 4.99 
1.00 5.13 

1.02 9.91 
1 .a9 5.26 
1.00 5.65 
1 .OO 6.84 
1.04 6.86 
1.02 6.11 
1 .oo 4.23 
1.04 7.46 
1.21 5.40 
1.00 4.97 
4.27 6.23 
1.00 5.14 

1,13 
1,14 
1,15 
1,16 
1,17 
1,18 
1,19 
420 
1,21 
1,22 
1,23 
1,24 
1,25 
1,26 
1,27 
1,28 
1,29 
1,30 
1,31 
1,32 
1,33 
1,34 
1,35 
1,36 

1.01 9.85 
1.55 5.87 
1.12 5.22 
1.01 5.66 
1.10 5.39 
1.18 5.59 
1.09 5.94 
1.00 5.61 
1.00 4.99 
3.03 5.74 
1.02 6.75 
1.96 5.83 
1.04 9.80 
1.01 6.46 
1.00 7.83 
1.05 4.80 
1.01 8.95 
6.74 6.14 
3.59 7.55 
1.02 4.96 
1.72 5.85 
1.42 6.02 
1.94 6.02 
3.07 10.00 
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Figure 3 A stereo pair showing the best minimum and the crystal structure of lpp t  
(middle and lower structures in Figure 2 )  with the helices superimposed. In our best minimal 
structure, the C-terminus of the  helix continues a n  extra turn, and the extended strand 
hugs the helix more closely. 

an rms deviation from the native of only 1.31 A. 
Local minimization starting from each one of our 
library of 337 alternative conformations turned up 
a best conformation a t  -406.9 and rms 1.84 A (Fig- 
ures 2 and 3) .  A convenient way to produce many 
low potential conformers is with the EMBED al- 
gorithm,' where the upper and lower bounds are both 
taken to be just the corresponding interaction p ,  ex- 
cept for the longrange upper bounds, which were set 
to infinity. For lppt  there are a few violations of'the 
triangle inequality, and even after bound smoothing, 
trial sets of interresidue distances tend to be far from 
embeddable, but nonetheless, trial coordinates can 
be produced. Then instead of refining these by min- 
imizing the violations of the original distance 
bounds, we simply minimized the potential. Gen- 
erating 400 additional structures in this way pro- 
duced a t  best minima of -380 and rms of 4.5 A. 

Energy embedding2" proved to be difficult with 
this potential. The first step involves placing the n 
residues in Rn- I ,  where there is probably only one 
minimum, and it will be extremely good because the 
molecule is enjoying the maximal number of con- 
formational degrees of freedom. For Ippt, n = 36 
and the optimal set of trial distances is found by 
simply choosing the p for each interaction. Just as 
in the EMBED algorithm, we calculate the corre- 
sponding 36 X 36 metric matrix, and now find all 
36 eigenvalues and eigenvectors, instead of just the 
three largest eigenvectors for embedding in 72". If 
all eigenvalues are strictly positive, one can calculate 
coordinates in the usua.1 way that  agree completely 
with the trial distances. We found there was of 
course one zero eigenvalue (only 35 dimensions are 
necessary for 36 points), but there were several sub- 
stantial negative eigenvalues, indicating that the 
trial distances are not embeddable, i.e., do not cor- 

respond to a set of coordinates in any dimensional 
Euclidean space. Nevertheless, we calculated trial 
coordinates by using the absolute values of the ei- 
genvalues, thus ensuring the coordinates spanned 
R Subsequent minimization of the potential with 
respect to all coordinates produced a very low min- 
imum (-638) and a very compact structure (max- 
imum interresidue distance of 11 A), but it only 
spanned R It is easy to see that this is a feature 
of nonembeddable ,os, leading to stressea confor- 
mations in low-dimensional spaces. For example, 
suppose we had three points forming a triangle in 
the plane initially, but that  > pi:, + P ? : ~ .  Then 
minimizing the potential results in a linear config- 
uration where point 2 is in the middle, the 1,2 and 
2,3 distances are stretched, and the 1,3 distance is 
compressed. In any event, energy embedding then 
proceeds from the high-dimensional minimum to- 
ward R:' by gradually driving the fourth, fifth, etc., 
coordinates toward zero while otherwise keeping the 
potential as low as possible. The best we could 
achieve was -399.6 and rms of 7.52 '4 (see Figure 
2 ) .  Rotating the initial structure in in various 
ways failed to produce either a lower potential value 
or a better rms deviation from the native. 

At this stage oft,he development, i t  would be fair 
to say that we have found a very good potential 
function for mimicking the native conformation of 
lppt ,  and that we have tested its conformational 
properties ( a s  opposed to its simulation of vibra- 
tional spectra, etc.) extraordinarily thoroughly, par- 
ticularly in a global sense. In spite of representing 
entire amino acid residues by single isotropic 
spheres, we were able to build in quite realistic sec- 
ondary structural preferences and roughly correct 
tertiary folding. The form of the  potential is appli- 
cable to any protein, and it is conveniently quick to 
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evaluate and minimize, due to the very small number 
af \:iriables used to represent the conformation. 
Furthermore, the method used to determine the pa- 
rameterh is rather objective and can be extended to 
deveioping a potential that  will be useful for more 
than  one protein. Such extensions and testing the 
predictive power of these potentials are the subject 
of work currently underway in our laboratory. 

In ortier to present this account of how the problem was 
solved in the end, a great amount of effort was expended 
in  exploring leads tha t  did not work out. We would par- 
ticularly like to  thank M. Oobatake, V. N. Viswanadhan, 
and P. K. Ponnuswamy for their hidden but essential con- 
tributions to  this project over the years. This .work was 
supported by grants from the National Institutes of Health 
( (;M371'L:i), the National Science Foundation (DMB- 
870.5OOti 1 .  and the University of Michigan Program in 
Protein Structure and Design. 
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