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SYNOPSIS 

In this paper we study the statistical geometry of ensembles of poly (L-alanine) confor- 
mations computed by several different distance geometry algorithms. Since basic theory 
only permits us to predict the statistical properties of such ensembles a priori when the 
distance constraints have a very simple form, the only constraints used for these calculations 
are those necessary to obtain reasonable bond lengths and angles, together with a lack of 
short- and long-range atomic overlaps. The geometric properties studied include the squared 
end-to-end distance and radius of gyration of the computed conformations, in addition to 
the usual rms coordinate and 4/I) angle deviations among these conformations. The distance 
geometry algorithms evaluated include several variations of the well-known embed algo- 
rithm, together with optimizations of the torsion angles using the ellipsoid and variable 
target function algorithms. 

The conclusions may be summarized as follows: First, the distribution with which the 
trial distances are chosen in most implementations of the embed algorithm is not appropriate 
when no long-range upper bounds on the distances are present, because it leads to unjus- 
tifiably expanded conformations. Second, chosing the trial distances independently of one 
another leads to a lack of variation in the degree of expansion, which in turn produces a 
relatively low rms square coordinate difference among the members of the ensemble. Third, 
when short-range steric constraints are present, torsion angle optimizations that start from 
conformations obtained by choosing their angles randomly with a uniform distribution 
between -180” and +180° do not converge to conformations whose angles are uniformly 
distributed over the sterically allowed regions of the 4/I) plane. 

Finally, in an appendix we show how the sampling obtained with the embed algorithm 
can be substantially improved upon by the proper application of existing methodology. 

INTRODUCTION 

The computation of biomolecular conformation 
from two-dimensional nmr data is usually accom- 
plished by means of what are known as distance 
geometry algorithms 1 ~ 4  followed by various refine- 
ment procedures based on potential energy 
 function^^.^ (see Refs. 9 and 10 for reviews). Some 
comparisons of the various procedures available have 
been a t t e m ~ t e d , ~ ” ~  but a t  this time the methodology 
is evolving a t  such a rapid pace as  to render these 
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sorts of comparisons obsolete almost before they are 
in press. One general observation that has been 
made, however, is that distance geometry algorithms 
that generate their starting conformations by “dis- 
tance space” methods, i.e., the embed algorithm 12~13 
and its many variations, produce ensembles of con- 
formations that are relatively expanded and whose 
rms coordinate deviations (RMSD) are substan- 
tially smaller thzn those produced by “torsion space” 
refinements. The subjective impression of similarity 
one gets from looking at  the resultant superimposed 
conformations has lead several investigators to con- 
clude that the embed algorithm intrinsically pro- 
duces a “biased’ sampling of conformation space. 

The purpose of this paper is to report some com- 
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putational experiments we have performed in order 
to evaluate the situation in an objective way, to de- 
termine the reasons behind it, and to show how they 
can be largely eliminated. For our evaluation, we 
make use of the statistical properties of polypeptide 
chains in the random coil state that have been most 
extensively studied in the past, l4 in addition to the 
usual RMSD. Since the statistical behavior of most 
of the geometric properties of polymer chains can 
be calculated from basic theory only with very simple 
types of distance constraints, the only constraints 
present in these calculations are those necessary to 
achieve a lack of unacceptable short and/or long- 
range atomic overlaps, in addition to reasonable 
bond lengths and angles. By calculating these same 
geometric properties for ensembles of polyalanine 
as computed by both torsion space as well as distance 
space algorithms, we are able to quantitatively access 
the nature of the sampling obtained with the various 
alternatives, a t  least with such simplified con- 
straints. In an appendix, we describe some simple 
modifications to the “classical” embed algorithm and 
show that they can significantly improve its sam- 
pling properties. 

After the computations reported in the main part 
of this paper were completed, we learned that a paper 
on the sampling properties of distance space meth- 
ods with biopolymers had been submitted.15 The au- 
thors of that paper concentrate upon the average 
RMSD with respect to the main-chain N, C“ ,  and 
C’ atoms in their computed structures, together with 
the average unsquared end-to-end distances. Their 
observations for these quantities are basically in ac- 
cord with those reported here, and they have also 
shown that similar results are obtained with nucleic 
acids. They did not study the sampling obtained with 
torsion space methods as well as several established 
improvements upon the basic distance space ap- 
proach, however, and their conclusions are based 
upon the observation of a relatively limited variety 
of statistical properties, which also differ from those 
for which theoretical predictions are currently 
available. 

GEOMETRIC PROPERTIES A N D  
THEIR STATISTICS 

The statistics of two different kinds of geometrical 
properties were evaluated for each ensemble of com- 
puted conformations. The first type are intrinsic 
properties of single conformations within the en- 
sembles, while the second type are measures of the 
dissimilarity between pairs of conformations within 

the ensembles. In this section we describe these geo- 
metric properties in detail, along with what is known 
about their statistical behavior. 

Chain Dimensions 

The theory of polymer statistical mechanics, as de- 
veloped over the last 50 years in large part by Paul 
Flory and co-workers, 1 6 3 1 7  concentrates on those 
geometric properties of polymer chains that are 
amenable to  theoretical calculation as  well as to ex- 
perimental verification. Predominant among these 
are the mean square distance between the ends of 
the polymer chain 

where f ( r l ,  . . . , r N )  is the configurational proba- 
bility density function and the mean square radius 
of gyration 

N 

where ro = N-’ c ri is the centroid of the config- 

uration (see Refs. 14 and 19 for accounts). 
Since f = Z -‘exp ( - E /  kT ) is given by a Boltz- 

man distribution in the configuration dependent 
potential energy E ,  the exact values of these quan- 
tities of course depend upon this energy function, 
and in particular upon the strength of the interac- 
tions of the polymer chain with itself relative to the 
strength of its interactions with the surrounding 
solvent. The asymptotic dependence of the mezn 
square end-to-end distance upon the chain length 
N - 1, however, is known in three important limiting 
cases: 

i= 1 

1. In poor solvents in which the attractive in- 
teractions of the chain with itself are pre- 
dominant, polymers exist in a “molten glob- 
ule” state in which simple dimensional ar- 
guments show that ( (rl  - rN) ’ )  - Nt 
(where “ -” means “proportional to”) .  

2. In good solvents in which the repulsive in- 
teractions of the chain with itself predomi- 
nate, it has been shown that ( ( rl - rN) ’) - N%.20,21 This expansion of the coil is known 
as the excluded volume effect. 
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3. In a 8 solvent in which repulsive and attrac- 
tive forces are exactly balanced, the coil be- 
haves like a random walk through space sub- 
ject to the constraints imposed by the "short- 
range" interactions, i.e., chain connectivity, 
bond angle rigidity, etc. In this case the end- 
to-end vector has an asymptotic Gaussian 
distribution whose expected mean square 
value is ( (r l  - rN)') - N .  

Finally, in the limit as N -+ co, the mean square 
end-to-end distance and the mean square radius of 
gyration are related simply by ( (r l  - rNI2) = 6 .  
(R;;) .  See Ref. 22 for a recent discussion. 

The constants of proportionality as well as the 
exact values of the end-to-end distance and/or ra- 
dius of gyration for finite values of N can be com- 
puted from the basic theory only in case 3, in which 
the long-range interactions can be negle~ted. '~ . '~  
These calculations are also open to direct experi- 
mental verification, since the radius of gyration can 
be determined by scattering experiments and 8 
conditions can be obtained by adjusting solvent 
mixtures until t,he second osmotic virial coefficient 
vanishes. Surprisingly, the calculations are actually 
easier for polypeptides than they are for most poly- 

This is a consequence of the fact that, due mers.2 i.2.5 

to the large separation between adjacent amino acid 
residues imposed by trans peptide bonds, the average 
total energy due to short-range interactions can be 
written as a sum of contributions depending only 
on the conformational state of each residue. 

In particular, for all-trans polyglycine and poly- 
alanine chains whose conformational states can be 
characterized by means of their 4 and $ angles 
alone,'" 

where e is the potential energy of a single residue in 
the chain expressed as a function of its 4 and $ 
angles. Thus, the average state of each residue can 
be used to compute the average dimensions of the 
polypeptide, regarded as a chain of virtual bonds 
between tu-carbons. Extensive studies on polygly- 
cine, 1) and L polyalanine as well as copolymers 
thereof have been carried out by Brant, Miller, and 
Flory.'i ''I In order to obtain a dimensionless quan- 
t i ty less dependent on chain length, in this work 
they have concentrated on the characteristic ratio 
obtained by dividing the mean square end-to-end 
distance by the value expected for an unconstrained 

freely jointed random chain of links equal to the 
virtual bond length of 3.80 A, i.e., 

Similarly, we report the squared radius of gyration 
normalized by the value expected for a freely jointed 
chain 

6 . ( R ; )  7 2 ( N )  = 
3.802(N - 1) 

If e = 0, i.e., if one has a uniform distribution of 
4 and + angles, then the limit u 2 ( c o )  = 1.93 
Due to its symmetry, this value is close to the ex- 
perimental value of u 2 ( a )  for polyglycine as well 
as to the value calculated when the short-range po- 
tential e includes all the usual torsional, van der 
Waals and electrostatic  interaction^.^^'^^ The situ- 
ation for poly (L-alanine) is drastically different, 
where both the calculated and observed values of 
.'(a) are 9 & 1. Moreover, unlike polyglycine, the 
calculated value depends strongly upon the dielectric 
constant, and declines to only 3 when electrostatic 
terms are neglected ~ompletely.~' Earlier results " 
indicate that u2 (co ) is only moderately affected by 
the neglect of the attractive van der Waals inter- 
actions, and is about 4 when both electrostatic and 
attractive van der Waals interactions are ignored. 
This last case is probably the one most directly 
comparable to the geometric calculations reported 
here. Finally, we note that Brant and Flory's results 
imply that the asymptotic limit of the characteristic 
ratio u' is attained substantially faster than the cor- 
responding ratio 7' for mean square radius of gy- 
ration, and is essentially constant when the number 
of residues N 2 40. 

In this work we also evaluate the second moments 
or standard deviations of the squared end-to-end 
distances and squared radii of gyration. For a more 
detailed examination of the distribution of the end- 
to-end vectors, one cannot use a laboratory frame 
because the vector averages to zero when the ori- 
entation of the molecule as a whole is random. 
Therefore m e  uses a frame whose x axis is directed 
along the first virtual bond, whose y axis lies in the 
plane of the first two virtual bonds and such that 
the second virtual bond has a positive y component, 
and whose z axis complete a right-hand frame. Un- 
like the mean square end-to-end distance, the end- 
to-end vector in this molecule frame, known as the 
persistence vector, has a finite average asymptotic 
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~ a l u e , ~ ’  which we attempted to estimate for our en- 
sembles. The detailed distribution of persistence 
vectors and their squares is relatively difficult to  
calculate from first principles even in the absence 
of long-range interactions, 31 although they can be 
estimated by Monte Carlo  technique^.^'-^^ The size 
of the ensembles that could be generated with the 
methods described in this paper, however, were not 
large enough for us to obtain a meaningful estimate 
of the distribution of the persistence vector. 

Dissimilarity Measures 

The most commonly used measure of dissimilarity 
between two different conformations of the same 
biopolymer is the RMSD, which appears to have 
been introduced by Ref. 35. This is given by 

where N is the total number of atoms, pi and pi 
denote the atomic coordinates of the i th  atom of 
each of the two structures in a common center-of- 
mass coordinate system, and the minimum is taken 
over all 3 X 3 rotation matrices R. Although this 
measure is always nonnegative and is zero if and 
only if the conformations are identical, the present 
author knows of no proof that it has even the most 
rudimentary property that is generally regarded as 
necessary for a well-behaved dissimilarity measure, 
namely that it fulfills the triangle inequality. Nev- 
ertheless, because of its sensitivity to the overall 
handedness of the conformation, it is generally pre- 
ferred to the distance matrix error 

which not only obeys the triangle inequality but is 
actually an N ( N  - 1 ) /%dimensional Euclidean 
distance.I3 As long as the mirror image of p with 
least RMSD is used, these two measures appear to 
have a good linear ~ o r r e l a t i o n . ~ ~  In this paper, we 
consider only the RMSD calculated with respect to 
the C“ atom positions alone, using the method of 
M ~ L a c h l a n . ~ ~  

Another measure of dissimilarity between pairs 
of conformations, which appears to first have been 
used in Ref. 38, is the root mean square difference 
between their torsion angles: 

1 -  M \ 1 / 2  

where M is the number of torsion angles in question, 
and by “difference” we mean the size in degrees of 
the smaller of the two bond rotations that could be 
used to make the 29 angles equal. This measure can 
be shown to obey the triangle inequality. In this pa- 
per, all DHADs reported are computed with respect 
to the 4 and 4 angles of the polypeptide confor- 
mations being compared. Assuming ideal covalent 
geometry, a zero DHAD between two polypeptide 
conformations implies a zero C“ RMSD difference, 
but the converse is false since there exists a two- 
dimensional infinity of polypeptide backbone con- 
formations consistent with any feasible choice of C“ 
 coordinate^.^' However, even if the RMSD is com- 
puted between all N ,  C “, and C’ backbone atoms, it 
has been shown that these two measures are a t  best 
only weakly c ~ r r e l a t e d . ” ’ ~ ~  Indeed, it has long been 
known that small changes in the dihedral angles of 
a lcng chain can lead to drastic changes in the 
Cartesian coordinates, whereas the above-cited dis- 
tance geometry calculations have shown that con- 
formations whose Cartesian coordinates are very 
similar can have substantial differences in their di- 
hedral angles. Plainly, there is more than one way 
in which two conformations can “differ” from one 
another! 

Although the expected value of the RMSD is dif- 
ficult to calculate from an assumed distribution on 
the underlying conformation space, theoretical 
analysis leads to the conclusion that for a flexible 
random chain in the absence of long-range inter- 
actions it should be asymptotically equal to 
L\ IN-1 ,  where N - 1 is the number of bonds in 
the chain and L is their “effective” length4’. For a 
freely jointed chain of 3.8 A virtual bonds between 
consecutive a-carbons, the effective bond length has 
been found by Monte Carlo studies to be 1.34 A. 
In an actual polypeptide chain wherein the virtual 
bond angles must lie between ca. 90’ and 140’, 
this constant would be significantly larger, and has 
been estimated to be about 2 A. The Monte Carlo 
studies also indicate that the ratio p( N )  = RMSD/ 
( 1 . 3 4 G )  is already at  80% of its limiting value 
when the chain length is only 10, and that the actual 
distribution of RMSD is strongly skewed towards 
lower values. 

The average DHAD between a pair of confor- 
mations obtained by making a uniform random se- 
lection of their 4 and 4 angles is relatively easy to 
compute. Since we may without loss of generality 
use the angle selected in the first conformation as 
our orgin, we get 

I 3 r180 \ 1 / 2  

G2d6 = ( 1802/3) ’” = 103.9’ (&L ) 
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The average in polypeptide random coils should be 
lower than this, because even in a random coil the 
angles are not uniformly distributed but are con- 
centrated in sterically allowed regions of the Ra- 
machandran map.26 Nevertheless, we can standard- 
ize our DHAD by dividing through by this value, 
i.e., 6(  N) = DHAD / 103.9. 

Finally, we note that in our own empirical esti- 
mates of the mean RMSD and DHAD differences, 
we took the average over all (:) pairs of conforma- 
tions within each n-member ensemble, rather than 
dividing the ensemble up into n /2  disjoint pairs and 
averaging over just these pairs. The correlation be- 
tween the differences for two pairs that have a con- 
formation in common (e.g., { a ,  b }  and { b ,  c} )  will 
affect the standard deviations of the differences, of 
course, but the law of large numbers tells us that 
the averages still constitute unbiased estimates of 
the means, and the averages are all that we report 
below. 

DISTANCE GEOMETRY CALCULATIONS 

In order to maximize the relevance of this study to 
ongoing protein structure determinations, all of the 
computer programs implementing the various dis- 
tance geometry algorithm variants evaluated in this 
study were taken “off the shelf” and used without 
modification. These distance geometry algorithm 
variants were obtained from two fundamentally dif- 
ferent approaches to  computing polypeptide con- 
formations consistent with distance constraints. The 
fi,rst set of variants are based on the embed algo- 
,-ithm, 12.1:1 which is classed as a “distance space” 
method because it uses an estimate of the distances 
in a possible conformation of the molecule in order 
to obtain a starting structure for refinement by 
means of a matrix method known as embedding. The 
refinement itself proceeds via a routine numerical 
minimization of the distance constraint violations, 
usually using the conjugate gradient method, and 
with the atomic Cartesian coordinates as the vari- 
ables. 

The second set of variants are torsion space 
methods that attempt to perform a global optimi- 
zation using the torsion angles as their variables. 
Here two different optimization algorithms were 
used: the ellipsoid algorithm’ and the variable target 
function algorithm. In both cases, the starting 
structure for the optimization is obtained from an 
estimate of the torsion angles in a possible confor- 
mation of the molecule, and the optimization con- 
sists of a minimizing the distance constraint viola- 
tions with respect to the torsion angles. The ellipsoid 

algorithm is a general purpose global optimization 
algorithm that proceeds by generating a sequence of 
ellipsoids of decreasing volume, each of which con- 
tains an optimum ~olu t ion .~’  The variable target 
function method, on the other hand, was developed 
specifically for the purpose of computing protein 
conformations from distance constraints, ‘i and pro- 
ceeds by minimizing the violations of distance con- 
straints between pairs of atoms that are separated 
by successively longer segments of polypeptide 
chain. As in the embed algorithm, these successive 
minimizations are accomplished by means of stan- 
dard descent algorithms. Although the ellipsoid and 
variable target function algorithms differ substan- 
tially from one another, we shall see that the sta- 
tistical behavior of the resultant conformations is 
generally dominated by the distribution of starting 
structures. 

Because it is a relatively simple structure whose 
statistical geometry has been studied under a variety 
of assumed probability distributions (see above ref- 
erences), chains of poly (L-alanine) were used for 
these calculations. For each set of distance con- 
straints and each distance geometry program variant 
tested, we calculated ensembles of 50, 25, and 15 
conformations for poly (L-alanine) chains 20,40, and 
60 residues in length, respectively. 

Distance Constraints 

To simplify the calculations, the methyl group of 
each alanine residue was replaced by a single “pseu- 
doatom” located at the centroid of its three hydrogen 
atoms (with the exception of those calculations 
made using the DISMAN p r ~ g r a m , ~  which imple- 
ments the variable target function method, as will 
be described below). In all cases the constraints in- 
cluded the bond lengths, the geminal distances that 
define the bond angles, and the distances across the 
peptide bond that fix it in a trans configuration (ex- 
plicitly in the distance space methods, implicitly in 
the torsion space methods). In addition, the distance 
space methods used “chirality constraints” to 
maintain the correct configuration at  the a-carbons 
as well as good covalent geometry overall (as  de- 
scribed in Refs. 2 and 12) .  

The sets of distance constraints tested were as 
follows: 

A. No constraints a t  all beyond those necessary 
to fix the covalent geometry of the molecule, 
as described above. In this case, for reasons 
given in the discussion section, one expects to 
obtain a uniform sampling in torsion angle 
space. 
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B. 

C. 

The covalent geometry constraints together 
with lower bounds on the “short-range” non- 
bonded and nongeminal distances between 
pairs of atoms that were either in the same 
residue or else in one or both of the immedi- 
ately adjacent peptide bonds (as  described in 
Ref. 25), which were obtained as the sum of 
suitable hard-sphere radii. This situation cor- 
responds roughly to what would be expected 
in a 8 solvent where only short-range inter- 
actions have any net effect. 
The covalent geometry constraints together 
with lower bounds between all nonbonded, 
nongeminal pairs derived from the same hard- 
sphere radii as  used in constraint set B. These 
constraints should correspond roughly to what 
would be expected in a good high dielectric 
solvent in which the only effective interaction 
is steric repulsion. 

The radii were chosen so as to  obtain lower bounds 
that all lay between the Ramachandran normal and 
extreme limitsz6 (see Table I ) ,  except with the DIS- 
MAN program, where they were chosen so as to give 
a van der Waals energy a t  contact of 3 kcal/mole3 
( see below ) . 

Calculations with the Embed Algorithm 

An implementation of the embed algorithm known 
as the DISGEO program was used for these com- 
putations,’ which has been extensively used in the 
calculation of protein structure from two-dimen- 
sional nmr  data.'^^'-^^ This program employs several 
specialized techniques for improving convergence in 
calculations on large proteins, and it was of partic- 
ular interest to determine the effect of these upon 
the sampling properties of the program. 

The first of these techniques involves the calcu- 
lation of intermediate “substructures,” containing 
an evenly distributed subset of the atoms in the 
complete molecule, from which complete structures 
are calculated by means of a second embedding and 
refinement.’ Since the substructures necessarily take 
account of only a subset of the information available 
for the complete molecule, one would not expect the 
complete structures calculated from them to be dis- 
tributed in the same way as they would be if all the 
information was used together in a single embedding. 
In particular, the atoms of the substructure are 
treated differently from the rest of the atoms in the 
complete structure (by being embedded first), and 
hence one would expect that there would be some 
differences in the way in which they tend to be po- 
sitioned by this process. 

Table I 
in All Computations 

Hard Sphere Radii (A) Used 

Atom Type DISMAN DISGEO and ELLIPSE 

H 0.95 
0 1.30 
N 1.20 
C 1.40 
Me - 

0.95 
1.35 
1.35 
1.45 
1.70 

Another important technique, known as “metri- 
zation,” is used to  estimate interatomic distances in 
such a manner that the resulting “trial distances” 
(from which the starting coordinates are calculated) 
obey the triangle inequality.’ It is known that this 
technique does not produce a uniform sampling with 
respect to the “natural” (i.e., L e b e ~ g u e ~ ~ )  proba- 
bility distribution on the set of all such metrics, and 
in addition, the result depends upon the order in 
which the trial distances are selected in the course 
of the metrization procedure. Because it made it rel- 
atively easy to implement, the DISGEO program 
uses a fixed order in which distances from the N- 
terminal atoms are selected first, and it is to  be ex- 
pected that the conformation of the N-terminal end 
of the molecule will not be distributed in the same 
way as the C-terminal end as  a consequence. 

To test these expectations, the following embed 
algorithm variants were used: 

1. Substructures were calculated without me- 
trization, and complete structures were cal- 
culated from these with metrization. This is 
the usual procedure employed with the DIS- 
GEO program when computing the confor- 
mations of proteins from nmr data.’ 

2. Complete structures were calculated directly 
from the constraints present in the given data 
via a single embedding using neither metri- 
zation nor intervening substructures. This is 
essentially the “classical” embed algorithm l3  

in which we chose the trial distances as in- 
dependent random variables from within the 
triangle inequality smoothed bounds. 

3.  Complete structures were calculated directly 
from the constraints present in the given data 
via a single embedding using metrization but 
with no intervening substructures. 

In every case, the magnitude of the maximal hard- 
sphere violations after refinement were almost al- 
ways less than 0.1 A, and better than 95% of the 
violations were less than 0.05 A. The bond lengths 
were usually within 0.01 A of their standard values, 
and the bond angles within + 5 O .  
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At  this point it should be mentioned that the ran- 
dom number generator used by the DISGEO pro- 
gram is based upon the multiplicative congruential 
method,46 and is not one of the best. Because the 
triangle inequality smoothed distance bounds gen- 
erally encompase a range that is much wider than 
the range of distances that actually can occur in 
solution (see Ref. 12 for further discussion), eight 
of these random numbers are generated, summed, 
and divided by eight in order to obtain a roughly 
Gaussian distribution within the bounds on the in- 
dividual trial distances. Given this fact, together 
with the complicated sequence of transformations 
to which the trial distances are subjected in the 
course of embedding, it is unlikely a t  best that sig- 
nificant differences would have been obtained by 
employing a better random number generator. In 
order to be able to see the differences in the results 
obtained with each of the constraints A, B, and C 
above, the same random number generator seed was 
used with each, while different seeds were used with 
different program variants. 

Calculations with Torsion Space Methods 

A new implementation of the ellipsoid algorithm, 
henceforth called the ELLIPSE program, was used 
for these calculations. It differs from that reported 
in Ref. 1 primarily in the way in which it handles 
the constraints. Rather than looking for a single sig- 
nificantly violated dihedral angle, upper distance 
bound, or hard-sphere constraint, the program sums 
the violations of each of these three classes of con- 
straints. If the sum of the dihedral angle violations 
exceeds a given threshold, the gradient of this sum 
is computed and used in the next step of the refine- 
ment. Otherwise, if the sum of the distance bound 
violations exceeds a second threshold, the gradient 
of this sum is added to the gradient of the dihedral 
angle violations and the combined gradient used in 
the next step. Otherwise, if the sum of the hard- 
sphere violations exceeds a third threshold, we use 
the gradient of this sum plus the gradient of the sum 
of the torsion angle and distance-bound violations. 
Finally, if all three summed violations are below 
their thresholds, all three thresholds are lowered by 
some given fraction, and the process restarted from 
there. This new procedure has not been thoroughly 
compared to the previous one, but the results ob- 
tained so far indicate that i t  is a t  least as good. In 
any case, none of the constraint sets evaluated here 
( A-C above) involve any explicit torsion angle con- 
straints. 

Starting conformations for the refinement were 
generated according to two different strategies: 

1. In the first, the 4 and $ angles were chosen 
with a uniform distribution in the interval 

2. In the second, the 4 and $ angles were chosen 
with a uniform distribution within the ex- 
treme limits given by Ramachandran and 
Sasisekharan.26 

[ -180”, +1SO0]. 

The random number generator used to generate 
these starting conformations was the standard 
UNIXTM library function “random.” In both cases, 
statistics were computed for ensembles of confor- 
mations generated by these two procedures as well 
as for the result of refining such ensembles vs the 
constraint sets B and C above. Conformations were 
only accepted if the hard-sphere constraints used 
were satisfied about as well as they were in the con- 
formations obtained from the DISGEO program, 
and of course the covalent geometry was perfectly 
standard. Because of the high attrition rate expe- 
rienced in case l above, it was not practical to per- 
form these calculations on the 40- and 60-residue 
polyalanine chains. 

The variable target function calculations were 
made using the DISMAN p r ~ g r a m , ~  which has also 
been used extensively for the calculation of protein 
conformations from nmr data.47-49 As with the DIS- 
GEO and ELLIPSE calculations, the only con- 
straints used were the lower bounds needed to avoid 
hard-sphere overlaps, and the calculations were 
performed in complete accord with the established 
procedures for this program.” Because of‘ the way 
this program is written, however, it was not practical 
to use it in a fashion perfectly analogous to that 
described above for DISGEO and ELLIPSE. In the 
first place, a full methyl group had to be used for 
these calculations rather than a united methyl 
pseudoatom. In the second, the hard-sphere radii 
used by the program are built into it, and hence 
could not be made exactly equal to those used by 
DISGEO and ELLIPSE. Finally, it was not possible 
to input specific lower bound constraints, which 
made it  impossible to take account of only those 
hard-sphere overlaps classified as “short range” by 
Brant and F10ry.’~ Fortunately, since the first stage 
of the variable target function method looks a t  only 
those hard-sphere overlaps between pairs of atoms 
in adjacent amino acid residues, it was possible to 
selectively account for the majority of short-range 
pairs simply by terminating the optimization after 
this stage. These small differences in procedure cer- 
tainly had some small effects upon the results ob- 
tained, but these effects are predictable so that with 
a little care the results obtained with the DISMAN 
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program remain directly comparable to those ob- 
tained with the other programs. 

RESULTS 

The results of our computations are summarized in 
Tables 11-IV, wherein the ensemble designations 
“DG-n( [ABC]),” “EL-n( [ABC]),” and “DM- 
n(  [ ABC] ) ”  stand for constraint set A, B, or C of 
variant n = 1, 2, or 3 of the DISGEO, ELLIPSE, 
and DISMAN programs, respectively (the numbers 
and letters here all correspond with those used in 
the previous section). In the 20-residue case, the 
averagesofp = RMSD/( 1.34%), 6 = DHAD/ 
103.9, as well as the characteristic ratio u2, the nor- 
malized squared radius of gyration r2, and their 
standard deviations were computed over subsets of 
the total ensembles of sizes 10, 20, 30, 40, and 50 
(complete definitions of these terms may be found 
in the geometric properties section). From 20 on, 
the values were usually equal to within 0.1, indicat- 
ing that our averages have thoroughly converged. At  
the same time, the fluctuations in the components 
of the persistence vector X ,  Y ,  and Z remained sub- 
stantial, especially in the Z component; hence we 
have rounded their values to the nearest Angstrom, 
since greater precision is certainly not significant. 

Looking at the values of u2 and r 2  for 20-poly ( L- 
alanine ) (Table 11 ) , we see that the conformations 
computed by the embed algorithm with and without 
intervening substructures (DG-1 and -2) tend to be 
substantially more expanded than those computed 
by torsion space methods (EL-1, EL-2, and DM-1). 
The most compact conformations, however, were 
obtained from the embed algorithm when metriza- 
tion was used (DG-3). An equally pronounced dif- 
ference may also be observed in the percent standard 
deviations A of u2 and T ’ ,  which are much lower for 
the embed algorithm than they are for the torsion 
space optimizations, especially when no metrization 
is employed. 

On comparing these numbers with the corre- 
sponding numbers obtained for the 40- and 60-res- 
idue chains (Tables I11 and IV) , we see that although 
the values of u2 and T~ are comparable in the en- 
sembles EL-1, EL-2, and DM-1 (as they are for a 
free jointed chain), for the ensembles DG-1 and DG- 
2 their ratio appears to be about 2 in the limit as 
the number of residues N + co . It may also be seen 
that both u2 and r 2  appear (on the basis of the three 
points available) to increase linearly with N in all 
cases. When metrization is used, (DG-3) 7 * actually 
exceeds u2 substantially, and moreover, their values 
appear to depend only weakly upon N in these en- 
sembles. The lack of monotonicity in the values of 

Table 11” Average Geometric Properties of Ensembles of 20-Poly(~-Alanine) 

Ensemble P 6 u z f  A% 7 2  * A% [ X ,  Y ,  21 

DG-1(A) 
DG- 1 (B) 
DG- 1 (C) 
DG-2(A) 
DG-2(B) 
DG-2(C) 
DG-3(A) 
DG-3(B) 
DG-3(C) 
EL- 1 (A) 
EL- 1 (B) 
EL- 1 (C) 
EL-2(A) 
EL-2(3) 
EL-3(C) 
DM-1(A) 
DM-1(B) 
DM-1(C) 

0.60 
0.62 
0.63 
0.55 
0.58 
0.58 
0.87 
0.89 
0.93 
1.20 
1.19 
1.N 
1.19 
1.24 
1.15 
1.15 
1.19 
1.14 

0.96 
0.97 
0.99 
0.92 
0.97 
0.98 
0.97 
0.98 
0.99 
1 .oo 
0.99 
0.99 
0.88 
0.88 
0.87 
0.99 
0.99 
1 .oo 

4.35 f 10 
4.65 f 9 
5.21 f 9 
4.70 5 7 
4.91 f 8 
5.46 k 8 
0.54 f 40 
0.52 f 36 
0.55 f 45 
1.64 f 64 
1.80 2 77 
2.24 f 63 
3.16 f 59 
2.41 f 82 
2.88 f 56 
1.95 f 66 
1.85 f 70 
2.19 f 67 

2.58 f 4 
2.77 f 5 
3.28 f 4 
2.66 f 4 
2.83 f 5 
3.31 f 4 
1.13 f 12 
1.20 k 13 
1.27 f 12 
1.84 f 39 
1.87 f 48 
2.11 f 31 
2.61 2 36 
2.23 f 44 
2.57 f 33 
1.87 f 40 
1.82 f 41 
2.03 2 37 

a The ensemble designators XY-n ([ABC]) are described at the beginning of the results section; p 
is the normalized RMSD, 6 is the normalized dihedral angle difference, u2 is the characteristic ratio, 

is the normalized radius of gyration squared, and [X, Y, Z] is the persistence vector (see geometric 
properties section). 
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Table 111" Average Geometric Properties of Ensembles of 40-Poly(~-Alanine) 

Ensemble P 6 a2 f A% r 2 f  A% [X, Y,  21 

DG-1(A) 
DG-1(B) 
DG-1(C) 

DG-2(B) 
DG-2(A) 

DG-2(C) 
DG-3(A) 
DG-3(B) 
DG-3(C) 
DM- 1 (A) 
DM-1 (B) 
DM-1(C) 

0.52 
0.54 
0.54 
0.45 
0.49 
0.50 
0.84 
0.91 
1.03 
1.25 
1.23 
1.21 

0.96 
0.97 
0.96 
0.91 
0.97 
0.97 
0.95 
0.98 
1.00 
1 .oo 
1.00 
1.00 

8.48 f 6 
8.71 f 7 
9.27 f 5 
9.03f 4 
9.10 f 4 
9.66 f 5 
0.45 f 43 
0.45 2 41 
0.45 f 59 
1.60 * 80 
2.03 ? 79 
2.21 2 58 

4.61 f 3 
4.77 f 3 
5.11 f 3 
4.76f 2 
4.84 f 2 
5.25 f 2 
1.08 f 10 
1.15 f 11 
1.28 I 10 
1.84 k 41 
1.93 I 5 4  
2.26 5 38 

a All symbols are defined as in Table 11. 

c2 and r 2  with increasing N that is observed in DM- 
1 is presumably due to statistical fluctuations in the 
smaller ensembles. 

The components of the persistence vectors are 
relatively difficult to interpret, but do at  least give 
some information about shape in addition to overall 
size. In almost all cases the X and Y components 
are nonnegative, the only exception being the 60- 
residue DISMAN calculation DM-1 (which may be 
a statistical fluctuation). This is in accord with pre- 
vious  calculation^.^^ Even in the 50 conformation 
ensembles computed for N = 20, the 2 component 
could change substantially on taking out only 10 
conformations, indicating that it had not converged 
to a well-defined average value. 

Turning now to the RMSDs observed for 20- 
poly (1.-alanine), we see that the RMSD of ensem- 

bles DG-1 and DG-2 runs about 60% of what one 
would expect for a freely jointed chain of the cor- 
responding length (i.e. p x 0.6) ,  and increases to 
about 90% of this extreme when metrization is also 
used (DG-3) .  There is also a slight tendency for p 
to increase on refinement with respect to the steric 
constraints [ DG-n ( A ) ,  (B)  , and ( C )  1 .  The ensem- 
bles obtained from the torsion space optimizations 
(EL-1, EL-2, and DM-l ) ,  on the other hand, all 
have p = 1.2. Thus previous observations that tor- 
sion space optimizations produce ensembles with a 
higher RMSD is confirmed. On comparison with the 
corresponding values of p in Tables 111 and IV, we 
also see that these differences become more pro- 
nounced as the length of the chain increases. 

Oddly enough, the very large RMSD reported in 
Ref. 15 among the unrefined staiting conformations 

Table IV" Average Geometric Properties of Ensembles of 6O-Poly(~-Alanine) 

Ensemble P 6 a 2 k  A% T~ f A% [X, y, 21 

DG-l(A) 
DG-l(B) 
DG- 1 (C) 
DG-S(A) 
DG-S(B) 
DG-S(C) 
DG-3(A) 

DG-3( C) 
DG-S(B) 

DM-l(A) 
DM-l(B) 
DM-1(C) 

0.45 
0.48 
0.50 
0.41 
0.44 
0.45 
0.89 
0.92 
1.09 
1.36 
1.30 
1.38 

0.96 
0.97 
0.98 
0.92 
0.97 
0.99 
0.92 
0.95 
0.99 
1.00 
0.99 
1.00 

12.90 i 4 
13.00 f 6 
13.56 k 6 
13.45 _t 3 
13.51 f 2 
14.16 f 2 
0.45 f 35 
0.45 I 41 
0.45 f 56 
2.18_t 68 
1.23 k 77 
1.93 k 113 

6.80 F 2 
6.87 f 2 
7.30 +- 3 
6.95 I 1 
7.01 f 1 
7.39 k 1 
1.05 f 10 
1.10 I 10 
1.25 ? 10 
2.18 k 53 
1.69 k 53 
2.15 f 53 

[33, 34, 361 

[14, 42, 231 
[60, 32, 31 

[69, 35, 31 
[2, 2, -11 
[4, 3, -21 

[4,8, -131 
[-4, 6, -11 
[-4,2, -121 

~ 6 ,  54,51 

[56, 31, -71 

[-I, 3, -51 

a All symbols are defined as in Table 11. 
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produced by the embed algorithm in the absence of 
substructures and metrization was substantially less 
in the corresponding calculations reported here ( i.e., 
runs DG-2). In our case the RMSD among these 
starting conformations was never more than a factor 
of two higher than the RMSD after refinement 
(when metrization was used, i.e. DG-3, the RMSD 
before refinement actually tended to be slightly less 
than it was afterward). A direct comparison of our 
results with theirs is rendered a bit difficult by the 
fact that the lengths of our polymer chains are not 
the same, and by their use of all main-chain atoms 
to compute the RMSD instead of just the C ‘‘ atoms 
as we have done here. The RMSD of 17.8 A that 
they report for a 24-mer of the copolymer (Lys-Glu), 
still seems surprising in view of our value of only 
4.0 A for the C“ atoms of the starting conformations 
in the DG-2 runs with 20-poly (L-alanine) (data not 
shown in tables). This discrepancy may have some- 
thing to do with our use of a Gaussian distribution 
for our trial distances, instead of a uniform distri- 
bution. It may also in some way be connected to the 
presence of the long side chains in their copolymer. 

In no case save possibly EL-2 is the overall scatter 
in the @ /+ angles far from being random ( 6  = 1 ) . 
A more demanding test can be obtained by exam- 
ining the distribution of the residues in the @/+ 
plane (see Figures 1 and 2 ) .  Here we can see that 
with the embed algorithm and no metrization (DG- 
1 and DG-2) , there is a tendency for those confor- 
mations computed with no steric constraints present 
to cluster in the center of the $/+ plane, and that 
although refinement with respect to the steric con- 
straints pushes them out of this region, it does not 
spread them uniformly over the sterically allowed 
regions of the map. This clustering was substantially 
less in the unrefined starting conformations (data 
not shown), but was nevertheless noticeable after 
refinement even when no chirality constraints were 
used. The presence of significant numbers of resi- 
dues in partially disallowed regions of the $/+ plane, 
which may be observed in DG-1, 2, and 3, is due to 
the flexibility in the covalent structure which is 
present in those calculations. 

In the torsion angle optimizations, of course, the 
scatter in the @ / +  angles is uniform by construction 
when no steric constraints are present [Figure 2, 
E L - l ( A ) ,  EL-Z(A), and D M - l ( A ) ] .  When such 
constraints are used, however, the residues are no 
longer distributed uniformly over sterically allowed 
regions of the @/+ plane, but tend to be denser near 
the borders of these regions [EL-1, -2, and DM-1, 
( B )  and ( C ) ]  . In addition, the relatively small left 
and right-handed helical regions are more densely 
populated than is the relatively large @-sheet region. 

These tendencies are observed regardless of the op- 
timization algorithm used. Scatter plots were also 
prepared for the 40- and 60-residue computations, 
but since these did not differ in any essential way 
from the 20-residue runs they have not been included 
here. 

One other thing that perhaps needs some clari- 
fication is that in EL-2 (B)  many residues occur with 
+ in the partially forbidden region of +60”, where 
the 0-methyl overlaps the carbonyl oxygen of the 
succeeding residue. This occurs because the starting 
conformations, when selected from within the ex- 
treme limits of the Ramachandran diagram, did not 
have to be changed by more than 11” in DHAD be- 
fore the total violation fell below the desired thresh- 
old (although the RMSD between the starting and 
final conformations was sometimes as large as 8 ! ) .  
Probably, these small residual violations could have 
been eliminated by using a larger starting ellipsoid 
and correspondingly larger amount of computer 
time. 

DISCUSSION 

One way to model geometric constraints is to use 
an “energy” function that is zero for any confor- 
mation that satisfies the constraints and infinite 
elsewhere. The fact that the distribution of states 
in an isolated physical system is that which maxi- 
mizes its entropy5“ then gives us a well-defined 
probability density function on conformation space 
that adds no information to the system beyond that 
intrinsically expressed by the distance and chirality 
constraints themselves. For the purposes of obtain- 
ing an understanding of the consequences of the 
constraints for the overall geometry of the molecule, 
the optimal strategy is probably to sample randomly 
with respect to this thermodynamic distribution. At 
least it is the only probability density that is justified 
by the available geometric data alone, and whenever 
we use the term random below, we mean random 
relative to this density function. 

Unfortunately, no analytic formula or even nu- 
merical method for estimating this probability den- 
sity at any given point of conformation space is cur- 
rently available. One can call upon Bernouli’s 
“principle of insufficient reason” to argue that, when 
expressed as a function of the torsion angles, the 
probability density will be constant within the region 
of conformation space allowed by the distance and 
chirality constraints, and zero elsewhere. It is some- 
what surprising that a t  the time of writing the author 
knows of no proof that this actually characterizes 
the thermodynamic density function. It is not hard 
to show, however, that for a freely jointed two-di- 
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Figure 1 Scatter plots showing the distribution of residues in the @/+ plane in each of 
the ensembles of fifty 20-poly (L-alanine) conformations computed by distance space meth- 
ods. The vertical axis corresponds to +, the horizontal to 6. DG-1 refers to the ensembles 
computed by embedding initial substructures and using metrization to embed the final 
structures (see the distance geometry calculations section for an explanation of terms). 
DG-2 refers to the ensembles computed using the “classical” embed algorithm involving 
neither substructures nor metrization. DG-3 refers to the ensembles computed using me- 
trization but no substructures. The labels A, B, and C refer to the data sets consisting of 
the distance and chirality constraints that follow from the covalent structure of 20-poly ( L- 
alanine) ( A ) ,  together with short-range radii ( B  ) , and both short- and long-range radii 
( C)  , as described in the distance geometry calculations section. 
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Figure 2 Scatter plots showing the distribution of residues in the @/$ plane in each of 
the ensembles of fifty 2O-poly( L-alanine) conformations computed by torsion space methods 
The vertical axis corresponds to $, the horizontal to @. EL-1 refers to the ensembles computed 
by refinement, using the ellipsoid algorithm, of conformations obtained from a uniform 
random selection of their $/$ angles within the interval [ --180", +180"]. EL-2 refers to 
the ensembles computed by the refinement with the ellipsoid algorithm of conformations 
obtained by selecting their @/$ angles randomly from within Ramachandran's extreme 
limits. DM-1 refers to those ensembles computed with the DISMAN program starting from 
conformations whose @/$ angles were selected with a uniform random distribution within 
[ -180°, +180° 1 .  The labels A, B, and C have the same meanings that they have in Fig- 
ure 1. 
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mensional chain, the maximum entropy density is 
constant when expressed as a function of the angles 
between successive links of the chain, and it would 
be a t  least surprising if the analogous result did not 
hold in three dimensions. For the purposes of the 
ensuing discussion, we shall therefore assume that 
this is the case. 

Because of the complicated nature of the feasible 
region, the average geometric properties of a mole- 
cule with respect to this probability distribution can 
be calculated only with very simple types of distance 
constraints like those considered in this paper. Al- 
though these results doubtless give some indication 
of how well and in what ways the various distance 
geometry algorithms available succeed in sampling 
according to the thermodynamic distribution, we 
stress that it would be dangerous to extrapolate too 
far toward much more complicated and extensive 
sets of constraints like those available from two- 
dimensional nmr studies. 

One thing that is shown clearly by this study is 
that the average of no single geometric property, 
including the commonly used difference measures, 
can be taken as a measure of “randomness.” In the 
past, we have used the average distance matrix error 
DME5’ and RMSD38 among conformations as an 
ad hoc method of estimating the relative sizes of the 
regions of conformation space that are spanned by 
ensembles of conformations computed by distance 
geometry algorithms. The appropriateness of such 
measures has been amply demonstrated by the fact 
that when one eliminates some of the data used to 
compute such ensembles, the average RMSD usually 
increases. Nevertheless, the fact that the RMSD 
correlates poorly with the DHAD, which is an 
equally qualified measure of “size,” is already enough 
to show that it should not be taken too literally. It 
is also trivial to construct nonrandom ensembles 
whose RMSD is very high, thus showing that it is 
not a rigorous measure of randomness per se. As 
long as no rigorous measure of randomness exists 
that can also be computed in a practical way, how- 
ever, the RMSD of an ensemble will remain quite 
useful as a means of getting an initial idea of what 
is going on. This should of course be followed up by 
a more careful study using as many other kinds of 
measures as possible in order to decide exactly what 
the available data are really telling us about the 
conformation, as we have done in this paper. 

Keeping these limitations in mind, we can make 
the following conclusions concerning the sampling 
obtained from the embed algorithm and its varia- 
tions. First, with respect to the simple constraints 
used here, the conformations produced by the “clas- 
sical” embed algorithm as well as the version using 

intermediate “substructures” (i.e., DG-1 and DG- 
2 )  are undoubtedly more extended than can be jus- 
tified by the thermodynamic distribution alone. This 
was only to be expected, simply because the indi- 
vidual trial distances are chosen between the lower 
and upper triangle inequality limits l2 with a roughly 
Gaussian distribution whose mean is one half the 
sum of these limits. When no long-range upper 
bounds are present, the upper triangle limit on the 
end-to-end distance necessarily exceeds its maxi- 
mum possible value, which is proportional to the 
number of monomers in the chain, whereas the lower 
triangle limit stays constant a t  the sum of the hard 
sphere radii employed. It follows that the rms end- 
to-end distance in the computed conformations will 
also be proportional to the length of the chain rather 
than to the square root thereof. This argument of 
course also holds when a uniform distribution is used 
to  select the trial distances. 

As will be shown in the appendix, the degree of 
expansion of the conformations obtained from the 
embed algorithm is easy to control. A more serious 
problem is presented by the fact that the RMSD of 
the ensembles DG-1 and DG-2 appears to be too 
low. This in turn is a consequence of the lack of 
variation in the degree of expansion of the computed 
conformations, rather than of the expansion itself. 
In fact, the RMSD can be decomposed into the dif- 
ference between the squares of the radii of gyration 
of the two conformations being compared and the 
correlation between their coordinates 40 so that ( for 
a given degree of correlation) one would expect ex- 
panded structures to have a greater RMSD. The 
standard deviation in a2(m) expected for a freely 
jointed chain can easily be calculated from its known 
probability distribution14 to be \1/3 = 82% of its 
mean value. 

This lack of variation is probably an “averaging” 
phenomena inherent in the way in which embedding 
operates, by best fitting a set of inconsistent trial 
distances. As also noted in Ref. 15, it should there- 
fore be possible to increase the RMSD in the com- 
puted ensembles by reducing the level of inconsis- 
tency present in the trial distances, provided that 
this can be done without introducing new (and pos- 
sibly worse) biases in the result. The increased 
RMSD obtained on choosing the trial distances by 
metrization (DG-3) supports this view. Unfortu- 
nately, the implementation of the metrization al- 
gorithm used in these calculations computes the trial 
distances with a fixed order proceeding from the N 
to the C end of the chain. As a consequence, the 
end-to-end squared distances of the conformations 
tend to be relatively small, and examination of the 
computed conformations by cvmputer graphics also 
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reveals that the N-terminal ends of these confor- 
mations are more compact than their C-terminal 
ends. 

Turning now to the torsion angle optimizations, 
we observe that although the conformations usually 
expanded on refining them with respect to  the hard- 
sphere lower bounds, comparison of u2 and T *  for 
EL-2 with those for EL-1 and DM-1, ( B )  and ( C ) ,  
indicates that  the latter ensembles are still too com- 
pact. Indeed, since Brant and Flory’s results imply 
that u 2  (co ) should be about 4 under the conditions 
of this study,25 it would appear that all of the en- 
sembles obtained by torsion space methods are a 
little on the compact side. This is probably because 
the starting conformations do not take account of 
the long-range steric constraints, and the refine- 
ments do not change the conformations by more 
than is necessary to eliminate them. Fortunately, 
this tendency does not appear to be large, and the 
variations in the degree of compactness are roughly 
of order what one would expect from the available 
theory. As stressed above, the “correct” degree of 
expansion when long-range upper bounds on the 
distances are present (as  obtained from nmr spec- 
troscopy) is unknown, both now and in the foresee- 
able future. 

For the reasons stated above, we regard the dis- 
tribution of residues in the $/$ plane as a more 
discriminating measure of thermodynamic random- 
ness than their end-to-end squared distances or radii 
of gyration. Here it appears that the embed algo- 
rithm samples fairly well. There is a slight tendency 
for the residues to cluster toward the center of the 
$/$ diagram when no short- or long-range hard- 
sphere lower bounds are present. Given that the 
conformations involved are extended, this obser- 
vation is somewhat surprising, but the tendency is 
not very strong, and apparently the trans configu- 
rations of our peptide bonds together with the many 
more or less trans dihedral angles that still occur is 
sufficient to give the overall degree of extendedness 
obtained. I t  should also be noted that, from a prac- 
tical point of view, it is more important to  sample 
widely in torsion space than it is in Cartesian space. 
This is because the difficulty of making further ad- 
justments to the conformations by molecular me- 
chanics or dynamics procedures is much more 
strongly affected by the size of the change in torsion 
angles (DHAD) required than it  is by the change 
in coordinates (RMSD).  It has been shown that 
molecular dynamics procedures are in fact capable 
increasing the spatial scatter in protein conforma- 
tions obtained from the embed algorithm, as well as 
making the $/$ distribution closer to  what is found 
in protein crystal structures.6@ 

The sampling in the $/$ plane of the torsion 
space algorithms (EL-1 and DM-1) when no steric 
constraints are present is of course perfect by defi- 
nition. It may therefore a t  first seem surprising that 
this statement fails to hold after refinement. Re- 
gardless of whether the refinement is done by the 
ellipsoid algorithm or variable target function tech- 
nique, there is a tendency for the $/$ angles to  clus- 
ter on the boundaries of the sterically allowed re- 
gions of the Ramachandran map. This is easily un- 
derstood, since these refinements move the 
conformation until the constraints are just satisfied, 
and then leave them there a t  the boundaries. In ad- 
dition, both helical regions of the $/$ plane tend to  
be populated more densely than the fi region, prob- 
ably because the size of the “basins” in the hyper- 
surface of the error or penalty functions used by 
these refinements are not simply proportional to the 
size of the feasible regions that they contain. These 
undesirable tendencies are alleviated substantially 
by choosing the initial distribution of residues ran- 
domly from within the sterically allowed region of 
the Ramachandran diagram, rather than uniformly 
over the entire $/$ plane (EL-2). 

It is worth emphasizing once again that the sta- 
tistical geometry of the polypeptide backbone is very 
similar in the computations DG-1 and DG-2. This 
is because the refinement step does not drastically 
change the coordinates of the conformations, i.e., 
their distribution is dominated by the distribution 
of starting conformations. The backbone confor- 
mation is fully determined by the conformation of 
the substructure (which includes its N and C at- 
oms), and comes out much the same whether or not 
the rest of the structure is embedded a t  the same 
time. It has been observed, however, that with a very 
small substructure consisting of only the C a atoms, 
the main-chain variability appears to be im- 
p r o ~ e d . ’ ~ . ~ ~  This is probably due to the fact that the 
trial distances among such a small number of atoms 
can never be too drastically inconsistent, and does 
not appear to be a good, general method of improving 
main-chain variability. Moreover, in polypeptides 
with long side chains, the computation of complete 
structures from intermediate substructures has been 
observed to  place underconstrained side chains in 
similar positions most of the time.” Thus, when 
convergence is not a serious problem and the avail- 
able data are not sufficient to determine the con- 
formation with reasonable precision so that sam- 
pling, especially of side-chain conformations, be- 
comes important, intermediate substructures should 
not be used. 

Fortunately, the above observations also suggest 
a number of ways in which the sampling obtained 
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with the distance geometry algorithms studied here 
can be brought closer to the thermodynamic ideal. 
When the embed algorithm is used without metri- 
zation, and no long-range distance constraints are 
present, i t  appears that  distribution with which the 
individual trial distances are selected will have to 
be biased toward lower values if the correct degree 
of expansion is to be obtained. This has never been 
done before simply because experimental informa- 
tion concerning the “expandedness” of globular 
proteins is usually not available, a t  least from nmr 
spectroscopy. In protein structure determinations 
by nmr, however, it often turns out that  there are 
substantial segments of the polypeptide chain for 
which little data are available, and in such cases it 
appears that more “reasonable” guesses a t  the con- 
formations of these segments could be obtained by 
using an appropriately biased distribution (although 
such guesses are still not likely to be right! ) . It  also 
appears that the sampling is improved in many ways 
when metrization is used, although as previously 
noted the implementation of this procedure used in 
the DISGEO program introduces other unjustifiable 
tendencies. In the appendix, we demonstrate that 
these problems can be easily overcome without 
making any major change in the method. 

In the case of torsion space refinements, we have 
shown that a step toward our goal of thermodynamic 
sampling may be obtained simply by choosing the 
starting @ and + angles randomly within Rama- 
chandran’s extreme limits (provided, of course, that  
no explicit information to the contrary is available). 
If the distance constraints dictate otherwise, it 
should still be possible for the refinement to con- 
verge to regions outside the Ramachandran extreme 
limits. In other cases, it may happen that the re- 
sulting bias causes us to miss finding some unusual 
Conformations consistent with the constraints. An- 
other approach to eliminating clustering in the @ /  

plane that might be less prone to missing confor- 
mations would be to alter the weights given to the 
various terms of the error function used, but this 
would also appear to be relatively difficult to put 
into practice. 

Although a number of investigators are working 
on methods of exhaustively searching conformation 
space,j4 ”” none of these methods can presently be 
applied to problems of the sizes that distance ge- 
ometry methods can handle without using either 
heuristic rules or grid sizes that also give rise to the 
same danger o f  missing important conformations. 
For the time being as well as, we believe, a number 
of years to come, such dangers will remain for all 
practic.al intents and purposes unavoidable. The in- 
tent behind distance geometry calculations is in this 

sense similar to that  of simulated annealing, 57 in 
that  rather than attempting to solve a difficult prob- 
lem completely we simply attempt to find a number 
of reasonably good solutions from which we can 
subsequently choose the “best” on the basis of more 
complex criteria. Until the goal of thermodynamic 
sampling of the space of conformations consistent 
with the experimentally available distance con- 
straints can be achieved, practitioners of distance 
geometry will simply have to make a somewhat sub- 
jective judgement concerning which biases are to be 
preferred for the problem a t  hand. Fortunately, the 
data that are now available from nmr spectroscopy 
are often good enough to determine an essentially 
unique conformation, a t  which point the correct re- 
sult will be found regardless of bias. 

APPENDIX 

Some Ways to Improve the Sampling Obtained 
with the Embed Algorithm 

Both the foregoing pages as well as Ref. 15 hint a t  
a variety of ways in which the sampling obtained 
with the embed algorithm can be substantially im- 
proved upon, a t  least in the limiting of case of no 
long-range constraints beyond the hard-sphere radii 
of the atoms. We felt it necessary, however, to delay 
the publication of this paper until we could prove 
by concrete demonstration that improvements we 
proposed would actually work. In this appendix, we 
present a brief account of how these improvements 
were obtained, together with the results of the dem- 
onstration itself. A more detailed paper describing 
these and other improvements to the embed algo- 
rithm is in preparation by the author. 

Basically, there were two more or less separate 
problems to be solved: 

1. the average degree of expansion of the  com- 
puted conformations had to be made to agree 
with the predictions of Flory’s theory; l4  

and 

2. the variations in the degree of expansion had 
to be increased in accord with Flory’s theory 
so that, in particular, the RMSD among the 
computed conformations agreed with Mc- 
Lachlan’s  prediction^.^' 

It is noteworthy that both of these problems could 
be solved without making any fundamental exten- 
sions to the embed algorithm as implemented in the 
DISGEO program. 
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An Improved Distribution for the Trial Distances 

Because the mean square radius of gyration is given 
in terms of the mean square distances by 

(see Refs. 13 and 14) ,  one approach to  the first goal 
is simply to alter the distribution by which the 
(squared) trial distances are chosen so as to achieve 
the desired value of ( R ; )  . Since these random trial 
distances are essentially never compatible with a 
three-dimensional structure, however, they must be 
transformed by the metric matrix procedure that 
forms the heart of the embed algorithm into a set 
of “best-fit’’ three-dimensional  distance^.'^^^* 

Geometrically, this transformation corresponds 
to the orthogonal projection of a higher dimensional 
structure onto a three-dimensional subspace. Since 
projection in a Euclidean space necessarily decreases 
(or a t  least does not increase) the values of all of 
the distances, it may a t  first seem that the confor- 
mations obtained from trial distances that give the 
correct radius of gyration according to the above 
formula will usually wind up being too compact. As 
is explained in Chapter 3 of Ref. 12, however, these 
higher dimensional structures are actually contained 
in a non-Euclidean space wherein projection can ei- 
ther increase or decrease the distances. In practice, 
therefore, the radii of gyration of the projected three- 
dimensional structures obtained by this procedure 
are usually not drastically different from those pre- 
dicted from the trial distances directly, and we can 
empirically adjust the distribution of the (squared) 
trial distances to that the desired radius of gyration 
is attained. 

Although Flory’s theory predicts that the indi- 
vidual squared distances will have a Gaussian dis- 
tribution in the event that no long-range distance 
constraints are present, as  discussed above the sit- 
uation when such constraints are present is much 
less well understood. Moreover, in the determination 
of protein structure from two-dimensional nmr data, 
the Constraints contain numerous upper bounds on 
the long-range distances whose values are actually 
less than the averages predicted by Flory’s theory. 
Thus in such cases the naive use of the distributions 
that apply to freely jointed chains will actually result 
in a further tendency toward expansion rather than 
compactness! 

The principle of maximum entropy states that 
when all we know about a random variable t is its 
mean value, the least biased distribution to use is 
that which gives an exponential density function 

f ( t )  - exp ( - X * t )  .50 Other reasons why we prefer 
this distribution include the fact that it is “memo- 
r y l e ~ s . ” ~ ~  As will be seen presently, that is important 
because in the course of metrization the lower and 
upper limits between which we sample the values of 
the individual distances are constantly changing, 
and this property ensures that the “biases” in the 
distances toward smaller values remain the same as 
we change these limits. Finally, it turns out to be a 
relatively simple matter to generate random num- 
bers with this distribution between given limits and 
with any desired mean therein. 

The desired mean value of the distribution be- 
tween the lower and upper limits of each squared 
distance d %  is obtained by making a suitable choice 
of In our case we have used the following formula 
to predict the mean value of the squared distances: 
- d c  z z  ( l lJ  + - L I J ) ) ’ ( u l J  - a’(ulJ - I l l ) )  

for some a between 0 and i. Observethat when a 
= i, the root mean square distance ( d : )  ‘ I 2  is thus 
the arithmetic mean of the lower and upper distance 
limits 1, and u,,. On the otherhand, when 01 = 0 the 
root mean square distance ( d ? ) l I 2  is equal to geo- 
metric mean of its limits. Because the geometric 
mean of two numbers neverexceeds their arithmetic 
mean, it follows easily that d% is an  increasing func- 
tion of a, i.e., the smaller we make a the smaller we 
can expect our squared trial distances to be. 

As noted in the discussion section, when I ,  and 
u, are the triangle inequality limits implied by the 
bond lengths of a freely jointed linear chain, then 
is the sum of the hard-sphere radii assigned to the 
atoms, which is roughly independent of i and j ,  while 
u,, is the sum of the lengths of the bounds connecting 
i a n d j .  It follows that when 01 = 0 the mean square 
value of the distance will be proportional to \ i - j 1 ,  
in accord with Flory’s theory for a non-self-avoiding 
chain. In practice, we have found that a = 0 results 
in ensembles that are too compact, - in that for 
example 1, = 0 then implies that d: = 0 regard- 
less of the value of ulI. In the calculations reported 
below, we have simply set a = 0.1. 

A Randomized Metrization Procedure 

Metrization is a algorithm by which trial distances 
that satisfy the triangle inequality can be randomly 
chosen within any prescribed self-consistent bounds 
on their values. It was invented several years ago by 
the author in the course of implementing the DIS- 
GEO program;2 a proof of its correctness may be 
found in Ref. 59. Because the triangle inequality d,J 
I d ,k  + dkl is a necessary condition 
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for a symmetric matrix [ d i j ]  of nonnegative real 
numbers to be the distances among a collection of 
points in three-dimensional space, the starting con- 
formations obtained by the metric matrix method58 
from such distances would be expected to  have a 
lower initial error and to converge to structures with 
a lower final error on refinement than those obtained 
by selecting the trial distances independently, as has 
generally been done in the p a ~ t . ’ ~ , ~ ~  Moreover, for 
reasons given in the discussion section above, it is 
reasonable to expect that better sampling will be 
obtained when metrization is used, although it is 
not clear a priori how much better. Perhaps because 
it is relatively difficult to program the metrization 
algorithm in an efficient way, to our knowledge it 
has yet to be incorporated into any of the many other 
available implementations of the embed algorithm 
besides the DISGEO program. 

Nevertheless, the metrization procedure that 
DISGEO uses leads to other sampling problems. 
Briefly, in order to simplify the programming it was 
necessary to choose the trial distances in the course 
of metrization in a certain fixed order, so that all 
the distances involving the atom numbered “1” are 
chosen first, then all those distances involving the 
atom numbered “2” (except for d,, of course), and 
so on up through the last distance dN-l ,N.  Because 
each distance selected reduces the range of values 
from which the remaining distances can be selected 
so as to obtain consistency with the triangle in- 
equality, this means that the resultant distributions 
on the distances selected toward the end of the pro- 
cedure are nonuniform. The net effect is that the 
resultant final conformations tend to  be more com- 
pact at their N than a t  their C terminal ends. 

In order to eliminate this obviously undesirable 
tendency, we have now implemented a metrization 

procedure in which the numbering of the atoms is 
permuted randomly before beginning the calcula- 
tion. Although the trial distances that are chosen 
last in the permuted order are doubtless still non- 
uniform, which distances are affected this way is 
now different for each new structure calculated so 
that only the joint distribution of all the distances 
together is affected. The overall distribution, in turn, 
can be adjusted by an appropriate choice of exponent 
A, so that the mean square values of the distances 
are in accord with Flory’s theory for a freely jointed 
chain. While unjustifiable correlations between the 
resultant trial distances doubtless remain, there is 
no longer any well-defined relation between these 
correlations and the covalent structure of the mol- 
ecule (or for that matter, any available experimental 
data) .  In any case, we doubt that a computationally 
tractable means of eliminating these correlations 
will be found in the near future, and the computa- 
tional results given below indicate that the im- 
provements in the sampling properties of the embed 
algorithm which are obtained from randomized me- 
trization are already quite substantial. 

Computational Results and Discussion 

In order to evaluate the effects of the above measures 
upon the sampling properties of the embed algo- 
rithm, we combined them in all possible ways, i.e., 

DG-4. The trial distances were chosen without 
metrization but with an exponential den- 
sity from within the triangle inequality 
limits determined by the constraints. 

DG-5. The trial distances were chosen with both 
randomized metrization and an exponen- 
tial density from within the triangle in- 

Table A. 1” 
20-Poly(~-Alanine) Computed With Exponential Density 
and Randomized Metrization 

Average Geometric Properties of Ensembles of 

- 

Ensemble P 6 0 2 5  A% T 2 +  A% [X, Y,  21 

DG-4(A) 0.65 0.90 1.97 f 14 1.17 f 5 [8, 10, 11 
DG-4(B) 0.69 0.94 2.02 t- 14 1.22 f 6 [9, 8, 01 
DG-4(C) 0.70 0.97 3.13 f 15 2.14 + 6 [4,14,11 
DG-S(A) 0.94 0.96 0.56 T 72 0.80 -t 41 13, 2, 01 
DG-5(B) 0.96 0.96 0.57 t- 78 0.84 t- 40 14, 3, 21 
DG-5 ( C) 1.03 1.00 0.85 f 81 1.38 f 29 [3, 3, 11 
I)G-G(A) 1.39 0.98 2.17 f 113 2.18 f 73 [7, 3, 01 
DG-G(B) 1.40 0.99 2.21 f 102 2.19 f 72 [7,5, -31 
DG-G(C) 1.35 0.97 2.32 t- 107 2.44 f 63 [6, 6, -31 

a All symbols are defined as in Table I1 of the main part of the paper. 
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Figure A 1  Scatter plots showing the distribution of residues in the q5/+  plane in each 
of the ensembles of fifty 2O-poly( L-alanine) conformations computed by the modified dis- 
tance space methods evaluated in the appendix. The vertical axis corresponds to 4, the 
horizontal to 6. DG-4 refers to the ensembles obtained by refinement of conformations 
embedded from trial distances selected independently with an exponential density from 
within their triangle inequality limits. DG-5 refers to the ensembles obtained by refinement 
of conformations embedded from trial distances selected by randomized metrization and 
with an exponential density. DG-6 refers to the ensembles obtained by refinement of con- 
formations embedded from trial distances selected by randomized metrization but with a 
uniform density. The labels A, B, and C have the same meanings that they have in Fig- 
ure 1. 
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equality limits determined by the con- 
straints. 

DG-6. The trial distances were chosen with ran- 
domized metrization but with a uniform 
distribution from within the triangle in- 
equality limits determined by the con- 
straints. 

The random number generator used for these com- 
putations was the UNIXTM function “random.” 
With each of these three variations on the embed 
algorithm, we computed ensembles of fifty 20- 
poly ( L-alanine) conformations each, first with no 
lower bound constraints, then with short-range 
lower bounds only, and finally with both short and 
long-range lower bounds, i.e., the constraint sets de- 
noted as A, B, and C in the main paper. 

The results of these computations are given in 
Table A l ,  which lists the same geometric parameters 
used in the main part of the paper, together with 
Figure Al, which shows scatter plots of the amino 
acid residues in the 4/$ plane for each of these 
computations. The most important results of these 
calculations may be summarized as follows. 

When the exponential density was used for the 
selection of the trial distances but these were se- 
lected without metrization (DG-4) ,  it will be ob- 
served that the desired degree of compactness has 
been approximately obtained. A value for a’( 20) of 
3 is exactly what one would expect from Brant and 
Flory’s resu!ts for a self-avoiding chain of this 
length.’5 The variations in the compactness remain 
too low, however, and this in turn gives us about the 
same RMSD as was obtained in runs DG-1 and DG- 
2. Moreover, the tendency to cluster in the middle 
of the 4 / $  diagram is markedly more noticeable in 
these compact conformations, especially with re- 
spect to the vertical $ axis. 

On selecting the trial distances using the ran- 
domized metrization procedure in addition to an ex- 
ponential density (DG-5), the variations in com- 
pactness increase substantially and with them, the 
RMSD likewise increases. Thus our earlier expec- 
tation that decreasing the level of inconsistency 
present in the trial distances will alleviate this prob- 
lem has been validated. At the same time, the low 
values of gz and T~ show that these ensembles are 
now too compact, and the clustering in their 4/$ 
plots remains. Observe, however, that when the long- 
range hard-sphere constraints are included in the 
calculations [ DG-5 ( C  ) ] the ensembles become sig- 
nificant ly more expanded, and moreover, the clus- 
tering in the @/$ plots becomes distinctly less pro- 
nounced. This shows, among other things, that any 

strategy aimed at  improving sampling must take into 
account the types of constraints to which it will be 
applied, and that one must be ready to  modify that 
strategy as the circumstances demand. 

Finally, when randomized metrization is used to- 
gether with a simple uniform distribution to select 
the trial distances (DG-6), the approximately cor- 
rect degree of compactness is again obtained. We 
add that  there was only a slight tendency for the 
radius of gyration, as  computed directly from the 
trial distances by means of the formula given above, 
to  decrease on projection into three dimensions, and 
that it also did not change much on subsequent re- 
finement. Thus taking account of the triangle in- 
equality alone appears to  be sufficient to endow our 
“random” distances with a t  least some of the sta- 
tistical properties that Euclidean distances have in 
“random” conformations. Perhaps more impor- 
tantly, the variations in compactness are now ex- 
tremely large, leading to an  RMSD that actually 
exceeds that obtained by any of the distance ge- 
ometry programs studied in this paper, including 
torsion space methods. Last but not least, the scatter 
in the $/$ plots is, if not perfectly uniform, a t  least 
not far less so than the scatter obtained with the 
torsion space methods, which generate their starting 
conformations explicitly by choosing their angles 
with a uniform distribution. 

Let it be clearly understood that we do not claim 
that even the ensembles DG-6 ( A ) ,  ( B ) ,  and ( C )  
are truly random, in the thermodynamic sense of 
the word used here. Doubtless, as our understanding 
of the relation between the underlying ( assumed! ) 
probability density on the accessible conformation 
space and the statistics of the geometric properties 
of those conformations improves, flaws will be found 
by those who look carefully. We also stress once 
again that we presently have no objective crkeria 
for what “random” means when long-range distance 
constraints are present, as is the case in protein 
structure determinations from nmr data. Neverthe- 
less, it appears reasonably certain that when the 
randomized metrization technique described above 
is employed, distance space methods will produce 
conformations that are sufficiently diverse to make 
it a t  least unlikely that any observable strong sim- 
ilarities between all members of a large ensemble 
are due to chance alone. This is perhaps what is 
most important to the majority of readers of this 
paper. 

The author thanks M. Clore, G. Crippen, S. Hyberts, G. 
Montelione, R. Scheek, and G. Wagner for their help and/ 
or inspiration in carrying out these studies. I also wish to 
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