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ABSTRACT

In certain problems of Network Theory the real and imaginary
parts of a driving-point impedance function may be independently given
in a band of interest (w 1 <w< w2), leaving its continuations onto
(0<w < wl) and (w2 <w < M) completely unspecified.

By manipulating the Hilbert Transforms, relating the real and
imaginary parts of a function of a complex variable (p = ¢ + jw) having
no poles on the jw axis or in the right-half plane, this report shows
that if the continuations exist they are unique and readily obtained.

Three necessary conditions for the existence of the continuations
to the given parts (of the driving-point impedance function) are obtained.
Further, if these three conditions are satisfied the continuations may be
obtained as a Fourier series.

Four known impedances were used as examples and their con-
tinuations determined. The results obtained were excellent. The agree-
ment between the Fourier series solution (using the first six terms at
most) and the exact expression was good up to the second significant
figure.

In the appendix a computer program which obtains the Fourier
coefficients of the unknown continuations, from the given real and

imaginary parts, is furnished.
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Chapter One
INTRODUCTION

It has been known for some time that the back scattering radar
cross section of a metallic object may be controlled by the method of im-
pedance loadingl. That is, the return from an object may be increased
or decreased, depending on the loading impedance.
By properly loading an object its return can, in some instances,
be reduced considerably. For example, in the case of a dipole antenna,
Chen and Liepa2 have shown that the return can be reduced by 33 db. at
broadside incidence. For the case of a sphere, Liepa and Senior3 have
shown that the return can be reduced by 22 db. Using a different approach,
Chang and Senior4 have obtained a 15 db. reduction in the case of a sphere.
The loading impedance function necessary to achieve this reduction
(for the sphere case) is shown in Fig.1-1. Ascanbe seen, the impedance
function is not positive real (the real part is not positive for all frequencies)
and ‘oannot be realized with passive elements. However, considering
that the real part of this function remains positive in the band 0 < kz.*g 1.5,
we might hope to change its behavior outside the band such that the function
obtained is positive real. However, once the behavior of an impedance
function is given in a band of interest, how much freedom is there as to
the choice of its continuations outside the band? Is the behavior of an
impedance function completely determined for all frequencies by specifying
its behavior in a band of interest? In other words:
Given independently (in the form of a graph) the real
and imaginary parts of a passive driving-point impedance
function in a band (0, 1)*
(a) What can be said about the compatibility of the

given parts; i.e. are they the real and imaginary

*
For simplicity, the band of interest has been taken as (0, 1). However,

in a later section, the solution to the problem will be extended to the band

(w,, w,).
wl 2

For this case a: radius of sphere, k: %—% f(f in MHz).
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FIG. 1-1: IMPEDANCE NEEDED TO REDUCE THE RETURN FROM A
SPHERE BY 15 db. (after Chang and Senior).



parts of a positive real function in the band (0, 1)?
(b) What can be said about the continuations onto (1,(00)?
Are they also the real and imaginary parts of the
same positive real function in(1, 0)?
(c) What conditions must be imposed on the given
parts, in the band (0, 1), such that (a) and (b)
are satisfied?
(d) Are the continuations unique?
(e) What are the continuations onto (1,0)?
Assuming that the impedance function in question:

(i) has no poles on the jw axis or in the right-half plane

this report gives an adequate answer to each of the above questions.

This assumption is necessary for the sole purpose of unique-
ness; i.e. a pole on the jw axis may be partially or completely re-
moved without changing the behavior of the real part (thereby making
the impedance function not unique).

In answering question (a), (b) and (c) a set of three necessary
(though not sufficient) conditions are obtained which test whéther the
given real and imaginary parts are compatible in the band of interest.

Unfortunately, the solution for the continuations of the given
parts can not be obtained in a closed form due to the nature of the
integral equations r:lating the given parts and their con’cinuations.1 3 How-
ever, a Fourier series solution can be obtained. This series, as the
example solved in a later chapter will show, converges very rapidly.

Before going into the solution of the problem, let us review some

of the work that has been done previously.



Bode5 pointed out that having the real or imaginary part of a pas-
sive driving-point impedance function as a rational function of frequency
would completely specify the impedance function for all frequencies. He
noted that in going from the real to the complex frequency domain
(w - p/§) one would obtain:

R(w - p/j) = Ev Z(p) = 1/2 [Z(p) + Z(-p)] (1.1)
and
Xw->p/) =0d Zp) = 1/2 [2(p) - ZG-p)] . (1.2)

Hence, expanding the even or odd part of the impedance function
(whichever is known and is rational) in a partial fraction expansion, one can
identify those terms having left-half plane poles with Z(p) and those with
right-half plane poles Z(-p).

Guillemin6 pointed out that by making use of the Hilbert Transforms
the real (or imaginary) part of a driving-point impedance function may be
obtained from the imaginary (or real) part. The Hilbert Transforms assume
that the impedance function in question has no poles in the right-baif plane

or on the jw axis. These transforms are:

®
R(W) = - % 3‘4’2‘—(-’-"—25’-’-‘- + R(0) (1.3)
A -W
0
and
®
Xw = 2 i d (1.4)
0 A -Ww

Both of these methods require some information for all frequencies;
i.e. the real or imaginary part of the impedance function must be known
throughout the whole spectrum.

However, for the problem of impedance loading the real and imaginary

parts of the impedance function are given in a band of frequencies w. < w<w

1 2



leaving its continuations onto 0 < w < W, and W, < w< MO completely

unspecified.

For this case Calahan7 has suggested matching the known impedance
function behavior with an expansion of positive-real, rational functions in
the band W, < W Wy
determined by computer optimization techniques.

Another method (due to Redheffers) of solving this problem makes

the coefficients of these rational functions being

use of the change of variable w = tan -Q . Then, the band of interest

2
w, < w< W, becomes =2tan'1w1§_ p< ¢2=2tan'1w In the

dcl)main Fouzrier series which give the best fit (in the least sc21uare sense)
to the real and imaginary parts in ¢1 <P< ¢2 can be found (subject to
the Weiner-Lee criterion for physical realizability’y) . Unfortunately, the
equations for the Fourier coefficients are rather difficult to generate and,
as pointed out by Redheffer, it may be shown that the Fourier series will
not in general be bounded for ¢2 <@g< .

Still another method is that suggested by Zeheb and Lempelg, If the
behavior of an impedance function is known for a finite number of frequencies,
a passive network can be synthesized such that its impedance takes on the
prescribed values at the given frequencies. However, there is no restriction
as to the behavior of the impedance other than at the given frequencies,
thereby allowing more than one solution.

This report is concerned with the problem of determining the

behavior of an impedance function outside of the band where its behavior
is completely specified. That is, given an impedance function with a pre-

scribed behavior in a band w; < w < Wy it is desired to find the solution
for the function's continuation onto 0 < w < W, and W, <w< @.

@ @

* If R(f) = Z An cosn§ and x(f) = Z B sin n ), then:

n=0 n=1

A +B =0,foralln=1,2, . ..
n n



In contrast to the methods outlined above, this report does not use
any approximation techniques (other than the truncation of an infinite series)
and if certain necessary conditions are satisfied, it gives bounded and

unique solutions for the continuations.



Chapter Two
THEORETICAL FORMULATION

2.1 Hilbert Transforms

If Z(p) (where p is the complex variable p = o+ jw) is a driving-
point impedance function, then it is positive-real and by definition:

a) Z(p) is analytic in the right half plane

b) Re [Z(ju)]> 0 forallw

¢) Z(p) is real for p real.

Given a function G{(p), having no poles on the jw axis or the right
half plane, we define the function F(p) by:

A G(p
F(p) = (2.1)

Then from the Cauchy-Goursat integral theorem10 we have:

F(p) dp = 0 (2.2)

c
where c is the contour shown in Fig. 2-1. Writing G(p) in the form:

G(p) = Hl (o,w) +j H2 (o,w) (2.3)

we have from (2.2)

H1 (o,w) +j H2 (o,w)

dp = 0 . 2.4
P-ju P 2.9
c
Carrying out the contour integration, letting r -0 and R —» @

and separating real and imaginary parts, we obtain:

, ® H,(0, 1) - §H,(0,))
[H,(0,0) + JH0,0)] - [H,(0,m)+jHy(0, o) - - o A
-0 (2.5)



Let: Glp) =

so that:

1]
A

Hl(O, w) = Hl(“’)

1}
A

Hz(O,w) = H2 (w)

(o]

(2.6)
1+p2
0<w<1

(2.7
1<w< @
0<w<1

(2.8)
I<w<®

It should be noted that since Z(p) has no poles on the jw axis or

in the right-half plane, then:

lim G(p) = 0

p-»®

r—mM8M»
jw/'

for 0> 0

FIG. 2-1: CONTOUR OF INTEGRATION FOR EQ. (2.2).



Since we have assumed that Z(p) is real for p real, it follows
that R(w) and X(w) are even and odd functions of frequency respectively.
Using Eqgs. (2.7), (2.8), (2.5) and (2. 6) we obtain:

] (0}
TRW X ARNAL 24w, 0cugl
2/1-w:; 0 M"-w) /1= 1 -0 %=1

(2.9)

1 @

T XW) RNd XA dA Ag(w) O<w<l .
% [1-w 0 (A"-w") J1-x 1 (A w%/

(2.10)

These integrals are to be evaluated in the Cauchy principal value

sense; i.e.

1

RO dX R(\) d) R(A) dx

2 2 = lim 2 2 ;
p A5-w) 12 e 0 (A°-w°) J1-2 (x 0 [1-x

0<w<l (2.11)

and so on.
Eqgs. (2.9) and (2.10) are Hilbert Transforms relating the real and

imaginary parts of a function of the complex variable p=oc+ jw for 0=0
and 0 w< 1.
Note the following:
1) Since R(w) and X(w) are given in the band (0, 1) then the functions
f(w) and g(w) are known.
2) We are seeking a solution for R(A) and X()\) in (1, 00).
3) Since X(w)/w is even, w X(w) is even and w R(w) is odd, Egs.
(2.9) and (2.10) have the same functional representation. Hence,
we need solve only one of these equations. For our purposes,
we will solve equation (2.9) which is reproduced here for con-

venience.
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©
tw) - m(x) dA

O<w< 1. (2.9)
oA

2.2 Necessary Conditions for Positive Real Continuations.
Making the change of variable

A =sec g (2.12)
in Eq. (2.9) we obtain:
d o< f<
1 R*(@) d§ - =
fw = 9 ﬁ ’ (2.13)
l1-w cos 0<w<1 ’
0 2 -
where:
RX@) = R(x = sec'g) . (2.14)

If R*f) is positive for all §, then we must have that f(w) is
non-negative for all 0 < w< 1. Hence, in order for R(w) and X(w) to
be the real and imaginary parts of a passive driving-point impedance for
0< w< 1, Eq. (2.9) implies that the following inequality must be satisfied.

1
RW) > - / AXN D

; 0<w< 1. (2.19)
(x w)lk

Expanding the kernel of Eq. (2.13) in a power series:

L Z 2n ZnQ,Iz 2”
2! W cos 2,wcos2 <1 (2.16)

1- w2 cos

and substituting this expansion in Eq. (2.13) we obtain
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flw) = % R*(@) Z w2n cos:Zn g dg . (2.17)

‘However, since the series in Eq. (2.17) converges within the limits

of integration, we may integrate term by term and obtain:

0 T

flw) = -;— szn R*(§) cos2n gdjli . (2.18)

2
n=0 0

Let us now expand f(w) in a power series about the origin

4] 80] T
flw) = Z) K w2l - % szn R*(§) cos’® gd[b .
ne n= 0 (2.19)

Equating coefficients of like powers in Eq. (2.19) we obtain:

m
K = R¥@) cos™® gd¢ . (2.20)
0

From Eq. (2.20) we note that if R*(§) is positive for all §, as

it must be for a passive impedance, then:

K >0 for all n . (2.21)
+
Also note that since coszn gz coszr1 2 ‘g > . .. . it follows that:
>
> K >K >K > (2.22)

Finally then, we conclude that for the real and imaginary parts of
an impedance given in a band [0, 1] to be the real and imaginary parts

of a positive real function in that band we must require that:
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fwy> 0 or

1
' [ 2
R(w > - 2 lﬂ'w )‘X(”dz‘-———;ogwg1

2 2
0 A -w)f1-A
< K >0 for all n (2.23)

..>K _>K >K
n

-1 1>... for all n .

ot

Clearly conditions (2.23) are only necessary and not sufficient

~ conditions.
At this point we have made use of the fact that:

R(w) > 0, 0<w< @
Z(p) is real for p real
Z(p) is analytic on the jw axis and in the right half plane.

2.3 Uniqueness of Continuations.

If there exists another solution R*(f) to Eq. (2.20) then:

T
0= ?12- [R’i‘(¢) - R*(¢):| cos2n g dg foralln> 0. (2.24)
0

However, replacing R’f(¢) and R*(f§) by their respective Fourier
series it can be shown that both series have the same coefficients, implying
that there is a unique solution to (2. 20).

Making in (2.24) the transformation

n

m g
cos” o5 = ; B o cos (n-m) § (2.25)

where:
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and replacing R’i‘(fé) and R*(f) by their Fourier series one obtains:

n g @
0= Z Bnmf Z (Aj -Bj) cos jf cos (n-m) § dp . (2.26)
m=0 0 j=0

Integrating (2.26), noting that the integral vanishes for j #@-m)

n
0= E; —%—(A -B ><2“> foralln> 0
n n-m n-m \m -
m=0 2
which implies that A = B . Q.E.D.
n-m n-m

2.4 Solution for Continuations

Making use of (2.25) Eq. (2.20) becomes:

n m
I.Z
K = = B R*(@) cos (n-m) § df . (2.27)
n 2 oo m A

However, since R*(f) is a continuous even function, we can expand

it in a convergent Fourier cosine series as follows:

@

R¥f) = Z A cosjf ; (2.28)

j=0

RHE) cos j £ d&
0

>
n
SRS

Substituting (2. 28) into (2.27) we obtain:

n T 0

K = -% Z B . ETJAj cos jf cos (n-m) fdf . (2.29)

m=0 j=0
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Making use of the orthogonality relation:

m

T if J=n-m=0
cos (n-m) fcosjPpdp = (/2 if j=n-mf0 (2.30)
0 if j#fn-m
0
we obtain for (2.29):
T 1
1 2
K = 3 Z: B Agem) ©%® (n-m) g a9 (2.31)
0 m=0
or, replacing Bnm from (2.25)
n
.2- ) _t___ 2n .
. K = < 22n A(n-m) - . (2.32)

Equation (2.32) is then the recursion relation for the coefficients
of the Fourier series (2.29) for R*(§) . Solving Eq. (2.32) for A we
obtain

n
A 2n
A =2 [3 k -, —wm ] (2.33)
n T n 2n
m=1 2 m
or
n
2n
A =22k . A (2.34)
n T n (n-m)
m=1 m

In order to solve for the continuation of the imaginary part onto
(1, M), we make use of Eq. (2.10) which is reproduced here for convenience:
1))
X(\) dA

glw) =
(7\2~w2) JAE- 1

; 0<w< 1, (2.10)
1
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Letting X(X) = X E(A) ; where E(\) is an even function, Eq. (2.10)

becomes:

14]
A EQ) dA

glw) = —_—==
| (Xz-wz)h-l

0<w< 1. (2.35)

Note that Eq. (2.35) has the same functional representation as
does Eq. (2.9). Hence, we should expect to obtain a similar solution; i.e.

00)
glw) = Z Hnwzn (2.36)
n=0
E(\) = EX*(§) = Z T cosmf (2.37)
m=0 m
and from (2. 34):
n
2n
T = 2%y . T (2.38)
n T n - (n-m)
m=1
where:
04
X* (@) = cosg n; Tmcosm¢ . (2.39)

So far a functional representation for the real and imaginary parts
of the driving point impedance in [0, 1] has been used. However, our goal
is to be able to find the continuations from a graphical representation of the
real and imaginary parts in [0, l_l . To this we now turn our attention.

2.5 Solution From a Graphical Representation.

From a graphical representation of the real and imaginary parts of
a driving point impedance in [0, 1] , we can always find a Fourier series
for these parts by making use of the following change of variable:

W = cos % (2.40)



16

obtaining

@
R(w) = R(cos%) = R¥(a) = Z B cosna
n=0

(2.41)
for -1 <a<0
Similarly:
wX(w) = E(W) = E*(a)
o (2.42)
= Z Cn cos a
n=0
Using the trigonometric identity:
n
cosna = Z b cos:2m a (2.43)
a0 nm 2
where:
p = g2l b 21
nn 00
ntm-1
b - (_l)n-m _2n 22m—1 ;m#n
nm n-m
n-m-1
we obtain for Eq. (2.41)
@® n
R*(a) = z B Z b cost™ £ (2.44)
n nm 2
n=0 m=0

If the summation signs in (2.44) are inverted with the proper change
of subscripts, we obtain:

@

M ®
R*(a) = z : coszm 2 Z Bb = E : R cos2m 2 (2.45)
2 Tm n nm m 2

m=0
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where

0]
R_ = E B b . (2.46)
m n nm

Using (2.40) in (2.45) we obtain:

41)
R*(a) = z R_u*™ = R . (2.47)

m=0

This is a power series for R(w) about the origin.
Expanding in a power series about the origin the term

®
1 Z A - (2.48)
I (29) . ‘

we obtain for the first term in the right hand side of equation (2.9)

00] 0]
7_R(w) _ T Z s wzj (2§ - 1)1 (2.49)
s 1 2 &g m S (2 !
or: 00 m
7 R(w) T 2m (2§ - 1)
5 I T2 LY Z-; Rmp) ~ (@t - (2%0)
-W m=0 j=

We are now left with the task of finding a power series for the second
term in the right hand side of Eq. (2.9) so that by equating coefficients
of like powers, the needed Kn's of equation (2.34) can be found; i.e.

1
A AXM) AN on
02w 1 & no

"
o

0 (2.51)

However, Eq. (2.51) a8 it stands has a singular integrand. In order
to remove this singularity, we make use of the fact that adding or subtracting

a constant (any function not dependent on A) does not change the value of the
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integral* Since

1
44 - 0; 0<w< 1 (2.52)
0 A" -w") Jl-ka

we can write

)
1= ’Z‘X(;““’x“" dr ; 0<w<l . (2.53)
0 A"-w") f1-X

e
Equation (2.53) has no singularities within the limits of integration.
We may now use the substitution (2.42) as follows:

[\4]

Z C cosna
n

n=0

0
z Cn cosn §
n=0

with the following change of variable:

w X(w)

(2.54)

A X()

X = cos g . (2.55)

Then (2. 53) becomes:

o d§ . (2.56)

Again, since the series of (2.56) converges within the limits of
integration, we may integrate term by term and obtain

* For a detailed proof of this, see appendix E.
™ For a detailed proof of this, see appendix F.
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00 T
21 cosné-cosna
I=7 ;:0: Cn cosz 3 osz a de . (2.57)
0 2~ %% 72

However,' using expression (2.43) we have:

<cos2m s - coszm 2
cos n £ - cos n a 2 2
g b 2 ¢ 3 3 (2.58)
cos 2-cos -2- <os 2-cos b
and:
cos m £ - cos ot
E : 2(1- 1) a 2(m-i) _§ (2.59)
82 §- - CoS8 91_ i=1 .
cos o 5
Using (2.59) in (2.58) we obtain:
. n m
cosn§-cosna _ E b E cos2(1—1) a cos2(m -1) & (2.60)
2§ 2 a —! ‘nm 2 2
cos -cos — m=1 i=1

2 2

Substituting (2.60) in (2.57) we obtain:

ol
Me
pO
]

n T
082(1-1) 2 E : b cosum_l) -ng
2 nm 2
m=1

n=1 i=1
(2.61)
0] n n f ]
2(1-1) a 7 [2(m-{)-1]"!"
Zl =1 2 :Z-—_; Pam 2 [2(m-D)]L
0] n [ 7

_n 2(m-i) -3 ]!
2 Z Z C xnz-i;l Pam [2(m-1) —2 ] (2.62)

where we have gone back to the variable w instead of cos% .

Comparing Eq. (2.62) with (2.51), we see that:
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(4] n |_—
E E 2(m-1) - 3 J'°
G = (o] b .[____.__]_'.’- (2.63)
i L 2(m-1) - 2] !!

and we can write:

01)

2m
E:w

m=0 j=0

n [04)
. Z - [(2m-1) -3] 1+ g 20

gl [(2(m-1) - 27 5 O

M

[T

®
(-1 = 2i
Rim-p) "Gt T 2 ;“’ Z 0 ¥

Equating coefficients of like powers in (2.64) we obtain:

P @ n
TP 4 D [N n=ptl " meptl O [2(m-p)-2]':
(2.65)
If we wish to obtain a similar expression for the imaginary part,

we proceed as follows:

From Eq. (2.10) we have:

TXW _ _71wXw _ _7TEW (2.66)
ZwJI-w szll-wz 2w2/1-w2

From (2.42) we have:

E(w) = E¥a) = i Cn cos na (2.67)

n=0

so that (2. 66) becomes:

@ m
7 X(w) T 2m
’ 7 = 9 w P (2]- 1) 1!

where: @

P = E : C b . (2.69)
m n nm
m
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Making use of Eq. (2.52) we note that:

1 1

R(\) - R(w) dx =

(7\2— wz) 1-2

R(A) dA
(Az- wz) Jl - k2

; 0<w<l (2.70)

0 0

and, carrying out a derivation similar to that in Eq. (2.57) to (2. 65) we
obtain:

p Q0 n '
2y . (24-1) 1 [2m-p)-3] v
7 ;—1 o T Z Py 2 Pom [2Am-p-2] 1

n=ptl m=ptl

(2.71)
With the aid of Eq. (2.71) we can use Eq. (2.38) to find the Fourier
coefficients of the continuation to the imaginary part onto (1, ).
Let us at this point rewrite expressions (2.33) and (2.38) for con-

venience:

2 .2n E 2n
A = = 2 K - A (2.33)
n T n (n-m)
m=1
n
2n
T = 292y . z : (2.38)
n T - (n-m)

Note that from the graphical representation of the real and imaginary
parts of a passive driving-point impedance function in (0, 1) we can always

find R B and Cn for any p,j and n. Hence, knowing

] P 2\’
(p=3)’ “(p=j)’ "m
these constants, we can always find the constants An and Tn which give

the desired solution.

2.6 Extension to the Band Case.

So far we have been using (0, 1) as the band of interest. If we wish
to extend this method to the case where the band of interest is (wl, wz) this
can be done by first finding the continuations onto 0 < w < W, and then
knowing the real and imaginary parts for 0 < w < w, use the method

1
described in section (2.4) to find the continuations onto (wy <w < M) .
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Let:
2 B "’2"‘"?
cos” o = 7 2 (2.72)
2 1
so that:
wz = <w§-wf) cosz §+ wf (2.73)

; @
R(w) = R [/(wg-wf) cos2 §+wfi] = ZDn cosnp (2.74)

n=0

i.e. we can always find a Fourier series which describes the behavior of

the given real part in the band wlg w< w2 .
However, we know from (2.43) that:

n
cosnf = Z b <:oszmé (2.75)
nam 2
m=0
so that (2.74) becomes:
@® 00)
R(w) = E : coszmg Z b D
= nm n
m=0 n=m
(2.76)
[00) 2 2\m @
W -w,
-2 Db b
m=0 wz-wz n=m om 1
2 1
Note that:
0
Zﬂ o1
lim n-m _ 1, (2.77)
]
m -0
2, b D
nm n
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Thus, for Eq. (2.76) to converge, we require that:

<1 . (2.78)

However, we are interested in representing R(w) downto w =0,
so that we can apply the method outlined in the preceding pages.
In order for (2.76) to extend its radius of convergence all the way

down to w =0, we require that:

2 2 2 2
‘w—wl\ < \wz-wl‘ (2.79)
or:
w2 > Zw? - wg . (2.80)

Hence, for w =0 we must have that:

> 2 . (2.81)

If the band of interest is such that (2.81) holds then we are assured that
we can always find the behavior of the function R(w) all the way down to the
origin. However, if this should not be the case, then we can find the behavior
of R(w) down to some new frequency, say Ws such that w3 < W, and
then use Eq. (2. 74) with W, replaced by Wg ) and so on until we have the
representation of the function R(w) down to the point w =0,

In order to find the behavior of the imaginary part for 0 < W< w

1 t]
we use a technique similar to that used for finding R(w). However, in this
case we let:

2 pw (2.82)

where E(w) is an even function of w .
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Then using the change of variables (2.72) we obtain:

R (04]
E(w) =E Koz -w2> cos2 B, wz = E :C cosnfB . (2.83)
2 1 2 1 n
n=0
Using (2.75) in (2.83) and inverting the summation signs we obtain:
[01] 2 2 (00]
w -wl
E(w) = z : z : b C (2.84)
2 2 nm n
m=0]| w, -w n=m
2 1
or:
[00] 2 2 (00]
w -wl
X(w) = w _5_ ; Cb (2.85)
2 2 nm
m=0 -W n=m

Note that (2.85) is similar to (2.76). Hence, we can conclude that
in order for (2.85).to extend its radius of convergence all the way down to

w = 0, we require that:

> 2 (2.81)

O-‘E:N |N8N

The statements made in regards to R(w), following Eq. (2.81) also
hold for X(w). Hence, in practice, we only need to know the behavior of
the real and imaginary parts of the driving point impedance to a passive
network in a finite range of frequencies in order to find its behavior outside
this band.

Up to now, we have been using infinite series without being concerned
with the actual solution to a practical problem. However, if we wish to
solve a problem using the method outlined in the preceding pages, we must
truncate the infinite series. This truncation introduces an error, for which

we can obtain a measure as follows:
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2.7 Measure of Truncation Error.

From Eq. (2.70) we can see that truncating the power series for
f(w) is equivalent to truncating the infinite series in the right hand side

of (2.70). Hence, we can define a measure of the error as:

N

fw) - Z anZn (2.86)
n -

this presents some difficulties since f(w) is singular at w =1. In order
to remove this singularity, we can multiply f(w) by the factor /1 - w2

and obtain:
2
Flw = [1-0 fW) , (2.87)

or.

N
E@ £ FO - [1-0° > K o™ (2.88)
n=0

We have shown, in preceding pages, that:

fw) >0;0<w<L1 (2.89)
and
Kn>0; for alln . (2.90)
Then we note that:
Flw) = /1—-_(&)-i flw>0 for 0Kw< 1. (2.91)

Since in (2. 88) we are only taking the first N terms of the power

series for f(w) (all the Kn's are positive) we can conclude that:

E(W>0 for 0<w< 1 .

And then a measure of the normalized error becomes:
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1
N

E (w) dw T (2n-1) (2n-3) . . . (3) (1)

0 2 Z Kn (2nt+2) (2n) . .(4) (2)
n=
¢ = - . (2.92)

F(w) dw F(w) dw

0 0

This is not an accurate measure of the error. However, it gives some
measure of the error incurred in the truncation of the infinite series. An
exact expression for the truncation error can not be obtained since we do
not know anything about R*(w); in addition it appears only under an integral
sign. Therefore, the usual least square error technique cannot be applied

here.

2.8 Extension to Transfer Impedances.
The method described in section 2.4 readily extends to the case of

a transfer impedance function. We note that if the function in question has
no poles in the right half plane or the jw axis of the complex plane, then
we may use the Hilbert Transforms of Eqs. (2.9) and (2.10). These equations
require no restrictions on the location of the zeros of the transfer impedance
function. Thus, it follows that the method derived in section 2.4 is indeed
applicable to the case of a transfer impedance function if and only if this
function has no poles on the jw axis or the right half plane. Uniqueness
will be achieved only up to an additive constant, since the concept of a mini-
mum resistance function is not meaningful for a transfer impedance.

Since there are no restrictions on the behavior of the real part of
a transfer impedance function, we can not state any conditions, necessary
and/or sufficient, for the compatibility of the given parts. Hence, we must
obtain the continuations of the given parts in order to find out whether they
are compatible or not; i.e. whether the Fourier series obtained converge

or diverge.



Chapter Three

NUMERICAL COMPUTATIONS

3.1 Transformation of Equations

Several examples have been used to verify the method outlined in
the preceeding pages. Functions whose behavior was known outside the band of
interest were used as the impedance functions and the results obtained were
excellent.

A computer program was written to solve for the unknown parts
using 4N +5 points as data; i.e. R(w) and X (w) were given at 4N +5
different frequencies equally distributed along the band of interest. The
program gives as results the first N+ 1 Fourier coefficients for R*(@)
and X*(f).

The reason why we only obtain N +1 coefficients from 4N + § points
relates te the nature of the subroutine used to obtain the Fourier coef-
ficients of R (w) and wX (w) in the band (0,1). From 4N+ 5 points we
can obtain only the first 2N+ 3 Fourier coefficients for R(w) and wX(w)
in the band (0, 1). It will become apparent that this leads to N+ 1 coef-
ficients for R*(f) and cos g— X* ().

For convenience we reproduce here the expression for the coefficients

of the power series for f(w) about the origin.

k 1) n
Zg - (o= ]2(j-k)-3!!!
. ;R(k-n) (2n)!! +;1 Cn j;l bnj 2(-k) - 2| !!
(3.1)
where
00
R, - Z Bby, (3.2)
i=j =

Looking at the second term in the right hand side we note that
bnj varies as 22j , whereas the double factorial varies as 1/22J .

Hence, we would like to remove this term from both bnj and the double

factorial.

21
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In order to do that we note that:

lanj=22“'1 . n=j#0

n+j-1 .
b = (0" Lo ( 2471 n 4y 40 L (3.3)
bnj a 1; n=j=0

also,
qu-k) - 3;33 _ 1 (20'“‘1’) 5.0
2-0 -2t T 202\

Thus we have:

24-k) -3]!" _ 2n-1 1 2 -k-1) .
2j-K) - 2] k-1
jRe1 M L20-K) A WP (3.5)
n-1 ’
f D 2 n+j_1) R #oked
j=k+1 "3 \n-j-1 g 2Uk-1) j-k-1
2(n-k-1) oo . n+j-1\ [23-k-1)
_ g2kl . Z (P 2 ,2kt1
. n-j .
n-k-1 j =k+1 n-j-1 | j-k-1
seat | [2- 2% n-l by [PHI71) (-2
=2 + Z (-1" " =
n-k-1/  j=k+l b \a-j-y \j-k-1
(3.6)

Referring to Eq. (2.1) we note that it contains two infinite series.
For computational purposes we must truncate these series after the first

In order to do this and maintain a negligible truncation error
However,

N terms.
we must use the first N terms of each of the infinite series.

note that when j= N
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N
ZFN B b = BPaw (3.7

Hence, we areonly using one term to compute RN’ thereby making

the error not negligible.
To be able to truncate the infinite series and maintain the truncation

error : megligible we make; in (3.2) the following change of subscripts

ZBHj (1 + )] (3.8)

and using (3.6) in (3.1):

k
2 E (2n-1) !!
- = +
T Kk " R(k-n) (2n) ! ! Tk (3.9)
n=0
04 ) 9 nt+k n+k+j\[ 2j+ 2k
Z c 2k+1 n>+ Z (_l)n+k+1-j 2(n+k+1)
+1- - -k-
Ty - n+k+1 2 = ntk+1-j  \n+k-j/\j-k-1

(3.10)

n+k

0 .
+k+ -k-
2k+1| |2® k1] 2Antkr) |RTETI|[20-k-1)
Ty = C k12 * (-1) nHk+ 1=
j=k+1 } \n+k- j-k-1

(3.11)

Making another change of subscripts in (3.11)

0
on n+j+2k+1) [ 2§
Tk ) E Cn+k+1 [2k+£l ( ) -S- :( l)nj 2(n+k+l) ( )

n=0 n-j-1 j
(3.12)
Now we can truncate Eq. (3.10), using (3.8) and (3.12) to obtain:
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k N o
2 = E :R (2n-1)!! + E C 2211:+1 +
- e
Tk =0 (k-n) (2n)'' 70 n+k+1 n
-l nej 2atkey [PHIYEAL) (2
+ (_1) ——n—:-j——l' (3. 13)
j=0 n-j-1 J
where as before:
= \ b ‘
R i1=0 Bl + 901+ )y (3.14)
3.2 First Example
For the first example the pair of functions uged were:
-W
R(w) 5 ;o X(w) 5 (3.15)
1+w 1+w

For this case N =4 was used. The coefficients for the power series

of the function f(w) are then:

n Kn

0 0.292 893 2

1 0.207 106 5

2 0.167 894 5 (3.16)
3 0.144 602 9

4 0.128 839 3

Note that as predicted earlier, the Kn's are all positive and
monotonically decreasing, and the necessary conditions for compatibility
are satisfied.

For this case the An's (Fourier coefficients for the unknown
R*(¢)) are found to be:



31

n An

0 0.292 893 2

1 0.242 639 6

2 -0.041 639 0 (3.17
3 0.006 761 5

4 0.003 385 6

Figure (3-1) shows a plot of R*(f) as compared with R(w) given
in Eq. (3.15) (where w = sec g ). For this case it is not easy to distinguish
the points of the exact expression (3.15) and those from the Fourier series.
Therefore a comparison of both points is given in Table 3.1 below. The
points obtained from the exact expression are labeled R({) and those from

the Fourier series R*(f). (only for 0 < @ < ).

¢ R(§) R*(f)

0 0.5 0.504 073 9
T[4 0. 460 49 0.459 658 9
/2 0. 333 333 0.337 884 8
3n [4 0.122 0.122 749 9

1r 0.000 0.005 271 7

Table 3.1: Comparison Between Points from the Exact Expression
and those from the Fourier Series Solution for
Example One.

From this table we see that there is good agreement between the
exact expression for R(f) and its Fourier series, obtained by the method
described in the preceeding pages. As a matter of fact the agreement is

good up to the third significant figure.
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3.3 Second Example

As a second example the following functions were used:

R(W) = ——g—gﬁﬁ— ; XW) = 7“’32'68“’ 5 (3.18)

(1+w)4+w) (l+w N4 +w)
N = 4 was used for this case and the Kn's obtained were:

n Kn
0 0.492 582 8
1 0.296 269 6
2 0.256 525 3 (3.19)
3 0.230 256 2
4 0.210 581 7

Once again we see that the Kn's are all positive and monotonically
decreasing. As expected, the necessary conditions are satisfied.
For this example the Fourier coefficients (An) corresponding to

the real part R¥(f) are:

n A
n

0.492 582 8
0.199 912 6
0.349 257 5 (3.20)
0.209 492 8
0.129 740 8

D w N - O

Figure (3-2) shows a plot of R*(§) as compared with the exact
expression. Once again we observe that, the points obtained using the
Fourier series technique are almost indistinguishable from those of the
exact expression. Therefore, a comparison of both points is given in

Table 3.2 below.
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g R(f) R*(f)

0 0. 900 0.962 001 0
™ [4 0.1716 0.652 241 6
7 /2 0.222 222 2 |0.273 066 1
37 [4 0.094 379 0.073 347 3

T 1.000 000 0.981 116 1

Table 3.2: Comparison between Points from the Exact Expression
and those from the Fourier Series Solution for Example
two.

Once more we see that the Fourier series technique does indeed
give a solution which agrees with the exact solution. Here however, we
note that the discrepancy occurs in the second significant figure. This
is due to the fact that for this example N = 4 is not enough; i.e. more
terms of the Fourier series are required.

3.4 Third Example:

As a third example we take the transfer impedance function whose
real and imaginary parts are given by:

2
RO = — 6 — D X() = . (3.21)

w + 13w + 36 w4+13w2+36

For this case N = 5 was used. The Kn's obtained were:

n K
n

0.048 469 12
0.039 559 93
0.032 979 22 (3.22)
0.028 658 62
0.025 627 36
0.023 370 66

(e

(4 ) I - JC R VN
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and the Fourier coefficients corresponding to the unknown real part

R*@) are:

n A
n

0.048 469 1

0.061 301 47

-0.008 353 18 (3.23)
-0.004 633 85

0.005 843 25

-0.003 502 56

g B w N =~ O

Figure (3-3) shows a plot of the real part R(§) for the range
0<@# <7 (1<w< M. Note that the points from the exact expression
and those from the Fourier series (using six terms) are almost indis-
tinguishable. Again a comparison of both sets of points is given below

in table 3-3.

g R(f) R*(f)
0 0. 100 0.099 124 25
7 [4 0.091 816 0.091 726 10
T [2 0. 0606 0.062 665 55
3r [4 -0.001 102 -0.001 514 09
T 0. 000 -0.007 205 87

Table 3-3: Comparison Between Points from the Exact Expression and
those from the Fourier Series Solution for Example Three.

From this table we see that the Fourier series technique gives
a solution which indeed agrees with the exact expression, for the con-
tinuation. Once again we observe that the discrepancy occurs in the

third significant figure.
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3.5 Fourth Example

As a fourth example the following transfer impedance function was
used.

2
R(w) = 24-;9“ 2 6
576 + 244w + 29w + w
and (3.24)
3
X(W) = w -26w

576 + 244w2 + 29(.)4 +w6

For this case N = 4 was used. The Kn's obtained were

n Kn
0 0.004 955 57
1 0.005 691 39
2 0.005 180 53 (3.25)
3, 0.004 671 78
4 0.004 261 05

and the Fourier coefficients corresponding to the unknown real part
R*@) were:

n An

0 0.004 955 57

1 0.012 854 42

2 0.001 737 44 (3. 26)
3 -0.003 358 14

4 0.002 308 59

Figure (3-4) shows a plot of the real part R(f) for the range
0<@§<7 (1<w<®. Note that the points from the exact expression

and those from the Fourier series (using the first five terms) are almost
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indistinguishable.
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Again a comparison of both sets of points is given
below in Table 3-4:

g R(§) R*(f)
0 0.017 647 06 0.018 497 89
7 [4 0.014 923 36 0.014 111 04
7 /2 0.005 050 50 0.005 526 72
3 [4 -0.009 458 00 -0.008 817 08
T 0. 000 -0.000 494 68

Table 3-4: Comparison Between Points from the Exact Expression
and those from the Fourier Series Solution for Example
Four.

From this table we see that the Fourier series technique gives a

solution which indeed agrees with the exact expression, for the contin-

uation.



Chapter Four
COMMENTS AND SUGGESTIONS FOR FURTHER WORK

4.1 Minimum Amount of Information Required to Specify an Impedance
Function.

Guillemin6 has shown that knowing the real (or imaginary) part
of a positive real function, for all frequencies, the imaginary (or real)
part is completely specified for all frequencies. Further, he showed that
knowing the real (or imaginary) part in a band of frequencies, and the imag-
inary (or real) part in the rest of the spectrum, the unknown parts are com-
pletely specified. That is, it is necessary to have some information for
all frequencies.

However, in this report, it has been shown that the minimum amount
of information which is sufficient to completely and uniquely specify the
behavior of a passive driving-point impedance function or a transfer impedance
function (assuming these functions have no poles in the right-half plane or
on the jw axis) is the knowledge of the function's behavior for a finite (no
matter how narrow) band of frequencies. Thus, information is only required
in a band.

In most problems we have a complete description of the impedance
function in a band of interest and we are interested in obtaining its behavior
outside this band of interest. However, there is no assurance that there
exists an impedance function whose real and imaginary parts, in the band
of interest, coincide with the given ones. If such a function exists, then it

is sufficient to know its behavior in the band of interest.

4.2 Uses of This Method.

In problems similar to that of impedance loading, the impedance is
known in a band of interest, leaving its continuations completely unspeci-
fied. These continuations may be desired to either synthesize the impedance
or to calculate something else about the device in question. Thus, one can

use the method described in this report to obtain the desired continuations.

41



42

In other problems the behavior of the impedance function may be
measured in only a band, and we may want to know its behavior outside of
this band. A typical example of this type of problems may be that of trying
to find the transfer characteristics of a transistor. As frequency increases
it becomes more difficult to measure the transistor characteristics. Hence,
this method may be used to compute the behavior of these characteristics,
beyond the frequency where it becomes difficult to measure them.

In general, then whenever we know the behavior of the driving-point
impedance function, or the transfer impedance function, of a stable system
(no poles in the right-half plane or on the jw axis) for a range of frequencies,
its behavior for all frequencies is completely determined and may be ob-

tained by the method described in this report.

4.3 Problems in Computation.

There are three main problems in computing the impedance continua-

tions, using the method described in this report. These arise mainly because
in Eqs. (2.76), (2.33), (2.82) and (2.38) we multiply large numbers by
small numbers to obtain small numbers. These small numbers are added
or subtracted to obtain other small numbers.

As can be seen from Eqs. (2.33) and (2. 38) the first error in compu-
tation derives from the fact that two large numbers

n

2n E 2n
2 K and A
n (n-m)

m-=1
are subtracted to obtain a small number (An). Thus, any slight error in
the given data (Kn being obtained from the given data) will be enhanced by
the factor 22n .

Data with an error of 5 percent to 10 percent was used and the con-
tinuations obtained were completely erroneous. Therefore, great care should
be taken in using accurate data.

The second source of error in computation arises when the radius of
convergence of the power series for R(w) about the origin is less than one.

If this should be the case, the coefficients of the power series will not necessarily
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be monotonically decreasing; indeed, they may be monotonically increasing.
Therefore, if the coefficients of this power series are Rn , the first term
in the right-hand side of Eq. (2.76)

P

-1t
Z& o @ n (4.1)

will increase as p increases. However, the second term in the right-

hand side of Eq. (2.76) (an infinite series), which is truncated for computa-
tion purposes, will not increase at the same rate as does the first term;
thereby introducing an error. Moreover, when the Kn obtained from (2. 76)
(containing the error) is substituted into Eq. (2.33) the previously incurred
error will be enhanced by the factor 22n .

Accordingly, if the given impedance function has one or more poles
within the left-hand unit semicircle, the computation error incurred may
make the continuations obtained completely erroneous.

The third source of error comes from the fact that to adequately
represent a function with sharp variations by its Fourier series requires
more than the first six or ten terms. However, if more than say the first
ten terms of the Fourier series are required to represent the function
R*(@) , the computation error existing in the Kn's obtained will be enhanced
by the factor 22n as can be seen from Eq. (2.33). (Note that for n = 10;
22n~ 10'7 ). For this reason the method described in this thesis is limited
to functions having no sharp variations.

It has been brought to the author's attention that the problems in
computation may have arisen from expanding both sides of Eq. (2.9) in a
power series about the origin. To circumvent some or all of the problems
Calahan has suggested using, for the expansion of both sides of Eq. (2.9),

a series with a different (larger) radius of convergence. |

Two expansions which show some promise are Chebyshev polynomials
and Fourier series. It will be shown, however that both of these expansions

lead to the same result.
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A Chebyshev polynomial is defined* as:
Tn(w) = cosn(cos-lw); 0<w< 1. (4.2)

Using the change of variable:

0<w<1

cos -g- =W for (4.3)
0<o6<

one obtains for the Chebyshev polynomials:

e 8y L 6
Tn(w—cosz) = cosny . (4.4)

Thus, using the change of variable (4.3) in (2.9) :

1]
flw= cosg) = AR() dA (4.5)
2 (Az_ s2 Q)/AZ ]
1 Co8 /it -
Making once again the change of variable
A= secg (4.6)
in (4.5),
T
21 R*(f) d§
£(6) = 9 1_0082 Qc 82 [} (4.7)
0 2 %% 7

Note that f (w) is an even function of frequency, and if expanded
in a series of Chebyshev polynomials one obtains:

® Vg
*
E K cosnf = 1 RHP) df . (4.8)
n=0 n 2 l—coszgcoszﬂ
0 2 2

* Weinberg, L.,"Network Analysis and Synthesis, McGraw-Hill (1962),
pp. 448.
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However, note that the expansion for f(6) ina series of Chebyshev
polynomials is equivalent to the Fourier series expansion of this function.
Therefore, we may conclude that expanding both sides of Eq. (2.9) in a series

of Chebyshev polynomials is equivalent to a Fourier series expansion of these

terms.
Expanding the kernel of Eq. (4.8) in a Fourier series of two vari-
ables:
m 00]
I
58 2§ - Tnmcosnecosm¢ (4.9)
l1-cos < cos n=0 m=0
2 2
where:
™ [
4
r - 4 cosnfcosmfdodp , (4.10)
am T l- s2 g c 52 g
0 Vo €8 3098 %
and substituting (4.9) in (4.8) one obtains:
0 10 00 T
1
-2. ;K cosn@ = E :cosne 2 :T = R¥(p) cosm P dp
n=0 n n=0 m=0 nm 2
0 (4.11)
or:
@ T
1 \
= - ’t‘
Kn 2 : T2 R¥@) cosm @ df . (4.12)

Replacing R*(§) by its Fourier series, (4.12) becomes:

@ ™ @
K = T % ZAj cosj¢cosm¢d¢ : (4.13)

m=0 §=0



46

Integrating (4.13),

(4.14)
or.

. _ A -

K, Too Tor " " Ton =" ||

K, To T Tyt |4
4 : = . . . : . (4.15)
T

Ky Tvo Twmi " Tnn' " || 2w

| - 1L

Consequently, we have replaced the problem of solving an integral
equation by that of solving an infinite system of equations.

As far as the computation problems are concerned, we have gained
very little or nothing at all since we are left with problems of different nature
which may or may not be easier to circumvent.

These problems are:

(i) We don't know if there exists an inverse matrix to the system
of equations.

(1) If the inverse matrix exists, we can only truncate the system
and obtain an approximate solution.

(iif) The coefficients T, must be obtained numerically.

(iv) The function f(w = cos 8/2) must be expanded in a Fourier
series.

(v) If more terms in the Fourier series for R*(f) are required,
an enlarged version of the truncated system of equations must
be solved.

However, it should be noted that even though using a Fourier series
expansion the gain may have been little or nothing, there may very well be
another complete set of orthogonal functions which does indeed simplify,
or at least reduce, the problems in computation. Therefore, it is suggested

that further work should be in this direction, that is, finding other suitable
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complete sets of orthogonal functions which would reduce the degree of the
computational problems.

Another approach which may be of interest for further work deals
with the fact that the method derived in this thesis began from the Hilbert
Transforms (2.9) and (2.10). However, as pointed out by Bodes, additional
relationships between the real and imaginary parts of a positive real function
may be obtained by performing a contour integration (including the whole
right-half plane) on different functions of the impedance Z(p) . A number
of these relations have been obtained and are given by Bode.
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Chapter Five
APPENDIX

A. Main Computer Program.

This program gives the desired coefficients of the Fourier
series for R*(f), from the knowledge of the real and imaginary parts
for 0< w< 1. The data is given as the Fourier coefficients (Bn and Cn)
for the real and imaginary parts in the range 0< W< l;or -7 < <0,
The result obtained is the first N+ 1 Fourier coefficients for R*(f),
0< §< 7 (correspondingto 1< w< ).
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G _COMPI

o0

LER MATIN 04-23-68 15850445

INPLICIT REAL*8 (A-},C-2)

REAL®B K(2%)4A(25)98(45),C(45),R(90),X(90)
REAL*8 BB(45,25),Y(25)92(45)4BC1(25)

CATA PI1/3.141592€5358979/
CALL FCVTHB(1)

PRINT 6SS
FCRMAT ('1')

T C #%% GET Ry x ANC NCAP

CALL RXFUN(RyXyNCAP,NBC,E500)

NEl NBC+1
Ne?2 NB141

wlw M

NE3 NEC+MEL
ASEP PI/NB3

NNC NB2 + 7
NP1 NCAP+]

"nn

NC2 = NCaP/7~
WRITE (S41CC3) (I4R(T)yX(I)yI=14NB1)
OR -

NC 100 I=NE2,NB3

R(T) = R(NNC-T)
X(I) = X(NNC-1) * (-DCCS(ASEP*(1-1)))

T 1CC T X(NNC-T) = X(T)

C #%#

GET B ANC C

TT105 T PRINT1COT, [ER
1001

110

CALL FCRIT(RYNECyNECyByZyIERD
[F (IER.EC.0) CC TC 110

FORMAT ('- %% [ER = 715)

GC 1C 1C
PRINT 1002y (I,B(I)sZ(1)4I=1yNBL)

1002

FCRNAT (*- ['AXTB(T)I'ILX'Z(I)*/1X/(1592G157))
CALL FORIT(XyNECyNBC+CosZyIER)

IF (IER.NE.C) GC TO 105
PRINT 1004y (I,CU1)4Z(1)yI=1yNB1)

1004 FCRMAT ('- DeX'COINTIIX ZUTI) " /1X/(1592G15.7))

C #%x

CALCULATE EE ANC Y IF NEEDED

TFAC = .12%CO
DC 150 N=1,AP1

TFAC = 4,CCHTFAC
RBINyN) = TFAC

IF (N.ECQ.1) EEBTT,17 = 1.00

150

IS = N+l
FI1 = -TFACH(N+N)
FN = N-1

NC 150 I=15,KB1
BE(I4ND = FI1

F1 = 1-1
FI1 = =FI1A(FI4FN)#(FI41.00)/((FI-FN+1.D0)*FI)

Y(1) = 1.CC
BC1(1) = 1.CO

CC 160 I=1,4NP1
FI1 = 1

FI = FI14FI1
BC1(I+41) = BCL(1)*(FI+FI-2.00)/FI1

160

Y(I+41) = Y(I)*(FI-1.00)/FI
WRITE (9,1009)
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G COMPILER MAIN 04-23-68 15250445

1009 FCRMAT ('- @B')
TTTTTDE 170 N1, NPT
170 WRITE (S410C6&) Nyo(BB(I4N),yI=N,NB1)
TT1006  FCRMAT ('09185,4G15.7/7(6X94G15.7))
WRITE (94102C) (T4Y(I)eBCL(I)9I=1,4NPI1)

1020 FURNAT ('=- TVextYI T ToX"B8CITIN Y /1X/7 (1542615 7))
C #%% CALCULATE F(N)

7200 T CC 250 N=1,NP1
R(N) = 0.CC
T BCT25C [=1,NF1
250  R(N) = R(N) + BEB(I+N=-14N)*B(I+N-1)
PRINT 1005y (T4R(I)yI=1,NP1)
1005 FCRNMAT ('~ I'6X'RUINY/1X/(159G1547))
C ¥ CALCCLATE K(N)
TFAC = .SDC
DC 33C N=1,NC2
TFAC = TFAC*4,DC

KTRY = 0.0C
FN = N-1
FTN = FN+FN

£C 310 1=1,N
T 310 K(N) = K(NY # R(N=T+10*Y(I)

S1 = 0.DO

TIF = 2.CC

TIJd = 1.CC

CC 22% J=1,NP1
§2 = C.CO

Jrl = J-1

FJ = JN]

IF (J.EQ.1) CC TC 320

TIS = TIF*(FJ+FN41.00)/(FJ+1.D0)*T1J
FJN = FJ4FTN+2,CO

DC 31% I=1,JVM1

FI = 1-1

FII = FI+FI+1.00

FJT = FJ-FI

TIS = TIS*(FJI+1.DC)/FJI

S2 = S2 + T1s#*BC1(T) )
TIS ~TIS*((FUN+FI)*(FJI-1.00)/((FIN+FI1+2.00)
€ *(FTNAFIT42.00)))
215 CCNTINUE
T1J = TIJ*FJN/FJ
220 S1 = S1 + CUJ+N)I*(BCL1(J)+S2)
TIF = -TIF
225 CCNTINUE
T T K(IN) = K(N)Y ¢ TFAC#*S1
330 CCNTINUE
PRINT 1CCi1y (ToK(I)yI=14NO2)
1007 FCRMNAT ('~ T6X'K(I)*/1X/8159G15.7))
C *%% CALCULATE A(N)
TFAC = 1,.CC
0C 450 N=1,NC2
SUM = 0, _ _
IF (N.EQ.l) GO TO 415
JS = N~}
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G CCMPILER VAIN 04-23-68 15250445

FN = JS+JS

T FIT = FN/TFAC
NC 41C J=14JS

TTTSUN @ SUM 4 FITRE(NST)
Fd = J

410 FILl s FIL*(FN=-FJ)/(FJ*+1.CO)
415 A(N) = TFACH(K(N)-SUN)

450  TFAC = TFAC®4.DC
PRINT 100€y (14A(1)41I=1,4N0O2)

1008 FCRMAT (= 196X A(TI/7IX/TT15,G1570)
C **% DC PART 4 IF CESIREC

C AN ENC CF FILE wILL SKIP I
FRINT 101C

TIC616 FCRMAT ('- " PARYT § 27)
L READ (1,1C11,4END=10) Z2(1)

ICU1 FCRMAT (Ag)
PRINT 1012
FCR =I5 X X
NC €0C I1=1,2C

T T =1.00/T
PHI 2.002DARCCSI(T)

SLV = 0.CO
CC €1C N=1,NC2

€1C SUM = SUM + A(N)#DCCS((N-1)%*PHI)
60C PRINT 1013y PHI,SUM

T1C13 FCRVAT (2G15.M
GC 70 10

~ 500 CALL SYSTEF
END
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B. Subroutine Forit.

The following subroutine obtains the Fourier coefficients Bn and

Cn of Eqs. (2.52) and (2.53). The data is given as the value of the real
(R(§)) and imaginary (X(§)) parts, for 0< w< 1, (-7 < $< 0) at

4N + 5 equally spaced frequencies in the §§ range. As a result one obtains
the first 2N + 3 Fourier coefficients for R(f) and cosg X(g) .
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MPILER FORIT 04-23-68 15:51.13 PAGE 0001

SUBROUTINE FCRIT(FNTyNyMyAyByIER)
IMPLICIT REAL*8 (A-H,0-2)
CIMENSICN A(1)4B(1)4FNT(1)

FORIT COFPLTES FCURIER COEFICIENTS FROM A TABULATED SET OF DATA POINTS
TFESE FUNCTICN VALUES ARE IN YFNTV AND FNT(I) MUST HAVE THE VALUE AT
24PT4(1-1)/(24A+1)y 1=1y2900092%N4] -
MY IS TFE CESIRED OROER OF THE COEFICIENTS, SO M+1 ARE RETURNED IN
"A' ANC 'B'., (B(1) = 0., ALWAYS)
TENTV, VAV AND 'B' ARE ALL REAL*8
*IER' FAS RETURN COCE:
¢ - ACK
1 - 'NY LESS THEN ¢M9
2 = ¥ LESS THAN ZERO

I[ER = 2

TF (MoLT.C) RETURN o
[ER=1

TF (NoLToF) RETURN

IER=0

NC = NeN+1

CCEF = 2.CC/NC

CONST = 3,1415926535€979*COEF

ST = CSIN(CCAST)
C1 = CCCS(CONST)
€ = 1.60
S = 0.CO0
J=1
FATZ = FAT(1)
A1) = C.CC
70 U2 = C.0O
Ul = ¢.CO
1 = NC )
IS UZ = FNT(1)+%2.00%C*UI-U2
Uz = L1
Ul = U2
[=1-1
T IF TT.CT.11 CC 1C 75 -
A(J) = CCEF#(FNT2+C*Ul=-U2)
B (d) = CCEF?SAUT

IF (JoGToVM) GC TC 100

J=4J + 1
Q = C1*%C - S1#S

T § = C1*S + S1+C

. Ct=0 ]
GC TC 70

100 A(1) = A(1)*,500
RETURN -

END
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C. Subroutine to go From The w Domain to the § Domain.

The following subroutine transforms any function from the w-domain

(0< w< 1) tothe P-domain (-7 < @ < 0) by the transformation

W = cos g . It also obtains 4N+ 5 points of the function equally spaced
in the {- domain.
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G COMPILER RXFUN 04-23-68 15:52.07

SUBRCUTINE RXFUN(RyXyNCAP,NBC)

IMPLICIT REAL*8 (A-H,yC-2)
DIMENSICN R(SC),X(S0)

CATA PI/2.141592€52£5€97G/
10 PRINT 1000

1C00 FCRMAT (' NCAP = ?7)
REAC (141CO1,ENC=500) NCAP

1C01 FCRNAT (I5)
[F (NCAP.EC.C) GC TC 10

PRINT 10C2,NCAP
1002 FCRNAT ('-NCAP = 115)

NCAP = NCAF+NCAP+2
NEC = NCAF4NCAP

NP2 = NBC + 1
ASEP = PL/(NP2+NBC)

DC 100 I=1,NP2
CP = DCCS(ASEP*(1-1))

Cpz = CPx*(CP
R(I) = 1.C0 - CP/2.CO

X{I) = (DLCG((2.00-CP)/(2,00¢CP)) +
€ CP*DLCG((4.D0-CP2)/CP2)/2.D0)/P1

100 CONTINUE
RETURN

500 RETURN T
ENC
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D. Subroutine Used to Read Points From Subroutine C Into the Subroutine
Forit.
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€ COMPILER RX FUN _ 04-23-68 15382.26

SUBROUTINE RXFUN(RyXyNCAPyNBC)

IMPLICIT REAL*8 (A-F,C-2)
DIMENSION R(SO)4X(S0)

NATA PI/3.T415G265715€6916/
10 FRINT 1000

1000 FCRMAT (' NCAP = ?27)
REAC (141CC1,END=500) NCAP

1001 FCRMAT (15)
IF (NCAP.EC.C) GC TC 10

PRINT 1002,NCAP
1CC2 FCRNAT ('-NCAP = ']5)

NCAP = NCAF+NCAP+2
NEeC NCAF+NCAP

NF2 NBC + 1
ASEP = PI/(NP2+NBC)

ACD = ASEP#360,/F1

PRINT 1003, ANP2,AGC

FCRM -ENTER *lg°* X A
€/ BY *C15.7"' DEGREES')

REAC (1,1CC4) (R{IDoX(I)el=19NP2)
1004 FORMAT (2G1C.10)

RETURN
$0C RETLRN .1

END
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dA

0

= =0 for 0<w<1
(Az—wz) Vl-x?

make the following change of variable:

2
Z2- —%
1 +x
dx . dx
W- Az (1 + x2)
So that (E.1) becomes:
@
dx
0 (1- w2) F -
1

=0

2
-
2:}
-w

(E.1)

(E.2)

(E.3)

(E.4)

Note that (E.1) must be evaluated in the Cauchy principal value

sense; i.e.
1
lim
dx = €-» 0
0
So that (E.4) becomes :
— lim
0= e-> 0
_

-
1
+ dx
w+e
_
o ]
dx + dx
w+e

‘ - -
Vl - (w+e)

(E.5)

(E.6)



60

Integrating (E.4) one obtains:

™ —_— ) (E.7)

l1-w x+J1 W 0

Making use of (E.6) one obtains for (E.7):

W
U.' -
1 1 il - wz
0= In
w2 W

o

W

w-€ )

0= 1 lim{ (1) - il-(w-e) J1-w
- 2wm ev0 |17 el S .
— Vl—(w—e)z Vl—wz

-

Ww+e + W
o1 -(w+e)2 J1 - \
oy - (-1) (E.8)
€ W

vl-(w+e) ) Vl-w

when the limit is taken one obtains:

0= 0. QE.D.
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To show that equation (2.64) has no singularities we make use of
the fact that X(X) is the imaginary part of a function analytic in the right-

half plane, and hence has a power series about the origin. Thus:

0
AX() = z xnxzn (F.1)
n=1
0
WX () =2 anzn (F.2)
n=1
So that:
M
A X)) -wX(w = z X 0% - W™ (F.3)
n=1

Equation (2.64) then becomes:

Iy ﬁ x 00 @
::1 n

I = e (F.4)
0 (Xz - w2) f1 -2

But;

n

A -w 2i-1) 2(m-i)
—_— = A W (F.5)
A -Ww iZI

en:
1 n
X
I= % S Z (201 2m=Dg (g
, o=l ho?f &

which has no singularities Q. E. D.

th
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