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Abstracts 

A model for the Fermi contact interaction is proposed in which the charge and magnetic moment of 
the nucleus are uniformly distributed within a sphere of radius ro. This leads to a Schrodinger equation, 
which is solvable without perturbation theory. In the mathematical limit ro + 0, the usual Coulomb plus 
delta function potential is obtained. It is shown that the magnetic perturbation energy goes to zero for a 
repulsive delta function, to -a for an attractive delta function. A projected application is to 
computation of nuclear spin-spin coupling constants in molecules, particularly HD. 

On propose un modkle pour l’interaction de contact de Fermi, dans lequel la charge et le moment 
magnttique du noyau sont distributs uniformtment dans une sphtre  de rayon ro. Ceci mene 5 une 
equation d e  Schrodinger qui est rtsoluble sans la thtorie des perturbations. Dans la limite mathtma- 
tique ro + 0 on obtient le potentiel de Coulomb ordinaire avec une fonction delta. II est dtmontre que 
I’tnergie de perturbation magnttique tend vers ztro pour une fonction delta rtpulsive e t  vers -a pour 
une fonction delta attractive. Une application envisagte est un calcul des constantes de couplage 
spin-spin nucltaires dans les moltcules, en particulier H D .  

Ein Modell fur die Fermi’sche Kontaktwechselwirkung wird vorgeschlagen, in welchem die 
Ladung und das magnetische Moment gleichformig in einer Kugel mit Halbmesser ro verteilt werden. 
Dies fiihrt zu einer Schrodingergleichung die ohne Storungstheorie losbar ist. In der  mathematischen 
Grenze ro+ 0 wird das iibliche Coulombpotential mit einer Deltafunktion erhalten. Es wird gezeigt, 
dass die magnetische Storungsenergie gegen Null fur eine repulsive und gegen -a fur eine attraktive 
Deltafunktion konvergiert. Eine geplante Anwendung ist die Berechnung von nuklearen Spin-Spin- 
Kopplungskonstanten in Molekiilen, besonders HD. 

1. Introduction 

The magnetic interaction between a nucleus and an atomic s electron is most 
commonly represented by the Fermi contact interaction [l] 

The simplest application of this formula is to the first-order magnetic energy in the 
1s state of atomic hydrogen (2 = 1, n = 1, I = $): 
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The hyperfine splitting is then given by 

Taking account of the reduced mass correction and the experimental free- 
electron g factor, the calculated first-order splitting has the numerical value 

z&S = 1420.4847 MHz (4) 

(5  1 
The corresponding experimental value is [2] 

VHFS = 1420.405 75 1 7680(15) MHz 

However, when Eq. (1) is used to calculate the second-order perturbation energy, 
the singularity in the operator causes V H F S  to diverge for s states [3]. It is likewise 
necessary to  consider second-order perturbation contributions from the Fermi 
contact interaction in the calculation of nuclear spin-spin coupling constants in 
molecules. This has led to divergences in certain such computations, notably for 
the HD molecule [4]. Such difficultiescan be avoided by replacing the delta function 
in Eq. (1) by a function which does not have as strong a singularity [5]. In a model 
recently suggested by one of us [6], the nuclear magnetic moment is represented as 
a finite shell of magnetization, leading to a nonperturbative solution for the 
Schrodinger equation. In this paper we propose a physically more realistic model 
in which both the charge and magnetic moment of the nucleus are uniformly 
distributed within a sphere of radius ro.  We are not taking into account inter- 
actions other than those of the Coulomb and Fermi types. In particular, neither 
the S * I dipolar nor the L . I orbital nor the A2 nuclear diamagnetic terms are to be 
considered. In fact, the latter corrections are known to make relatively minor 
contributions to the spin-spin coupling in H D  [7]. 

2. Finite Nucleus Potential 

For the nuclear charge distribution we set 

Normalizing to the total nuclear charge +Ze, using Gauss' theorem for the 
electrostatic potential for r I ro, and assuming a Coulombic potential for r > ro, we 
find the electrostatic potential 

The magnetic interaction is treated in an analogous fashion: 
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This approaches a delta function as ro+ 0 if Vo is chosen such that 

The potential due to the combined charge and magnetic moment of the nucleus is 
thus the sum of (7)  and (9): 

V ( r ) =  Ve( r )+  V " ( r )  (10) 

We can now write the Schrodinger equation for a hydrogen atom with a finite 
proton. Using modified atomic units ( h  = e = p = 1 )  and defining the radial 
function 

P ( r )  = rR(r) = (4r) ' I2r@(r)  ( 1  1 )  

P"(r )+(2 / r )P( r ) -  k 2 P ( r ) =  0, r > ro ( 1 2 )  

P"(r)+{-k2+3/ro- :hF/r;  - r 2 / r i } P ( r ) ,  r s r o  ( 1 3 )  

we obtain 

where a wave number k is defined by 

E = - k 2 / 2  

Equations ( 1 2 )  and ( 1 3 )  for s states ( I = O )  are most easily solved in terms of 
confluent hypergeometric functions. For Eq. ( 1 2 )  we define 

t = 2 k r ,  v = l / k ,  P ( r ) =  W(z) (15) 

W(z)+(v/z -a)w(Z)=o ( 1 6 )  

Thus Eq. ( 1 2 )  is transformed into 

which is Whittaker's equation in the notation of Buchholz [8]. The solution 
regular as z + co is 

P'(r) = Wv,1/2(z) ( 1 7 )  

( 1 8 )  

Equation (13 )  is solved by the substitution 
3 1/4 x 3 ( 4 / r o )  r ;  P<(r )=  y ( x )  

which transforms it into 
y " ( x ) - { a  + i x 2 } y ( x ) =  0 

with 
a = - ( - k 2 + 3 / r o - $ h ~ / r ; ) ( r ; / 2 / 2 )  

This is Weber's differential equation. The solution regular as x + 0 is 191 

( 2 1 )  
- -~2 /4  3 3 1 2  

y ( x )  = yz(a ,  x )  = 2x e l ~ l ( f a  +z; z; zx ) 

This function is equivalent to  EL"(x) with v = -(a + f) in the notation of Buchholz 
1101. 
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The eigenvalues given by E = -1 /2v2  have the same form as those for the 
unperturbed Coulomb problem, except that the quantum numbers v are no longer 
restricted to integral values. These eigenvalues are determined by a transcen- 
dental equation following from the requirement that the wave function and its 
derivative be continuous across r = ro, that is, 

3. Results and Discussion 

For a hydrogen atom A is of the order so the perturbation on the 
Coulombic potential is quite small. This means that the quantum number v will 
differ only slightly from an integer. It is thus useful to define a quantum defect 6 
such that [6]  

v = n + S  (23)  
For the 1s state of hydrogen, the energy can be expanded in terms of the quantum 
defect as follows: 

(24)  
3 2  EF = -1 / 2 (  1 + 6 ~ ) ~  = -$ f SF -78 F + ' ' ' 

It is also advantageous to expand the Whittaker function to first order in the 
quantum defect: 

Wv, 1 /2(2 r/ v = Wu, 1 /2(2 r/ n ) + 6 (a/a v >I Wv. 1 / Z  (2 r/ v )I I = 

~ l + + ,  /2(2r/ v) = 2r e - r  [ 1 + S F ( -  1 + r + In 2r - b)] 

(25)  

(26)  

For ~t = 1 ,  this works out to 

Using the eigenvalue condition (22),  we can now find SF as a function of ro in the 
physically significant range ro- 1 fm = 1 x cm = 1.8897 x 10-5ao. For the 
exterior solution P'(r) ( r  > ro) 

(27)  
1-ro+6F(++(1-ro)h 2ro+3ro) Sirs = ro[ l  + s F ( - l +  ro + In 2ro - ire)] 

For the interior solution P'(r) ( r  < ro) it follows from Eqs. (18)  and (21)  that 

with xo = (4r0)ll4. Since ro is very small, we can approximate the hypergeometric 
function in Eq. (27)  by its limiting form as x -+ 0. This simplifies the equation to 
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Solving for SF gives 

(30)  
ro + A FPO 

(1 +AF/2ro)(1 -In 2ro+$ro)+$+1n 2ro 
6 F  

These results can now be used to calculate the hyperfine splitting vHFS in the 1s 
state of hydrogen. Using Eq. (24) to first order in the quantum defect, 

Numerical values are given in Table I for ro ranging from 0.1 to 10fm. The 
experimental hyperfine splitting (5) would correspond to a proton radius ro = 
7.5 fm, too large by at least a factor of 5 .  Our model is not, however, intended to 

TABLE 1. Numerical values. 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.8 
1.0 
1.5 
2.0 
5.0 
7.0 
10.0 

5.30932 
5.35509 
5.37071 
5.37930 
5.38556 
5.38974 
5.39783 

5.42668 
5.4 5411 
5.75969 
6.09869 
6.84251 

5 40555 

1 70793 
1.66277 
1.64816 
1.64088 
1.63646 
1.63347 
1.62959 
1.62690 
1.62233 
1.61812 
1.58533 
1.55022 
1.47661 

1472.30 
1445.61 
1437.03 
1432.81 
1430.31 
1428.62 
1426.60 
1425.34 
1423.72 
1422.76 
1421.29 
1420.49 
1421.00 

provide a highly accurate representation of the hydrogen atom itself. More 
detailed consideration of nuclear size effects within the context of the relativistic 
theory is given in the papers of Zemach [ll], Idding and Platzman [12], Hocken- 
smith and Foldy [13], and Moore and Moss [ 141. 

It is amusing, nonetheless, to apply our numerical results to a quark model of 
the proton. A proton is made of two u quarks (charge + $) and one d quark (charge 
- f ) .  Assuming a total u magnetic moment of ($),up and a d magnetic moment of 
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-($)pp, the experimental value of Y H F S  could be accounted for by the radii 
r, = 1.4 fm, rd = 0.35 fm. These latter parameters are reasonably in accord with 
the charge distribution in a proton as determined from high-energy electron- 
proton scattering [15]. 

4. Limiting Behavior as ro + 0 

In the limit as the nucleus is reduced to a point charge with point magnetic 
dipole, the operator ( 9 )  becomes a delta function and the conventional Fermi 
contact interaction is regained. For the F = 1 state ( A F  > 0), Eq. (30) converges 
uniformly to zero as ro+ 0. Thus the energy approaches its unperturbed Coulomb 
value. Figure 1 shows the quantum defect as a function of ro. 

Figure 1. Quantum defect for the F = 1 state of hydrogen. 

For the F = 0 state (AF < 0), Eq. (30) implies aF = 0 ( 1 )  in the vicinity of 
ro = / A F ( / ~  (Fig. 2). Thus Eqs. (26 )  and (29 )  become invalid, being based on the 
assumption that 6 << 1. The ro+ 0 limit for AF < 0 can be found instead by the 
following argument. For ro sufficiently small, the electrostatic terms in (13) can be 
neglected and 

P"(r )+[$ lA~ l / r i  - k 2 ] P ( r ) = 0  (32) 

z =2kr,  zo=2kro, P ( r ) = Z ( z )  (33) 

with the changes of variables 

we obtain 
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I o-3 10-2 lo-’ r , / fm .  
Figure 2. Quantum defect for the F = 0 state of hydrogen 

The solution regular at z = 0 is 

Thus 

Consider now asymptotic forms as zo + 00. For the exterior solution [ 161 

W ~ , ~ / ~ ( Z ~ )  - 26 e - ‘ O l 2  

and 

The continuity condition (22) is thus approximated by 

The limit zo + 00 is approached as the argument of the cotangent approaches T 
(cotan 7r = -00). We find thus 
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and 
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Since zo = 2kro = (61AFl/ro)1’2, it is verified that the limit zo+ 00 does indeed 
correspond to ro +. 0. Therefore, E = - k 2 / 2  approaches -00 as ro -+ 0 in the F = 0 
state. This limiting behavior is, in fact, identical with that for an attractive 
three-dimensional square-well potential. Our conclusions on the energies of a 
hydrogen atom perturbed by attractive and repulsive delta function potentials are 
in accord with those of Velenic et al. [17], based on variational calculations. 
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