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Electron Correlation and Hund’s Rule 
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Abstracts 

It is suggested that simple electronic shielding effects induced by wave function antisymmetrization 
tend to govern the energy ordering of singlet and triplet terms within a two-electron atomic 
configuration. This approach gives rise to the following alternating rule: For the term of greatest 
orbital angular momentum within a configuration, the triplet lies below the singlet. The energy 
ordering reverses for the term of next highest angular momentum, and continues to alternate with each 
change of one unit in the orbital angular momentum until the term of lowest angular momentum is 
reached. In an examination of over 600 energy levels of the elements and their ions, the alternating 
rule reliably orders singlet-triplet energy levels in some 90% of the cases. 

I1 est propost que des effets d’tcran Clectronique induits par l’antisymetrisation de la fonction 
d’onde ont une tendance de gouverner l’ordre CnergCtique du singulet et du triplet pour une 
configuration atomique a deux Clectrons. Ceci suggbre la rbgle d’alternance suivante: Pour le terme 
avec le plus grand moment cindtique d’une configuration le triplet est inferieur au singulet. L’ordre 
CnergCtique est renverst pour le terme avec le moment cinetique suivant et cette alternance continue 
au fur et h mesure que le moment cinttique dtcroit jusqu’au terme avec le moment cinetique le plus 
bas. Cette rkgle est vtrifite dans environ 90% de 600 cas CtudiCs. 

Es wird vorgeschlagen, dass einfache elektronische, von der Antisymmetrisierung der Wellen- 
funktion induzierte Abschirmungseffekte eine Tendenz haben die Ordnung der Triplett- und 
Singulettniveaus in einer atomaren Zweielektronenkonfiguration zu beherrschen. Diese Observation 
fiihrt zu der folgenden Alternierungsregel: Fur den Term mit den hochsten Drehimpuls in einer 
Konfiguration liegt der Triplett unter dem Singulett. Diese Ordnung wird fur den Term mit den 
nachsthochsten Drehimpuls umgekehrt, und diese Alternierung setzt mit jeder Veranderung einer 
Drehimpulseinheit fort, bis der Term mit den tiefsten Drehimpuls erreicht wird. Diese Regel wird in 
90% von 600 Fallen verifiziert. 

1. Introduction 

In recent years, a number of papers have appeared [l-81 in which the 
traditional interpretation of Hund’s rule has been brought into question. Hund’s 
first rule assigns the lowest energy to the term of an atomic configuration that has 
the highest total spin, the traditional explanation being that the Fermi hole 
between two electrons of the same spin lowers the interelectronic repulsion, and 
therefore the energy. As pointed out in the references, however, it is usually found 
in more accurate calculations that, whereas Hund’s rule is obeyed, the total 
interelectronic repulsion is actually greatest in the term of highest multiplicity. 

Table I gives the results of variational calculations on the ls2p and ls3d states 
of helium using scaled hydrogenic wave functions. These results contain the main 
qualitative features of more accurate calculations. As already noted, the electrons 

* Present address: Department of Chemistry, Haverford College, Haverford. PA 19041 
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TABLE I. Effective nuclear charges and interelectronic distances for helium 
states using nuclear charge scaled hydrogenic wave functions. 

$f f Ze nl f f (r12> (a.u.) Is State 

l s 2 p  3P 1.9911 1.0892 4 . 6 7 4  

l s 2 p  1 P  2.0030 0.9674 5 . 2 3 3  

ls3d 33 1.9999 1.0010 10.517 

l s 3 d  'D 2.0000 0.9996 10.531 

are closer together on the average in the triplet than in the singlet, and the 
principal source of this inequality can be seen by examining the effective nuclear 
charges. In the triplet state, the outer orbital is contracted relative to a hypotheti- 
cal perfect shielding case in which Z,, = 1, and the inner 1s orbital is expanded 
relative to Z1, = 2. For the singlet state, the results are opposite. The effect is more 
pronounced in the outer orbital, so that the net effect is that the triplet wave 
function is more compact than the singlet. A brief review of similar results is given 
in Ref. 9. 

Our point of departure is the following shielding argument. The Fermi hole 
between two electrons of the same spin places the electrons on the average at 
wider angles in the triplet state than in the singlet state. This is dynamically a more 
favorable situation, and allows the outer electron to feel more of the nuclear 
charge in the triplet state. This idea is not new, having been suggested previously 
by Bartell* and by Shim and Dahl [9]. The advantage of using a shielding 
argument in the present context is that shielding can be represented by scaling, 
and the wave function can be made to satisfy the virial theorem [ll]. The 
traditional interpretation of Hund's rule does not satisfy the virial theorem [l]. 
For concreteness, we shall confine our considerations to the case of two electrons 
outside of a spherically symmetrical core. Slater has commented on how the 
two-electron symmetrization conditions are imbedded in a many-electron wave 
function [12]. It will be shown that, for such two electron configurations, the above 
shielding argument will sometimes be reversed, and in other cases will break down 
altogether. 

2. Angular Correlation for Point Hole States 

The angular correlation between two atomic electrons depends to a certain 
extent on the quantity employed to measure it. We choose to compare the 
expectation value of (sin B)- ' ,  where B is the angle between the electrons at the 
nucleus. This function is monotonic and one to one on the interval 0 5 B 5 T,  and is 
easily calculated. More importantly, the numbers involved with this measure can 

* See footnote 6 in Ref. 10. 
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be applied direcely to the construction of a density matrix in Sec. 3. The wave 
function is taken to be 

9 = (1 *tp12)4 (2.1) 

(here and throughout, upper sign refers to singlet, and lower sign to triplet), where 
P12 is the two particle permutation operator, and 4 is an eigenfunction of l:, I:, 
and L2: 

+(ri ,  r2) 7 R(r i ,  r 2 )  C C( l i ,  12,  L ;  ml, m2, M )  Y l ~ , m ~ ( ~ 1 ~  4 1 ) - Y i ~ . ~ ~ ( @ 2 , 4 2 ) .  
m l m z  

(2.2) 

Here, we assume 1 ,  # / 2 ,  and will call such states point hole states, in reference to 
the geometry of the Fermi hole. The reason for this distinction will become clear in 
Secs. 4 and 5, where it will be shown that states with 1 1  = 12 must be treated 
separately because of a different geometry for the Fermi hole. The phase 
conventions and rules for the Clebsch-Gordan coefficients in (2.2) are as given in 
Ref. 13. The radial portion R ( r l ,  r2)  is presently assumed to have the requisite 
degree of detail to represent approximately two electrons outside a spherically 
symmetrical electron core. Then it is shown in the Appendix that 

((sin SO)-') = A  f u2B,  (2.3) 

where A and B depend only upon angular integrations, and u 2  is the square of the 
radial overlap 

m m 

u 2  = 2 I, r: drl lo r', dr2 R(r l ,  r2)P12R(rl, rd .  (2.4) 

In accordance with the results of Table I, u 2  is a different function for singlet and 
triplet. It is also shown in the Appendix that B is positive for the lowest and 
highest orbital angular momentum terms of a configuration. Moreover, in all cases 
studied so far-those included in Table 11, which comprise the overwhelming 
majority of relevant cases for which experimental data are easily available-B 
follows an alternating rule, being positive for the term of highest orbital angular 
momentum within a configuration, negative for the next highest term, etc., 
alternating in sign with each change of one unit in the total orbital angular 
momentum. Equation (2.3) and the alternating rule for B are the relations sought 
in order to apply the shielding argument of Sec. 1. So assuming the angular effect 
determines the energy ordering, the triplet state is expected to lie below the singlet 
for the term of highest angular momentum, and the ordering is expected to reverse 
as the orbital angular momentum changes by one unit.* However, more insight 
may be gained using a simple analytic form for R ( r l r  r 2 )  capable of representing a 

* The alternatingrule has been noted empirically for the spectrum of scandium in Ref. 15a; it is also 
mentioned in connection with multiplet theory in Ref. 15b. 
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TABLE 11. Comparison of alternating rule with experiment for point hole 
states. An asterisk indicates application of Eq. (2.9). A question mark 
indicates an experimental uncertainty in the assignment of one of the 

energy levels. All data from Ref. 14. 

npn'd configuration; F terms 

Examples ( t r i p l e t  b e l o w  s i n g l e t )  

C Zpnd; n=3-8 . C 111 Zp3d N I1 Zpnd; "-3.4 N IV 2p3d 

0 111 Zpnd; n=3-5 F IV Zpnd; n=3-5 Na VI Zpnd; n-3.4 Hg VII 2p3d 

A 1  VIII 2p3d S i  3pnd; n=3-5 Si IX Zp3d P I1 3p4d 

P X 2p3d Ca 3d4p Se I1 3d4p Ti 111 3d4p 

Cr V 3d4p Mn Vl 3d4p Fe VII 3d4p Se 111 4pnd; n-4.5 

Zr 111 4d5p Ge 4pnd; n 4 . 5  Sr 4p5d Y I1 4d5p 

Sn 5pnd; n=S66,(?)7 Te I11 5pnd; n-5,6 Ba 5dnp; n-6.7 La I1 5d6p 

Ac I1 6d7p Zr 4d5p V IV 3d4p 

countrrenamp1es 

Nb IV 4d5p ( ? )  

npn'd configuration; D t e r m s _  

Examples ( s i n g l e t  below triplet) 

C Zpnd; n-3-6 

0 I11 Zpnd; n=3-t 

Ne V Zpnd; n=3,4 

A1 VIII 2p3d 

Mg IX Zpnd; n.3-5 

Ca 3d4p 

Cr V 3d4p 

Nb IV 4d5p 

Ba 5d6p 

Counterexamples 

Si 3pnd; n-3-5 

Sn Spnd; n=5,6 

C I11 Zp3d El  I1 Zpnd; 11-3.4 N Iv Zp3d 

0 V Zpnd; n=3-5 F IV Zpnd; n=3-5 F VI Zpnd; n=3,4 

Na VI Zpnd; n=3,4 Na VIII Zpnd; n=3.5 Mg VII 2p3d 

A1 X Zp3d Si I X  2p3d S i  XI Zp3d 

P IV 3p3d P X Zp3d P XI1 Zp3d 

Sc I1 3d4p Ti 111 3d4p V IV 3d4p 

Hm VI 3d4p Se I11 4pnd; n=4,*5 Zr I11 4d5p 

Ce 4p4d Sr 4p5d 

La I1 5d6p 

P I1 3pnd; n=3.4 Ge 4p5d 

Te 111 5pnd; n-5.6 *Ba 5d7p 

npn'd configuration; P terms 

Examples (triplet below singlet) 

C I11 2p3d N I1 2pnd; n-3.4 N IV 2p3d 

0 V 2pnd; n-3.4 f IV 2pnd; "-3-5 

Na VI 2p3d Hg VII Zpnd; w3,4 A1 VIII 2p3d 

Si IX 2p3d P I1 3pnd; "-3.4 P IV 3p3d 

Ti 111 3d4p V IV 3d4p Cr V 3d4p 

Zr 111 4d5p G e  4pnd; n=4,5 Sn 5pnd; n-5-7 

Ba 5dnp; n=6.7 La I1 5d6p Ac I1 6d7p 

P X Zp3d Na VIII Zpnd; n-3,4 

F VI Zpnd; "-3.4 

Y I1 4d5p 

AS I1 4p4d 

Ac I1 6 d 7 ~  

0 111 Zpnd; n-3.4 

Ne V 2p3d 

Si 3pnd; "-3-5 

Sc I1 3d4p 

Hm VI 3d4p 

Te 111 5pnd; 11-5.6 

Zr 4d5p ( 7 )  
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TABLE 11. (Continued from previous page.) 
~~ ~~ 

- counterexamples 

C Zpnd; 11-3-7 Ca 3d4p Se 111 4p4d Nb IV 4d5p 

As 11 4p4d Y I1 4d5p Sb I1 5p5d 

npn'f configuration; G terms 

Examples (triplet below sinnler) 

N I:, 2pnf; n=4,S La I1 5p4f 

(no counterexamples) 

npn'f Configuration; F terms 

Examples (singlet below triplet) 

N I1 2p4f Pb 5pnf; "-5-11 si 3p4f 

Counterexample 

*La I1 6p4f 

npn'f configuration; D terms 

Examples (triplet below singlet) 

A I1 Zp4f *si 3P4f 

Counterexample 

si 3p5f 

ndn'f confiquration: H terms 

Example (triplet below sinilet) 

La TI 5d4f 

(no counterexamples) 

ndn'f confiquration: G terms 

Examples (s inglet  below triplet) 

La I1 5d4f AE I1 5d5f Fe VII 3d4f 

- Counterexample 

Zr 111 4d4f 

ndn'f configuration; F terms 

Examples (triplet below singlet) 

La I1 Sd4f Ac I1 6d5f Fe VII 3d4f Zr 111 4d4f 

(no counterexamples) 

ndn'f configuration; D terms 

Examples (sinalet below triolet) 

La XI Sd4f *Ac I1 6d5f Fe VII 3d4f Zr 111 4d4f 

(no counterexamples) 

ndn'f configuration; P terms 

Examples (triplet below singlet) 

La I1 Sd'.f Ac I1 6d5f Fe VII 3d4f Zr 111 4d4f 

(no counterexamples) 
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wave function in a central field. Accordingly we take R to be a product of STOS: 

R(r l ,  r2) = (Nar?-* e-aarl'na )(NbrP-l e -abr2 /"b  ), (2.5) 

where a, and (Yb are scaling parameters. Letting 

2n, + 1 
nba,In,ab + 1' 

- 2nb + 1 
naab/nbaa + 1 

S G  

and with the help of (2.4), it is easily shown that 

(2.7a) 

(2.7b) 

Assume first that B is positive; negative values for B will simply reverse our 
conclusions with respect to singlet and triplet states. In order to have a well- 
defined inner and outer orbital, let n, < nb and a, > f f b .  Then S is surely positive, 
and Eq. (2.7) indicates that we may increase the overlap, and therefore the angle 
between the electrons, in the triplet by increasing f f b  and decreasing a,. In the 
singlet state, where it is necessary to decrease the overlap in order to increase the 
angle between the electrons (B > O), it would be necessary to decrease ab and 
increase a,. Furthermore, since a, > ab, 

so that rescaling the outer orbital will be more effective in mitigating the angular 
repulsion than an equivalent rescaling of the inner orbital. These results are 
qualitatively the same in all respects as those in Table I, and indicate a net 
contraction of the triplet wave function relative to the singlet ( B  > 0). In order to 
decide upon the energy ordering, we first note that wave functions of the type (2.5) 
can satisfy the virial theorem [ l l ] .  The contracted triplet, with a higher effective 
nuclear charge for the outer electron, where the scaling is most pronounced, will 
have a higher total kinetic energy (which increases as the square of the effective 
nuclear charge for each of the one-electron orbitals) and therefore the lower 
energy ( B  > 0). 

Table I1 compares the alternating rule with experiment. The nsn'l configura- 
tions have been excluded for brevity, because they follow the ordinary Hund rule. 
All relevant data from Moore's tables [14] have been included. In cases where the 
singlet is imbedded in the triplet, the triplet terms have been combined, under the 
assumption that the splitting is entirely spin orbit and is of the form 

E,, = const[J(J + 1) -L(L + 1) - S ( S  + l)], (2.9) 

in order to produce one triplet energy independent of spin-orbit coupling. Since 
(2.9) is an approximation, some of the assignments are possibly open to question. 
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3. Density Matrix Techniques 

A simple visual illustration of the angular correlation can be obtained by 
constructing an angular density matrix. For this purpose we choose 

(s (COS e - cos er)). (3.1) 

Physically, this quantity represents the probability density as a function of the 
angle between the two electrons. Making use of (2.2) for the wave function and 
expanding the delta function in Legendre polynomials 

s (COS 6 - cos o r )  = 1 P~(COS ei)zqcos e) 
r 

47r 
= c P/(COS er )  c __ YTrn ( 6 2 , 4 2 )  y/,rn (&,41), (3.2) 

we encounter the same angular integrals as in Sec. 2. Study of Eq. (7.1) shows that 
the lth coefficient in (7.7) must be twice the coefficient of Pl(cos 6’) in the angular 
portion of the exchange term of the density matrix. Representing this coefficient 
by Kl, and subtracting the triplet density matrix from the singlet in order to 
magnify the difference gives 

r ,21+1 

( ~ ( C O S  +COS o)),-(s(cos ekes e ) ) , = ( ~ %  +U:)CK~P~(COS e f ) ,  (3.3) 
r 

where the subscripts s and t denote singlet and triplet, respectively. Since this 
measure depends on the radial overlaps, which will be different for different 
configurations, we define the quantity 

( ~ ( C O S  ei-cos e)), -(S(COS el-cos e)), 
(u:+ u : ,  

AL(COS 6”) = > (3.4) 

which is scaled to account for these differences. In Figure 1, AL is plotted for the 
npn‘d, npn’f, and some of the nsn‘l configurations. 

This function has a simple physical interpretation. Anywhere AL has a positive 
value, the electrons are more likely to be at that angle in the singlet state than in 
the triplet. Negative values of AL imply a preponderance of the charge density at 
the corresponding angle in the triplet state. It must be recalled that, while the sum 
of radial overlaps in (3.4) should be comparable within a configuration, they may 
change radically between configurations, so the graphs for the nsnrl states have 
each been modulated by a different scale factor in the definition of A=. 

Most of the graphs clearly indicate a tendency for the electrons to accumulate 
at close angles in the singlet for the cases where B > 0, and in the triplet when 
B < 0. However, as the degree of oscillation increases, such an interpretation 
becomes more difficult. In such cases, it is simpler to use Eq. (2.3). Since Pr(1) = 1, 
the sign of B is the same as that of AL at the right-hand boundary; the close angle 
behavior of the ,graphs of AL can thereby be deduced from the alternating rule for 
B. 
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+.3 T 1 [ +.3 

0 0 

-. 3 t 
-1 

1 
cos e,, 0 

J 
+1 

-1 +1 

cos 

Figure 1. Overlap scaled angular density matrix difference (singlet minus triplet) for 
Some two electron configurations (a) npn’f state; (b) nsn’l state; (c) npn’d state. 
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4. Discussion of Surface Hole States 

It remains from Sec. 2 to treat those states made up of two electrons with equal 
orbital angular momenta. The simplest example of such a state is the l s 2 s  state of 
helium. A suitable wave function might be constructed in the form 

Setting rl = r2 then causes the triplet wave function to vanish. The Fermi hole, 
usually regarded as a small region about the point position of one of the electrons 
in this case has a much different goemetry; it consists of a spherical surface about 
the nucleus defined by the radial coordinate of one of the electrons. We shall refer 
to such states as surface hole states. Because of the spherical geometry of the 
Fermi hole, these states have no exchange-symmetry induced angular correlation 
in zeroth order. Rather, they exhibit radial correlation. Because radial wave 
functions exhibit much greater variety than the angular functions used in Sec. 2, a 
completely satisfactory treatment of surface hole states has not been accom- 
plished. A shielding argument may in fact be a poor way of describing the 
difference between the two states. For instance, if both electrons are in s orbitals, 
the single-configuration wave function of the type (2.2) reduces to 

Then it is easily shown that 

where r ,  is the greater of ( r l ,  r2).  The total atomic potential energy of the two 
electrons may then be written 

(4.4) 

where r< is the smaller of ( r l ,  r2).  Equation (4.4) indicates that the potential 
energy is equivalent to a system where the outer electron is perfectly shielded by 
the inner electron. Since this is true for both singlet and triplet states, it does not 
appear that shielding describes the difference between the two states. 
Consequently, we defer treatment of surface hole states to a future study, and 
assume presently that the state that contains the surface hole has the lower energy. 

5. Alternating Rule for Surface Hole States 

We now consider a general configuration in which 11=12.  Since we are 
comparing a singlet state to the corresponding triplet of the same total orbital 
angular momentum, the case of equivalent electrons is excluded. The wave 
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function is constructed according to (2.1) and (2.2) with l1 = 12= 1:  

P I 2 4  = R(r2, TI) 1 C(I, 1, L ;  mi, m2, M )  Y1,m~(829 44 k,&hr 41). (5.2) 

Using a symmetry relation of the Clebsch-Gordan coefficients [13] in (5.2) gives 

mim2 

so that 

The normalization constant is given by 
-1 

N:,, = (J [R ( r l ,  r2) * (-FR (r2,  r11~) . ( 5 . 5 )  

if g(8)  is any function of the angle between the electrons, then the difference 
between the expectation value of g(8)  for the singlet and the triplet is given by 

(g(O)), = Nf I [ R h ,  r2 )  + ( - )LR(r2,  rdl2[A*g(8)A1 

where 

A = C C(I, 1, L;  ml,  m2, M )  Yl,ml(81, 41) Y l , m z ( 8 2 , 4 2 ) .  (5.7) 
m1m2 

Equation (5.6) shows that there is no difference in angular correlation between 
singlet and triplet states with l1 = 12 as a result of symmetrization, within the 
context of the single configuration approximation. Equation (5.4) shows that the 
effect of symmetrization is contained in the radial portion of the wave functidn. 
Consequently, it is not necessary to consider the angular portion of the wave 
function in the present context. Squaring (5.4) and integrating over angles then 
gives 

M r l ,  r2)12 = N * [ R ( ~ I ,  r2)* (-)=R(r2, r1)12. (5 .8 )  
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We have regained an equation of the type discussed in Sec. 4 with the addition that 
the surface hole alternates between the singlet and triplet each time the orbital 
angular momentum is changed by one unit. The state of greatest orbital angular 
momentum has the surface hole in the triplet. Thus, with the assumption at the 
end of Sec. 4, we obtain for the surface hole states the same alternating rule 
discussed for the point hole states in Sec. 2. Table I11 compares the rule with 
experiment. Conditions are the same as for Table 11. 

6. Conclusion 

In spite of the simplicity of the present treatment, the alternating rule reliably 
orders singlet and triplet states of a given orbital angular momentum some 90% of 
the time. However, since Hund's rule does not work in all cases, a highly detailed 
theory of the energy orderings is probably not warranted. We have made no 
mention of how terms of different orbital angular momentum within a configura- 
tion are ordered with respect to each other, but insofar as Hund's second rule 

TABLE 111. Comparison of alternating rule with experiment for surface 
hole states. Conditions are the same as for Table 11. 

npn'p conflguratlon; D t e r m s  

Examples  ( t r i p l e t  below s i n g l e t )  

c zpnp;  n=3 ,5  c Ill 2pnp;  n=3.4 K I1 2pnp;  n=3,4 

0 I11 Zpnp; n=3 ,4  0 V Zpnp; n=3-5 F IY 2p3p 

AA V I I I  Zpnp; n=3 ,4  Xg 1X 2pnp; n=3 ,4  A1 X Zp3p 

Si X I  2p3p P I1 3p4p P X I 1  2p3p 

Ge 4 p S p  Sn 5pnp; n=6,7 Sb I1 Spnp; n=b,8 

(no ' oun te rexamples )  

n m ' a  confiauration. P t e r m s  

1: IT 2p4p 

F '?I Zpnp; n=3-5 

S i  3pnp; n = 4 , 5  

s r  I l l  4p5p 

Te Ill 5p6p 

m l e s  ( s i n g l e t  below t r i p l e t )  

c 2pnp; n=3 ,4  c I11 2pnp; n = 3 , 4  n I1 2pnp;  n=3,4 

F V I  2pnp;  n=3,4 Mg I X  2p3p S i  3pnp. n=4,5 

Sb I1 Sp6p ( 1 )  *Ie I11 5pbp N I V  2p3p 

A 1  X 2p3p se 111 4p5p *Sn Sp6p 

Counterexamples 

P I1 3p4p S" 5p7p 

npn'p configuration; S terms 

Examples ( t r i p l e t  b e l o w  singlet) 

c zpnp;  n.3.4 C 111 2p3p 0 I11 zpnp ;  n=3,4 

s1 3pnp; n=a,5 Ge 4pSp s I1 2pnp;  n=3, i i  

E!a '?;I1 2p3p P I1 3p4p Sb I1 5p6p 

Counterexamples 

Sn 5pnp; n=6,7 

0 I11 2pnp; n=3,4 

Gt. & p i p  

0 v zpnp,  n=3-S 

ha V I I l  Zpnp; n=3,4 

F VI 2p3p 

0 Y 2p3p 
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TABLE 111. (Continued from previous page.) 

ndn’d configuration; G terms 

Examples ( t r i p l e t  below s i n g l e t )  

Sc I1 3d4d Ba 5d6d Y 11 4d5d Z r  I11 4d5d 

La I1 5d6d 

(no counterexamples) 

ndn’d configuration; F terms 

Examples ( s i n g l e t  below t r i p l e t )  

Sc 11 3d4d Ra 5d6d Y I1 4d5d z r  111 4d5d 

La I1 516d 

(no counterexamples) 

ndn’d configuration; D terms 

Examples ( r r i p l e r  below s i n g l e t )  

Sc I1 3d4d Ba 5d6d Y I1 4 d 5 d  Z r  111 4d5d 

La I1 5d6d 

(no counterexamples) 

ndn’d confiauratron: P terms 

Examples ( s i n g l e t  below t r i p l e t )  

Sc I1 3d4d Ba 5d6d Y I1 4d5d 7.r 111 4d5d 

La I1 5d6d 

Counterexample 

A b  IV 4d5d 

ndn‘d configuration; S t e r m s  

Examples ( t r i p l e t  below s i n g l e t )  

Sc I1 3d4d La 11 5d6d 

counterexamples 

Y I1 4d5d ( ? )  Zr 111 4d5d 

holds, and insofar as the present approach predicts the term of highest orbital 
angular momentum to have the triplet below the singlet, the ordinary statement of 
Hund’s rule is retained. 

The ordinary statement of Hund’s first two rules can give the impression that 
they are independent of each other, a failure of Hund’s second rule, for instance, 
having no effect on the success of Hund’s first rule. One aspect of the alternating 
rule is that these two rules can no longer be considered independent. A failure of 
Hund’s second rule can give rise to a failure of Hund’s first rule. Table IV 
compares the ordering of the singlet D term with the triplet F term for the npn’d 
configuration; Hund’s rules, which assign the lower energy to the triplet F term, 
work only about 50% of the time. The singlet D term is as likely to be found 
lowest as the triplet F. 
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TABLE IV. Comparison of Hund's second rule with experiment for the 
npn'd configuration. An asterisk indicates a deviation from the alternating 

rule. 

Cases where 'D l i e s  below 3F 

C Zpnd;  n=3-b * S i  3 p n d ;  n=3-5 Sc I1 3 d 4 p  Ti I11 3 d 4 p  

Cr V 3 d 4 p  Yg V I  3 d 4 p  fc VII 3 d 4 p  Zr I11 4 d 5 p  

Ge 4 p 4 d , * 4 p 5 d  *?lb I V  4 d 5 p  Y I1  4 d 5 p  La I1 5d6p 

C I11 Zp3d *Zr 4 d 5 p  X I V  Zp3d 

Cases  w h e r e  3F l i e s  below '0 

1 I 1  2 p 3 d  C a  3 d 4 p  Se 111 4 p 4 d , 4 p 5 d  Sr 4d5p 

Ba 5 J 7 p , * 5 d 7 p  *Sn 5p5d,5p5d *Te 111 5p5d,Sp6d *Ac I1 6 d 7 p  

Kg V I I  2p3d Sa 1'1 2 p 3 d  F 1 V  Zpnd;  n=3-5 0 111 2pnd; n=3-5 

7. Appendix: Expectation Value of (sin f@-' 
Since i(sinit9-I is equal to r;; evaluated at rl = r 2 =  1, the expansion in 

spherical harmonics is 

Making use of (2.1) and (2.2) for the wave function then gives (2.3) for the 
expectation value; with R ( r l ,  r 2 )  independently normalized, A is independent of 
the radial portion. The constant B is given by 

Integrating and eliminating the sum over m with the Kronecker delta that arises 
then gives 



934 WARNER, BARTELL. AND BLINDER 

By making use of the symmetry properties of the Clebsch-Gordan coefficients and 
the sum rule [13] 

C(a ,  b, e ;  a, p, a + P ) C ( e ,  d, c; Q +p,  6, a + p  + S )  

=I [(2e + 1)(2f+ 1)]1’2 W(a,  b, c, d ;  e , f )  
f 

x C ( b , d , f ; P , 6 , P + S ) C ( a , f , c ; ~ , P + S , a + P + 6 ) ,  (7.4) 

and again applying symmetry properties of the coefficients four of the Clebsch- 
Gordan coefficients can be eliminated through their orthogonality relations [ 131, 
with the final result 

B = 2(212+ 1) I C(12, 1, 11; 0, 0, 0)2(-)’-LW(/2, I ,  L, 12;  11, 11). (7.5) 
f 

The arguments of the Racah coefficient may be interchanged according to 

W(12, 11, 11, 1 2 ;  L, 0, (7.6) I+L-21, W(l2,k L, 12;  lI,ll) = (-1 
which gives 

B = 2(212 + 1) 1 C(l2, 1, 11; 0, 0, 0)2 W(12, 11, 11, 12;  L, 1). (7.7) 
I 

For the maximum angular momentum of a configuration, L = lI + 12, and in this 
case, W in (7.7) is positive [13] and so B is positive. When L takes on a minimum 
value of L = l1 - 12, then W in (7.5) is again positive, and the Clebsch-Gordan 
coefficient has the form C(12, I ,  L + 12; 0, 0,O). This coefficient vanishes unless the 
sum of the first three arguments is an even integer, so 1 + L is even, the coefficient 
(-)’-= in (7.5) is positive, and B is again positive. Evaluation of the sign of B in the 
general case has not been accomplished apart from the lowest and highest orbital 
angular momentum terms of a configuration. We have calculated B for every case 
occurring in Table I1 to demonstrate the alternating rule. It is conjectured that the 
alternating rule is valid in general for the sum (7.7). 
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