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Abs t rac t  

Recent progress in the mathematical physics and quantum chemistry of Coulomb Green’s functions 
is summarized. Analogy with the defining relation for the Green’s function has led to a finite model 
for the Fermi contact interaction which avoids spurious divergences in second-order perturbation 
calculations. The Hamilton-Jacobi mechanics of the Coulomb problem is reviewed. A compact 
parametrization for Hamilton’s principal and characteristic functions provides a key element in further 
developments. These include a semiclassical representation for the Coulomb propagator in Feynman’s 
formalism and a new propagator in the domain of Coulomb Sturmian eigenstates. In projected 
applications, approximate many-electron Green’s functions constructed from combinations of one- 
particle Coulomb propagators provide a basis for computation of atomic and molecular eigenvalue 
spectra. 

Coulomb Green’s  Functions 

The hydrogen atom has played a key historical role in the development of the 
quantum theory of matter, from the Bohr model to Schrodinger’s wave mechanics 
to Dirac’s relativistic theory to modem quantum electrodynamics to current 
models exploiting higher dynamical symmetry. The literature on Coulomb Green’s 
functions has been correspondingly extensive, dating back to Meixner’s partial 
solution for G ( r , , r 2 , E )  in the limits r2 = O  or [l]. A number of integral 
representations and partial-wave expansions for the time-independent Coulomb 
Green’s function were subsequently developed [ 2 ] .  Schwinger [3] gave an elegant 
representation for the Green’s function in momentum space. Hostler [4] finally 
discovered a closed form for the Coulomb Green’s function G ( r l , r 2 , E )  and also 
derived approximate relativistic Green’s functions for both the Klein-Gordon 
and Dirac equations. 

The Coulomb Green’s function is the solution under specified boundary con- 
ditions of the inhomogeneous differential equation 

(1) 

in terms of atomic units, h = e = m = 1. Hostler’s solution for the retarded 
(outgoing wave) Green’s function can be written [5]  

( E  + 4V: + Z / r , ) G ( r l , r 2 , E )  = 6(r ,  - r2) 

G + ( r , , r 2 , E )  = G + ( x , y , k )  = - 
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where 

g+(x,y,k) = (ik)-'T(l -iv)Mfi2( -iky)W:d2( - ikx)  (3) 

in terms of the variables 

x = rI + r2 + rI2 ,  y = r ,  + r2 - r I 2  (4) 

E = h2k2/2m, v = Z/kao, Imk > 0; (5 ) 

and the parameters k and v, defined such that 

M and W represent Whittaker functions of the first and second kind, as defined 
by Buchholz [6]: 

M;"(-iky) = (m!)"( - iky ) '"+ '~~2e~'ky '21Fl (~(m + 1) + iv; m + 1; iky) (6) 
M"$-( - jh) = e-n" 

) (7) 
W;"( - ikx) ( Wy/,Z(ikx) + e - r ( r n t  l)n/2 

T(t(m + 1) - iv) T(f(m + 1) + iv) 
where is the confluent hypergeometric function 

Remarkably, the Coulomb Green's function depends on just two independent 
coordinates, the combinations x and y, rather than the three variables, say rl,  
r,, r I2 ,  which would be implied by the spherical symmetry of the Hamiltonian. 
This reduction is now understood to be a consequence of the higher dynamical 
symmetry of the Coulomb problem, specifically represented by the groups SO(4) 
or SO(3,l) for bound and continuum states, respectively [7]. As a concomitant, 
there exists an additional constant of the motion-the Runge-Lenz vector [8]. 
The significance of the variables x and y is discussed below. 

In its dependence on two particle coordinates, the Coulomb Green's function 
somewhat resembles a helium wave function. In a variational calculation on 
helium using a function of the form 

+(x,y> = C C,,srnyne-OL(XtY) (9) 
m,n 

an energy of -2.89175065 hartrees was obtained, accounting for 71.5% of the 
correlation energy [9]. This is, in fact, the most accurate calculation to date 
based on a two-variable helium wave function. The wave function (9) would be 
equivalent to a Hylleraas-type function [lo] with the variable f of the trio s, f, 
u absent. 

A Model for the Fermi Contact Interaction 

Interactions between s electrons and magnetic nuclei are well accounted for 
by the Fermi contact operator [ 111 
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Atomic hyperfine structure and nuclear spin-spin coupling have been successfully 
treated using this delta-function operator. Infinite terms arise, however, when 
this operator is applied beyond first order in perturbation theory [ 121. To eliminate 
these spurious divergences, we have suggested a modified version of the Fermi 
contact interaction in which the point nuclear magnetic dipole implied by (10) 
is replaced by a uniformly magnetized spherical shell of radius r,. This is effected 
by the substitution in Eq. (10) of 6(r  - ro) for 6(r ) ,  in which ro is of the order 
of a nuclear diameter [ 1 3 ] .  A perturbed hydrogenic atom in an s state is thus 
represented by the Schrodinger equation 

[ E  + 4V’ + Z l r  - (Al41~r$G(r - ro)]Jl(r)  = 0,  
A = %rgg,kspNS*I. ( 1  1 )  

With introduction of the radial function such that + ( I )  = ( 4 r r 2 ) - ” ’ P ( r ) ,  Eq. 
( 1  1) reduces to 

Equation ( 1 2 )  is isomorphous with the S-wave component of ( l) ,  the defining 
equation for the Coulomb Green’s function. Specifically, 

(1  k2 + 2 + ; g(r , ro ,k)  = 6(r - ro) 
a2  “ )  

with g(r , ro ,k)  equal to ( 3 )  after the substitutions x + 2r ,y  +. 2r0. Since we are 
interested in bound states, it is expedient to make the further substitutions k + ik, 
u +. - iu. One obtains thereby the eigenfunctions of the Schrodinger equation 
(12) :  

P,(r) = - ( A / 4 1 ~ k r i ) P , ( r ~ ) T (  1 - ~)MC’*(2kr<)W;’~(2kr,) .  ( 1 4 )  

The corresponding eigenvalues , given by 

22 I 2 u2, (15) E = - f k 2  = - 

are determined by the transcendental equation 

- ( A / 4 1 ~ k r i ) T (  1 - ~ ) M t ’ ~ ( 2 k r ~ ) W C ’ ~ ( 2 k r ~ )  = 1 .  ( 1 6 )  

The energies (15) have the same form as unperturbed Coulomb eigenvalues but 
with nonintegral values of the quantum number u. Since the perturbation on the 
atomic state is exceedingly small (A - for hydrogen), it is convenient to 
introduce a quantum defect such that u = n + 6. The energies (15)  are cor- 
respondingly approximated by 

E = - Z212n2 + Z26/n3 + 0(a2) (17) 

where it follows from ( 1 4 )  that 6 = AZ, provided that ro is of nuclear dimension. 
A useful result is the first-order approximation for a 1s orbital with effective 
nuclear charge 5:  

Jlls(r) = W l + s ( r ) l r  z e-@[1 + 6(- 1 + ( r  + ln25r - I / & ) ] .  (18) 



296 BLINDER 

The limiting behavior as r, approaches 0 has been discussed in detail in the 
original references. It reveals the explicit nature of the divergences associated 
with the Fermi contact interaction. As r, -+ 0, the conventional Coulomb plus 
delta-function potential is recovered. The magnetic perturbation energy goes to 
zero for a repulsive delta function, but approaches --to for an attractive delta 
function. In subsequent work, a quark model for the proton has been applied in 
a precise calculation of the hyperfine splitting in atomic hydrogen [ 141. 

The modified Fermi potential has been applied to NMR spin-spin coupling 
in the HD molecule [ 151. Perturbed 1 s atomic orbitals of the form ( 1  8) were 
used to construct Heitler-London molecular wave functions. Since such functions 
already account for magnetic interactions with one of the nuclei, the computation 
requires only first-order perturbation theory. Thus the divergences that have long 
plagued this problem [16] are entirely avoided. The coupling constant JHD is 
identified as the part of the energy proportional to IH*ID. After averaging over 
zero-point vibration, one obtains a coupling constant of 41.96 Hz via the contact 
interaction. Adding 0.30 Hz from the spin-dipolar and orbital contributions [ 171, 
we obtain JHD = 42.26 Hz, in remarkable agreement with the experimental 
value, 42.94 -+ 0.10 Hz. 

Generalized Unsold Theorem 

The Coulomb Green’s function has the following spectral representation: 

with ImE > 0 for G + . The summation runs over both discrete and continuum 
eigenstates. For reference purposes, we give the hydrogenic eigenfunctions ex- 
pressed in terms of Whittaker functions: 

The corresponding continuum eigenfunctions are 

\CIylm(r) = ( 2 7 ~ ) ~ ~ ~ i ’ + ~ ( k / v ) ~ / ~ e ~ ~ / ~ r ( l  + 1 - iv)r-’Mf: - 2ikr)Y,(B,+), 
k = z /v ,  0 c v < 03. (21) 

Since hydrogenic energy eigenvalues depend only on the principal quantum 
number n, the residue at each pole, where E = -Z2/2n2, contains a sum over 
compatible values of 1 and m. We define the density function 

n - 1  / 

~n(rltr2) = 2 2 +n/m(r,)+ln*rm(r,). (22) 
/ = 0  m = - l  

We now make use of the Green’s function (2)-(3) and note the reduction of both 
Whittaker functions to Laguerre functions for integer values of the lower index 
(cf. [6, p. 2141). Retaining the Whittaker functions M for compact notation, we 
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obtain [ 181 

This result represents a generalization of. Unsold’s theorem [ 191, which pertains 
to a sum over m with fixed values of both 1 and n. Explicitly, the first three 
density functions are given by 

pI = ( Z 3 / ~ ) e - Z t ,  

p2 = (Z3/8m)(1 - bZ6 + QZ2q2)e-zt’2,  

p3 = ( Z 3 / 2 7 r ) [ l  - $Z( + &Z2(k2 + 2q2)  

6 = &(x + y ) ,  q = ( x y ) 1 ’ 2 .  

(24)  
- &Z36q2 + &Z4q4]e-Zt/3, 

Applications to the study of hybrid atomic orbitals and open-shell configurations 
are projected. 

The analog of Eq. (23)  for continuum eigenstates works out to 

Z 2 2  

V 2vz x Mfd2( -ikx)Mfi2( - i k y ) ,  k = -, E = -, 0 S v < m. (25)  

Hamilton-Jacobi Mechanics for the Coulomb Problem 

A necessary adjunct to some important further developments on Coulomb 
propagators involves the classical Hamilton-Jacobi theory of the Kepler-Cou- 
lomb problem [ 2 0 ] .  We begin with the time-independent equation for Hamilton’s 
characteristic function W(r, ,r2,E): 

( 2 6 )  
with an analogous equation in r2. We interpret r, and r2 as the initial and final 
displacements, respectively, in a classically allowed orbit. The orbital angular 

@,W)2 - Zlr, = E 

momentum is a constant of the motion; thus 

L = r, x p1 = r2 x p2 = - r,  x V I W  = r2 x V2W. 

We can write 

dW aw d W  dW v,w = u 2  - + u,, - 
ar, ar,, dr2 dr,, 

v,w = u, - + u,, -, 

in terms of the nonorthogonal unit vectors 
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It follows that 

The constancy of L implies that W can be expressed as a function of the three 
variables r , ,  r2, rI2. A further reduction is made possible by the existence of an 
additional constant of the motion, the Runge-Lenz vector [21] 

A = (Ze2m)-’L x p + rlr .  (31) 

In terms of W, 

A =  -Z-  1L x v,w + 0 ,  = Z - I L  x v,w + ii2. 

L x (V,W + V,W) . (a, + a,) = 0. 

(32) 

The scalar product with 0, + ti2 results in 

(33) 

Thus, using (29) and (30), we have 

= 0. 
aw aw 
dr,  dr2 

(34) 

This shows that W is independent of the variable rl - r2. It is thus a function 
of just the two variables r ,  + r2 and r,,.  Cross products of derivatives are avoided 
if one chooses as new independent variables the linear combinations 

x = r ,  + r2 + rI2, y = r ,  + r, - rI2, x 3 y 3 0. (35) 

After some algebra, the Hamilton-Jacobi (HJ) equation (26) reduces to 

W: - Z I X  = &E, W,’ - Zly = &E. (36) 

The transformed HJ equations (36) have the form of a quasi-one-dimensional 
problem with y and x representing the initial and final coordinates, respectively. 
The differential equations are simplified by introduction of the auxilliary variables 
A ,  p, and v, whereby 

112 112 
2 2  

2v2’ 
E = - sinhA = (2) , sinh p = (2) . (37) 

Equations (36) thereby reduce to 

W, = k4u cosh2A, W, = 2 4 ~  Cosh2 p. (38) 

A solution for Hamilton’s characteristic function which vanishes for y = x is 
given by 

W = 2v[(sinh A cosh A + A) - (sinh p cosh p + p)] 
= 2v[sinh(A - p) cosh(A + p) + (A - p)]. (39) 

Consistent with (35), we have A 2 p 2 0. As defined, A ,  p, and u are real for 
hyperbolic orbits (positive energy) and pure imaginary for elliptical orbits (neg- 
ative energy). 
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We turn next to the time-dependent Hamilton-Jacobi equation for Hamilton’s 

(40) 

with the analog for r2. By the same line of reasoning that led to Eqs. (36) we 
obtain 

(41) 

The solution of (41) was given some time ago [22]. A simpler approach can be 
based on the Legendre transformation 

principal function S(r,,r2,t): 

dSIdt + @ , S ) 2  - Z / r ,  = 0 

is, + s,’ - ZIX = 0,  is, + s,’ - z /y  = 0. 

S(x ,y , t )  W(x,y,E) - Et. (42) 

The time variable is found from 

Taking account of the dependence of A and p on v through (37), we obtain 

Z2t = 2v3[(sinhA coshA - A) - (sinhk coshp - p)] 

= 2v3[sinh(A - p) cosh(A + p) - (A - p)]. (44) 

This is equivalent to a famous result in planetary astronomy, Lambert’s theorem, 
published in 1761. According to the theorem, the transit time between two points 
in a planetary orbit is given by [23] 

t = - [(a - sinct) - (P - sit@)], 
7 

n 
112 P 112 

sin = (:) , sin = (5) (45) 
2 

where T is the orbital period and a the semimajor axis. 
The variables A, p, v can now be regarded as implicit functions of x ,  y, t in 

the network of relationships expressed by Eqs. (37) and (44). These are further 
enumerated in Appendix A. Substituting into (42), we obtain finally the requisite 
solution for Hamilton’s principal function: 

(46) S = v[sinh(X - p) cosh(A + p) + 3(A - p)]. 

Path-Integral Representation of the Coulomb Green’s Function 

A key element in Hostler’s [4] derivation of the Coulomb Green’s function 
was an integral representation for a products of two Whittaker functions given 
by Buchholz [24]. With the appropriate specialization of variables, G +  can be 
reduced to the following integral form [25]: 

2,” 

G + ( x , y , k )  = ‘k 1 ds sinhs(coth i) eiktcoshs J,,(kq sinhs) (47) 2 n  
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with 

5 = h(x + y ) ,  q = ( x Y ) ” ~ ,  v = Z / k .  

The substitution sinhs = cschq transforms the integral to 

G + ( x , y , k )  = - dq csch’q e2ivqeik~co‘hqJo(k-q cschq). 
2n ik L= 

By Kummer’s second formula [26], the Bessel function can be written 

Jo(z) = e-’W(B, 1,2iz) 

where M(a,b,z) is a confluent hypergeometric function [cf. Eq. (S)]. Thus the 
integrand in (49) contains a factor of the form eiw with 

(51) W ( q )  = 2vq + kc  cothq - kq cschq. 

W’(q0)  = 2~ - kc  csch2qo + k q  cschq, cothqo = 0. 

Let us assume that this function is stationary for the value q = qo, i.e., 

(52) 

Applying Eq. (Al) to the variables in (48) we have 

k5/2v = sinh’h + sinh’p = cosh(h + p) cosh(X - p) - 1, 
kq/2v = 2 sinhh sinhp = cosh(h + k) - cosh(X - p). (53) 

Equations (52) with (53) imply that 

qo = - P, (54) 
and thus 

W(q,) = 2v[sinh(X - k) cosh(h + p) + ( A  - p)] = W ( x , y , E ) ,  

which is Hamilton’s characteristic function (39). Equation (49), in the form 
(55) 

G + ( x , y , k )  = - dq csch2q M ( 4 , 1 , 2 i k q  cschq)e’w(q), (56) 2n ik L= 
can thereby be interpreted as a path-integral representation of the Green’s function 
[27]. In this instance, the path is explicitly parametrized by a single variable q. 
The action function W ( q )  assumes a stationary value for the classically allowed 
trajectory, with q = qo. The path-integral formalism has recently been applied 
to the hydrogen atom by Duru and Kleinert [28] and other workers [29]. 

With the factor elw(qO) taken outside the integral (56), the Coulomb Green’s 
function exhibits a structure characteristic of a semiclassical approximation [30]: 

G + ( x , y , E )  = F(x,y ,E)e’W(“,’ ,E) .  (57) 

Sturmian Propagators 
We consider again the integral formula (49) for the Coulomb Green’s function. 

Analogous representations for the N-dimensional free particle and harmonic 
oscillator have been shown to exhibit the structure of Fourier transforms. The 
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corresponding time-dependent propagators are thus obtained almost by inspection 
[ 3 1 ] .  In the case of ( 4 9 ) ,  the Fourier transform involves the quantum number 
variable v rather than the time and leads instead to a new type of propagator. 
More explicitly, we write 

with 

S,(x,y,q) = - ( k 2 / 4 n )  csch2q erkScothqJO(kq cschq). ( 5 9 )  

The function (59), with k and q real, pertains to the Coulomb continuum. Of 
greater interest is the analog for the discrete spectrum, obtained by the substi- 
tutions k + ik,  q + iq, viz., 

S(x,y,q) = - (k2/47r) csc’q erktco‘9J0(kq cscq). ( 6 0 )  

We can write, in analogy with ( 2 ) ,  

Using the identity ( a l e z ) z J , ( z )  = zJo(z ) ,  we find 

s(x,y,q) = - 4 k q  cscq e‘kScotqJl(kq cscq). ( 6 2 )  

A spectral representation of the function (62)  follows from the Hille-Hardy 
formula [33]: 

,(x+y)h/(l + h )  JP[2(nyh)”2/(1 + h)]  

l + h  (xYh)”’2 

In ( 6 3 ) ,  let 
Laguerre functions L p )  in terms of Whittaker functions. The result is 

= 1 ,  x + kr, y + ky, h = n - 1, h = - ~ ~ ‘ 4 ,  and express the 

x 

s(x,y,q) = c n M ~ ” ( k x ) M t ’ 2 ( ~ ) e - 2 1 n y .  ( 6 4 )  

Making use of  (20)-(23) ,  we find that S(x,y,q) is represented by the summation 

”= 1 

~ 1 ~ 2 , q )  = c +.,m(r,>+f,(r2)e-21n9 (65)  
nlm 

in terms of the hydrogenlike functions 

+nlm(r) = [ (n + L)!/ (n  - I - l)!]”2r-1M!,+”2(2kr)Ylm(0,+). ( 6 6 )  

The latter differ from the hydrogenic eigenfunctions (20) in that the scaling 
constants k have a fixed value for all n, and are not individually equal to Zin. 
The +(r) have been dubbed “Sturmian functions” [34]. These have found ex- 
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tensive applications in atomic and molecular computations. 
The structure of S(r, ,r2,q) suggests its designation as a “Sturmian propagator” 

[32 ] .  Whereas the discrete hydrogenic eigenfunctions must be augmented by a 
continuum to form a complete set, a denumerable set of Sturmian functions is 
complete over the same domain. This can be shown directly from the q += 0 
limit of the Sturmian propagator (60).  Using the asymptotic form of the Bessel 
function for large values of its argument, we find 

s(rlYr270) = C + n , m ( r I ) + * n , m ( r J  = (rlr2)1/28(r1 - r2). (67) 

This represents the closure condition on the set {+nlm}. The factor (rlr2)If2 arises 
from the weight factor r (rather than r2) in the orthonormalization of the radial 
functions in (66).  

The positive-energy Sturmian propagator (59) can analogously be shown to 
represent the summation 

nlm 

sc(rl,rZ,q) = C dv +~lm(fI)+,*lm(r2)e-2fYq (68) 
lm 1: 

in terms of a complete set of continuum Sturmian functions 

Just as in the case of time-dependent Green’s functions, the Sturmian prop- 
agator represents a solution of a partial differential equation [32] .  By Fourier 
transformation of Eq. (1) using (58) it follows that 

k2 1 ik dS 
2 2 
- s  + -v:s + -- = 0 

2r1 84 
subject to the boundary condition S(rl,r2,0) = (rlr2)1’28(rl - r2). 

Sturmian propagator for the Lth partial wave is given by 
It is shown in [31] that, for an N-dimensional Coulomb system, the radial 

S[”)(rl,r2,q) = ( -i)2L+N-’k(rlr2)1-N’2 cscq 
a. +N-2[2w-1r2)’i2 cscql. (7 1) x @(rl + r2)coWJ 

This is related to the Ath partial-wave radial propagator for a v-dimensional 
harmonic oscillator by 

(72) 

such that 2L. + N - 2 = A + iv - 1. The well-known connection between 
Coulomb and oscillator eigenstates of various dimensionality [35] is thus man- 
ifested in a new way. 

( r  ) N / 2  - IS“’ 
L ( I J - 2 4 )  = ( P l P 2 ) ” ’ 2 - ’ ~ ~ ) ( P I , P 2 , ~ )  1 2  

The Coulomb Propagator 

Feynman’s path-integral formulation of quantum mechanics [27 ] ,  despite its 
notable successes [36] ,  remains incomplete with regard to two elementary as- 
pects: the representation of spinors and the hydrogen atom. Although the path 



NONRELATIVISTIC COULOMB PROBLEM 303 

integration for the Coulomb problem has been carried out with the aid of the 
KustaanheimcMtiefel transformation [37], no explicit form for the propagator 
K ( r l , r 2 , t )  has resulted as yet. We note that a number of integral representations 
[ 3 8 ] ,  numerical solutions [39], and asymptotic forms [40] related to K have been 
found. 

The propagator 

in which L is the 

in Feynman’s formalism is represented by the path integral 

classical Lagrangian. Equivalently, the Coulomb propagator 
is the solution of the time-dependent Schrodinger equation 

aK 1 Z 
i - + - V t K + - K = O  

at 2 TI 

subject to the initial condition 

K ( r I , r 2 , 0 )  = 6(rl - r2). 

(74) 

(75) 
The propagator is related to the time-independent Green’s function by a Fourier 

(76) 

Since, as discussed above, G depends on rl and r2 through the combinations x 
and y [cf. Q. (4)], K must also. Taking K = K ( x , y , t ) ,  the sum and difference 
of Eq. (74) with its analog in rz leads, after some algebra, to 

iK, + K ,  + K,, + [ 2 / ( x  - y ) ] ( K ,  - K,,)  

transform [41] 

G+ = - i  [ KeiE‘ dt. 

+ [ (x  + y ) / x y ] ( K ,  + K,, + Z K )  = 0 (77) 
(2-equation) 

and 

q ( K , ,  - K,) + ( X  - y ) ( K ,  + K, + Z K )  = 0 (78) 
(A-equation) 

If we assume a structure analogous to that of the Green’s function in Eq. ( 2 ) ,  

then Eqs. (77)-(78) are equivalent to 

Jik, + k, + ( Z / x ) k  = 0,  l ik,  + ky,, + ( Z / y ) k  = 0. (80) 

This is analogous to the reduction of the Hamilton-Jacobi equation to Eqs. (41). 
In the limit Z + 0, K becomes the free-particle propagator 
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and correspondingly 

k’-’(x,y,t) = ( 2 7 ~ i t ) -  1 1 2 & ( x - Y ) 2 / 8 r .  (82) 

As shown by Feynman [27] and others [42], for Lagrangians expressible as 
quadratic forms in generalized coordinates and velocities, the propagator assumes 
the simple structure 

K ( r ,  , r 2 , t )  = F(t)e’S(r1.r2-‘)ih, (83) 

in which S is Hamilton’s principal function (now loosely called the “action”). 
Given S, the preexponential factor F ( t )  is easily determined from Eqs. (74)- 
(75). For nonharmonic potentials, including the Coulomb problem, the decom- 
position (83) is no longer exact. 

Let us write k(x,y,t) in Eq. (80) in the form 

k(x,y,t) = f(x,y,t)eis(* r)’h (84) 

with the preexponential factor now a function of x and y ,  as well as t .  After 
reintroducing h into (80), for use as an expansion parameter, we substitute (84) 
and collect powers of h. The result is 

-(is, + 5’3 - Z/x)f + &(if, + 2SJ, + S,f) + h’f, = 0. (85) 

Within the semiclassical approximation [43], the term in h2 is neglected. The 
terms independent of h represent the Hamilton-Jacobi equation, which has been 
solved above. The segment of first order in f i  gives 

if, + 2SJ* + S,f = 0,  (86) 

with an analogous equation in y .  Using formulas derived in the Appendix, we 
can reexpress Eq. (86) in terms of the auxilliary variables A,  k,  u.  From Eqs. 
(A5) and (A6) there follows a near-miraculous reduction of (86) to an ordinary 
differential equation: 

The solution is 

f(A,p,u) = [~inhA/J(h,p)]~’~(function of p,v). (88) 

From the analogous equation in y and the reduction of k to ko as Z -+ 0 [cf. Eq. 
(82)], we find 

(89) f (  A ,  p ,u) = (Z2/4~i )”2v  - 312[ sinhA sinhp/J( A ,  p)] ’ ” .  

We obtain thus, in the semiclassical approximation, 

k ( r ,  ,r2,t) = f(A,p,v)e’S(XJ‘.”l (90) 
with S given by (46). Finally, the propagator K is found using Eq. (79). This 
can also be expressed in the form [44] 

K ( r ,  , r 2 , f )  =F(A,p,u)e’S(h+.”l (91) 
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with 
F(h,p,v) = B(Z2/4~i)3’2v-9/2[sinh(X - p)]-’ 

X [sinhX ~ i n h ( p ) J ( h , p ) ] - ” ~ .  (92) 

The Coulomb propagator reduces to the free-particle form (81) as X , p  + m, 

corresponding to any of the limits Z - 0; x,y - m, or t -+ 0. 
The semiclassical approximation (9  1)-(92) has two important properties in 

common with the exact Coulomb propagator. First, it correctly reduces to a delta 
function for t = 0, consistent with the initial condition (75). Also, it  satisfies 
the closure condition on propagators, viz., I ~ ( r , , r ~ , t ~  - ~ ~ ~ , r ~ , t ~  - t2~3r2 = K(r,,r3,t3 - t , ) .  (93) 

By virtue of these properties, the semiclassical Coulomb propagator becomes 
applicable in a formalism we proposed some time ago [45,46] for aufbau of 
approximate many-electron Green’s functions and analysis of their eigenvalue 
spectra. 

Appendix: Transformation Formulas for A, p, v Variables 

The auxilliary variables introduced in the solution of the Hamilton-Jacobi 
equation are related to x,y,t through 
Zx = 4v2 sinh2X, Zy = 4v2 sinh2p, 

Z2t = 2v3[sinh(X - p) cosh(X + p) - (A - p)]. (Al )  
To express derivatives with respect to x,y,t in terms of X,p,v, the elements of 
the Jacobian matrix d(A,p,v)ld(x,y,t) are required. These are enumerated in the 
following array: 

X Y t 

The following abbreviations have been employed: SA = sinhX, C,  = coshX, 
S, = sinhF, C ,  = coshp. Also we have defined 

j (h )  ZZ S: + 3s,4 - 3kc,,  
J @ , P )  C I J ( ~ )  - CLAP), (‘42) 
T(X,F)  (SACA - A) - (S,C, - PI. 

Now the following identities are readily verified: 

The required derivatives of S are evaluated by application of the above for- 
mulas: 

S, = (2v)-’ cothh, S, = - ( 2 ~ ) - ’  cothp. (‘44) 
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Also 

BLINDER 

We conclude with the remarkable operator relation 

a l a  + 2s,- = -- 
l a  
2 at ax sv3s: ah‘ 
- -  
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