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Abstract 

The extension of the relativistically parameterized extended Hiickel method REX to systems with 
translational symmetry is reviewed. This extension ( REXBAND) is then applied to the description of the 
electronic structures of a number of heavy-element solids, namely UB2, UB4, UC, UBC, and UPt, . 

Introduction 

In 1979 we outlined [ 11 a relativistically parameterized version of the extended 
Huckel molecular orbital method which we entitled REX. The method differs from 
standard extended Huckel schemes [ 2,3] in that it employs an atomic I Isjm) com- 
plex spin-orbital basis rather than a real basis without spin. This complex basis, 
when combined with the standard Huckel assumption of effective Hamiltonian 
matrix elements being proportional to the corresponding overlap matrix elements, 
permits the systematic incorporation of spin-orbit coupling into the calculations. 
In addition the energy parameterization and choice of orbital exponents may be 
taken to reflect the other two important relativistic effects [ 4-71 in atomic structure, 
namely the contraction and stabilization of those orbitals of low total angular mo- 
mentum, particularly s1 /2  and pI /2  levels, and the self-consistent expansion and 
destabilization of those orbitals of high total angular momentum. The REX method 
[ 1,7,8] has been used in a number of studies [9-191 of the electronic structure of 
compounds containing one or more elements of high atomic number; these include 
studies of actinide and lanthanide complexes, [ 10,15,17,19] main-group anionic 
clusters, [ 121 and nuclear spin-spin couplings [ 1 1,13,14]. 

In Part 1 1 of this series we outlined [ 181 the adaptation of the REX method to 
the description of systems with translational symmetry in one, two, or three di- 
mensions, this adaptation thus permitting application of the REX method to poly- 
mers and solids with periodic boundary conditions. The resulting method was called 
REXBAND and is simply a relativistically parameterized variant of the tight-binding 
extended Huckel method for periodic systems which has proven so useful [ 20-221 
in describing the electronic and geometric structures of a very large variety of ma- 
terials. In Part 1 1 we also presented REXBAND energy bands and densities of states 
( DOS) for the helical structure of elemental tellurium and the simple cubic structure 
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of elemental polonium. Comparison of the results obtained with relativistic and 
with nonrelativistic parameters led to an interpretation of the polonium structure 
as a spin-orbit stabilized high-symmetry structure (coordination number of 6 )  and 
the tellurium structure as a reduced symmetry (coordination number of 2 with 4 
next-nearest neighbors) variant. The structural differences were thus interpreted as 
reflecting the relative strengths of the spin-orbit splittings of the np shells ( n  = 5, 
6 for Te, Po) and of the localization of the np orbitals by covalent bond formation. 

In the present study we explore the application of the REXBAND method to a 
number of heavy-elemental solids, namely the refractory compounds UB2, UB4, 
UC, and UBC, as well as the heavy-fermion compound UPt3. 

Method 

The REXBAND method may be easily described, as it is simply an extension of 
the REX method with its I lsjm) complex spin-orbital basis to periodic systems via 
the introduction of Bloch functions &( r ,k), where 

6,(r,k) = C erk.RJfa(r - k,), (1) 

in which k is the wave vector, R, is the position in cell j of the atom with orbital 
fa of type a, and the summation is over cells. 

The actual molecular orbitals ( MOS) for the periodic system are given by solution 
of the generalized secular equation 

H(k)C(k) = S(k)C(k)XD(k),  (2 )  

where C( k)  is the matrix whose columns are the complex eigenvectors, A D (  k) is 
the real diagonal matrix of eigenvalues, S( k )  is the n X n overlap matrix given by 

S(k)  = erk'RJSJ, ( 3 )  

in which S is the n X n overlap matrix between the n functions in the reference 
cell ( j  = 0) and the translationally related n functions in thejth cell, R, is the vector 
location of the j th  cell, and H (k)  is the effective one-electron Hamiltonian matrix 
similarly constructed as 

H(k)  = erk'RJ HJ . (4) 

The procedure is first to construct the set { S J }  of overlap matrices between real 
AOS in the reference cell ( j  = 0) and thejth cell, second to obtain S( k)  in the real 
basis via (3) ,  and finally to transform S( k)  to the complex I lsjm) basis. The 
Hamiltonian matrix H( k)  is then constructed directly in the I lsjm) basis by standard 
extended Hiickel assumptions. It is useful, however to note here how H( k)  is in 
effect constructed cell by cell: for Ho (interactions within the reference cell), the 
diagonal elements H:, are input parameters, and the off-diagonal elements H:, 
are related to the corresponding overlap matrix elements via 

H:B = (1 .75/2) (H: ,  + H!B)S:p, a # p . ( 5 )  
The diagonal and off-diagonal elements of H' ( j  # 0) then become 



EXTENDED HUCKEL CALCULATIONS. 13 123 

Hd, = 1.75H,,S-’,, , (6a) 

Hi6 = (1.75/2)(HO,, + HzO)Sdp, LY # P (6b) 

such that Ham( k )  is related to Smm( k)  via 

Ham( k)  = HO,, [ 1 + 1.75 ( Sam( k)  - 1 )] ( 7 )  

and Has( k)  is related to Sap( k)  via 

Hm,(k) = (1.75/2)(HO,, + fGO)S,,(k) 9 # P . ( 8 )  

As we have previously outlined [ 1 1 ,  the overlap matrix in the I Zsjm) basis is 
central to the REX method and is calculated by supplying as input data two sets of 
real atomic orbitals for each atom. The first and second sets consist of those orbitals 
whose radial functions are later associated with the j = Z - 112 and j = Z + 112 
orbitals, respectively. The standard methods for calculating the real overlap matrix 
in the real atomic orbital (AO) basis are employed. A unitary transformation is 
then used to construct the overlap matrix in the desired basis. For example, the 
three real p AOS of the first set are used to construct the two functions j = 112, 
m = +1/2, while the second set of three real p AOS are used to construct the four 
functions j = 312, m = k3/2,  +-1 f 2. This is carried out separately for each atom- 
pair block of the original real overlap matrix and separately for a and @ spins. In 
the REXBAND procedure this transformation follows the construction of S( k )  ac- 
cording to (3);  that is, the complex S (  k)  is obtained via (3)  from a set of real S’ 
for a suitably chosen range of cells neighboring the reference cell, and then the REX 
transformation to S (  k )  in the I Zsjm) basis is made. The construction of H( k)  in 
REXBAND is then made directly in the Ilsjm) basis using (‘I)-( 8 ) .  Minor com- 
putational details are skipped here, but it should be noted that population analysis 
routines must be modified to account for the diagonal elements of S( k)  not always 
being unity. 

The REX parameters listed in Table I for B, C ,  Pt, and U are primarily the default 
REX values, that is, orbital energies LY taken as Desclaux’s atomic Dirac-Fock orbital 
energies [ 23 ] and single-zeta Slater exponents r fitted to Desclaux’s electron mean 
radii Fvalues [ 231 by r = ( n  + 1 /2)/Y, where n is the principal quantum number. 
We also used the Pt parameter set (double-zeta for 5d) of Silvestre and Hoffmann, 
[24] and the U set of F‘yykko et al. [ 191. 

Since the default LY values (Table I)  for U( 5f5/2) and U(5f7,,), -9.44 and -8.70 
eV respectively, are above the C (  2p) value of - 1 1.07 eV but below that for B( 2p) 
of -8.43 eV, a simple filling of REXBAND MOS will result in very different U( 5f) 
occupancies for carbides vs. borides. This is a general problem in applying a one- 
electron method to systems in which one or more atoms have a partially filled AO 
nearly degenerate with AOS of other atoms. Rather than graft intra-atomic electron 
repulsions onto the method, we simply fix the occupancy of such shells, thus ob- 
taining a Fermi energy cF and charge distribution conditional upon the choice. For 
the U compounds we choose occupancies 5f;,2 5f7/2 with n = 4, 3, or 2; these 
choices correspond to U2+, U3+, and U4+, respectively, if there are no electrons 
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TABLE I. REXBAND parametema 

Element A 0  a (ev) .r 
B 2s 

2P* 
2P 

C 2s 
2P* 
2P 

Pt 6s 
6p* 
6~ 
5d* 
5d 

U 7s 
6p* 
6P 
6d* 
6d 
5fc 
5f 

-13.47 
-8.43 
-8.43 

-19.39 
-1 1.07 
-11.07 
-7.73 (-9.29)' 
-4.49 (-4.84) 
-3.95 (-4.30) 

-12.20 (-12.16) 
-10.70 (-10.66) 
-5.51 

-36.55 
-26.79 

-5.24 
-4.99 
-9.44 
-8.70 

1.265 
1.134 
1.134 
1.577 
1.435 
1.434 
2.071 (2.554)d 
1.835 (2.554) 
1.621 (2.554) 
3.415 
3.245 
1.728 
3.907 
3.425 
2.062 
1.974 
3.866 
3.761 

a Orbital energies a in eV and Slater exponents {. 
The * denotes AO with j = 1 - 112. 
Orbital enelgies from Ref. [24] adjusted by calculated spin-orbit splittings 

Slater exponents from Ref. [24]; the double-{ 5d function has = 6.103 
from Ref. [23]. 

(cl = 0.6334) and c2 = 2.696 (c2 = 0.5513). 

in the U(7s) and (6d) AOS. However, the U(7s) and (6d) occupancies are not 
fixed, so that our assumption about the U( 5f5/2) occupancy does not fix the Mulliken 
charges. We also have the options of carrying out calculations for the separate 
sublattices (U  or B/C) or for the compounds with designated AOS, such as U( 5f), 
simply deleted. Finally for purposes of this study we take tF values as the energy 
of the highest occupied MO (subject to occupancy constraints) whether or not there 
is an energy gap at this level. 

Results and Discussion 

UB2 

The compound UB2 crystallizes [ 25,261 in the trigonal space group DZd (Pgml ) 
with 2 = 1. Hexagonal layers of U atoms alternate with graphitelike hexagonal 
layers of B atoms; the B layers are eclipsed rather than staggered as are the C layers 
in graphite, so that each U atom has 12 B nearest neighbors as the vertices of a 
hexagonal prism. The U-B distance is (a2/3 + c2/4)'I2 = 2.691 A, the B-B distance 
is a / 3  1/2 = 1.807 A, and the U-U distance is a = 3.130 A, a value comparable to 
the 3.01 A separation in bcc y-U, but definitely larger than the 2.76 and 2.85 A 
separations in a-U (the U-U distance between planes in UB2 is c = 3.989 A). 
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Calculations at 40 randomly selected k-points produce the density-of-states his- 
togram shown in Figure 1 together with that for the B sublattice. Assigned occu- 
pancies of 4, 3, and 2 for U(5f5,*), corresponding to charges of U2+, U3+ 3 a nd 
U4+ without contributions from U(7s) and (6d) occupancy, lead to eF values of 
-6.1, -5.1, and -3.8 eV, respectively; eF values for the B sublattice alone are -6.8 
and -3.8 eV for B:- and Bi-, respectively (the value for B;- is above zero), 
indicating that the U( 7s) and (6d) AOS stabilize the excess electron count (3  per 
U atom) corresponding to a U3+( 5f :/2) core, but not the count (2  per U atom) 
corresponding to U2+(5f:/2). There is no appreciable gap in the UB2 DOS at any 
of the above eF values or in the B sublattice DOS. 

UB4 

The compound UB4 crystallizes [27,28] in the tetragonal space-group D& (P4/ 
mbm) with Z = 4. Planes of U atoms alternate with layers of B6 octahedra linked 
by B2 units, with each end of a B2 unit bonded to a vertex of two different B6 units. 
The U-U distances are 3.640 A in the plane perpendicular to c and 3.978 A parallel 
to c. 

As expected from earlier theoretical studies [ 291 of MB6 and MB12 compounds, 
extra electrons are needed to stabilize the B sublattice. Bullett has concluded [ 301 
from pseudopotential calculations on LaB4, isostructural with UB4, that a quasi- 
filled-shell with 60 valence electrons per unit cell, corresponding to B ;;-, and 4 
more than the 56 needed for 2 (B;- + BZ-) = B!;, is stabilized by interactions with 
metal d AOS. For the B sublattice alone, we obtain a DOS (Fig. 2) from 20 k points 
having a minimum for 56 electrons ( e F  = -6.3 eV) and also a small gap (about 
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Figure 1. Density-of-states histogram (DOS) vs. energy in eV for UB?. Solid squares 
denote DOS for B sublattice (no U AOS) , open squares for the compound (with U AOS) . 

The corelike U(6p) levels are not shown. 
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Figure 2. DOS curve as in Figure 1 but for the B sublattice (no U AOS) of UB,. 

0.5 eV) for 60 electrons ( tF = -3.0 eV). We find the charge distribution for the B 
sublattice to be relatively insensitive to the k value; for B ii- the charges are -0.43 
for each apical B of the B6 units, -0.46 for each equatorial B of the B6 units, and 
-1.65 for each B of the B2 units. By contrast, for the 56-electron Bf; unit these 
charges are -0.28, -0.34, and - 1.04, respectively, indicating that much of the 
electron density for the 4 extra electrons in Big- is associated with the T* MO of 
the Bz units, the MO being stabilized by interaction with the B6 units. Thus both 
56 and 60 appear to be “magic numbers” even without interactions with metal 
AOS, with 60 being the electron number corresponding to an M+3 boride. 

Calculations including U AOS were made at 40 randomly selected k-points, with 
resulting tF values being -6.9, -6.0, and -3.8 eV, for assigned U( 5f5/d occupancy 
of 4, 3, and 2, respectively. Again we note a major stabilization (3  eV) when there 
are 3 excess electrons per U to be distributed over U( 7s), U(6d), and B AOS, as 
opposed to their being solely on the B sublattice. For UB4, unlike UB2, there is a 
slight stabilization for 2 excess electrons per U, but nonetheless a description in 
terms of a U3+( 5f z I z )  core seems preferable. We also note that the UB4 DOS (not 
shown) has no gap at the -6.0 eV eF value corresponding to U3+ cores. 

uc 
The compound UC has the cubic rock-salt structure, [ 26,3 I ]  that is, space group 

0; (Fm3m) with Z = 4. Each U atom is thus surrounded by 6 C atoms at a distance 
of a12 = 2.481 A, with the U-U and C-C distances each being a /2  ‘ I 2  = 3.509 A. 
The structure may be viewed as a “bloated” fcc U with C’s in the octahedral holes. 
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Figure 3 shows the DOS obtained from 40 randomly selected k points. Again 
considering cores with fixed U( 5f5/2) occupancies of 4 3 ,  and 2, we obtain tF values 
of -8.0, -7.2, and -6.1 eV, respectively. Since C(2p) lies below u(5f5,2), these 
values are not reflecting a true destabilization of the C sublattice for which tF ranges 
from -1 1.3 eV for Co to -9.8 eV for C4-. Instead these C values reflect increasing 
occupancy of weakly interacting C (  2p) AOS, which are an electron sink in our one- 
electron model. Interactions between U(7s) and (6d) with C(2p) are making tF 
higher than the C sublattice values but lower than the 7s and 6d a values of -5.5 
to -5.0 eV (Table I ) .  

UBC 

The compound UBC crystallizes [26] in the orthorhombic space group D:; 
(Cmcm) with Z = 4. There are BC pairs, with a separation of 1.65 A. The U-U 
distance is large (3.58, 3.74 A),  while the U-B (2.57,2.75 A) and U-C (2.35,2.40 
A) distances are comparable to those found in other structures. The DOS (not 
shown) obtained from 40 k points yields tF values at -7.9, -7.1, and -5.7 eV for 
assigned U( 5f5,2) occupancy of 4, 3, and 2, respectively. These values are somewhat 
higher than the BC sublattice values of -9.6, -7.8, and -5.8 for the same number 
of excess electrons ( BC ’-, BC 3-, and BC 4-, respectively). We note that the mean 
of the 2p a’s for B and C is -9.75 eV (Table I),  nearly degenerate with the -9.4 
eV value for U( 5f5/2). Thus the sublattice is not acting significantly as a source or 
a sink for electrons. 
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Figure 3. DOS curves as in Figure 1 but for UC. Solid squares denote DOS for C sublattice, 
open squares for the compound. 
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UPt3 

The heavy-fermion [ 321 intermetallic UPt3 crystallizes [ 331 in the hexagonal 
space group D& (P63/mmc) with Z = 2. The structure (Na3As-type) may be 
viewed as hcp with each U having 12 Pt nearest neighbors at distances of 2.876 
(within a layer) and 2.955 A (to adjacent layers), and with each Pt having 2 U 
and 4 Pt neighbors in the hexagonal layer and another 2 U and 4 Pt nearest neighbors 
in adjacent layers. Thus each U atom is totally isolated from other U’s, while each 
Pt has U for 4 of its 12 nearest neighbors. Figure 4 shows the DOS both for the Pt 
sublattice, which is simply a hcp Pt with one-fourth of the sites vacant, and for the 
compound. We have also obtained t (  k )  along symmetry directions (not shown) 
for a model without U(5f) AOS. We find a Pt(5d5,2) band of approximately 
1 eV width lying below (with the default parameterization) the U( 5f5,2) energy of 
-9.44 eV. Typical average charges are only 0.2 for U and -0.06 for Pt, with the 
U(5f5,2) level having nearly 5 electrons, and tF being -9.5 eV. If instead a 
U( 5f :,2) core is assumed, the tF value is -6.8 eV, comparable to that for the other 
U compounds studied. Dispersion of the low-energy Pt( 5d3/2) band is minimal, 
while the U ( 5f5,*) level is intersected by a strongly dispersed conduction band 
constructed from U( 7s), U( 6d), and Pt( 6s,6p) AOS. Thus the overall description 
resembles that reported by Albers et al. [ 341 as based on their relativistic linear 
muffin-tin calculations, namely a narrow spin-orbit-split U( 5f) band at the Fermi 
energy just above a filled Pt( 5d) band. 

Summary 

The REXBAND method is applied to the description of a number of solid U 
compounds, with the resulting densities of states being used to discuss their probable 
electronic structures. A description of the compounds in terms of an assigned 
U 3+( 5f : , 2 )  core appears particularly reasonable, leading to highest occupied levels, 
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Figure 4. DOS curves as in Figure 1 but for UPt3. Solid squares denote DOS for the Pt 
sublattice, open squares for the compound. 
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which we take to represent E~ values, ranging from -5.1 eV for UB2 to -7.2 eV 
for UC. The values are approximately 1 eV more negative if U2+( 5f&2) cores are 
assumed instead. By comparison, an isolated Uo atom with a configuration 5f :/2 

7 ~ : ~ ~  6diI2 has, with our default parameterization, a 6d3,2 HOMO with or = -5.24 
eV. Another comparison is provided by bcc y-U for which the U-U separation is 
3.01 A; the DOS obtained from 40 k points yields tF values of -4.8 and -3.8 eV 
for assumed U( 5f5/2) occupancies of 4 and 3, respectively. All of the compounds 
considered have larger U-U separations than y-U, so that U-U interactions in 
them are less than in y-U. 
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