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A constitutive equation for nonlinear viscoelasticity is used to model the me- 
chanical response of solid polymers such as polycarbonate. The nonlinearity arises 
from a reduced time which causes stress relaxation to accelerate with increasing 
strain. The constitutive equation can account for the occurrence of yield in a 
homogeneous uniaxial constant strain rate test. The constitutive equation is used 
in a study of the pure bending of beams. It is assumed that the classical assump 
tion of beam theory is valid, i.e., plane sections remains plane. At each fixed time, 
the strains vary linearly through the depth of the beam. At a fixed material 
element the strain varies in time with the curvature. This spatial variation of the 
strains combined with the nonlinear dependence of the reduced time on strain 
leads to a significantly different response from that given by traditional beam 
theory. The implications of this for the bending moment history, stress distribu- 
tions, and other factors that relate to beam design are discussed. 
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INTRODUCTION rate conditions. Wineman and Waldron (5) consid- 

tructural components using polymers are often S designed by treating the materials as though they 
exhibit linear elastic or linear viscoelastic response. 
The behavior of commonly used unfilled amorphous 
polymers, such as polycarbonate, differs significantly 
from linear elastic or viscoelastic response near the 
material yield point. Thus, designs may be conserva- 
tive so that yield is avoided, or they do not take full 
advantage of the available material response. 

A number of authors have recently studied a con- 
stitutive equation for the nonlinear viscoelastic re- 
sponse of polymers such as polycarbonate and have 
shown that it can account for yield. The dominant 
property of this constitutive equation is that a strain 
induced increase in fractional free volume causes the 
stress relaxation process to accelerate. Using this 
constitutive equation in numerical simulations of 
constant extension rate experiments, Shay and 
Caruthers (1.2) demonstrated that yield could be 
calculated. While the results of their calculations are 
in only qualitative agreement with experimental re- 
sults, it is clear that the constitutive equation, with 
appropriate selection of material parameters, is capa- 
ble of an accurate simulation of yield. Knauss and 
Emri (3,4) determined a set of material properties for 
polyvinyl acetate for this constitutive equation and 
showed that it simulated yield under constant strain 

*General Electric Plastics. 

ered a form of this constitutive equation in which 
general strains could cause a acceleration of stress 
relaxation. They proved that such a model can predict 
yield under a variety of strain or stress control histo- 
ries. 

Shay and Caruthers (1,2) and Knauss and Emri 
(3,4) applied this constitutive equation to conditions 
in which the strains and stresses do not vary spa- 
tially. Wineman and Waldron (5) presented an exam- 
ple in which there is spatial variation of strains and 
stresses. They considered a hollow cylinder composed 
of a nonlinear viscoelastic material. The cylinder is 
fixed at its inner surface and its outer surface is 
subjected to a small amplitude time dependent rota- 
tion about the cylindrical axis. This causes each ma- 
terial element to undergo a one dimensional shear 
strain history. Waldron and Wineman (5) used a con- 
stitutive equation for the nonlinear viscoelastic shear 
response which is of the same form as that discussed 
above. They showed that the shear stress decreases 
monotonically with radius at each instant and, hence, 
so do the shear strain and rate of stress relaxation. 
This interaction of strain accelerated stress relax 
ation and spatially varying strain leads to interesting 
new phenomena. For example, a localized region of 
rapidly growing shear strains can evolve near the 
inner surface. There can also be a yield like relation 
between the applied moment and the rotation of the 
outer surface. 

This constitutive equation is applied here to the 
study of polymeric beams. It will be shown that, as a 
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consequence of the strain variation through the beam, 
the moment, curvature or stress distribution histo- 
ries will differ significantly from those obtained by 
assuming the material to be linear elastic or vis- 
coelastic. These results have interesting conse- 
quences for the design of structural components. 

The constitutive equation is introduced in the next 
section and the equations for pure bending are devel- 
oped in the following section. The formulation is r e  
stricted to conditions of geometric linearity (small 
strains and rotations) even though the material re- 
sponse is nonlinear. Only pure bending is considered, 
so that attention can be focused on variation of 
stresses and strains through the depth of the cross- 
section. Two different deformation control histories 
are studied. The fourth section is concerned with a 
step change in curvature. The fifth section contains 
results for constant curvature rate histories. Even 
with these assumptions, it is found that there are a 
number of interesting consequences of the material 
behavior. For this reason, moment control histories 
will be considered in a later study. 

CONSTITUTIVE EQUATION 

A basic assumption in the analysis of pure bending 
is that each material element is in a uniaxial stress 
state. For such states, the constitutive equation un- 
der consideration reduces to the form 

in which (T( t )  is the normal stress at the current time 
t, E (  s), 0 I s I t ,  is the uniaxial strain at time s in the 
direction of the stress, and G(t)  is the stress relax- 
ation function of linear viscoelasticity in uniaxial ex- 
tension. [ ( s )  is a time llike variable which is ex- 
pressed in terms of the strain history by the relation 

6 ( x )  denotes the volumetric strain at time x, and 
4(0 )  is another material property, usually related to 
the time-temperature shift function. I t  is a positive, 
monotonically decreasing function of 8. [( s )  is often 
referred to as the reduced or pseudo time. 

The material property functions C( t )  and #40) are 
chosen, for the purposes of the numerical example 
presented here, to represent properties of a typical 
material rather than of a specific material. The stress 
relaxation function is taken to have the form 

in which Go = GO), g = &/Go,  where C, = lim G( t )  as 
t + m, and T~ is a characteristic relaxation time. C#I( 0 )  
is given by 

where B is a material constant and 3 0 )  is given by 

(5 )  

in which C is a constant and fo=30). This expres 
sion is that used by Knauss and Emri (4) with the 
additional assumption that f(%) depends only on the 
magnitude of the volumetric strain. It implies that the 
response in uniaxial extension will be the same as in 
uniaxial compression. With this assumption, it is 
easier to illustrate the consequences of the interac- 
tion between the strain accelerated stress relaxation 
and the spatial variation of the strain. The implica- 
tions of different response in extension and compres- 
sion will be discussed later. 

When C = 0, the constitutive equation reduces to 
that of linear viscoelasticity. In the numerical results 
presented in the fourth and fifth sections C = 0.05 
and g = 0.00 1, which are the values used by Waldron 
and Wineman (5). Also, €3 = 0.474 and f, = 0.0217, 
which are the values chosen by Knauss and Emri (4). 

The calculation of e ( x )  requires knowledge of the 
Poisson's ratio function of linear viscoelasticity. It is 
assumed that the Poisson ratio function varies suffi- 
ciently slowly with t that it can be approximated as a 
constant. This has the benefit of simplifying the com- 
putations while still making it possible to illustrate 
the consequences of the interaction between the 
strain accelerated stress relaxation and the spatial 
variation of the strain. Then in Eq 2 H(x) can be 
taken as E ( x ) ,  and the constant C can be reinter- 
preted as including Poisson's ratio. 

PURE BENDING 

Consider a straight beam whose cross section has 
a line of symmetry, as shown in Hg. 1. Let the x-axis 
of a coordinate system be along the line which is 
normal to the cross section and which passes through 
its centroid and let the y-axis be along the line of 
symmetry of the cross section. 

The standard assumptions are made about the 
bending deformation and apply at each time t. The 
deformation is sufficiently small that the change in 

Y 

Flg. 1.  Cross section and coordinate axes. 
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the shape of the cross-section can be neglected. Each 
plane cross section rotates about an axis in its own 
plane parallel to the z-axis and remains plane. Line 
segments which are initially straight and parallel to 
the x-axis deform into circular arcs, and either elon- 
gate or shorten. Figure 2 shows the deformed shape 
at a typical time t. The coordinate of the neutral axis 
and its radius are denoted, respectively, by d( t )  and 
p ( t ) .  The usual development leads to the following 
expression for the normal strain of the line at coordi- 
nate y at time t, 

in which K ( t )  = l / p (  t )  and is the curavture. Accord- 
ing to Eq 6, the normal strain varies linearly through 
the cross-section at each instant, and the location of 
the neutral axis may vary with time. 

By Eqs 1 and 2, the stress a ( y ,  t )  on an area 
increment of the cross section at coordinate y is 
expressed in terms of the strain history E (  y, s), 0 5 
s s  t, by 

where 

As seen from Eq 4, + is nonlinear in the strain. 
Consequently, the stresses do not vary linearly in y. 

Let there be no normal force on the cross-section at 
each time t. This requires that 

/ \\ \ 
\ /: \ 

/ I  \ 

Fig. 2. Geometry of deformation. 

in which the integration is taken over the unde- 
formed shape of the cross section. Given a curvature 
history, Eq 9 becomes an equation for d( t), the coor- 
dinate of the neutral axis. Let M( t )  denote the bend- 
ing moment on the cross section acting about the 
z-axis at time t. Then 

M ( t )  = - 1- y a (  y,  t )  dA (10) 

The implications for beams of the material re- 
sponse represented by the constitutive equation are 
most easily appreciated by considering the following 
special case. Let the line y = 0 be an  axis of symmetry 
of the cross section and recall that the material has 
the same response in tension and compression. Then 
Eq 9 is satisfied with d ( t ) =  0, so that the neutral 
axis coincides with the centroid at all times t. To see 
this, let d( t )  = 0 in Eq. 6. From Eqs 4, 5, and 8 it can 
be seen that (( y, s) = [( - y, s). Equations 6 and 7 
then imply that u( y. t )  = -a(  - y. t). By the symme- 
try of the cross-section about the line y = 0, it follows 
that Eq 9 is satisfied. With this result, Eq 6 reduces 
to 

A 

E (  y. t )  = -yK(t) (11) 

STEP CHANGE IN CURVATURE 
Let the beam be subjected to a deformation in 

which the curvature is instantaneously changed from 
K(t)=Owhen t < O  to K ( t ) = K ,  for t 2 O .  By Eq 11, 
E( y, t )  = 0, t <  0 and E (  y. t )  = -yK,, t 2  0. Each ma- 
terial element thus undergoes a step strain history, 
with the strain level increasing linearly with the dis- 
tance of the material element from the centroid. By 
Eq 8, the reduced time becomes 

t 
(12) 

The stress relaxation response is obtained from Eq 7, 
which reduces to 

(13) 

Let h denote the depth of the cross section. It is 
convenient to introduce the nondimensional coordi- 
nate TJ = y/h and, recalling Eq 3, the nondimen- 
sional time t= t / T W  Note that the maximum strain in 
the beam is E,, = hK,/2. Equation 13 is now rewrit- 
ten as 

Note that when at) is substituted from Eq 3, T, 

drops out of ( 14). 
If sm, is sufficiently small, then 4 =  1 and the 

stress relaxation is essentially the same at all mate- 
rial elements. For larger values of E,,. the stress 
relaxes faster as the distance of the element from the 
centroid is increased, This is shown in Fig. 3, where 
results are calculated for E,, = 0.1. Note that the 
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plots of a/G, vs. 1 for larger 7 j  cross those for the 
material elements near the centroid. The implications 
of this are shown in Fig. 4 in the plots of a/G,  vs. 9 
at various times. Although the stress increases lin- 
early with 7 j  for small times, the stress distribution 
changes completely as time increases. The maximum 
stress no longer occurs at the outermost material 
element. Its  location moves towards the centroid. 

Suppose the beam has a rectangular cross section 
with base b and height h Then E q  10 can be written 
as 

where M,= G,IK, and I=  bh3/12. Plots of M/M, vs. 
1 are shown in Fig. 5 for both linear viscoelastic 
( C  = 0 in Eq 5) and nonliner viscoelastic (C = 0.05) 
behavior. The bending moment relaxes much faster 
because of the nonlinear material behavior. Initially, 
the outer material elements initially contribute more 
to the bending moment than those closer to the cen- 
troid because they carry higher stresses and have 
larger moment arms about the z-axis. However, b e  
cause of the accelerated stress relaxation at the outer 
material elements, their contribution to the bending 
moment rapidly diminishes. In other words, the bend- 
ing moment decreases as a result of stress relaxation 
at all material elements as well as the rapid decrease 
in stress transmitting capacity of the outer material 
elements. 

CONSTANT CURVATURE RATE HISTORIES 

Suppose that the beam is bent so that the curva- 
ture increases at a constant rate. Then K( t )  = (Y t and 
by Eq 1 1, E( y, t )  = - (Y yt. Each material element un- 
dergoes a constant strain rate history, and the rate 

0.09 \ f, I --  ~ = o . s o  
h 

0 0.05 0.1 0.15 0.2 

Fg. 3. Step curvature history (KO = O.Z)-stress histories at 
different positions. 
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Fig. 4. Step curvature history (KO = O.Z)-stress distribu 
tions a t  dLfferent times. 

0 0.05 0.1 0.15 0.2 

Fg. 5. Step curvature history (KO = 0.2)-bending moment 
histories for linear and nonlinear viscoelastic response. 

increases with the distance of the material element 
from the centroid. Note that this is the strain history 
commonly used in uniaxial extension experiments. If 
the strain rate at a material element is high enough, 
the stress may reach a local maximum and then 
decrease, which is usually referred to as yield. 

By Eq 8, the reduced time (( y, t )  is 

(16) 
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Let 1 and i j  denote the same non-dimensional vari- 
ables as before, and introduce the additional nondi- 
mensional variables = (/ro and CW =  ha^^ Equation 
16 becomes 

(17) 

The nondimensional form of the stress, from Eq 7, is 

in which S = s/T,. The bending moment, by Eq 10 is 

where Mo = G o K O  and KO = are. 
Results are presented for Z=2.0, which corre- 

sponds to a maximum strain of 0.1 when 1 = 0.1. 
Figure 6 shows plots of stress histories, u/Go vs. ? for 
material elements at several distances i j  from the 
centroid. At T j  = 0.125, the strain rate is small enough 
that the stress increases almost linearly with time. At 
i j  = 0.250, the strain rate is larger and there is some 
acceleration of stress relaxation. The plot of u/Go vs. 
? begins to bend over. At B = 0.375 and beyond, the 
strain rate is large enough that the plots u/Go vs. 1 
have local maxima. Since the strain at each material 
element is proportional to time, the time axis can be 
re-scaled into a strain axis, thereby producing a 
stress-strain plot for each material element. Such 
plots for a = 0.375 and beyond have local maxima, 
which indicates yield. Thus, because the strain rates 
increase with distance from the centroid, there will be 
outer layers of material elements that are undergoing 
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G O  
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0.00 
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0 0.02 0.04 0.06 0.08 0.10 

Ffg. 6. Constant curvature rate history (E = 2.0)kstress his 
tories at dtxerent positions. 

yield. The approach presented here provides a contin- 
uous transition to yield. 

Stress distributions, u/Go vs. ij, at various times 
are plotted in Fig. 7. Initially, the stress distribution 
is linear in i j .  As time increases, this distribution 
becomes completely altered as the stress begins to 
decrease at the outer material elements. That is, the 
maximum stress on the cross section begins to de- 
crease with time and its location moves into the 
beam. The effect of this on the bending moment is 
shown in Fig. 8. When the stress at the outer mate- 
rial elements begins to decrease with time, so does 
their contribution to the bending moment. Conse- 
quently, the bending moment vs. time plot also has a 
local maximum and begins to decrease with time. 

5 

a - 
GO 

Ffg. 7. Constant curvature rate history (ti = 2.0)-stress d& 
tributions at dtxerent times. 
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Fg. 8. Constant curvature rate history (6 = 2.0)-bending 
moment history. 
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CONCLUDING REMARKS REFERENCES 

Suppose that the line y = 0 is not an axis of sym- 
metry, or that the material displays different re- 
sponse in extension or compression. Then E q  9 can 
be satisfied at each instant only if the location of the 
neutral axis changes with time, that is, only if d( t )  # 

0. Its motion will be determined by the spatial varia- 
tion of stress relaxation. This will be studied in future 
work. 
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