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The statistical theory of the birefringence of an  individual non-Gaussian elas 
tomer chain is used together with a chain network description of rubber elasticity 
to develop a relationship among the strain, birefringence, and stress in elas 
tomers, valid for large deformations under generalized strain states. The result is a 
fully three-dimensional internal variable based constitutive model of rubber elas 
ticity in which measurement of the elastomeric birefringence during straining in 
one deformation state characterizes the optically anisotropic response of the 
elastomer. Simultaneous measurement of the stress vs. strain response provides 
the rubbery modulus and limiting network extensibility properties needed to 
completely characterize the mechanical anisotropy of the material. Once charac- 
terized using the single, large deformation experiment, the birefringence and 
stress responses of the elastomer in other deformation states may then be pre- 
dicted without adjusting any model parameters. The theory is compared to experi- 
mental studies from the literature of large strain deformations of elastomers in 
uniaxial tension and compression for which the exhibited birefringence and stress 
responses of deforming elastomers have been simultaneously recorded. 

INTRODUCTION (Gaussian chains) yielding the familiar stress-optic 

onstitutive models of the large strain, nonlinear C elastic behavior of rubbery polymers have been 
in existence for over fifty years; early models included 
the phenomenological invariant-based approaches 
such as that developed by Mooney (1) and the statis- 
tical mechanics models by investigators such as Flory 
and Rehner (2), Flory and Erman (3), Ullman (41, 
Erman (5), Stepto (6). and Anuda and Boyce (7). 
Concurrently, statistical mechanics based birefrin- 
gence vs. stretch theories have been developed based 
on the same principle as the rubber elasticity models: 
that the orientation of molecular chains during 
stretching results in a measurable response from the 
anisotropic elastomer (8- 1 I). In the case of the bire- 
fringence theories, the response is due to the anisc- 
tropic polarizability of the stretched network for which 
incident light is retarded by unequal amounts in 
various directions as it passes through the material. 
These two statistical formulations, rubber elasticity 
and the theory of elastomer birefringence, have re- 
mained as separate descriptors of the elastomeric 
response to imposed stretch states. The theories of 
rubber birefringence and rubber elasticity have previ- 
ously been combined only for the case of small strains 

law 

where A q 1 - 2  is the birefringence (the difference in 
the amount of retardation of light in orthogonal direc- 
tions one and two), (a ,  - a2) is the stress difference 
in the 1-2 plane and the term (2rcu/45k@($+ 
2)2/770) is C, the stress-optic coefficient, which is 
constant according to theory using Gaussian chains 
and affine junction point motion. In C, (Y is the polar- 
izability anisotropy of the statistical structural unit 
or rigid link, vo is the mean refractive index, k is 
Boltzmann’s constant and 0 is absolute temperature. 

As the Treloar data (12) in Fig. 1 show, the birefrin- 
gence vs. stress response deviates from linearity at 
moderate strains. Previous investigations have led to 
nonlinear stress optic laws (9, 12- 161, but for various 
reasons these existing theories are not adequate as 
three-dimensional constitutive models of either mb- 
ber elasticity or rubber birefringence. Models such as 
that of Flory and Rehner (2) or the Kuhn and Griin 
(13) model later investigated by Treloar (12) have 
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Fig. I .  "Yeloar data ( 1  2) in uniaxial tension plotted as bire 
fringence vs. nominal stress showing the non-linearity of the 
stress-optic law at intermediate stretches. 

previously been shown by Anuda and Boyce (7) to 
not be predictive of the deformation state dependent 
response of elastomers at intermediate and large 
strains. Similarly, the Flory and Erman (3) model 
requires adjustment of at least one of its parameters 
in order to capture both uniaxial tension and uniax- 
ial compression data. The models based on distribu- 
tions of chains (13,14,16) are mathematically very 
cumbersome to use as three-dimensional constitu- 
tive models; to the authors' knowledge these models 
have not been compared to data in various deforma- 
tion states and it is unknown whether any of these 
models would correctly capture the response in a 
given deformation state without adjusting material 
properties. 

The current modeling approach uses the only exist- 
ing network constitutive model of rubber deformation 
that has been successfully compared with data from 
several elastomers at large strains and in various 
strain states (7) to predict without adjusting parame 
ters the mechanical anisotropy seen in actual experi- 
mental results. The model is virtually indistinguish- 
able from other well-known models at small stretches 
(2,131. The optical anisotropy of the constitutive net- 
work description of Anuda and Boyce (7) is consid- 
ered in the present study to produce an internal 
Variable-based model of elastomeric deformation, 
valid for generalized strain states. 

MODELING 

The Birefringence of an Elastomeric Network 

The birefringence is related to the network polariz- 
ability anisotropy following the work of Kuhn and 
Griin ( 13) 

where A q l  - is the birefringence or difference in re- 
fractive indices in the 1-2 plane, q0 = i(ql + q2 + q3) 
is the mean refractive index of the medium and ( pl - 
p p )  is the network polarizability anisotropy in the 1-2 
plane. 

Similar expressions may be written for the 1-3 and 
2-3 planes: 

Together, Eqs 2, 3, and 4 completely describe the 
optical anisotropy of the medium for generalized 
stretch states. 

The network polarizability anisotropy is to be for- 
mulated from the network structure using non-Gaus- 
sian statistical descriptions of the polarizability ani- 
sotropy of network chains in a network geometry. 
Previous descriptions of network polarizability aniso- 
tropy include those of Kuhn and Griin (131, who used 
a total assembly of non-Gaussian chains model that 
required integration over all chain orientations in 
space. Their analysis relied on the simplifications af- 
forded by considering uniaxial tension deformation 
(i.e., axisymmetry) and by approximating the non- 
Gaussian chain statistics, and is not useful for gen- 
eral strain states nor valid at large stretches. Treloar 
(12) invoked a three-chain model that has previously 
been shown to not be accurately predictive of the 
constitutive response of rubber materials in various 
strain states (7). Smith and Puett (1 5) examined the 
region just beyond the limits of Gaussian statistics 
and integrated over a distribution of chains that dif- 
fered from the total assembly of chains distributions. 
Treloar and Riding (14) later examined the total as- 
sembly of chains model for biaxial strain states and 
large strains. Because of the mathematical complex- 
ity of their model, Treloar and Riding used a three- 
term approximation to the non-Gaussian chain, ad- 
versely affecting large deformation results. In the cur- 
rent study, a model for elastomer birefringence is 
developed using an eight-chain formulation (7) to 
account for the contributions of chain polarizability 
anisotropy from individual non-Gaussian chains to 
the entire network polarizability anisotropy. This a p  
proach offers the advantage that the network used 
provides an accurate constitutive description of r u b  
ber elastic deformation for generalized strain states 
over the entire extensibility range of elastomers (7). 

Following the traditional statistical mechanics of 
rubber elasticity (101, an individual elastomer chain 
is modeled as a number, N ,  of rigid links of length, 1, 
between chemical crosslinks. These links are joined 
together assuming a statistical distribution of link 
angles as in Langevin statistics. Each link is assumed 
to be optically transversely anisotropic: the anisotropy 
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is defined by the link polarizability along is axis, aII, 
and that perpendicular to its axis, el. The polariz- 
ability anisotropy of a single chain made up of N of 
these rigid links is found to be (13) 

where = yII - y I is the chain polarizability 
anisotropy measured as the difference between polar- 
izabilities along the chain axis and normal to the 
chain axis, rchain is the chain vector length and the 
term Y ’( rchain/N7) is the inverse Langevin function 
defined by 

The single chain having a polarizability anisotropy 
given by Eq 5 is incorporated into the network shown 
in Fig. 2 (7). The chains in the network have equal 
magnitudes, rchain, and undergo equal stretches, 
&hain. upon imposing a principal stretch state A , ,  
A,, A, to the elastomeric network. The model assumes 
incompressibility, requiring that the applied stretches 
satisfy the constraint 

A,A,A3 = 1 (7) 

The chain length under any deformation state A,,  
A,, A, is 

f i l  
rchain = - 6 

where I, = A: + A; + A;, is the first principal stretch 
invariant. The unstretched length of all chains in the 

t ”  

l3g. 2. Schematic illustration of the eight-chain network (7) 
used here to describe the optical anisotropy of an elastomer 
network, and hence, its birefringence, in addition to describ 
ing the mechanical anisotropy that arises from stretching the 
network by A , ,  A, and A,. 

model is given by random walk statistics as r, = f i l ;  
thus the chain stretch is given by 

1 
Achain = - 1;” 6 (9) 

Letting (Y = ell - (Y I denote the link anisotropy and 
substituting chain stretch in place of chain length, 
Eq 5 becomes 

’chain 

This chain is incorporated into the network geometry 
depicted in Fig. 2, the orientation of the chains in the 
network may be described by the angles 8 and 4 
in Fig. 2. These angles are related to the applied 
stretches, A,,  A,, A,, as follows 

The polarizability tensor components along the prin- 
cipal stretch directions for the chain described by 
angles 0 and 4 are as follows ( 17) 

p ,  = Y11cos2e + y I  sin% 

p22 = ( y,, - y I 1 sin28 C O S ” ~  + Y - 
p,, = ( yII - y I ) sin20sin2+ + y , 
p,, = (yl, - y.)sin 8 cos 8 cos 4 

p,, = (yI1 - y ) sin2@ sin 4 cos + 
P13 = (yll - yl) sin 6 cos 0 sin 4. 

The contributions of the polarizability anisotropy of 
all eight chains to the network polarizability tensor 
are summed to give expressions for the network p e  
larizability anisotropy. In the 1-2 plane the result is 
the following 

where n is the chain density. This summation over 
the eight-chain geometry also results in pi, = P2, = 
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P13 = 0; therefore the tensor components above are 
principal values and the left hand side of Eq 13 may 
be denoted as PI - P2.  Equations 2 and 11 combine 
to give an expression for the birefringence in the 1-2 
plane, 

Equations 12 and 15 may be combined to give the 
stress-optic law for the current theory 

Birefringence and Rubber Elasticity 

Langevin chain statistics are also employed to o b  
tain an expression for the conformational entropy of 
a stretched chain modeled as in the proceeding sec- 
tion to contain a number N of statistical rigid links of 
length 1 The entropy of the chain is given as 

where hchain is the chain stretch defined in Equation 
9, k is Boltzmann's constant, and c is a constant 
(10). A force arises upon stretching to resist the en- 
tropy change that favors the randomly coiled chains. 
The force on a chain stretched by an amount Achain is 

where 0 is the absolute temperature. 
The elasticity of the entire network is found by 

summing contributions of forces on all chains in the 
network analogously to the manner in which the total 
network optical anisotropy was established earlier. 
The procedure results in expressions for the differ- 
ence in the in-plane principal stresses as functions of 
imposed principal stretches (7) 

nkO 'chain - 
(15) i T - u , = - f i y '  - ~ 

3 ( m 1 'chain 

where all quantities have been described in the previ- 
ous section. 

y 1 ( 'g ) (16) 

The current formulation of elastomeric birefringence 
and elasticity predicts that birefringence is not linear 
with stress at large stretches. The stress-optic law- 
may be rearranged and the constants combined so 
that the difference in principal stresses may be writ- 
ten as a function of birefringence and stretch 

r 1 

The familiar stress-optic coefficient is recovered if the 
terms containing the Langevin function are approxi- 
mated by the first term in a series expansion [see, for 
example Treloar (1 0) for the series]. Equation 17  re- 
duces to 

in the small stretch limit, where the quantity ( 2 ~ a /  
45kO(~$ + 2)2/170) is the familiar stress-optic coef- 
ficient. The current theory predicts that a t  small de- 
formations stress is linearly proportional to bire- 
fringence, in accordance with Gaussian theories of 
rubber birefringence. Beyond moderate stretch levels 
the non-Gaussian stress-optic law deviates from lin- 
earity in accordance with the data in Fig. 1. 

Determination of Material Properties 

Equation 12 for the elastomer birefringence con- 
tains all material properties required for determining 
the stress response in addition to the birefringence 
response. Four material properties are involved, three 
of which are defined in terms of properties of the 
statistical chain. 
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Characterization of the birefringence vs. stretch re- 
sponse requires the mean refractive index of a 
medium, rlo, which may be found in polymer hand- 
books; see, for example, Van Krevelen (17). The re- 
maining three properties, n, N ,  and a, are defined for 
the statistical chain and chain network used to model 
the actual polymer molecule and structure. These 
may be determined rigorously from various descrip 
tors of the polymer molecules if, in actuality, the 
polymer molecules formed a “model” network-a 
monodisperse, defect-free structure of known, con- 
stant crosslink functionality. Such calculations re- 
quire the assumption that the actual molecule con- 
tains freely rotating bonds: allowances for steric 
constraints can also be incorporated into the cal- 
culations. The real polymer structure varies from the 
model network quite substantially, resulting in devia- 
tions in the statistical material properties from values 
calculated based on the molecular polymer descrip 
tors. The link polarizability anisotropy, a, may be 
determined by a tensorial summation over all bonds 
in the link according to the theory of Nagai (18). 

(19) 

where r is the vector length of group i, ai is the 
polarizability anisotropy of the group, and r is the 
magnitude of the group vector length. Summation is 
performed over all groups comprising the statistical 
link in the freely jointed chain. Values for the optical 
anisotropies of several monomer groups are found in 
Van Krevelen (18). 

For an idealized octafunctional structure in which 
all chains form in the network, the polymer molecule 
provides qo directly and a through the assumption of 
the existence of an equivalent randomly jointed sta- 
tistical chain for modeling a freely rotating molecular 
chain. The product nN is similarly found. Therefore it 
remains that the actual characterization of an elas- 
tomer would require a curve fit of the birefringence 
vs. stretch data in uniaxial tension via Eq 12 to 
uniquely determine n and N. The stress-stretch re- 
sponse of Eq 17 is then completely characterized 
from the fitting of the birefringence data; the same 
material properties used in Eq 12 to characterize the 
material’s birefringence versus stretch response are 
used to predict the stress-stretch response of the 
model network elastomer. 

In reality, the elastomers available for testing have 
not formed model network structures. They contain 
defects such as loops and free ends, and the molar 
mass between crosslinks is not a constant. Also, the 
crosslink functionality is not constant throughout 
the material. Because the model structure used (7) is 
an idealization of a real network, characterization of 
the material response requires both the birefringence 
and stress curves in one deformation state such as 
uniaxial tension in order to determine n, N ,  and a. 
The advantage of this model is that with the mate- 
rial so characterized using the uniaxial tension r e  

sponses, predictions may be made in other deforma- 
tion states without changing these material proper- 
ties. Moreover, the model is valid for deformations 
beyond the Gaussian range. 

COMPARISON WITH EXPERIMENTAL RESULTS 

We have investigated existing data in the literature 
for which simultaneous measures of birefringence 
and load were recorded versus stretch. Early experi- 
ments of this type were conducted on natural rubber 
by Treloar (121, in which the birefringence vs. stretch 
and nominal stress vs. stretch responses were record- 
ed for uniaxial tension. Treloar’s results (12) are in- 
cluded in Fig. 3 along with the results of our simula- 
tions using Eq 12, together with the following values 
of the model material properties: 

qo = 1.5205 
a = 51.1 x m3 
n =  7.25 X m-3 
N =  25.0 

to provide a characterization of this material. We 
illustrate in Fig. 3 the success with which we can 
capture the nonlinear uniaxial birefringence vs. 
stretch data using Eq 14. The calculated birefrin- 
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Rg. 3. Birefnngence us. stretch and nominal stress us. 
stretch responses of natural rubber in uniaxial tension. Data 
from Treloar ( 1  2). Simulations used Eq 14 for birefringence, 
and E q  19 for nominal stress. 
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gence values from Eq 12 were then used in Eq 1 7 to 
produce the simulated nominal stress vs. stretch 
curve in Ftg. 3. Both the birefringence vs. stretch and 
nominal stress vs. stretch responses are seen to be 
well described by the current theory for the entire 
data ranges in uniaxial tension.' Equation 14 prc- 
vides an accurate description of the birefringence vs. 
stretch data up to a stretch of about 4.5 at which 
point the data and simulation diverge. The calculated 
birefringence from Eq 12 (rather than the actual 
data) are used to predict the stress-stretch response, 
yielding an accurate fit throughout the stretch range 
recorded. It is suspected that the birefringence vs. 
stretch curves diverge at the largest stretches 
recorded because of inaccurate transcription of the 
1947 data to Fig. 3. 

The value of q, used in Fig. 3 is that given by 
Treloar (12) for natural rubber. The additional mate- 
rial parameters were chosen to best fit the birefrin- 
gence and stress curves. We have also examined the 
data of Flory and Erman (3,8,9,19>, who tested two 
PDMS networks that differed somewhat in mechani- 
cal and optical responses because they were synthe- 
sized under different conditions, In Fig. 4 are the 
uniaxial tension nominal stress vs. stretch and bire- 
fringence vs. stretch responses for their PDMS(A) ma- 
terial. Included in Fig. 4 are our simulations of these 
responses using the following values of the model 
material properties: 

0.3 

h 
0 a 

3 F z 

r, 0.2 

- 
0 .e 0.1 

0 
Z 

q, = 1.4074 
01 = 5.4 x m3 
n =  4.55 x m-3 
N = 25.0 

- 

-- 

- -  

The results of Erman and Flory on the PDMS(B) 
material appear in Fig. 5. PDMS(B) was crosslinked 
with half as much (0.1% w/w) dicumyl peroxide as 
was PDMS(A); thus the responses in Figs. 4 and 5 
differ; the difference is primarily in the moduli of the 
curves. In the range of responses shown in Figs. 4 
and 5, the differences in the network structures 
formed by the PDMS networks include an  approxi- 
mately twofold increase in stiffness and optical aniso- 
tropy for material PDMS(A) over PDMS(B), corre- 
sponding to a doubling of the amount of crosslinking 
agent in (A) over (B). The model simulations in Fig. 5 
used the following material properties of PDMS(B): 

vo = 1.4074 
01 = 5.4 x m3 
n = 2.25 x loz5 m-3 
N = 50.0 

In characterizing the two PDMS networks we as- 
sumed the link anistropy 01 to remain constant and 
allowed differences in the values of n and N needed 
to describe the curves in Figs. 4 and 5. The Erman 
and Flory network PDMS(A) was formed with twice 
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'We consider that the upturn in the nominal stress vs. stretch curve of 
natural rubber is due to a non-Gaussian effect and that possible crystal- 
lization effects provide a secondary influence to the nominal stress vs. 
stretch curve. as is argued in Treloar (10). 
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Q. 4.  Birefringence us. stretch and nominal stress us. 
stretch responses of a polydimethylsiloxane network 
[PDMS(A) in the text] in uniaxial tension. Data from Eman 
and Floy (9). Simulations used Eq 14 for birefingence, and 
Eq 19.for nominal stress. 

the amount of crosslinking agent used in their 
PDMS(B), which presumably resulted in twice as 
many crosslinks for a random crosslinking process. 
The values of n needed in the current theory for 
these two PDMS networks differ by a factor of 2.0, in 
accordance with the increase in crosslink density of 
PDMS(A) over PDMS(B). Moreover, a twofold increase 
in the number of crosslinks must coincide with a 
decrease in the average length of chains between 
crosslinks, the extent of the decrease depends upon 
the nature and density of the crosslink structure. The 
measure of chain length provided by N ,  the number 
of statistical rigid links per chain, would therefore be 
expected to drop with the increase in crosslink den- 
sity, n The simulations used a twofold increase in 
the number of links per chain, N, in network PDMS(B) 
compared to PDMS(A) to characterize the PDMS(B) 
network data. The results in Figs. 4 and 5 show that 
the model is able to capture the birefringence vs. 
stretch and stress vs. stretch responses of both PDMS 
networks reasonably well over the entire range of 
extensibility reported for these networks by Erman 
and Flory (9). These results also show the ability of 
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Fig. 5. Birefnngence us.  stretch and nominal stress us. 
stretch responses of a polydimethylsiloxane network 
[PDMS(B) in the t e d  in uniaxial tension. Datafrom Erman 
and Floy (9). Simulations used Eq 14 for birefringence, and 
Eq 19 for nominal stress. 

the model to capture changes in the structural fea- 
tures of the network that arise from changes in the 
synthesis procedure. Changes in the defect structure 
associated with two different synthesis techniques 
are also to be expected; these should also affect the 
exact values of the properties n and N used to obtain 
the best representations of the network responses. 

The data in Fg. 6 (19) show the uniaxial tension 
and uniaxial compression responses of a PDMS net- 
work, which is similar in response to the Erman and 
Flory (9) PDMS(B) data of Fig. 5. Details of the syn- 
thesis process used for this network were not re- 
ported by the authors, and thus it was assumed that 
the network was formed similarly to that used in 
Erman and Flory (9) because the uniaxial tension 
data show closely matched (but not exactly matched) 
responses. The simulations included in Fig. 6 used 
the material properties listed earlier for PDMS(B) to 
generate both the uniaxial tension and uniaxial com- 
pression nominal stress vs. stretch curves. Figure 6 
demonstrates how characterization of the material 
constitutive response is complete with the birefrin- 
gence and stress responses in uniaxial tension; the 
uniaxial compression response is predicted based on 
the model geometry and the material properties found 

O 5  T 

1 1.5 2 2.5 3 3.5 

Stretch 

1 < -.-.-. Data , 
0 

Model .. = 1  

-. 
0 

0 0.25 0.5 0.75 1 

Stretch 

Fig. 6. Nominal stress us. stretch responses of a polydimetk 
ylsiloxane network(similar to PDMS(B) in the t e d  in uniaxial 
tension and uniaxial compression. Data from Erman and 
Floy (1  9). Theoretical predictions use the material properties 
found for Fig. 5 to predict the uniaxial compression response. 

from the tension test. No parametric adjustment is 
required in order to simulate the uniaxial compres 
sion test in Fig. 6. We are currently performing mea- 
surements of the birefringence of elastomeric net- 
works during deformation in uniaxial compression 
and pure shear as well as uniaxial and biaxial ten- 
sion in order that we may further investigate the use 
of Eq 19 together with birefringence data to predict 
the current anisotropic stress response of elastomers 
under large deformations. 

CONCLUSIONS 

In this paper we have developed an internal vari- 
able-based constitutive model for the deformation re- 
sponse of elastomers at large strains. The model uses 
the experimentally measured birefringence of a de- 
forming elastomer as a state dependent variable and 
the rubbery modulus of the elastomer to simulate the 
nominal stress response associated with the imposed 
deformation state. The model is shown to be success- 
ful in describing the uniaxial tension birefringence vs. 
stretch and stress vs. stretch responses of both natu- 
ral rubber and PDMS networks. We have also pro- 
vided evidence of the ability of the model to predict 
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the deformation state dependent response for other 
deformation states using the birefringence data for 
the particular deformation process and the charac- 
terization parameters from the uniaxial tension test 
without parametric adjustments. More conclusive ev- 
idence is possible for such deformation states only 
when additional birefringence data in a variety of 
deformation states become available. We are current- 
ly generating such data for elastomeric networks via 
large deformation studies in uniaxial compression, 
plane strain compression, uniaxial extension and bi- 
axial extension. 
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