DEPARTMENT OF CHEMICAL AND METALLURGICAL ENGINEERING

Heat Transfer Laboratory
The University of Michigan
Ann Arbor, Michigan

ANNUAL REPORT FOR 1962

Report No. 54

Edwin H. Young
Professor of Chemical and Metallurgical Engineering

Dale E. Briggs
Instructor in Chemical and Metallurgical Engineering

Project 1592

WOLVERINE TUBE
Division of
CALUMET AND HECLA, INCORPORATED
ALLEN PARK, MICHIGAN

January 1963

ABSTRACT

This report contains a summary of the operations of the research group and the work completed during the year 1962. The status of the work of the project is reviewed and discussed.

Ummu Umr 1012 1962

INTRODUCTION

The heat transfer project sponsored by Wolverine Tube Division of Calumet and Hecla, Incorporated within the Department of Chemical and Metallurgical Engineering at The University of Michigan is in its twenty-third year of operation. During the past year the project employed three men on a part-time basis. Of these, one was an instructor in the Department of Chemical and Metallurgical Engineering and the other two were students in the department. Part-time secretarial help was also employed. The project's laboratory facilities are located in the Fluids Building on the North Campus of The University as indicated in Figure 1. The project director maintains an office in the East Engineering Building where many of the files are kept.

During 1962, there were many more prospective investigations listed than could be handled simultaneously or could be completed. The investigations were, therefore, undertaken in accordance with the current priority status set as a result of conferences held with the Director of Research and Development Division of Wolverine Tube. The prospective projects were separated into two categories. One consisted of projects requiring laboratory facilities and the others consisted of projects requiring the use of technical information available in the literature to effect a desired design or analysis of heat transfer data in an effort to abstract information of value to Wolverine Tube.

In January 1962, the equipment (laboratory) projects in order of priority were:

- 1. Study of the heat transfer characteristics of boiling refrigerants and investigation of internal fin configurations on boiling refrigerant heat transfer coefficients.
- 2. Determination of the optimum fin height and fin spacing for refrigerant condensing.
- 3. Investigation of the steam condensing characteristics of titanium tubes.
- 4. Investigation of the steam condensing characteristics of corrugated tubes.
- 5. Determination of the air film heat transfer and pressure drop correlations for banks of finned tubes using the wind tunnel.

Figure 1. Fluids Laboratory Located on the North Campus of The University of Michigan

- 6. Study of the performance of Type S/T tubes in large shell and tube heat exchangers. Liquid and gas cooling. The effect of longitudinal unbaffled flow.
- 7. Study of natural convection heat transfer from plate fins and finned tubes.

Non-laboratory studies in order of priority were:

- 1. Revision of the Ward-Young air cooling heat transfer correlation to include data obtained on additional banks of tubes.
- 2. Revision of the Williams-Katz report on the performance of Type S/T tubes in shell and tube heat exchangers.

Several small projects of higher priority than those mentioned above were added to the project work list during the year. Work on these additional projects were coordinated with existing projects through conferences held with representatives of Wolverine Tube.

At the beginning of the year, the following personnel were employed on the project on a part-time basis:

- 1. Dale E. Briggs (one-half time)
- 2. Ardis R. Vukas (one-quarter time)

Mr. Briggs is an Instructor in the Department of Chemical and Metallurgical Engineering and was the acting director of the project until February 3, 1962.

The project director, Professor E. H. Young, returned to the project on February 3, 1962, having taken a sabbatical leave from The University of Michigan for the fall semester of the 1961-1962 academic year.

On February 12, 1962, Mr. Boris Taruntaev and Mr. William D. Hancock were added to the project staff. Both men are students in the Department of Chemical and Metallurgical Engineering. Mr. Taruntaev is working toward a master's degree and Mr. Hancock is working toward a bachelor's degree.

At the end of 1962, the following persons were employed on the project:

- 1. Dale E. Briggs (one-half time)
- 2. Ardis R. Vukas (one-half time)
- 3. Boris Taruntaev (one-half time)
- 4. William D. Hancock (one-half time)

LABORATORY INVESTIGATIONS

Wind Tunnel Investigation

Air film convective heat transfer data were taken on two tube banks in the wind tunnel during the year. Figure 2 shows a view of the wind tunnel. One tube bank contained four rows of 2 inch O.D. monometallic aluminum tubes on a 2-3/16 inch equilateral triangular pitch and the other contained six rows of 3/4 inch O.D. monometallic copper tubes on a 15/16 inch equilateral triangular pitch. The data were analyzed to obtain the air film heat transfer coefficient as a function of the maximum air velocity through the tube bank. Isothermal pressure drop data were taken on seven wind tunnel tube banks. Three banks contained six rows of 2-1/4 inch O.D. Type L/C tubes placed on an equilateral triangular pitch. The tube pitches for those banks were 2.700, 3.375, and 4.500 inches. The remaining four banks contained six rows of 1-1/2 inch O.D. Type L/C tubes (Banks 22, 23, 24 and 25) that were placed on 1.930, 1.687, 2.450, and 3.375 inch equilateral triangular pitches. These data were analyzed and pressure drop correlations were obtained which presented the effect of tube pitch on pressure drop for the tubes studied. Figure 3 gives the pressure drop in inches of water per row as a function of the maximum air velocity through the tube bank for the 1-1/2 inch O.D. tubes and Figure 4 gives the pressure drop in inches of water as a function of the tube pitch with the maximum air velocity as a parameter.

The six film conventing best transfer date on the sighteen wind turned

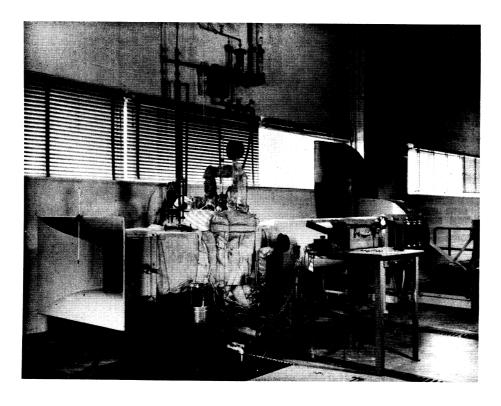


Figure 2. Overall View of Wind Tunnel with Test Section Insulated.

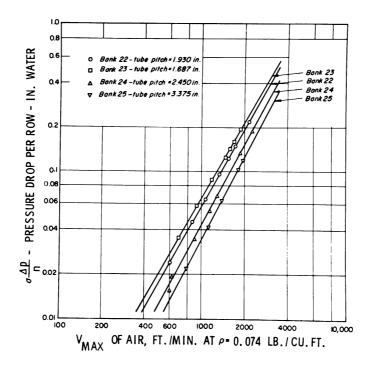


Figure 3. Pressure Drop Data for Banks 22, 23, 24, and 25.

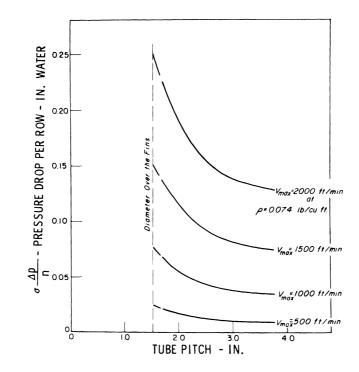


Figure 4. Comparison of Pressure Drop Data for Banks 22, 23, 24, and 25 at Various Constant Air Velocities.

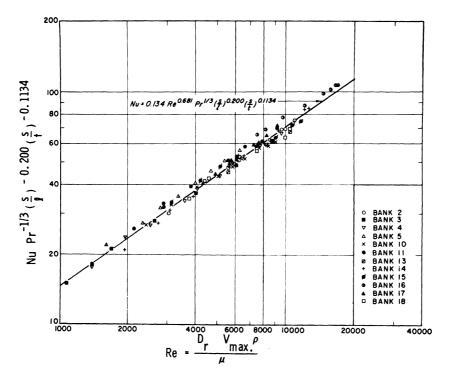


Figure 5. Comparison of Finned Tube Heat Transfer Data with the Correlation Obtained by a Regression Analysis.

Investigation of the Steam Condensing Characteristics of Corrugated Tubes

An investigation to predict the steam condensing capabilities of an internally grooved tube and two corrugated tubes was started in January 1962 and completed in February 1962. Sections of the three tubes were photographed and the photographs were used to obtain accurate measurements of inside and outside heat transfer surface areas. Modified tube-side Wilson plot data were taken in the concentric pipe heat exchanger shown in Figure 6 with hot water flowing in the annulus and cold water flowing through the tubes. Using the calculated values of the heat transfer areas, the data were processed with the IBM 709 digital computer and the inside heat transfer coefficient constants obtained for the Sieder and Tate Equation. Figure 7 gives the calculated Wilson plot results for corrugated tube 489. Tube-side pressure drop data were also taken and processed. A comparison of the anticipated low pressure steam condensing capabilities of the three tubes with those of plain tubes was then made, based on the restriction that each tube would have the same tube, side pressure

Figure 6. View of the Concentric Pipe Heat Exchanger Located in Fluids Building.

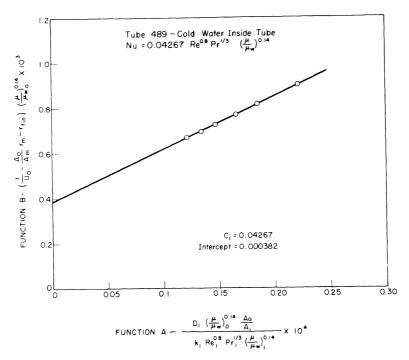


Figure 7. Modified Wilson Plot for the Inside Heat Transfer Coefficient of a Corrugated Tube - Tube 489.

tank. Cooling water will be heated to the desired temperature in a preheater and will pass through the tubes under study. Steam will be generated inside a reboiler by condensing steam inside horizontal S/T type tubes. The steam will then pass through an 8 inch pipe to the overhead condenser where it will be condensed on the outside of the horizontal titanium tubes. The condensate will return to the reboiler by a condensate return line. A steam jet ejector will be used to remove non-condensibles and a make-up tank will be used as necessary to maintain a sufficient water level in the reboiler.

Measurements of the inlet and outlet water temperature and the water flow rate in each tube will permit the determination of the amount of heat transferred by each tube. Wilson plot techniques will be used to evaluate the inside heat transfer coefficient and the condensing coefficients will be obtained by difference from the overall heat transfer coefficient.

The fabrication of the laboratory experimental equipment was nearing completion at the end of the year.

THEORETICAL AND NON-LABORATORY INVESTIGATIONS

Heat Transfer from Plate Fin Units

A mathematical investigation was begun in January 1962 to determine a satisfactory fin spacing, fin thickness, and fin height for plate fin units used in refrigeration systems utilizing thermoelectric cooling. Heat was to be removed from the refrigerated system by natural convection to plate fins on the cold side and heat was to be transferred from the plate fins on the hot side to the ambient air by forced convection. The heat transfer correlations required in this investigation were obtained from the literature. A conference was held with personnel from Wolverine Tube to discuss the significance of the findings upon completion of the investigation in February 1962.

Revision of Report on Performance of Finned Tubes in Shell and Tube Heat Exchangers

A re-correlation of the heat transfer and pressure drop data in a University of Michigan Engineering Research Institute Report entitled, "Performance of Finned Tubes in Shell and Tube Heat Exchangers," by R. B. Williams and D. L. Katz (1951) was begun in September 1962. After writing an IBM 7090 computer program to obtain the inside heat transfer coefficient constant for the Sieder and Tate equation from Wilson plot data, all the original data were processed and the constants obtained. Table I shows the tabulated computer output results for bundle 1, runs 2A - 2D. The original correlation was prepared by hand calculations.

A computer program has been written to analyze all the heat transfer and pressure drop data. The calculated values of the inside heat transfer coefficient constants will be used in the computer program. The analysis will include the development of shell-side heat transfer coefficient and pressure drop correlations by both the Donohue and Bell methods. Comparisons of the correlations for the finned tube bundles with the correlations for the plain tube bundles will be made to obtain the relative performance of finned tube bundles to plain tube bundles over a wide range of Reynolds numbers. Table II shows representative computer output results for plain tube bundle No. 1.

Table I. Modified Wilson Plot Data and Results Calculated by an IBM 7090 Digital Computer for the Inside Heat Transfer Coefficient for Bundle 1.

1 , NUMBER OF RUNS IS WILSON PLOT DETERMINATION OF THE INSIDE HEAT-TRANSFER COEFFICIENT FOR BUNDLE

SHELL SIDE FLUID IS WATER

TUBE SIDE FLUID IS WATER

	300000000
	72640616E-1000C00000E CCC0C00000E CO72640616E-1000C00000E CO00000000E CO72640616E-1000C00000E OO00000000E CO72640616E-1000C00000E OO00000000E OO77507457E-0900C00000E OO00000000E OO24764542E OB00C00000E OO00000000E CO24764542E OB00000000E OO00000000E CO24764542E OB00000000E OO00000000E OO000000000E OO00000000E OO000000000E OO00000000E OO000000000E OO00000000E OO000000000E OO00000000E OO00000000E OO00000000E OO00
	0.000000000000000000000000000000000000
CI .240CE-01	10124896E 0146678063E-03 .58540867E-0532721741E-07 .72640616E-1000000000
RM .6250E-04	10124896E 0146678063E-03 .5854C867E-0532721741E-07 .10124896E 0146678063E-03 .58540867E-0532721741E-07 .30377927E 00 .25267360E-03 .92050520E-0575847219E-07 .30377927E 00 .25267360E-03 .92050520E-0575847219E-07 .000000000
XAM 35.5800	54C867E-05 540867E-05 540867E-05 050520E-05 050520E-05 36328E 05 363282E 05
XAI 32.9500	03 - 58 - 60 - 60 - 60 - 60 - 60 - 60 - 60 - 6
XAU 38.2500	46678063E 46678063E 25267360E 00000000E -54722744E
TER 4	60000000000000000000000000000000000000
RUNS BUND TEMP ITER 4 1 0 4	1 .1C124896E 01 2 .10124896E 01 3 .30377927E 00 4 .30377927E C0 500CC000CE CC 621968737E 01 721968737E 01
RUNS	N N 10m4v9r8

DIAS AFS AFT DIAT ..6250CE-01 .508CCE-C1 .568C0E-C1 .53800E-01

L	.944	. 945	646.	.949						
LMID	18.295	15.792	14.649	13.551						
Q TUBE	415818	416653	429610	443240						
Q SHELL	428327	431547	436690	441491		PR TUBE	2.662	2.607	2.594	2.574
W TUBE	46530	65043	83340	103455		ρχ	48 2.296			
W SHELL	35343	35491	35739	35780			49095 43348			
1106	157.680	158.860	158.850	159.330		R E				
FAHR.	148.750	152.460	153.700	155.050			17.263 639.204			
T TEMPERATURES ARE IN FAHR. TSIF TSIF	165.510	165.560	165.110	164.980			-1.482 17.			
TEMPERATO TSIF	177.600	177.690	177.300	177.290			422072 -1			
NCTE - INPUT	2 A	28	3C	2C			2A 425			

rapie 1: (commuea)

.02440117		
15		
2		
•		
.56427354E-03	FUNCTION B .14861342E-02 .12697446E-02 .11508752E-02	
15		
AFTER 4 ITERATIONS, INTERCEPT IS .56427354E-03, CI IS .02440117	FUNCTION A .22584083E-04 .17147771E-04 .14043770E-04	
AFTER	RUN 28 28 20	

TTAV	53	55	156.275	57	
TWALL I	n	r	മ	162.817	
ALL	4.2	4.2	163.604	3.5	
	-	_	171.205	_	
S S S	2 A	5 B	5 C	20	

NU TUBE	175.215	230.384	281.120	334.908
NU SHELL	286.139	282.880	278.784	289.472
무	1770.549	1750.462	1724.647	1790.690
RFIN OUT	0000E 00	0000E 00	COOOE 00	0000E 00
HO PRIME	1770.549	1750.462	1724.647	1790.690
I	1244.935	1639.515	2001.366	2385.695
RFIN IN	.0000E 00	.0000E 00	. COOCE CO	.000CE 00
RUN HI PRIME	2A 1244.935	28 1639,515		2D 2385.695

NU/PR-VISC 218-536 216.098 212.796 220.902

	VIST/VISTW 1.0833 1.0624 1.0519 1.0519
1 1 1	VISC TU WALL .9385 .9388 .9436
FT-HR	VISC. TUBE 1.0167 .9973 .9926
ISCOSITIES LB/FT-HR	VISS/VISSW .9481 .9477 .9460
\	VISC SH WALL 9341 9341 9386
	VISC. SHELL .8857 .8879 .8883
	RUN 2A 2B 2C 2C

WILSCN PLOT CONSTANT EQUALS .02440117 , INTERCEPT EQUALS .56427354E-03

Friction Factor Results Calculated with an IBM 7090 Digital Computer for Bundle 1. Table II. Representative Shell-side Heat Transfer Coefficient and Pressure Drop

HEAT TRANSFER AND PRESSURE DROP ANALYSIS OF THE WILLIAMS - KATZ DATA

1 WATER WATER AHRENHEII	. 751	. 7510	515 655 416	051	250 920 580	30	. 111	20 80 24	13 28 58	1.0630 1.3380 .9150 .2620 .3260 .6890
H H			(RELL) - SQFI	ር FT T	SUFT GFT FT	N I N	M CENT. TO CEN M CENT. TO SHE	LL) WINDOW ONSTANT	1	AMINAR URBULENT MALL/K
BUNDLE NO. RUNS SHELL-SIDE FLUID 1UBE-SIDE FLUIC TEMPERATURES	11 - 31 = 11 = 11 = 11 = 11 = 11 = 11 =	DEG - IN PITCH - IN	MEAN FLOW MEAN FLOW DW AREA - S	C/L MIDD C/L ENDS	OUTSIDE ARE INSIDE AREA METAL AREA	SAFFLES E SPACING M E SPACING E	RESTRICTIONS FR	RESTRICTIONS TE RESTRICTIONS IN DE COEFFICIENT	JW VOL. E VL JPNL	PHI CHI LAMINAR FLCM CHI TURBULENT FLOM XI PRESSURE DRCP LAM XI HEAT TRANSFER METAL RESISTANCE NA

```
3000000000
```

Table II. (continued)

					HO PRIME B/H-SF-F	1773.568 2247.412 2745.669 1418.350			
					RFIN H-SF-F/B	000000000000000000000000000000000000000			
					HO B/H-SF-F	1773.568 2247.412 2745.669 1418.350			
			RE TUBE	43375 43313 43045 42899	PR SHELL	2.296 2.275 2.270 2.324		VIST/VISTW	1.0834 1.0920 1.0991 1.0695
DROP			UC R/H-SF-F	639.204 690.786 729.522 583.029	DE SHELL LB/CUFT	61.123 61.109 61.106 61.166		MALL V	.9384 .9238 .9175
PRESSURE DROP	PSI	3.150 5.810 8.850 1.540	LMTDC	17.263 17.635 17.901 15.641	HI B/H-SF-F	1244.786 1242.044 1236.912 1232.210		VISC TU	*****
W SHELL	LB/HR	35343 49100 60600 25000	ш	.944 .952 .956 .933	NU TUBE	175.303 174.803 174.076 173.557	#	VISC. TUBE	1.0167 1.0087 1.0084 1.0185
150	u.	165.510 167.970 168.850 162.880	LMTD	18.295 18.529 18.728 16.756	PR TUBE	2.662 2.639 2.638 2.667	S LB/FI-HR		.9482 .9555 .9605
151	ш	177.600 177.510 177.160 177.080	PER DEV	-1:482 785 -1.078 -1.999	TTAV F	153.215 154.210 154.250 152.995	VISCCSITIES	VISS/VISSW	0.0.0.
¥ TUBE	LB/HR	46530 46100 45800 46100	Q AVG	422072 465952 499506 348819	T WALL I	163.515 165.606 166.517 161.594		SH WALL	.9341 .9192 .9127 .9485
110	ш	157.680 159.220 159.640 156.700	G TUBE BTU/HR	415818 462293 494122 341847	T WALL O	164.256 166.424 167.395 162.207		SHELL VISC	.8857 .8783 .8766
111	щ	148.750 149.200 148.860 149.290	Q SHELL BTU/HR	428327 469611 504889 355790	TSAV F	171.555 172.740 173.005 169.980		VISC. SH	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
RUN		0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	RUN	24 44 64 64	R U N	2A 4A 5A 6A		RUN	6 5 A A A A A A A A A A A A A A A A A A

Table II. (continued)

HEAT TRANSFER RESULTS BASED ON THE METHOD OF DONOHUE

LN NU S	5.659513 5.895529 6.095601 5.437027		BA SED R			מ		6.070723 6.306738 6.506811 5.848236		ON-F	1.580619 1.465657 1.466517 1.520611
RAT				58 07 95 41		L		6.01 6.00 7.00 7.00 7.00 7.00 7.00		FRICTION-F	1.58 1.46 1.46 1.52
LN VIS	053171 045567 045334 057222		FRICTION FACTOR ON RE CL CENTE	. 1892 . 1697 . 1697		VI S-RAI		053171 045567 040334 057222		CENTER	48586.9 68070.0 84170.8 33982.5
LN PR SH	.831035 .821986 .819970 .843149					PR LN				DS RE	
SH	9166 6348 8660 1656		CL CENTER	48586.9 68670.0 84170.8 33982.5		Z L		.831C35 .821986 .819970 .843149		RE END	26095.8 36560.1 45207.7 18251.8
LN RE	10.789166 11.126348 11.338660 10.431656		ENDS RE	8 7 8		LN RE		10.548697 10.885880 11.098191 10.191188		DP C-F PSI	2.893 5.172 7.878 1.393
FUNCTION E	10.789166 11.126348 11.338660 10.431656		RE CL EI	26095.8 36560.1 45207.7 18251.8		ı					
۵	5.389948 1 5.627916 1 5.827928 1 5.163991 1		FLOW	6 - 4 8		NU IDEAL		432.993 548.254 669.687 346.622		DP WINDOW PSI	1.895 3.657 5.572
FUNCTION			OP CROSSFLOW PSI	1.346 2.327 3.544 .638		IDEAL		.008545 .007754 .007671		CENTER FT/SEC	3.474 4.827 5.957 2.456
FUNCTION C	219.192120 278.082031 339.654160 174.860924	OF DONOHUE	WINDOW PSI	1.804 3.483 5.306	: BELL	Ιr			BELL	VZ CE	w 4 rv V
-VISC FL	.9.192 21 78.082 27 39.654 33	METHOD OI	1 40	H M W	METHOU OF	RE C/L		38127.8 53416.8 66051.6 26667.2	METHOD CF	VZ ENDS FT/SEC	2.546 3.537 4.366 1.800
NU/PR	221	CN THE	L WINDOW FT/SEC	3.861 5.365 6.622 2.730	ON THE A	LEAK	u.	132 137 125 176	ON THE A	LEAK	
NU SHELL	287.009 363.409 443.901 229.758	TS BASED	VE	.,,,,,	TS BASED	HOP NO LE	R/H-SF	2141.732 2713.937 3315.625 1712.776	TS RASEU	DP NO LE	4.787 8.830 13.450 2.340
RE SHELL	48492.6 67937.8 84007.4 33916.5	E DROP RESULTS	DP SHELL PSI	3.150 5.810 8.850 1.540	TRANSFER RESULTS	HOP LEAK	B/H-SF-F	1773.568 2247.412 2745.669 1413.350	E DROP RESULTS	DP LEAK PSI	3.150 5.810 8.850 1.540
N N N	2 A A S A A B A B A B A B A B A B A B A B	PRESSURE	N N N	2 A A S A A S A A A A A A A A A A A A A	HEAT TR	RUN		7 7 7 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	PRESSURE	RUN	7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

OTHER ACTIVITIES

Many special projects were performed for Wolverine Tube during the past year. One of these projects was the processing, with the IBM 709 computer at The University of Michigan, of the Wilson plot data taken on Wolverine Tube's concentric pipe heat exchanger. Project personnel also served in an advisory capacity for the Wolverine Tube Research and Development Division's concentric pipe heat exchanger program. Project personnel further assisted Wolverine Tube in the areas of plate fin heat transfer, base board heaters, and similar projects.

During the year project personnel reviewed heat transfer literature and the heat transfer papers presented at technical meetings. Information pertinent to the project's present or anticipated future needs were placed in the project's files. Similar information of importance to Wolverine Tube's Research and Development work was forwarded to Wolverine Tube.

A close liaison was maintained by Professor E. H. Young between the research project and the Bureau of Ships, Navy Department, Washington, D. C. and the U. S. Naval Engineering Experiment Station, Annapolis, Maryland. Professor Young participated in conferences at the Boiler and Heat Exchanger Branch of the Bureau of Ships with Mr. D. F. Grimm of Wolverine Tube on May 21, 1962, and with Mr. E. F. Hill of Wolverine Tube on September 26, 1962. Professor Young and Mr. Hill also participated in conferences with representatives of the U. S. Naval Engineering Experiment Station at Annapolis, Maryland.

Professor E. H. Young and other members of the research group participated in a total of 30 meetings with representatives of Wolverine Tube for the purpose of reporting results and planning future project activities. Additional conferences were held with representatives of several other companies concerning project activities, Wolverine Tube activities or project experience in certain areas. Professor Young participated in conferences at the Patterson-Kelly Company, East Stroudsburg, Pennsylvania, on February 13, 1962, and at the York Division of Borg-Warner Corporation, York, Pennsylvania on February 14, 1962, with Mr. D. F. Grimm of Wolverine Tube and Mr. R. Egan of Unifin Tube. On June 18, 1962, Professor Young attended a meeting on refrigerant condensing at the American-Standard Industrial Division in Detroit, Michigan, with several representatives of Wolverine Tube. On June 19, 1962, Professor Young met with Mr. R. L. Eichhorn of Whirlpool Corporation at St. Joseph, Michigan, to discuss their current work in thermoelectric refrigeration. Professor Young and Mr. D. M. Mellen of Wolverine Tube attended meetings on refrigerant condensing at the York Division of Borg-Warner Corporation on June 28, 1962. On July 10, 1962, Professor Young, Mr. D. F. Grimm and Mr. D. M. Mellen participated in conferences at the Trane Company, LaCrosse, Wisconsin. Professor Young and Mr. D. F. Grimm and Mr. A. L. Kaspark of Wolverine Tube held a conference on boiling refrigerants with Mr. Abdelmessih and Mr. M. W. Timby of the United States Air Conditioning Corp. in Delaware, Ohio, on July 17, 1962. On October 5, 1962, Professor Young and Mr. J. G. Lavin participated in boiling heat transfer conferences with Professor W. E. Fontaine, Professor J. B. Chaddock, and Mr. R. C. Johnston, Jr., of the Ray W. Herrick Laboratories at Purdue University, Lafayette, Indiana.

Professor E. H. Young and Mr. D. E. Briggs participated in heat transfer conferences at The University of Michigan with Mr. A. H. Abdelmessih and Mr. Wayne Timby of the United States Air Conditioning Corp. of Delaware, Ohio, and Mr. J. Ræhm of Wolverine Tube, Columbus, Ohio, on November 26, 1962.

Mr. D. E. Briggs attended a conference at Wolverine Tube on December 7, 1962, with Messrs E. F. Hill, R. C. Cash, R. E. Seaton, and H. F. Powell of Wolverine Tube and Mr. J. J. Taborek of Phillips Petroleum. On December 8, 1962, Professor E. H. Young and Mr. D. E. Briggs held a conference at The University of Michigan with Mr. R. C. Cash and Mr. H. F. Powell of Wolverine Tube and Mr. J. J. Taborek of Phillips Petroleum.

Project personnel attended important heat transfer conferences. Professor Young attended the Symposium on Evaporation at the A.I.Ch.E. National Meeting in Baltimore, Maryland, on May 21, 1962. Professor E. H. Young and Mr. D. E. Briggs attended the Fifth National Heat Transfer Conference sponsored by the American Institute of Chemical Engineers and the American Society of Mechanical Engineers at Houston, Texas, August 5-8, 1962. Professor Young and Mr. Briggs presented a paper entitled "Convection Heat Transfer and Pressure Drop of Air Flowing Across Banks of Finned Tubes" at the meeting. Professor Young attended heat transfer symposia at the Annual Meeting of the American Institute of Chemical Engineers, Chicago, Illinois, December 2-6, 1962. While at the meeting, Professor Young participated in a meeting of the Executive Committee of the Heat Transfer Division of the American Institute of Chemical Engineers. Professor Young has been elected to a three-year term as a member of the Executive Committee starting January 1, 1963. Effective January 1, 1963, the name of the Heat Transfer Division will become the "Energy Conversion and Transport Division" of the American Institute of Chemical Engineers.

During the year Professor Young continued to remain active on the ASME Atmospheric Cooling Equipment Code Committee.

The research project received many requests for copies of the reports and technical papers which have been published as a result of the research program. The requests were fulfilled whenever possible.

CURRENT STATUS

The current priority list established by Wolverine Tube divided the project activities into two categories. One consisted of projects requiring laboratory facilities and the other consisted of non-laboratory investigations. At the end of 1962, the current priority list of projects was:

Equipment (laboratory) projects in order of priority

1. Investigation of the steam condensing characteristics of titanium tubes.

Non-laboratory projects in order of priority

- 1. Revision of the Williams-Katz report on the performance of Type S/T tubes in shell and tube heat exchangers.
- 2. Completion of a final report on the bond resistance of Type L/C finned tubes at elevated temperatures.

