DEPARTMENT OF CHEMICAL AND METALLURGICAL ENGINEERING Heat Transfer Laboratory The University of Michigan Ann Arbor, Michigan THE BOND RESISTANCE OF TYPE L/C BIMETAL TUBES WITH STEEL LINERS Report.No. 56 Dale. E.. s Instructor in Chemical an-M etallurgical Engineering Edwin 1I. Your ng Professor of Chemical and Metallurgical Engineering Project 1592 WOLVERINE TUBE Division of CALUMET AND HECLA, INCORPORATED ALLEN PARK, MICHIGAN February 1964

- rR I'-i u f l 45

TABLE OF CONTENTS Page List of Tables iii List of Figures v Abstract 1 Objective Introduction 2 Review of the Literature 4 Heat Transfer Equipment 6 Test Procedure 16 Tube-Side and Shell-side Heat Transfer Correlations 18 Bond- Resistance Measurements 37 Conclusions and Design Recommendations 44 Nomenclature 50 Literature Cited 54 Appendix A 56 Physical Properties of Mobiltherrm Light and Mobiltherm 600 Appendix B 60 Modified Wilson Plot Computer Program and Wilson Plot Data and Calculated Results for Tubes Numbers 455 and 456 Appendix C 69 Shell- side Correlation Computer Program and Shellside Heat Transfer Data and Calculated Results for Tube Numbers 455 and 456 i

TABLE OF CONTENTS (Continued) Page Appendix D 77 Bond Resistance Error Analysis Appendix, E 84 Bond Resistance Computer Program and Bond Resistance Data and Calculated Results for Bimetallic Tube Numbers 461-463

LIST OF TABLES Table Page I Description and Dimensions of the Tubes Used in 20 the Investigation II Calculated Values for the Inside Heat Transfer Correlation Constant 31 III Calculated Values for the Initial Contact Pressure for the Bimetallic Tubes Investigated 43 IV Description and Dimensions of the Tube Used in Preparing Figures 20-22 49 V Modified Wilson Plot Computer Program Written in The University of Michigan Algorithm Decoder Language 61 VI Wilson Plot Data and Calculated Results for Tube Number 455, Runs 1-8 63 VII Wilson Plot Data and Calculated Results for Tube Number 455, Runs 10-17 64 VIII Wilson Plot Data and Calculated Results for Tube Number 455, Runs 18-26 65 IX Wilson Plot Data and Calculated Results for Tube Number 455, Runs 76-83 66 X Wilson Plot Data and Calculated Results for Tube Number 455, Runs 94-103 67 XI Wilson Plot Data and Calculated Results for Tube Number 456, Runs 13-22 68 XII Shell-side Heat Transfer Correlation Computer Program Written in The University of Michigan Algorithm Decoder Language 70 XIII Shell-side Heat Transfer Data and Calculated Results for Tube Number 455 72 111

LIST OF TABLES (Continued) Table Page XIV Shell-side Heat Transfer Data and Calculated Results for Tube Number 456 75 XV Regression Analysis Results for Tube Numbers 455 and 456 for the Shell-side Heat Transfer Coefficient Correlation Constant and Power to which Reynolds Number is Raised 76 XVI Bond Resistance Error Analysis Using the Heat Transfer Correlation Data for Tube Number 455 in Conjunction with the Experimentally Obtained Heat Transfer Correlations 78 XVII Bond Resistance Error Analysis Using the Heat Transfer Correlation Data for Tube Number 456 in Conjunction with the Experimentally Obtained Heat Transfer Correlations 83 XVIII Bond Resistance Program Written in The University of Michigan Algorithm Decoder Language 85 XIX Bond Resistance Data and Calculated Results for Bimetallic Tube Number 461 87 XX Bond Resistance Data and Calculated Results for Bimetallic Tube Number 462 90 XXI Bond Resistance Data and Calculated Results for Bimetallic Tube Number 463 92 iv

LIST OF FIGURES Figure Page 1 Section of a Stripped-end 2-Inch O.D. Bimetallic Finned Tube with a 1-Inch Admiralty Liner 3 2 Overall View of Bond Resistance Measurement Equipment 7 3 Line Diagram of Equipment Showing Flows of Shellside and Tube-side Oils 8 4 Cross-sectional Drawing of Test Shell 9 5 Detailed Drawings of Shell Flanges 10 6 View of the 48 KW Resistance Heater 11 7 Overall View of the By-pass Oil Cooler Located in the Tube-side Oil Piping System 13 8 Detailed Drawing of an Oil Mixer and Thermocouple 15 9 Modified Wilson Plot for Tube Number 455, Runs 1-8 25 10 Modified Wilson Plot for Tube Number 455, Runs 10-17 26 11 Modified Wilson Plot for Tube Number 455, Runs 18-25 27 12 Modified Wilson Plot for Tube Number 455, Runs 76-83 28 13 Modified Wilson Plot for Tube Number 455, Runs 94-103 29 14 Modified Wilson Plot for Tube Number 456, Runs 13-22 30 15 Shell-side Heat Transfer Correlation for a 2-Inch Fin Diameter, Type L/C Finned Tube in a 3-Inch Diameter Shell 33 16 Bond Resistance Error Analysis Using Data for Monometallic Tube Numbers 455 and 456 36 17 Bond Resistance Results for Bimetallic Tube Number 461 40

LIST OF FIGURES (Continued) Figure Page 18 Bond Resistance Results for Bimetallic Tube Number 462 41 19 Bond Resistance Results for Bimetallic Tube Number 463 42 20 Bond Resistances for a 2-Inch Fin Diameter, 9 Fins per Inch, Type L/C Finned Tube for an Effective Airfilm Heat Transfer Coefficient of 5 Btu/hr.-sq.ft. - ~F 46 21 Bond Resistances for a 2-Inch Fin Diameter, 9 Fins per Inch, Type L/C Finned Tube for an Effective Airfilm Heat Transfer Coefficient of 8 Btu/hr.-sq.ft.- ~F 47 22 Bond Resistances for a 2-Inch Fin Diameter, 9 Fins per Inch, Type L/C Finned Tube for an Effective Airfilm Heat Transfer Coefficient of 14 Btu/hr. -sq.ft. - ~F 48 23 Physical Properties of Mobiltherm Light Aromatic Heat Transfer Oil 57 24 Physical Properties of Mobiltherm 600 Aromatic Heat Transfer Oil 58 25 Viscosities of Mobiltherm Light and Mobiltherm 600 Aromatic Oils 59 vi

ABSTRACT Bond resistance measurements are presented for three 2-inch diameter Type L/C bimetallic finned tubes with steel liners for temperatures of the hot oil inside the tube from 250'F to 500'F and temperatures for the cooling oil outside the tube from 150'F to 400'F in a concentric pipe heat exchanger. Initial contact pressures were calculated using the bond resistance model of Gardner and Carnavos. Based on the results, a procedure is recommended for the design of air coolers containing bimetallic tubes. OBJECTIVE The purpose of this investigation was to accurately determine experimentally the bond resistance of 2-inch diameter Type L/C duplex finned tubing containing steel liners with tube-side inlet fluid temperatures up to 600 ~F. The bond resistance data were to be used to determine if the Gardner and Carnavos proposed model for bond resistance could be used to predict the bond resistance of Type L/C finned tubing. The investigation was also to include a recommended procedure for the design of heat exchangers containing Type L/C finned tubing. 1

INTRODUCTION The enormous growth of air cooling in the chemical and petroleum processing industries during the past decade has stimulated an interest in the bond resistance of bimetallic and duplex finned tubing. Bimetallic and duplex tubing consist of a liner or base tube made from a corrosionresistant material such as admiralty brass, cupro-nickel, steel or stainless steel and an outer finned tube usually made of aluminum. A section of a 2-inch fin diameter bimetallic integrally finned tube with a -inch diameter admiralty brass liner is shown in Figure 1. The fins are made of aluminum. At low temperatures the residual compressive stresses between the liner and the outer aluminum finned tube caused by the finning process maintains a good contact between the two tubes. There may be a bond or contact resistance of the order of 0.00002 to 0.0002 Btu/hr. -sq.ft.(liner area)-'F up to temperatures of approximately 250 0F which results from slight imperfections in the contact between the surfaces due to roughness or from oxides or oils present at the interface. Differences in the thermal expansion coefficients between the liner and fin material at elevated temperatures may reduce the residual compressive stresses at the interface. At temperatures above 250'F, the residual stresses become relieved and with increasing temperatures an air gap may form between the liner and the finned tube. The resistance to heat transfer caused by the air gap is called the bond resistance. The bond resistance is a function of the temperature and thermal expansion coefficients of the liner and finned tubes and the residual compressive stress at the tube fabrication temperature. At high temperatures the bond resistance can become a significant fraction of the overall resistance to heat transfer. 2

Figure 1. Section of a Stripped-end 2-Inch O.D. Bimetallic Finned Tube with a 1 -Inch Admiralty Liner

REVIEW OF THE LITERATURE The resistance to heat transfer resulting from imperfect contact of adjacent metal surfaces has been under active investigation since about 1948(1-12). The areas of concern have varied from the influence of temperature on the rating of electrical equipment with laminated metal components(2) to the thermal contact resistance of fuel elements for a nuclear reactor(9). In 1957, an apparatus was developed for the measurements of contact resistances (low temperature bond resistances) of bare and finned duplex tubing at liner temperatures of approximately 160 F(10). In 1958, an investigation was completed in which the effects of thermal cycling to 350 ~ and 600 ~F on the heat transfer performance of duplex integral-finned tubes was determined("). Bond resistance measurements were made in the apparatus described in reference (10). A theoretical and experimental investigation of the bond resistance of tension-wound, muff and embedded types of finned tubes was completed by Gardner and Carnavos(12) in 1960. The tension-wound finned tube investigated was a typical applied fin tube without a fin foot. The muff type of finned tube was an integrally finned tube over a plain tube liner. Gardner and Carnavos derived expressions for the gap thicknesses between the fin and liner of tension-wound and muff type finned tubes based on the thermal expansion of an elastically deformed annular disk. The gap thickness was given as g= - - { af a )(Th -T) + (p - p 2 f t c co Lf L1R' + r t [ R +rg h a where 212 2 2 [1 (D + 1 [ d + (d - 2t)2 = t L 4(D -d ) Et d -d - 2t) J (2) See pages 50-53 for Nomenclature 4

For tension-wound finned tubes where g (D2- da) r = g(D d (3) 9 24k db e they expressed the bond resistance based on the outside area as r = -D _d2 f( ( ct) (Th - T) - P g 48 b k f t h o co.e r r g-~+ L [g Lr]](T -T (4) As can be seen in Equation (4), the bond resistance is dependent upon the residual contact pressure caused by the finning process. The maximum possible contact pressure is of the order of 2/3 of the yield stress of the fin material. When aluminum fins are subjected to temperatures above 400 ~F for any length of time, the fins become fully annealed resulting in a yield stress of approximately 5000 lb. /sq.in. Based on this criterion, the contact pressure is of the order of 3500 lbs. /sq.in. for annealed finned tubes. Gardner and Carnavos experimentally determined initial contact pressures from their bond resistance measurements. The initial contact pressure varied from 3500 to 7100 lbs. /sq.in. There experimental apparatus consisted of a centrifugal blower which forced atmospheric air across the outside of the test section within which high pressure steam was condensed. Steam temperatures up to 380'F were used. 5

HEAT TRANSFER EQUIPMENT The experimental equipment used in this investigation is shown in Figure 2. The system consisted of a test shell, a 48 KW resistance heater, shell-side and tube-side circulating pumps, expansion tanks, concentric pipe oil coolers and automatic controllers. Figure 3 presents a line diagram showing the flow of the shell-side and tube- side fluids. Mobiltherm Light was used on the shell-side and Mobiltherm 600 was used on the tube-side. Both-fluids are aromatic heat transfer oils which.are resistant to thermal cracking up to temperatures of 500'F and 600'F, respectively. The physical properties( 3) of the oils are given in Figures 23-25, Appendix A. All the piping used in the system was standard schedule 2-inch diameter steel pipe insulated to prevent heat loss. The test section shell was constructed of a 5-foot length of 3-i1nch diameter standard schedule steel pipe. The entrance and exit sections of the test shell were formed from 3-inch lengths of 6-inch diameter standard schedule steel pipe with 1/4-inch thick.annular rings welded to one end. The inner diameter of the annular ring was 1/16-inch larger than the test shell. The annular rings were slipped over the ends of the shell and welded to the shell such that the outer edge of the 6-inch pipe extended out beyond the end of the shell 1-inch as shown in Figure 4. Standard 400 pound 5-inch blind flanges with 2 3/4-inch diameter holes drilled through the center were welded to the outer edges of the 6-inch diameter pipe sections. A concentric pipe heat exchanger was formed by placing one of the tubes under investigation into the test shell and holding the tube in place by specially constructed split flanges which were bolted to the shell flanges. The flange assemblies were designed to keep the tube centered in the shell and to provide a leak-proof seal. Detailed drawings of the flanges are given in Figure,5. To provide a good surface on which to seat the gasket material in the flange, the fins were removed from the tubes investigated over a length of approximately 6 inches where the flanges were located over the tube. After the fins were removed, the section was filed until smooth. This provided a plain aluminum tube approximately 0.040 inch thick upon which the gasket could be seated. A 48 KW resistance heater fabricated by the Hynes Electric Heating Division, Turbine Equipment Company was used as the heat source for heating the oil used in the investigation. The unit shown in Figure 6 was operated with 440 volt, 3 phase, 60 cycle, electrical power. There were four resistance heating elements which could be operated independently. The heating elements were located in 3-inch diameter steel pipes which were heated by radiation from the hot heating elements. Oil in forced convection was heated by passing over the outside of the radiantly heated 6

~~~~4~~~ a:1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~: - -------- -- -- - ---—..-... VI III; -~~f:~i:~;-;':-l -i-'~~~l~i~ii-_:;~:i-:i'-::i:::-::::::_::]::;:;: -:Iir x;:I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'..'~friiyE Figure 2 OverallView of ond Resitance MesurementEquipmen

SHELL SIDE TUBE SIDE OIL OIL EXPANSION EXPANSION TANK TANK PROCESS WATER IOFT.SHELL-SIDE OIL COOLER ~rs~~~~~~~~~~~~~, | rMIXER TO DRAIN |. _ TEST TUBE TEST SECTION PUMP TUBE-SIDE OIL COOLER 48 KW RESISTANCE HEATER PUMP SYMBOLS t CONTROL VALVE -a ORIFICE TEMPERATURE RECORDER CONTROLLER -/ AIR LINE L THERMOCOUPLE TEMPERATURE ELEMENT Figure 3. Line Diagram of Equipment Showing Flows of Shell- side and Tube- side Oils

STANDARD SCHEDULE 2" PIPE STANDARD SCHEDULE 6" PIPE STANDARD SCHEDULE 3" PIPE %0 STANDARD 5" -400LB. BLIND FLANGE WITH 2-3/8" DRILLED HOLE 60" Figure 4. Gross-sectional Drawing of Test Shell

A - --— STANDARD SCHEDULE 400 LB. 5" FLANGE B SEC BB LEA SEC AA Figure 5. Detailed Drawings of Shell Flanges

..........~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~..... iiiBiii:Ba~P~n~s~e~a - —:Figure 6. View of the 48 KW Resistance Heater _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I, Figure 6. Vew of the 8 KW Resisance Heate

steel pipes. A by-pass relief line containing a pressure relief valve set to open at 40 lb. /sq.in. was furnished with the equipment in order to maintain a positive flow of oil through the unit when the heating.elements were on. A thermostatic controller was also provided with the equipment but was found to be unsatisfactory in maintaining the oil at a sufficiently constant temperature. To correct this deficiency, a small air cooled bypass heat exchanger was installed in the hot oil line. The heat exchanger is shown in Figure 7. A centrifugal air blower operating in forced convection blew air across five 2-inch diameter, 30-inch long bimetallic finned tubes in parallel. The tubes had steel liners. A 2-inch pneumatically operated control valve regulated the amount of by-pass oil through the heat exchanger. By controlling the flow rate of the by-pass oil, the hot oil temperature could be maintained at the desired temperature. Two high temperature Dean Brothers centrifugal pumps were used to circulate the shell-side and tube-side oils. The shell-side pump had a capacity of 100 gpm at 190 lb. /sq.in. and the tube-side pump had a capacity of 60 gpm at 30 lb./sq.in. Expansion tanks for the shell-side and tube -side oils were located on the floor above the equipment. The tanks were connected to the equipment on the suction-side of the pumps with 3/4-inch diameter pipes and accommodated changes in the volume of the oil with temperature. Three concentric pipe heat exchangers were located in series in the shell-side fluid line immediately after the test shell to remove the sensible heat picked up in the test shell by the shell-side fluid. Water was used as the coolant. The heat exchangers which were 2, 4, and 10 feet long were constructed by placing standard schedule 3-inch diameter steel pipe over the standard schedule 2-inch diameter shell-side fluid line and welding an annular ring into one end and a flange into the other end. The flange end of the exchanger was designed to permit free expansion of the concentric pipes. Companion flanges with extended annular rings were used to seat the packing material to the inner pipe and prevent leakage of water from the annulus. Water was piped to the heat exchangers in such a way that the exchangers could be used in any combination as required. Two automatic temperature controller-recorders were installed to assist in the operation of the equipment when taking data. One controller kept the inlet hot oil on the tube-side of the test section at a constant temperature by controlling the oil flow rate through the pneumatically actuated valve in the by-pass heat exchanger line. The other controller was used to maintain a constant inlet oil temperature to the shell-side of the test section by controlling the water flow rate through the concentric pipe with a pneumatically operated globe valve. 12

.......... -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i~iiiiiii~i~i -. iiiiiiiiiiii: -...-.:i-i:-::::::::~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~......7 -: i- "- 1-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ —i ~ ~ ~ ~..... A Piii -.:...::- _-::iiiiiii-i~ia —:-::::::::::::::ii-~: ~::::-:i:_:::::::: _::_ —:i: —__i::::::::-::::-: —::-::: ---::::::~::::::~::::::-:i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ii:::::-:-::i~~~~~~i::l-:::i:-::ctio

The oil flow rates were measured with calibrated orifices placed in orifice flanges located in long straight runs of pipe immediately ahead of the shell and tube entrances. Water was used to calibrate the orifices. The pressure drops across the shell-side and tube-side flow rate orifices were measured with 60-inch and 40-inch oil over mercury manometers, respectively. Inlet and outlet oil temperatures on the shell- and tube- sides were measured with 24 gauge iron-constantan, calibrated thermocouples using a Leeds and Northrup precision portable potentiometer. The thermocouples were located in the outlet ends of mixers located at the entrances and exits of the shell and tube. Figure 8 shows a detailed drawing of the mixers. The shell-side thermocouples were calibrated against each other under isothermal conditions in order to obtain accurate temperature changes when taking data. The tube-side thermocouples were also calibrated against each other. 14

FLOW STANDARD SCHEDULE 2" PIPE THERMOCOUPLE / - STANDARD SCHEDULE 8" PIPE STANDARD SCHEDULE 2" PIPE FLOW Figure 8. Detailed Drawing of an Oil Mixer and Thermocouple 15

TEST PROCEDURE One barrel each of Mobiltherm Light and Mobiltherm 600 were circulated through the shell-side and tube-side piping systems, respectively, after completion of the construction phase. Both oils were completely drained from the equipment and discarded after they had been circulated for several hours to clean the system. After the piping had been completely drained, the shell-side and tube- side were filled with clean Mobiltherm Light and Mobiltherm 600 oils, respectively, through the expansion tanks located on the floor above. The oils were allowed to circulate through the piping at the ambient temperature until the air was removed from the system through valves located at high points in each network. During normal operation, the shell-side and tube-side pumps were started and the automatic temperature controllers were set at the desired set-points. The oil flow rates were adjusted to the desired valves with manual valves. Three or four of the four resistance heating circuits in the 48 KW electric oil heater were turned on and the heater thermostat set at 600'F. The number of circuits required depended upon the desired heat duty. The shell-side oil was heated in the test shell by the tube-side oil. When the shell- side oil reached the desired temperature, the automatic control system regulated the amount of cooling water flow through. the shellside oil concentric pipe heat exchangers. The choice between the 2-, 4-, or 10-foot heat exchanger or a combination of the three, depended upon the shell-side heat duty and temperature level. When the tube-side oil temperature reached the set-point temperature, the tube-side automatic control system regulated the amount of oil by-passed through the air cooler shown in Figure 7. By keeping the electric heater thermostats set at a temperature higher than the desired tube-side oil temperature, the electric heaters remained on constantly and allowed the control system to control the oil by-pass flow and maintain the temperature at the set-point temperature. Heat transfer data were taken when the automatic controllers had stabilized the temperatures at the desired values. For each operating condition, the following readings were taken in order: emf of the inlet tube- side oil thermocouple, emf of the outlet tube-side oil thermocouple, pressure drop across the tube-side flow orifice with an oil over mercury manometer, emf of the inlet shell-side oil thermocouple, emf of the outlet shell-side oil thermocouple, and pressure drop across the shell-side flow orifice with an oil over mercury manometer. A total of three sets of readings were taken for each operating condition and the data ave raged. Calibration charts were used to convert the thermocouple emf's to temperature readings and orifice calibration charts corrected for temperature were used to convert the pressure drop readings to oil flow rates. 16

Samples of oil were frequently removed from the system and the viscosity checked. This served as a monitoring technique to insure that the oil properties did not vary. The tube-side and shell-side oil were normally changed when a new tube was placed in the equipment. 17

TUBE- SIDE AND.SHELL- SIDE HEAT TRANSFER.. CORRELATIONS.The quantitative evaluation of the bond resistance of bimetallic tubes is determined indirectly by comparing the experimentally measured overall heat transfer coefficient for the bimetallic tube with the predicted overall heat transfer coefficient for the same tube without bond resistance. The experimental overall heat transfer coefficient is calculated from U =...(5) oA AT exp o m In terms of the individual resistances the experimentally determined overall coefficient is 1 1 A A A A 0 o o.o T + rfin Ah + A + A~ rfb + A b (6 O h 1 fin A. h. f byrb o o i i A fb b exp The predicted overall heat transfer coefficient for a tube without bond resistance is 1 1 A A A U= h- f + rn+ + A- rfb (7) pred Subtracting Equation (7) from Equation (6) gives 1 1 A UU AU rb (8) - UK o o b exp pred which can be rearranged to give the bond resistance in terms of the bond area. 18

b Ab I U U exp pred If accurate measurements of bond resistances are to be made, it is imperative that. accurate values of the experimental and predicted overall heat transfer coefficients be known. The accuracy can be improved by making the difference between the experimental and predicted overall heat transfer coefficients as large as possible. By the proper choice of tube -side and shell-side fluids and flowrates, the bond resistance can be made a significant fraction of the overall resistance. The choice of experimental equipment and aromatic heat transfer oils previously described was made with regards to obtaining as large a predicted overall heat transfer coefficient as possible. The accurate evaluation of the predicted overall heat transfer coefficient depends upon being able to determine the tube- side and shell- side heat transfer coefficients since the remaining variables in Equation (7) can be calculated without difficulty. Tube-side and shell-side heat transfer correlations were experimentally obtained using two monometallic aluminum high fin tubes with essentially the same dimensions as the bimetallic tubes under investigation. The dimensions of the tubes are given in Table Io A well known method for determining individual coefficients from the overall coefficient is known as the Wilson Plot technique(14) The general scheme is to hold either the inside or outside coefficient constant while varying the other coefficient. The variation of the overall coefficient is, thereby, due to the varying heat transfer coefficient alone. Equations (10) and (11) were used as the models for the tube-side and shell-side heat transfer coefficients. 0.8 1/3 0.14 h. D, D. G bL 1 [ ] [ ] [ (10) p k1 i k 1 1 w 19

TAB LE I Description and Dimensions of the Tubes Used in the Investigation Tube No. ~455 456 461 462 463 Tube Type monometallic monometallic bimetallic bimetallic bimetallic Diameter over Fins, in. 2.026 2.020 2.020 1.963 1.954 Root Diameter, in. 1.086 1.085 1.090 1.095 1.090 Liner Outside Diameter, in. none none 0.997 0.997 0. 997 Inside Diameter, in. 0.835 0.835 0.832 0.832 0.832 Fins Per Inch 9.39 9.40 8.72 8.80 8.77 Fin Thickness, in. 0.0184 0.0190 0.0159 0.0163 0.0163 Fin Material Aluminum Aluminum Aluminum Aluminum Aluminum Liner Material none none Steel Steel Steel Outside Heat Transfer Area, sq.ft. 19.850 19.959 18.446 17.383 16.994 Inside Heat Transfer Area, sq.ft. 1.140 1.140 1.135 1.135 1.135 Bond Area, sq.ft. none none 1.360 1.360 1.360 Volumetric Equivalent Diameter, ft. 0.0366 0.0363 0.0393 0.0417 0.04.21 20

P 1/3 0.14 0 eq Ceq k o. c If the expression for the overall heat transfer coefficient of a monometallic finned tube is written as 1 A 1 A r rfin.2- rm + Ac exp AQ mj jj + (12) U rfln - A h A. h. mo m 1 _ exp and rearrangements of Equations (10) and (11) are substituted for h. and h', 1 o respectively, then F 1 A 0 I z rg r - r IU rfin A L exp _ D eq P 1/3 0.14 kD C eqG _ o o O A Do 1 + 1/3 (13) O e8 1 /3 0.14 Ao k C. --— 2 1 i i,] k 5 W i i 21L

The group of terms representing the shell-side coefficient can be held constant, except for the group 0.14 0 by keeping the flow rate and the average temperature of the shell-side fluid constant. By multiplying Equation (13) by 0.14 I _, Equation (14) is obtained. 0.14 U A J I I L O ~m L J exp 0.14 A D. D eq + o P 1/3 0+8 1/3 0.14 kC[k]eq " ] [ ] [ W k C A. kC 0 0 i Ii (14) 22

which has the form A B = I + (15) C. where 0.14 1 A B rfin A m (16) uo rn D I= eq (17) P 1/3 eq 1 r p k C0 G] [ c ] o o and 0.14 A D. [ aw A = 0.14 (18) 0.8 1/3 0.14 A k,1 [Q G] [ [ "w ] 1 1 i i If the flowrate and average temperature of the shell-side fluid is kept constant and data are taken for several different tube-side fluid flow rates, the constant, CGo, for the inside heat transfer coefficient can be obtained. The analysis oflthe data for Ci requires successive trial-and-error calculations. The constant C. is assumed and the calculations made to determine the wall temperatures necessary to evaluate the viscosities at the 23

inside and outside walls of the tube. The functions A and B are evaluated and a line drawn through the plotted data in a least square sense. The reciprocal of the slope of the line is C. and the intercept of the line with the ordinate is the function B. When the calculated value of C. differs more than a desired amount- from the assumed value of C., the procedure 1 is repeated with the new value of C1. A program was prepared for The University of Michigan IBM 7090 digital computer and all the Wilson plot data were processed using that program. The input data to the program were the inlet and outlet temperatures and the flow rates for the shell- side and tube-side oils, the tube dimensions, the metal resistance, and an initial estimate of the inside heat transfer coefficient correlation constant, C.. The necessary physical properties of Mobiltherm Light and Mobiltherm 600 were fitted to polynomials and the constants included as input data. The program took the value of Co, went through the process outlined and obtained the values of the two functions necessary for the modified Wilson plot. A least square subroutine was then used to compute the slope of the best straight line through the processed data. The reciprocal of the slope, C,, was compared to the assumed value and when it differed by more than 0. d5 per cent, the calculated value was used and the process repeated until the assumed and calculated values agreed within 0.05 per cent. A total of six sets of Wilson plot data were obtained on two monometallic aluminum high fin tubes with essentially the same overall dimensions as the bimetallic finned tubes for which bond resistances were to be determined. The tube dimensions are given in Table I. The computer program, heat transfer data and calculated results are given in Tables V - XI, Appendix B, and the final Wilson plot results are presented in Figures 9 - 14. Table II gives the calculated values of the inside heat transfer coefficient correlation constant. The average value of C. for the six sets of data is 0.02957. Using the average value of C,, the tube side correlation be come s 0.8 1/3 0.14 [_1 1 lk- = 0.02957 w 1 (19) i i 24

0.5 TUBE 455 RUNS 1-8 C =0.02857 o 0.4 0.3 o' 0.2 o ~ "- 0.1 I 0 E I 1 1I1 1 1 1 1 1 1 0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 x 103 DiGA -8 Cp/., /3 0.14 Figure 9. Modified Wilson Plot for Tube Number 455, Runs 1-8

0.5 TUBE 455 RUNS 10-17 C; = 0.02778 o 0.4 0.3 0. I N o0 I l I 0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1.0 x 103 it 1. Mi k i o Iow Figure 10. Modified Wilson Plot for Tube Number 455, Runs 10-17

0.5 TUBE 455 RUNS 18-26 C = 0.02950 o 0.4 0.3, 0.2 0I! I I I 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9 1.0 Di AOi'i Ai II w O~ x 103 Fig 1.i Md k Pl f w Figure 1-1. Modified Wilson Plot for Tube Number 455, Runs 18-25

0.5 TUBE 455 RUNS 76-83 Ci = 0.02801 o 0.4 0.3 C 0.2 N 0I -. 0.1 0.1 iI- I I I I 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 x 103 8k-'-/ \) k -i i Figure 12. Modified Wilson Plot for Tube Number 455, Runs 76-83

0.5 0 04 0.3 E o E6. 0.2 TUBE 455 RUNS 94-103 N a. Ci =0.03249 0.1 0 0.2 0.4 06 0.8 1.0 1.2 I.4 1.6 AO 0.14 1 Ai l/ w O x 0 Figure 13. Mo e Wik Po fN4Figure 13. Modified Wilson Plot for Tube Number 455, Runs 94-103

0.5 0.4 l 0.y ~ o E Fi rTUBE 456 RUNS 13-22 x Ci 0.03107 0.4 0 Q2 0Q4 Q6 Q8 1.0 1.2 1.4 1.6 Di —i x 103 Di G 0.8CP iL 1/ 3 0)14 u T/i k' Figure 14. Modified Wilson Plot for Tube Number 456, Runs 13-22

TABLE II Calculated Values for the Inside Heat Transfer Coefficient Correlation Constant Tube No. Run Nos. Avg. Shell-Side Temp. Avg. Tube-Side Temp. C. ~F 1 OF 455 1- 8 355 503 0.02857 455 10- 17 357 470 0.02778 455 18- 26 352 416 0.02950 455 76- 83 399 508 0.02801 455 94-103 303 425 0.03249 456 13- 22 230 335 0.03107 average 0.02957 31

The equation for the shell-side heat transfer correlation, Equation (11) contains the constants C and P which must be evaluated 0 experimentally. This can be done by rearranging Equation (11) and taking the logarithms of both sides giving 0 eq [3~]e= C + P In (20) 1 /3 0.14 oL k [w] Equation (20) has the form D = C + P X E (21) where 0 e 1 D'1n 01/3 0.14 (22) [ - k ] [ j 0 and E = n [ eq ] (23) 32

1000 0 TUBE 455 a TUBE 456 Go gre 15. i H0 T o, 100 o AO 0 0 0 k \/Lp/ k IL 10 I I I 111 I I 1 1000 10,000 100,000 Deq G Figure 15. Shell-side Heat Transfer Correlation for a 2-Inch Fin Diameter, Type L/C Finned Tube in a 3-Inch Diameter Shell

Knowing the values of the functions D and E for a set of data, the constants C and P can be evaluated by placing a straight line through the data in a least square sense. The intercept of the line with the ordinate is C and the slope of the line is P. A computer program was prepared for The University of Michigan IBM 7090 digital computer. The input data to the program were the inlet and outlet temperatures and the flow rates for the shell-side and tube-side oils, the tube dimensions, the metal resistance, the polynomial constants for the physical properties and the average value of the inside heat transfer coefficient correlation constant. The shell-side heat transfer coefficient was c alculate d from 1 1 A A O O ~=h' U A.h. rfin A m (24) O O 1 1 m exp Knowing the flow rate and average temperature of the shell-side oil as well as the shell-side coefficient, the values of the Nusselt, Reynolds, and Prandtl numbers and the viscosity ratio for Equation (11) were calculated. The program next calculated the values of the function D and E and a least square subroutine computed the least square values for C and P. A total of 88 runs for the two monometallic aluminum tubes were evaluated. A portion of the data analyzed were tube-side Wilson plot data. The computer program, heat transfer data and calculated results are given in Tables XII - XV, Appendix C and the final shell coefficient results are presented in Figure 15. Using the least square line through the data, the shell-side coefficient becomes 0.905 1/3 0.14 h' D FDG [c 1 o eq 0 0115 P ] (25) k.0J k [ 0 0 0 with a standard deviation of + 24 per cent. Since the ratio of the external to internal heat transfer surface is approximately 17.4, an:error of + 24 per cent in the shell-side coefficient represents approximately a + 3 per cent error in the predicted overall heat transfer coefficient which is of the order of the per cent deviations in the heat balances. 34

The probable error in the measurement of bond resistance was determined by evaluating Equation (9) for all the shell-side coefficient correlation data. The bond area was based on the logarithmic mean between the inside and root diameters of the monometallic tube. Equations (19) and (25) were used in conjunction with Equation (7) to calculate the predicted overall heat transfer coefficient. The results of the analysis are given in Figure 16 and in Tables XVI and XVII, Appendix D. The average predicted bond resistance for the monometallic tube was 0.000000 hr. - sq.ft.(bond area) ~F/Btu with a standard deviation of 0.000065 hr.-sq.ft. (bond area) ~F/Btu. For the number of data, the 95 per cent confidence limits are + 0.000130 hr.-sq.ft (bond area) ~F/Btuo Bond resistances can, therefore, be measured for bimetallic finned tubes with the heat transfer apparatus to + 0.000130 hr.-sq.ft.(bond area)'F/Btu with a 95 per cent certainty. 35

0 TUBE 455 11Jw Ia TUBE 456 z H- 0.0002 z 00001 O 0 lL M M 0 o 00 0 O, (30o I 0 o0 ~ OLL 0 -000020 00 200 300 400 500 0 LIN) 0TWI FD cr 2 0.000 100 200 300 400 500 600 T -OF WALL Figure 16. Bond Resistance Error Analysis Using Data for Monometallic Tube Numbers 455 and 456

BOND RESISTANCE MEASUREMENTS Bond resistance data were taken on three type L/C bimetallic finned tubes with 14 BWG steel liners over a wide range of shell-side and tube-side temperatures and flow rates using the same equipment as was used in determining the shell- side and tube-side heat transfer correlations. The tube dimensions appear in Table I. Equations (19) and (25) were used to determine the tube-side and shell-side heat transfer coefficients, respectively, and Equation (7) was used to calculate the predicted overall heat transfer coefficient exclusive of bond resistance. Equation (5) was used to calculate the experimental overall heat transfer coefficient, and the experimental and predicted overall coefficients were substituted into Equation (9) to give the bond resistance in terms of the bond area. The bond resistance data are given in Tables XIX - XXI, Appendix E. An objective of this investigation was to use the model for bond resistance derived by Gardner and Carnavos(12) to examine the bond resistance data. Gardner and Carnavos gave Equations (26) and (27) for the change in the deformation of the fin base and liner from the fabrication condition with increasing temperature, assuming a uniform distribution of the initial contact pressure. dP i ( D+2 2 d (P P) t + (d - 2t) At u- (T -T)-in2r- ( 27) 2 liner o E P d2 - (d - 2t) t t The difference between Equations (26) and (27) is equal to the radial gap between the liner and fin base. g = uf- ut (28) 37

Since 0 (Tb Ta) = (Tfin- T) (29) d =2f (Tfin T) (T - Tat ( P C30) 2 a(T oin t liner 0 ) + (30) where ~(D2 2) 2 E ——. ={,~ Z- d+ V + 1]> (31) 2 2 f 2 2. 31)t E> ={ (D2 d2) f] ~ E P [d-d (d - 2t) Positive values of g indicate that there is no net contact between the fin base and liner and the contact pressure, p is zeros For positive values of g the bond resistance in terms of the bond area can be expressed -as rb = 12k (32) e Substituting Equation (30) into Equation (32) with p = 0 gives r O f (T T) -a (T r T ) } p (33) b d 24k ef fion o t liner o co e If the fabrication temperature T is taken as 70 ~F, the bond resistance for a given tube is a function of k, T, T and p for the model postun e Jinel fin. co lated by Gardner and Carnavos. Iie bon resistance, the liner temperature, and the average fin temperature can be calculated using the experimentally determined heat transfer correlations. The effective thermal conductivity and initial contact pressure cannot, however, be determined independently. If the effective thermal conductivity is taken as the conductivity of air at the bond temperature and the model of Gardner and Carnavos is assumed to be valid, the, initial contact pressure can be calculated by rearranging Equation (33) to give 38

24 k r aCf (Tfin- 70) - at (Tliner 70) - d b p = 34) co A computer program was prepared for The University of Michigan IBM 7090 digital computer to process the bond resistance data. The input data to the program were the inlet and outlet temperatures and the flow rates for the shell-side and tube-side oils, the tube dimension, the metal resistances, and the polynomial constants for the physical properties. Bond resistances were calculated using Equations (9), (19), and (25). The initial contact pressure was calculated for each run using Equation (34). Upper and lower limits of the contact pressure were also calculated based on an error in the bond resistance of 0.00013 hr.-sq.ft.(bond area)/Btu. The computer program and tabulated bond resistance results are given in Tables XVIII - XXI,.Appendix E. Figures 17, 18, and 19 present the calculated values of the bond resistance as a function of the liner temperature. The results given in Figures 17, 18, and 19 indicate the general trend only since as shown in Equation (33). the bond resistance for a definite initial contact pressure is a function of the average liner and fin temperatures as well as the effective thermal conductivity of the fluid (air) in the gap between the liner and the fin base. Average values of the initial contact pressures for the three tubes investigated are given in Table III. 39

TUBE 461 16 0 0 00 to 14 0 12 1 I o 0. 0 < 10 o 0 E, 8C i 0 r o0 6 60 0 w 0 z U) 03r~ 0 0 o 0 0 z0 0o0 0 O0 000 0%0 0 -2, I 0 100 200 300 400 500 600 LINER TEMPERATURE OF Figure 17. Bond Resistance Results for Bimetallic Tube Number 461 40

z9P =aqumN-aqnL oELeaui.EI.JOJ sTnsa9i aou:$sasaTS puog'81 a92nMl o 38nLVlt3dbAI3i 83NI009 009 oog 002 00Z 001 0.... I I I I. Z0 0 z0 m (r o o o z 0 C m -9 O01 o o( 0 arm O 0 0 m 0o 0 I 0 0 VI 91 Z9t 38n11

BOND RESISTANCE - HR. - SQ. FT. (BOND AREA) ~F / BTU x 10 Po Wo 0 I I I I 0 1 (C1D n Po o 0),mo c N 0 rl00 0,~~00 t moL I I 0 0 0 c80 - t o I I o 08 O0 or':00 0 0 0 0 CDA o~ 0

TABLE III Calculated Values for the Initial Contact Pressure for the Bimetallic Tubes Investigated Tube No. Average Initial Contact Pressure Standard Deviation lb. /sq. in. lb. /sq.in. 461 3477 523 462 4480 822 463 3138 696 average 3698 43

CONCLUSIONS AND DESIGN RECOMMENDATIONS Based on the analysis of the bond resistance data, the Gar-dner and Carnavos procedure for determining the bond resistance of integral high finned bimetallic finned tubes appears to be satisfactory. The results obtained for three such tubes indicated that the average initial contact pressure was 3700 lbs. /sq.in. This compares favorably with the value of 3500 lbs. /sq.in. recommended by Gardner and Carnavos for finned tubes in the annealed condition. Taking the initial contact pressure to be 3500 lb. /sq.in., and the fabrication temperature to be 70 0F, the bond resistance of an integral high finned tube can be calculated using Equation (35). d r = a (T -70)- a (T -70)- 3500) (35) b 24 k f fi t liner e To use Equation (35) to determine the bond resistance in a design calculation requires a trial-and-error calculation. If a value for the bond resistance is assumed,.the overall heat transfer equation can be calculated from 1 1 A A A A A 0 0 0 0 0 + ++rfin + +~ r + rfb + + r +fi r+ rb (36) A. h. A A A o o 1 1 fb b The mean temperature difference between the tube-side fluid and the air at the point in question is T = Th- T (37) m h a The liner temperature at that point is liner h - U X A X AT (38) liner h Ao o m h 44

and the average fin temperature at the same location in the exchanger is U XA X AT T = T + m (39) fin a A f + Once the values of T erand T are known, the bond resistance can be calculated using Equatlon (35) anB the calculated value compared with the assumed value. If there is insufficient agreement between the two values, the calculations should be repeated. To simplify the procedure for determining bond resistance, graphs were prepared giving the bond resistance of 2 inch O.D., 9 fins per inch integral high finned tubes for nine different combinations of the outside and the inside heat transfer coefficients as a function of the tube side fluid and the air temperatures. The graphs given in Figures 20, 21, and 22, are based on the tube dimensions given in Table IV. The values of the outside and inside heat transfer coefficients used in preparing the graphs span the range of normal air cooled heat exchanger conditions so that interpolation between graphs can be done to accurately predict the bond resistance of 2 inch diameter type L/C bimetallic finned tubes containing steel liners. 45

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IL o + r 0.0040 500 I I I I I I ~- 1500 1 I 500'-..,,, - - __ 450 4500 450 4r 400 400w D 1 I I I I I 1 400 1 I, 350 350 = Q0.0032 - -. _0 - - 300300 3 LL 350 0 Y I- e.3' 250o 250 c- w 200w ii / ~ 150 )a ~ ~ ~~~~~ ~ ~ ~~~ ~~~~~~: a../~ 0.0028 - __ 3000 - 2002 ISO I, /,- I00 - 50 -r -00 50 0 50 0 0.0024 -O200 - _4 z ~~~~~~~~~o.oo~, W~ ~ 0.0/- - -5 a ~~~~~~~~~~~~~~~~~150 w 0W o oo- - - - // u,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~p 0.00121 m0 ao 0.0008 ___ =200 1I000 0.0004 h/i/ 11 /hi flh 2 40 600 800 1000 Figure 20. Bond Resistances for a 2-Inch Fin Diameter, 9 Fins per Inch, Type L/G Finned Tube for an Effective Air-film Heat Transfer Coefficient of 5 Btu/hr. -sq.ft.- -F

0.0040 0.0036 500 "' ~"'-'"'~~ / 45500 0L~~~.0032450 450......I 0 LL __ 4500 400 4000 400 0.0028 I- I w W 3500r 350 C Ir 350 350 300C o 300 < M~,0.0024 _. 25C mO 3Q0j5 2500_uJ~~~~~~ 0w I ~ ~ _ - H -~ - __ __ Y 200H- __ __ __I 1 250:50 LL~~~~00020 1 1 ) [II I IA250~~~~~~~~~~~~~~~~~ OC 100 Q~~~~00 0. w 10016 __ __ _ (,..._. 30oo, I~~~~~~~~~~~~~S = 0.002,,,. ~ ~' Y r C)~~~~~ 0.0012 -:~~~~~~O- 00'- __0 __ 00~ o ix 11#1' 00000' ~ ~ ~ ~ ~~I~ "'"-5 0.0016 1o Z 0, Iz 1 - 10 l e* e-00 w~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_. 1- 50 a1. 1, z /,0 o / _/ 0.000 w 00" x Jo/ /0 ~~ 0.0012 /,/, _/' //,/___ __ __ __ __ /z 50 h~'i hi fi +r f 200 400 600 800 1Q00 200 400 600 800 1000 200 400 600 800 1000 TUBE-SIDE FLUID TEMPERATURE- 0F. Figure 21. Bond Resistances for a 2-Inch Fin Diameter, 9 Fins per Inch, Type L/C Finned Tube for an Effective Air-film Heat Transfer Coefficient of 8 Btu/hr. -sq.ft.-'

14 h, -rfo 0.0040 0.0036 H 0.0032 < I I I I_ __ __ __ 500 w "-~-.......~~~~ ~~~......... 5...... o- 0.0028 4 5 z'"~~~~~~~~~~~~~~~~U U- 45 U)500 1. 50 350 1 40( 0.0024 _ 4 4 35 - 350 300~~~~~ 3 —3000 0 c< 00 W X I- - 300"z a ~~~~~~~~~~~~~~250 U- 0 20C 0r 150 w' H 2'00 o 0.0012, _ OO z 100 50 0 50 0.0008 50 __ 10 0.000 4 0 ~T — - 50 - 200. f,,.rfi + If 1 hi 0~ ~ ~~ 200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000 TUBE - SIDE FLUID TEMPERATURE - OF Figure 22. Bond Resistances for a 2-Inch Fin Diameter, 9 Fins per Inch, Type L/C Finned Tube for an Effective Air-film Heat Transfer Coefficient of 14 Btu/hr.-sq.ft.- -

TABLE IV Description and Dimensions of the Tube Used in Preparing Figures 20-22 Outside diameter 2.00 in. Root diameter 1.0O 8 in. Liner diameter 1.00 in. Inside diameter 0.87 in. Fins per inch 9.0 Fin thickness 0.019 in. Liner wall thickness 0.065 in. Liner material steel Fin material aluminum Outside heat transfer area 3.622 sq.ft. /ft. Inside heat transfer area 0.228 sq.ft. /ft. Bond area 0.262 sq.ft. /ft. Fin area 3.398 sq.ft. /ft. Root area 0. 224 sq.ft. /ft. 49

NOMENCLATURE Ab heat transfer area at the bond between the liner outside diameter and the fin tube inside diameter, sq.ft. /ft. Af heat transfer area of the fins, sq.ft. /ft. Afb mean fin base metal heat transfer area, sq.ft. /ft. fb A. inside heat transfer area, sq.ft. /ft. Aie mean liner metal heat transfer area, sq.ft. /ft. A mean metal wall heat transfer area, sq.ft. /ft. m A- outside heat transfer area, sq.ft. /ft. o A heat transfer area of root portion of fin tube, sq.ft. /ft. b base contact length per fin, in. C. tube-side heat transfer coefficient correlation constant 1 C shell-side heat transfer coefficient correlation constant o c specific heat of oil, Btu/lb.- ~F p D outside diameter of fin, in. d outside diameter of liner, in. D volumetric equivalent diameter for shell-side of test eq equipment defined as 4 X free volume heat transfer area D. inside diameter of liner or monometallic tube, ft. 1 Ef modulus of elasticity of fin material E modulus of elasticity of liner material t g radial gap between fin tube and liner, in. G mass flow rate at minimum flow area normal to flow, lbs eIsq.ft. 50

h. inside heat transfer coefficient, Btu/hre-sq.ft. (inside area)- ~F 1 h outside heat transfer coefficient, Btu/hr.-sq.ft.(outside area)- ~F k thermal conductivity of oil, Btu/hr. -sq.ft. - ~F/ft. k thermal conductivity of fluid in the gap between liner and e finned tube, Btu/hr. -sq.ft. - ~F/ft. P fin spacing in. /fin or power to which Reynolds number israised in outside heat transfer correlation p contact pressure between fin base and liner, lbs./sq.in. p contact pressure as fabricated between fin base and tube, lbs./sq.in. Q mean of the shell-side and tube-side heat duties, Btu/hr. rb bond resistance, hr.-sq.ft.(bond area)- ~F/Btu Irfb metal resistance of the root metal of the fin tube, hr.- sq.ft. (mean metal area)- F /Btu r fin fin resistance, hr. -sq.ft. - ~F/Btu r gap resistance, hr. -sq.ft. (outside area)- ~F/Btu r f inside fouling resistance, hr. -sq.ft.(inside area)- ~F/Btu r fo outside fouling resistance, hr.-sq.ft.- ~F/Btu r. inside heat transfer film resistance based on outside area hr. -sq.ft. (outside area)- F /Btu r, metal resistance of the liner, hr.-sq.ft.(mean metal area)-F/Btu r metal resistance of a monometallic tube, hr. -sq.ft. (mean metal area)- ~F/Btu r outside heat transfer film resistance, hr.-sq.ft. - ~F/Btu o R"'overall heat transfer resistance exclusive of gap or bond resistance, hr. -sq.ft. (outside area)- ~F /Btu 51

t tube wall thickness, in. T ambient fluid bulk temperature or air temperature, ~F a tf mean fin thickness, in. Tfin average fin temperature, oF Th heating medium temperature or tube-side fluid temperature, ~F T mean liner temperature, oF liner T fin and liner temperature as fabricated, ~F o Uf radial displacement of fin, in. U overall heat transfer coefficient, Btu/hr.-sq.ft.- ~F U experimentally obtained overall heat transfer coefficient, exp Btu/hr -sq.ft.- DF U predicted overall heat transfer coefficient exclusive of Opred bond resistance, Btu/hr. -sq.ft. - ~F Ut radial displacement of liner, in. af thermal expansion coefficient of fin metal, in. /in. at thermal expansion coefficient of liner metal, in. /in. AT mean temperature difference between hot and cold fluids, ~F i-i viscosity, lb. /ft. -hr. or constant defined by Equation (31) v Poisson ratio of fin material V Poisson ratio of liner material fin efficiency, fraction 52

Subscripts i. inside o outside w wall 53

LITERATURE CITED 1. A. W. Brunot and F. F. Buckland, "Thermal Contact Resistance of Laminated and Machined Joints," Trans. ASME, Vol. 71, 1949, pp. 253-257. 2. N. D. Weills and E. A. Ryder, "Thermal Resistance Measurements of Joints Formed Between Stationary Metal Surfaces," Trans. ASME, Vol. 71, 1949, pp. 259-267. 3. W, B. Kouwenhoven and J. H. Potter, "Thermal Resistance of Metal Contacts," The Welding Journal (Research Supplement), Vol. 27, 1948, pp. 515-s - 520-s. 4. T. N. Cetinkale and M. Fishenden, "Thermal Conductance of Metal Surfaces in Contact," Proceedings of the General Discussion on Heat Transfer, The Institution of Mechanical Engineers and ASME, 1951, pp. 271-275. 5. M. E. Barzelay, K. N. Tong, and G. F. Holloway, "Thermal Conductance of Contacts in Aircraft Joints," NACA TN 3167, 1954. "Effect of Pressure on Thermal Conductance of Contact Joints," NACA TN 3295, 1955. 6. F. Boni, "The Design of a Liquid Metal Heated Bayonet Tube Steam Generator," Journal of the American Society of Naval Engineers, Vol. 70, 1958, pp. 231-243. 7. F. J. Mehringer, "Design, Fabrication, and Performance of the Duplex Heat Transfer Tube," U.S. Atomic Energy Commission Research Report KAPL-1797, 1957. 8. E. C. King and R. C. Andrews, "The Generation of Steam From Liquid Metal at High Heat Fluxes," American Institute of Chemical Engineers Heat Transfer Symposium, Preprint No. 5, 1953 Annual Meeting. 9. R. G. Wheeler, "Thermal Contact Conductance of Fuel Element Materials," presented at the Fifth Nuclear Congress, Cleveland, Ohio, April 7, 1959. 10. E. H. Young, et al., "Development of an Apparatus for the Measurement of Low Bond Resistances in Finned and Bare Duplex Tubes," Engineering Research Institute, University of Michigan, Report No. 48, Project 1592, 1957. 54

11. E. H. Young and M. L. Katz, "The Effect of Thermal Cycling to 350 ~F and 600 ~F on the Heat Transfer Performance of Integral Finned Tubes," AIChE Symposium Series, Vol. 24, 1959., also American Documentation Institute No. ADI 5859. 12. K. A. Gardner and T. C. Carnavos, "Thermal Contact Resistance in Finned Tubing," Trans. ASME, Journal of Heat Transfer, Vol. 82 (2), 1960, pp. 279-293. 13. Socony-Mobil Oil Co., Inc., Industrial Technical Bulletin "Aromatic Heat Transfer Oils, Mobiltherm 600, Mobiltherm Light9" 1957. 14. E. E. Wilson, Trans. ASME, Vol. 37, 1915, pp. 47-82. 55

APPENDIX A. PHYSICAL PROPERTIES OF MOBILTHERM LIGHT AND MOBILTHERM 600 56

1.04 - 0.64 - 0.068 1.00 0.60, 0.066 HEAT ~-~ HEAT LL CAPACITY o 3) 0.96 m 0.56 Z 0.064 H3 H 0.92 > 0.52 0.062 THERMAL (..> -- > CONDUCTLL Q IVITY a. _ n 0.88-Z 0.88 - 048 o 0.060 -1-I: I~ I SPECIFIC 3~ GRAVITY 0.84 - 0.44 - 0.058 0.80L 0.40 - 0.056 I i 100 200 300 400 500 TEMPERATURE OF Figure 23. Physical Properties of Mobiltherm Light Aromatic Heat Transfer Oil 57

1.04 - 0.65 0.068 U1.00 0.60 0.066 HEAT CAPACITY L1 u. LL I\0 I I. n0.96 >0.55 0.064 0 4THERMAL 0.92 88 - 0.50 g — 0.062 o > CONDUCTIVITY w Qw 0.88 0.45 - 0.060 Uj SPECIFIC 3~ GRAVITY:E 0.84 0.40 -- W 0.058 0.80 - 0.35 0.056 I I I I 100 200 300 400 500 600 TEMPERATURE OF Figure 24. Physical Properties of Mobiltherm 600 Aromatic Heat Transfer Oil 58

100 50 40 0 20O o 10 z.05 1H 0 4.0 3.0 > MOBILTHERM 1.0 OIL LIGHT 00 150 200 300 400 500 600 TEMPER0.8ATURE, 0.659 0.50 0.40 0.301 100 150 200 300 400 500 600 TEMPERATURE. OF Figure 25. Viscosities of Mobiltherm Light and Mobiltherm 600 Aromatic Oils 59

APPENDIX B. MODIFIED WILSON PLOT COMPUTER PROGRAM AND WILSON PLOT DATA AND CALCULATED RESULTS FOR TUBES NUMBERS 455 AND 456 60

TABLE V Modified Wilson Plot Computer Program Written in The University of Michigan Algorithm Decoder Language WILSON PLOT UCTERMINATION OF INSIDE COEFFICIENT CONSTANT PRINT FORMAT HEADS DIMENSION TSICTI00), TSOC(I00), TTICI(100, TTOC(LO0), THROUGH OUT, FOR J.l,1 J.G. RUNS TSIF(IOO~~t TSOF(100), ~ TTF~l0) TTFIO WSHEL( OO2H OUT I SIFIIOOT, ASOETIOTI, TAIFTITOT, TOTFIIOTI A SMELIITTI, OO PRINT FORMAT RESLT2, R()1, QAVG(J)I, PERDET), LMTA(J), UO(J), 2 WTUBE100), QTUBE(100, CPT(100}, VISSI00DI, VIST 100I 1 RES(J)T RET(J), PRSHIJ), PRTU{J) 3 KTUBE100), KSHEL(100, PRSH(O100), RVISSI(OO)T, RVIST(1000), 0.1 4 NUSHEL(100, NUTUBEI(100), HOPR(100), HIP(tLO), RFININ(100), DELTA N I S SCALE(), PRTU(O0), TWIA(I00), TWIR(10O0), VISWI(10O0), MAG = 0 6 HI(0I,) RLT(IOD0), ES(10D0), VISWA(I0), FUNA(100), OMEGA TWIA(N) = TTAV=N) FUNB(IO0), FUNC(IO0), UO(T00), RHO(IO0), RFIN(I0), BETA VISWIN) = EXP.(K(7) + L(7)/TWIA(N) + MI7)/TW IA(N).P.2 + A TW(OIIO);,1K(81;,LI(8), MIMI, NNC'IT. OT(8), FIA8 TTAV(100TTII I NN(7)/TWIA(N)oP.3 A T(7)/TWIA(N).P.4 P(7)/TWIA(N).P.5 + 9 TSAV(100)T QO 8)O B(,)I HO(100), UM121, MUOT)t G RAPH(900I0) 1010 TWIA(NPO DIMENSION QoTHEL(00), QAVG(100I, PERDE(100), LMTAIO(100), HIP(N) = CIRET(N}.P.O.8.PRTU(NI.P.O.33333*KTUBE(N).VIST(N) I XAMT(OI00, CESIIOOT, R(I00I I.P.O.14)/(VISWIIN).P.O.I14DIAT) INTEGER RUNS, TEMP, N, J, R, RFININ(N) = K(8) + L(8)/HIP(N) A M(B)/HIP(N).P.2 + I POWA, POWR, MAXVA, MAXVC, SH, LIH, SV, LIV, SCALE, I NN(8)/HIP(NI.P.3 O(8)/HIPN).P.4 + P(8)/HIP(N).P.5 + I 0, IIER, FIST, LAST I Q(8)aIHIP(N).P.6 BEGIN READ FORMAT INFO, RUNS, TUBE, TEMP, ITER, XAOT, XAI, XAM, RM, HI(N) = I/(T/HIPN) + RFININ(N)) [ CI, REP WHENEVER TTAV(N).G. TSAV(N), TRANSFER TO KAPPA PRINT FORMAT TITLE, TUBE, RUNS TWIB[N) = TTAVINI + (QAVG(N)/CXAI.HIIN))) THROUGH INPUT, FOR J=1t 0, JG. RUNS TRANSFER TO PHI INT READ FORMAT TAT, TSICIJ), TSOCIJ), TTICIJT, TTOC(J)I, KAPPA TWII(N) = TTAV(N) -TQAVGSN)/(XAITHI(N))) I WSHEL(J), WTUBE(J), R(J) PHI WHENEVER.AS. (TWIA(N) - TWIB(N)).LE. 0.2, TRANSFER TOEIGHT THROUGH NOR, FOR J 1, 1, J.G. 8 TWIAIN) I TICT(N) REND FORMAT CONSTA, 6(1), LIJ), MIJSt NNTJ) TRANSFER TO BETA NOR READ FORMAT CONSTB, O(J, P(J)1 Q(J1) EIGHT WHENEVER T0AV(N) G. TSAV(N), TRANSFER TO NINE READ FORMAT OATAC, ODIAS, AFS, AFT, DIATTTEMP, NAMEA, TWO(N) = TWIB(N) tIAVG(N)TRM/XAM I NAMEA, NAMEC, NAMED TRANSFER TO TEN PRINT FORMAT FLUIDS, NAMEA, NAMEA NINE TWO(N) =TWIB(N) - (QAVG(N)eRM/XAM) PRINT FORMAI FLUIDT, NAMEC NAMED TEN VIS DINI A LECEK(6) LI6TTAN A /TWO(N).P.2 A PRINT COMMENT N-$ I NN(6)/TWO(N).P.3 + O(6)/TWO(N).P.4 * PI6)/TWO(N.P.S + PRINT FORMAT HEDA 1 Q(IC/TWO(N).P.o ) PRINT FORMAT INPUTA, RUNS, TUBE, TEMP, ITER, XAO, XAI. XAM, RHON) = (I/UO()) - (XAO/IXAIHI(N))) - (XAORM/XAM) [ RM, CI, REP RFIN(N) A K(5) + LT5)RHOCN) + M(5)eRHO(NI.P.2 + PRINT COMME.T S-A I NN(SI IRHO(N).P.3 + O(5)TRHO(N)TP. 4 PRINT FORMATHEDB 1 + P(5)RHO(N).P.5 + Q(5):RHO(N).P.6 THROUGH NOIRTH, FOR J = I 1, H.G. A HOPR(N) = I/(RHO(N) - RFIN(N)) NORTH PRINT F0 INPUT8, J, K(J)6 L(JST MIJ), NN(J), OJ), PFJ), KVISS(N) = VST/ISAOT)N TI(JS) RVIST(N) = VIST(N)/VISWI(N) PRINT COMMENT S-$ HO(N) = [/RIO(NI PRINT FORMAT HEDC NUSHELIN) - HOPR(N)O.IAS/KSHELTN) PRINT FORMAT INPUTC, DIAS, AFS, AFT, DIAT NUTUE(N). = HIP(N)DIAT/KTUBE(N) PRINT COMMEiT S-S FUNAIN) T {CIVISS(N).P.O.I4mXAO)/IHIPIN)Tv ISWOTN).P.O.14XAI PRINT FORMAT HED 1 ) THROUGH FOUK, FOR J=I,I,JG.RUNS FUN(N) = (I/UDION) - RMeIXAO/XAM) - RFIN(N) - RFININTN)T(XAO/ FOUR PRINT FORMAI DATAA, RIJ), TSIC(JIT, TOCIJ), TTICTJ),TTOCIJ), I XAI)}O(VISS(N).P.O.I/VISWO(N ).PN..O.I) I WSHEL(JI, WRU8E(J) WHENEVERFUNA(N).G. MAG PRINT FORMAT NOTE, ITEMP MAG FUNANI) N0 1 MAGN = FUNBIN) ALPHA WHENEVER TEiP.E. 1, TRANSFER TO GAMMA OTHERWISE TSIF(N) = TI1CiN) CONTINUE TSOFIN) = T$OCIN) END OF CONDITIONAL TTIF(N) ATIC(N) WHENEVER N.E. RUNS, TRANSFER TO ELEVEN TTOF(N) = TTOCAN) N = N I TRANSFER TO SIGMA ~~~TRAIT~~~~~~~NSFER~ T~~o~~ STOI~AT ~TRANSFER TO OMEGA GAMMA TSIFIN) = 1.8. TSICIN) 32 ELEVEN EXECUTE LSTSQ.(FUNA, FUNB, RUNS, B, 1) TSOF(N) A 1.8 L TSOC(N) + 32 CIC 1.0/ACIT TTIF(N) 1.8 TTIC{N) 32 TSTIFIN) A1 18. TSIC NA32 N )PRINT FORMAT SUE ED, B(O), CIC TTOF(NM 1.8.TTOC(NI 1 32 FAITFORMA MAR SIGMA TSAV(NI. 0.0 I TSIF(N) A TSOF(N)) THROOSH CATFOR S = 1, 1, SO. TONS THROUGH CAT, FDR J = 1, 1, J.G. RUNS TOTAV(N)A 0.5 L~ TTIF(N) + TTOFTNT CAT PRINT FORMAT DOG, R(J), FUNA(J), FUNB(IJ) CPS(N). K(I) L(I)TSAV(N) + MII SAV(N).P.2 WHENEVER (.AS.(CI - CIC))/CIC.LE. 0.0005, TRANSFER TO BLUR + NANTII TSAV(N).P.3 A O(IIT[ SAV(N).P.4 WHENEVER 0.E. TER, TRANSFER TO BLUR CPT(N) = K(LI + L2(I.TTAV(N) S M(2)-TTAVIN).P.2 I +NNA2)CTTAVIN).P.3 A 0(2).TTAV(N).P. CI CIC QSHEL(N) =.SHEL(NTCPS(N).A.S.TTSOF(N)-TSIF(N)) TRANSFER TI DELTA QTUBETN) = ATUBE(NI.CPT(N)T.AB S. (TTOF{N)-TTIFTNT BLUR PRINT FORMAT HAEOT QAVG(N) = 0.5 ~ QSHEL(N) + QTUBE(N)) lERbI(Nl A 0.5 I StHROUGH 0ED, FOR J = I, t, J.G. TUNS PERDE(N (00QTUOE(N -QSH ELN /T(N )))/ ITENTUBE(N ) + QSHEL(N)) BED PRINT FORMA TEMP RI, TSA, TO(J), TIB(J).TTAV(J XAMT(N) =.ABS. (TTIAV(N).- TSAVIN)) PRINT FORMAT EO PRINT FORMAT HEACDD'RJ~TA() W() wBJTV DELA =.ABS.(TTIF( NI-TSQF()NJ THROUGH OEB,.FOR J U 1.. NS DELB ~.A$S. ITTOFIN)-TSIFIN)) ~~~~DELI =.~~ A,~S TTT~OFT~NT-TSIFI~ DOEB PRINT FORMAT RESLT4, RJSMIPT J. RFININS(J),HI(J),OPT, WHENEVER.ABS. (DELA - DELB).L. 0.3 1 FNIHO, N L, NTEI LMTA(N): — XAMT(N) ~~~~~~~~~~~~~~~~~~~~I RFIN(IJ) HO(JJI NUISHEL(J)t NUTUBEIJ} ~~LMA~~~~~~TAI(~~~~~~NI A)~~~~~ AIM~~iCPRINT FORMAT VISCO OTHERWISE OTTERWI SE THROUGH SCHOOL, FOR J = C, I, J.G. RUNS LATTAT SELA -DELB)/TELOG.TOELA/DELB)) MSCHOOL PRINT FORMAT RESC.TA, R(JI, ISS(JS, VISWO(J), RVISSIJ), END OF CONDITIONAL I VISS, R 1155 [ VISr(IJ) Vl~wl(J), RVIS/IJ) WHENEVER LMTA(N).. XAMT(N)i, LMTA(N) - XAMTN) PRINT FORMAT RESLT3, CIC, B(OT UO{N) = { AVG{N))/ XAO~LMTA(N)) UOINI I I IWOSINT/ XAO.LMT.NT POWA.ARBS.TELOG.(MAG)/2.303} VISSNA = EXP11(6) A L(6)/TSAVLNT M16)/TSAV(N).P.2 + O ASEL.AGN/.33 POWB =.ABS.(ELOG.(MAGN)/2.303) I NN(6)/TSAV(NI.P.3 + O(6)/TSAV(N).P.4 + Pt6)/TSAV(N).P.5+ MAXVA MAG.lo.P.(POWA +IC I 1(6)/TSAV(NT.P.6) MARA CR 1 POA I MAXVB - (MARYa + 1111O.O.Po(POWA + [1 VISTIN) = EXP.(K(7) + L(7)/TTAV(N) + M{7)/TTAVTNT.P.2 +T I NN(7)/TTAVN)P + /T TAIN 3 TTAV(N).NIP. + PI7)/TTAV(N).P.5 TO MAC MAN /1.A.P.(PO + IT I QI7)/TTAVIN)P. SCALEO I SCALE() = KSHEL(N) = K13) R L(3) TSAATNT 0 M131.TSAV(N).P.Z S SCALET PIAM I NN(3TeTSAV(N).P.3+ 0(3)TSAV(N).P. SCALE - P. WB KTUBE(N) A 4)+ALTO4.TAVTNT MA4OTOTAATNT.P.2 I SCALE(Z) PO NN(4)T.TTAV(N).P.3 A O4)'TTA VNT.P.4 SCALEIN. KES(N) ~~~~~~~~~~~~~~~~~~~~~~~~~SCALE(4 PW RES(N) = TOIAS.WSHEL(N)T/(AFSVISS(N M10.0.0 RET(N) (DLA011WTUBE(N))/(AFT.VIST(N) MITO) - B0o PRSH(N) ~~~~~~~~~~~~~~~~~~~~~~~~~~~nU(O) - Bo{O PRSIN) = (LPSN)VISS(N)/ SHELN MA PRTUIN) ~~~~~~~~~~~~~~~~~~~~~~UM(J) MAxvB PRTUON = (CTF(N).VIST(NT)/KTUBE(N MUDI} - 8(0 + (LMAXVBD WHENEVER N.E. RUNS, TRANSFER TO XRAY ENEVEM. MA N P N * 1 ~~~~~~~~~~~~~~~~~~~~~~~~~WHENEVER MU([).O. NAXVO N = NA+ ISA Mull NAGN - MUtii TRANSFER TO ALPHA RASFER T TROD XRAY ~ RN OMA ED TRANSFER TO TROD XRAY PRINT FORMAT HEAOA OTHERWISE THROUGH CHI, FDOR J=,l, J.G. RUNSINDT CHI PRINT FORMAT RESLTI, R(J), TSIFIJ), T$OF.J), TTIFIJ),TTOFJ).E CONTINUE I WSHEL(J), ENOF CONDITIONAL IAS HEL, JE, QSHEL(J), ATUBE(J) L6H 1 MAXVC + [ 6[

TABLE V (Continued) OH 5.O/INMAXVDUID.O.P.POWB) LIV - MAXVA + I SV - 10.01(MAXVB.1T.O.P.POWA} EXECUTE PLOI1.(SCALE: LIH, SH, LIlX, SV) EXECUTE PLOT2.TGRAPH, MAXB. O, MAXVDT, O) EXECUTE PLOT3. (15., FUNATI), FUNBSI), RUNS) EXECUTE PLOT3. ($XSt Unt(O), MU(To), 2) PRINT FORMAT NANE EXECUTE PLOT4.(36, OROI PRINT FORMAT ABSS, POWA NOMENCLATURE PRINT FORMAT TRANS, POWU LIH - [ SH - 50 AFS SMELL-SIDE FLO —AREA - SOFT LIV = 1 AFT TUBE-SIDE FLOW AREA - SOFT ST T100 CONSTANTS FROM LEAST SQUARE SUBROUTINE EXECUTE PLOTI.(SCALE, LIH, SH, LIVT SV) CI INSIDE MEAT TRANSFEA COEFFICIENT CORRELATION CONSTANT EXECUTE PLOT2.TORAP, MAXVTU, 0, MARXV, 0) CIC CALCULATED VALUE OF INSIDE HEAT TRANSFER COEFFICIENT CONSTANT CPS SHELL-SIDE SPECIFIC}HEAT - TU/1LB-F EXECUTE PLOTS. T55S, FUNATTI, PUNS))), RUNS) CPS SMELL-SITE SPECIFIC NEAT - STUlLS-F EXECUTE PLOT3.'SA, UNTO.), MU(OIT), 2) CPT TUBE-SIDE SPECIFIC HEAT - BTU/LB-F PRINT FORMAT NAME DIAS SHELL-SIDE EQUIVALENT DIAMETER - FT EXECUTE PLOT4.(4A, ORD) DIAT INSIDE DIAMETER OF TUBE - FT PRINT FORHAT ANSS, POWA FUNA FUNCTION A PRINT FORMAT TRANS, POWB FUNS FUNCTION PRINT COMMENT 515 HIP INSIDE HEAT TRANSFER COEFFICIENT - BTU/MR-$QFT-F VECTOR VALUES INFO - N 15, C5S, 215 3F10.N, 2ElO.4, FIO.2 eS Hi INSIDE HEAT TRANSFER COEFFICIENT(INCLUDES INSIDM E'FI RESISTANCE VECTOR VALUES TITLE - N 75HIWILSON PLOT DETERMINATION OF THE IF ANY) BTU/HR-SQFT-F INSIDE HEAT-TRANSFER COEFFICIENT FOR TUBE CS, 2TH, NUMBER OF MOPR SHELL-SIDE HEAT TRANSFER COEFFICIENT - RTU/HR-SQFT-F U RUNS IS 13 -A MT SHELL-SIDE HEAT TRANSFER COEFFICIENT (INCLUDES RFINM) - TU/NR-SQFT-F VECTOR VALUES DATAT - N 4FIO.3, 2FIO.OT 57, 13.K POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES VECTOR VALUES CONSTA = N 4E5.85 KSEHEL THERMAL CONDuCTIVITY OF SHELL-SIDE FLUID - TUI/HR-SQFT-F/IFT VECTOR VALUES CUNSTR - S 3ETT.8R- KTURE THERMAL CONDUCTIVITY OF TUBE-SIDE FLUID - STUAHR-$XFT-F/FT VECTOR VALUES UTTAC -S 4EE.5T, CT, 4CR 6 S L POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES VECTOR VALUES HEADA - N 101HI RUN TSIF TSOF LMTA LOGARITHMIC TEMPERATURE DIFFERENCR - F TTIF TTOF W SHELL A TUBE I SHELL M POLYNOMIAL CUNSTANT FUR PHYSICAL PROPERTIES 1 U TUBE /,5 NN POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES VECTOR VALUES SUE - N 6HZAFTER I3S.25H ITERATIONS, INTERCEPT NUSHEL SHELL-SIDE NUSSELT NUMBER I IS E15.X, 8H, CI IS F11..8 NUTUBE TUBE-SIDE NUSSELT NUMBER VECTOR VALUES RESLTI - 111, 4FtO.3, 2FI.OO, 2F15.0 *S U POLYNOMIAL CONSTANT FOR PHYSICAL'PROPERTIES VECTOR VALUES HEAD8 = N 86HM RUN' AVG PER 0EV L P POLYNOMIAL CONSTANT FOR PHYStICAL PROPERTIES I HTD UO RE SHELL RE TUBE PR SHELL PR TUBE /-S PERDE PER CENT DEVIATION IN HEAT BALANCE, VECTOR VALUES RESLT2 - $ 16, F10.0, 3FO0.3, 2FrO.O, 2FIO.3 -S PRSH PRANDTL NUMBER OF SHELL-SIDE FLUID VECTOR VALUES RESLT3 - N 29H2WILSON PLOT CONSTANT EQUALS PRTU PRANDTL NUMBER OF TUBE-SIDE FLUID 1 P10.8, l9H,' INTERCEPT EAUALT E/5o8 eS R5 II ~~~~~~~F10.8, 19H -INTERCEPT EQP~UALS E15.8~ ~POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES VECTOR VALUCS MARIE - S 66HO RAN FUNCTION A OUTS AVERAGE OF SHELL-SIDE AND TUBE-SIDE HEAT FLUXES - RTU/HR I FUNCTION 0O QSHEL SHELL-SIDE HEAT FLUX - BTU/HR VECTOR VALUES DOG - N IA, 2E20.8 eS QTUBE TUBE-SIDE HEAT FLUX - BTU VECTOR VALUES HEDA $''BHORUNS TUBE TEMP ITER XAO RES SHELL-SIDE REYNOLDS NUMBER I XAI XAM RN CI REP / *$ RET TUBE-SIDE REYNOLDS NUMBER VECTOR VALUES INPUTA - $ 15, C5, 215, 3F10.4, 2E12.4, F12.4-N RFININ FIN RESISTANCE OF FINS INSIDE OF TUBE IF ANY - HR-SQFT-F/BTU VECTOR VALUES HEDB - N TIOHO NO K RFIN FIN RESISTANCE OF EXTERNAL FINS - HR-SQFT-F/BTU I L n NN 0 P RM METAL RESISTANCE - HR-sQFT-F/BTU I Q / S TSAV AVERAGE SHELL-SIDE FLUID TEMPERATURE - F VECTOR VALUES INPUTBS= $ 15, 7Et5o8 S TSIC INLET SHELL-SiDE FLUID TEMPERATURE - F OR C VECTOR VALUES HEOC = 48Hn DIAS AFS AF TSIF INLET SUELL5IE FLUID TEMPERATURE - F S T DIAT / S TSOC' OUTLET SHELL-SIDE FLUID TEMPERATURE - F OR C VECTOR VULUES INPUTC - N 4E12.5 S TSO ~~~~~~~~~~VECTOR VALUES INPUTC $~ 4EI~2.5 -~ TSOF OUTLET SHELL-SIDE FLUID TEMPERATURE - F VECTOR VALUES HEADT = N 45HI RUN TSAV TWALL 0 TAALL TTAV AVERAGE TUBE-SIDE FLUID TEMPERATURE - F 1 1 TTAV / -N' TI II I ~~~~~~~~~~~~~TTAV / ~) ~-s~~~ T~TIC INLET TUBE-SIDE FLUID TEMPERATURE - F OR C VECTOR ViLUES TEMPA S l 4F10[O.3 eS TTIF INLET TUBE-SIDE FLUID TEMPERATURE - F VECTnR VALUES HEADD = N 89H1 RUN HI PRIME RFIN IN TTOC OUTLET TUBE-SIDE FLUID TEMPERATURE - F OR C I HI' PRIME RFIN OU.T. HO NU SHELL NU TUBE /eS TTOF OUTLET TUBE-SIDE FLUID TEMPERATURE - F VECT "ES RESLT4 N 15, F10.3, E12.4, 2F10.3, E12.4, TWIA.TWIB INSIDE TUBE-WALL TEMPERATURE - F I SF1) TEO OUTSIDE TUBE-WALL TEMPERATURE - F VEC -LUES VISCO - N LHK S35, 22H VISCOSITIES' LB/FT-HR / UO OVERALL HEAT TRANSFER COEFFICIENT - TU/HR-SUFT-F 95 AUN VISC. SHELL VISC SH WALL VISS/VISSW VI VISS SHELL-SIDE FLUID VISCOSITY -LB/FT-HR R 5. TUBE VISC TU WASLL VII VC S MISTAL / XS VI IST TUBE-SIDE FLUID VISCOSITY - LB/FT-HR IVECTOR VALUES RTO AL VT 15, 6IT15.4 / VISVI VISCOSITY AT INSIDE TUBE-WALL TEMPERATURE - LB/FT-HR VECTOR VALUES FLUIDS - N 21HOSHELL SIDE FLUID IS 2C6A VISWO VISCOSITT AT OUTSIDE TUBE-WALL TEMPERATURE - LB/F-HR VECTOR VALUES FLUIDT - N 20HOTUBE SlOE FLUID IS 2C6 aS WSHEL SHELL-SIDE FLUID FLOW RATE - LB/HR VECTOR VALUES NOTE.- 42HO NOTE - INPUT DATA TEMPERATURES A WTUBE TUBE-SIDE FLUID FLOWRATE - LB/HR I RE IN CS N$ XA! INSIDE HEAT TRANSFER AREA -SOFT VECTOR VALUES HED - N 66HI RUN TSI TSD TTI XAM MEAN METAL HEAT TRANSFER AREA - SOFT TTO W SHELL W TUBE /$ XAO - OUTSIDE HEAT TRANSFER AREA - SOFT VECTOR VALUES OATAA - S 16, 4F10.3, 2F10.O 5S VECTOR VALUES ORD - N FUNCTION B X TEN.P.E -S VECTOR VALUES NAME - $ IHIS46, 31H FUNCTION B VERSUS FUNCTIO INA A $ VECTOR.VALUES ABSS - S UHO S47, 20H FUNCTION A X I.OP. I1Is VECTOR VALUES TRANS - S IHO S56, 4H E = 12 *S TRANSFER TO BEGIN ENO OF PROGRAM 62

TABLE VI Wilson Plot Data and Calculated Results for Tube Number 455, Runs 1-8 SHELL SIDE FLUID IS MOBIL LIGHT TUBE SIDE FLUID IS MOBIL 600 RUNS TUBE TEMP ITER XAU XAI XAM RM CI REP 6 455 0 10 19.8500 1.1400 1.3100.9340E-04.2800E-01 1.0000 NO K L M NN O P Q I.38925000E 00.44750000E-03 -.00000000E 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 2.34400000E 00.463333J2E-03 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.0000000OE 00 -.OOOOOOOOE 00 -.0000000OE 00 3.67977499E-01 -.197750U0E-04 -.00000000E 00 -.COOO~OOOE 00 -.OOOOOOOOE 00 -.00000000E 00 -.OOOOOOOOE 00 4.71699999E-01 -.21000000E-04 -.00000000E 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00'-.OOOOOOOOE 00 -.OOOOOOOOE 00 5 -.20489551E-03.10464268E 01 -.52113342E 02.54997295E 03.32380452E 05 -.75056534E 06.OOOOOOOOE 00 6 -.21480229E 01.14160692E 04 -.27029259E 06.32850279E 08 -.20186315E 10.45553047E 11.OOOOOOOOE 00 7 -.29052144E 01.22908387E 04 -.40461752E 06.38134658E 08 -.70443591E 09.OOOOOOOOE 00.OOOOOOOOE 00 8.OOOOOOOOE 00 00000000E 00.00000000E 00.OOOOOOOOE 00.OOOOOOOOE 00.OOOOOOOOE 00.OOOOOOOOE 00 DIAS AFS AFT DIAT.36600E-01.28800E-01.37950E-02.69500E-01 RUN TSI TSO TTI TTO W SHELL W TUBE 1 352.810 359.200 507.330 494.230 34760 15250 2 352.400 358.670 507.630 493.800 34460 14080 3 352.520 358.300 507.860, 493.630 34800 12800 4 352.290 357.710 510.330 495.350 34600 11820 5 353.140 358.630 519.750 503.150 34350 10720 8 353.070 357'780 514.060 497.160 34500 9025 NOTE - INPUT DATA TEMPERATURES ARE IN FAHR. RUN TSIF TSUF TTIF TTOF W SHELL W TUBE Q SHELL Q TUBE 1 352.810 359.200 507.330 494.230 34700 15250 121634 115076 2 352.400 358.670 507.630 493.800 34460 14080 118479 112162 3 352.520 358.300 507.860 493.630 34800 12800 110286 104.917 4 352.290 357.710 510.330 495.350 34600 11820 102789 102163 5 353.140 358.630 519.750 503.150 34350 10720 103439 103385 8 353.070. 357.780 514.060 497.160 34500 9025 89096 88199 RUN Q AVG PER DEV LMTD UO RE SHELL RE TUBE PR SHELL PR TUBE 1 118355 -2.771 144.749 41.192 32430 197132 12.241 13.338 2 115321 -2.739 145.147 40.026 32144 181956 12.258 13.341 3 107602 -2.495 145.294 37.309 32445 165436 12.262 13.340 4 102476 -.305 147.789 34.932 32205 154188 12.277 13.249 5 103412 -.026 155.499 33.503 32087 145173 12.245 12.888 8 88647 -.506 150.103 29.752 32167 119165 12.262 13.131 AFTER 7 ITERATIONS, INTERCEPT IS.93935383E-03, CI IS.02857228 RUN FUNCTION A FUNCTION 8 1.53210098E-03.19634040E-01 2.56833798E-03.20690982E-01 3.61373201E-03.22365588E-01 4.65218849E-03.23906303E-01 5.69611913E-03.25321983E-01 8.80781739E-03.29173537E-01 RUN HI PRIME RFIN IN HI HO PRIME RFIN OUT HO NU SHELL NU TUBE 1 948.285.0000E 00 948.285 1011.027.3510E-02 222.244 607.238 1077.180 2 885.951.0000E 00 885.951 1278.823.3133E-02 255.428 767.964 1006.351 3 820.353.0000E 00 820.353 1154.449.3297E-02 240.227 693.246 931.848 4 772.636.0000E 00 772.636 945.919.3619E-02 213.864 567.948 878.278 5 723.315.0000E 00 723.315 1067.194.3423E-02 229.356 640.948 824.652 8 622.017.0000E 00 622.017 1136.054.3322E-02 237.951 682.203 707.738 63

TABLE VII Wilson Plot Data and Calculated Results for Tube Number 455, Runs 10-17 WILSON PLOT DETEN'INATION OF THE -INSIDE HEAT-TRANSFER COEFFICIF#T FOR TUBE 455 NUMBER OF RUNS IS B _$HELL SIDE FLUID.S MOBIL LIGHT TUBE.SIDE FLUID tS MOBIL 600 RUNS TUBE TEMP ITER XAO XAI XAM RH CI REP 8 455 0 10 19.8500 1.1400 1.3100.9340E-04.2800E-01 1.0000 NO K L M NN 0 P Q I.38925000E 00.44750000E-03 -.OO,00OOOE 00 -.00000000E 00 -.OOOOOOOOE O0 -.00000000E 00 2.34400000E 00.46333332E-03 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -,00000000E 00 3.67977499E-01 -.19775000E-04 -.OOOOOOOOE 00 -.00000000E 00 -.00000000E 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 4.71699999E-01 -.21000000E-04 -.00000000E 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.00000000E 00 5 -.20489551E-03.10464268E 01 -.52113342E 02.54997295E 03.32380452E 05 -.75056534E 06.OOOOOOOOE 00 6 -.21480229E 01.14160692E 04 -.27029259E 06.32850279E 08 -.20186315E 10.45553047E 11.OOOOOOOOE 00 7 -.29052144E 01.22908387E 04 -.40461752E 06.38134658E 08 -.70443591E 09.OOOOOOOOE 00.OOOOOO000000E 00 8 OOOOOOOOE 00.OOOOOOOE 00,0OOO0OOE 00.OOOOOOOOE 00.OOOOOOOOE 00 00OOOOOOOOE 00.000d00E 00 DIAS AFS AFT DIAT.36600E-01.28800E-01.37950E-02.69500E-01 RUN TSI TSO TTI TTO W SHELL W TUBE 10 352.820 357.400 473.500 462.910 34300 14660 11 353.590 357.980 474.210 463.700 34300 13350 12 351.610 355.930 473.780 462.980 34300 12700 13 359.670 363.290 417.270 466.270 34150 11520 14 358.570 362.440 475.760 464.760 33860 10890 15 355.490 359.040 476.800 464.680 34500 9850 16. 358.060 A61.540 482.000 469.310 35000 9160 17 358.640 362.030 492.740 478.560 34450 8150 NOTE - INPUT DATA TEMPERATURES ARE IN FAHR. RUN TSIF TSOF TTLF TTOF W SHELL W TUBE Q SHELL Q TUBE 10 352.820 357.400 473.500 462.910 34300 14660 86113 87085 11 353.590 357.980 474.210 463.700 34300 13350 82586 78753 12 351.610 355.930 473.780 462.980 34300 12700 81136 76949 13 359.670 363.290 477.270 466.270 34150 11520 68118 71291 14 358.570 362.440 475.760 464.760 33860 10890 72146 67308 15 355.490 359.040 476.800 464.680 34500 9850 67254 67106 16 358.060 361.540 482.000 469.310 35000 9160 67022 65605 17 358.640 362.030 492.740 478.560 34450 8150 64290 65760 RUN Q AVG PER DEV LMTD UO RE SHELL RE TUBE PR SHELL PR TUBE 10 86599.561 113.068 38.584 31940 163046 12.273 14.930 11 80669 — 2.376 113.142 35.919 32027 149013 12.249 14.889 12 79042 -2.648 114.580 34.753 31767 141366 12.321 14.920 13 69704 2.276 110.249 31.851 32621 130334 12.051 14.737 14 69727 -3.469 109.716 32.016 32219 122319 12.085 14.818 15 67180 -.110 113.421 29.839 32406 110892 12.197 14.792 ___ 16 66313 -1.069 115.794 28.850 33211 105563 12.109 14.533 17 65025 1.130 125.238 26.157 32758 98404 12.090 14.033 AFTER 5 ITERATIONS. INTERCEPT IS.83635468E-03. CI IS.02778355 RUN FUNCTION A FUNCTION B 10.58126117E-03.21656724E-01 11.62548427E-03.23365291E-01 12.65295748E-03.24335810E-01 13.69718346E-03.26343816E-01 14'.73300364E-03.27067725E-01 15.79624251E-03.29347547E-01 16.83569170E-03.30683516E-01 17.90167879E-03.33492961E-01 RUN HI PRIME RFIN IN HI HO PRIME RFIN OUT HO NU SHELL NU TUBE LO 840.265.000OE 00 840.265 1354.693.3041E-02 264.574 813.413 943.924 il 780.964.0000E 00 780.964 1170.190.3275E-02 242.168 702.784 877.531 12 747.932.0000E 00 747.932 1194.677.3242E-02 245.177 717.02i 840.250 13 701.009.0000E 00 701.009 800.460.3893E-02 194.482 481.624 788.442 14 664.901.0000E 00 664.901 1445.285.2939E-02 275.407 869.330 747.447 15 612.005.0000E 00 612.005 1435.390.2950E-02 274.227 862.470 688.097 _16 582.743.0000E 00 582.743 1627.724.2752E-02 297.058 978.842 656.293 17 541.241.0000E 00 541.241 957.022.3600E-02 215.305 575.611 611.632 64

TABLE VIII Wilson Plot Data and Calculated Results for Tube Number 455, Runs 18-26 WILSON PLOT OETERMINATION OF THE INSIDE HEAT-TRANSFER COEFFICIENT FOR TUBE 455. NUMBER OF RUNS IS 7 SHELL SIDE FLUID IS MOBIL LIGHT TUBE SIDE FLUID IS MOBIL 600 RUNS TUBE TEMP ITER XAO XAI XAM RM CI REP 7 455 0 10 19.8500 1.I400 1.3100..9340E-04.2800E-01 1.0000 NO K L M NN 0 P Q I.38925000E 00.44750000E-03 -.OOOOOOOOE 00 -10000000GE.00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 2.34400000E 00.46333332E-03 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.OGOOOOOOE 00 3.67977499E-01 -.19775000E-04 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.00000000E 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 4.71699999E-01 -.21000000E-04 -.OOOOOOOOE 00 -.0000000E 00 -.OOGOOGE 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 5 -.20489551E-03.10464268E 01 -.52113342E 02.54997295E 03.32380452E 05 -.75056534E 06.OOOOOOOOE 00 6 -.21480229E 01.14160692E 04 -.27029259E 06.32850279E 08 -.20186315E 10.45553047E 11 OOOOOOOOE 00 7 -.29052144E 01.22908387E 04 -.40461752E 06.38134658E 08 -.70443591E 09.00000000E 00.OOOOOOOOE 00 8.OOOOOOOOE 00 OOOOOOOE 00.OOOOOOE 00.GOOOOOE 00.OOOOOOOOE 0.OOOOOOOE 0.00000000E 00 DIAS AFS AFT DIAT.36600E-01.28800E-01.37950E-02.69500E-01 RUN TSI TSO TTI TTO W SHELL W TUBE 18 342.100 344.230 423.060 415.280 34800 9840 19 351.520 353.550 421.440 414.890 35100 10750 21 351.340 353.560 419.020 413.180 34400 12320 22 351.430 353.820 418.410 412.700 34400 12920 24 351.440 353.790 417.760 412.310 34400 14300 25 352.710 355.090 417.790 412.530 34400 14930 26 352.030 354.550 418.510 413.440 34400 15780 NOTE - INPUT DATA TEMPERATURES ARE IN FAHR. RUN TSIF TSOF TTIF TTOF W SHELL W TUBE Q SHELL Q TUBE 18 342.100 344.230 423.060 415.280 34800 9840 40236 41203 19 351.520 353.550 421.440 414.890 35100 10750 38976 37864 21 351.340 353.560 419.020 413.180 34400 12320 41771 38622 22 351.430 353.820 418.410 412.700 34400 12920 44976 39582 24 351.440 353.790 417.760 412.310 34400 14300 44223 41797 25 352.710 355.090 417.790 412.530 34400 14930 44835 42121 26 352.030 354.550 418.510 413.440 34400 15780 47448 42941 RUN Q AVG PER OEV LMTD UO RE SHELL RE TUBE PR SHELL PR TUBE 18 40719 1.188 75.970 27.002 30851 84946 12.716 18.153 19 38420 -1.447 65.604 29.503 32346 92285 12.365 18.233 21 40196 -3.918 63.633 31.823 31690 104553 12.368 18.398 22 42279 -6.379 62.915 33.854 31712 109312 12.362 18.442 24 43010 -2.821 62.407 34.719 31711 120635 12.362 18.485 25 43478 -3.121 61.249 35.761 31877 126038 12.316 18.474 26 45195 -4.986 62.676 36.327 31798 133823 12.338 18.408 AFTER 8 ITERATIONSt INTERCEPT IS.12962611E-02, CI IS.02950350 RUN FUNCTION A FUNCTION B 18.88477304E-03.31572182E-01 19.81952750E-03.28915072E-01 21.73742182E-03.26263699E-01 22.71083096E-03.24964339E-01 24.65539375E-03.23552234E-01 25.63225392E-03.22740908E-01 26.60383583E-03.22029391E-01 RUN HI PRIME RFIN IN HI HO PRIME RFIN OUT HO NU SHELL NU TUBE 18 584.453.0000E 00 584.453 640.047.4264E-02 171.635 382.827 645.805 19 629.954.0000E 00 629.954 890.968.3716E-02 206.661 534.527 695.849 21 700.504.0000E 00 700.504 797.809.3898E-02 194.119 478.624 773.246 22 726.058.0000E 00 726.058 1164.483.3283E-02 241.465 698.640 801.308 24 788.638.000OE 00 788.638 756.419.3986E-02 188.390 453.818 870.222 25 817.476.0000E 00 817.476 771.916.3953E-02 190.547 463.308 902.082 26 856.747.0000E 00 856.747 647.481.4245E-02 172.738 388.545 945.674 65

TABLE IX Wilson Plot Data and Calculated Results for Tube Tube Number 455, Runs 76-83 WILSON PLOT DETERMINATION OF THE INSIDE HEAT-TRANSFER COEFFICIENT FOR TUBE 455 NUMBER OF RUNS IS 7 SHELL SIDE FLUID IS MOBIL LIGHT TUBE SIDE FLUID IS MOBIL 600 RUNS TUBE TEMP ITER XAO XAI XAM RM CI REP 7 455 0 10 19.8500 1.1400 1.3100.9340E-04.2800E-01 1.0000 NO K L M NN 0 P Q I.38925000E 00.44750000E-03 -.OOOOOOOOE.00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 2.34400000E 00.46333332E-03 -.00000000E 00 -.00000000 000 -.00000000E 0 -. OOO0000 OE 00 3.67977499E-01 -. 9775000E-04 -.OOOOOOOE 00 -.00000000E 00 -.OOOOOOOE 00 -.00000000E 00 -.OOOOOOOOE 00 4.71699999E-01 -.21000000E-04 -.OOOOOOOE 00 -.00000000E 00 -.OOOOOOOE 00 -.00000000E 00 -.00000000E 00 5 -.20489551L-03.104642oRE 01 -.52113342E 02.54997295E 03.32380452E 05 -.75056534E 76.OOOOOOOOE 00 6 -.21480229E 01.141o0692E 04 -.270292591 06.32850279E 08 -.20B86315E 10.45553047E 11.00000000E 00 7 -.290521441 01.22908387E 04 -.40461752E 06.38134658E 08 -.70443591E 09.OOOOOOOOE 00.OOOOOOOOE 00 8.0000000E 00.000000UO 00.00000000E 00.OOOOOOOOE 00.OOOOOOOE 00.OOOOOOOOE 00.OOOOOOOOE 00 DILS AFS AFT DIAT.36600E-01.28800E-01.3795CE-02.69500E-01 RUN TSI TSO TTI TTO W SHELL W TUBE 76 398.330 402.710 518.340 505.850 22200 8280 77 395.770 400.580 515.570 503.670 22200 9100 78 396.880 *401.850 514.550 503.340 22350 9910 80 396.080 401.150 515.170 504.170 22400 11350 81 394.620 400.360 511.790 501.920 22530 11820 82 395.600 401,.700 j12.920 503.280 22580 12850 83 397.200 402.810 508.470 499.490 22580 14080 NOTE - INPUT DATA TEMPERATURES ARE IN FAHR. RUN TSIF TSOF TTIF TTOF W SHELL W TUBE Q SHELL Q TUBE 76 398.330 402.710 u518.340 505.850 22200 8280 55277 60113 77 395.770 400.580 515.570 503.670 22200 9100 60592 62822 78 396.880 401.850 514.550 503.340 22350 9910 63089 64412 80 396.080 401.150 515.170 504.170 22400 11350 64465 72431 81 394.620 400.360 511.790 501.920 22530 11820 73342 67530 82 395.600 401.700 512.920 503.280 22580 12850 78186 71775 83 397.200 402.810 508.470 499.490 22580 14080 71983 73020 RUN Q AVG PER DEV LMTD UO RE SHELL RE TUBE PR SHELL PR TUBE 76 57695 4.191 111.526 26.062 24530 112441 10.887 12.862 77 61707 1.807 111.407 27.903 24328 122267 10.948 12.963 78 63751 1.037 109.550 29.316 24595 132762 10. 917 12.991 80 68448 5.820 111.029 31.057 24585 152530 10.937 12.961 81 70436 -4.126 109.352 32.449 246O30 156920 10.967 13.078 82 74981 -4.275 109.441 34.515 24786 171519 10.936 13.026 83 72501.715 10).966. 36. I3 24905 184590 10.900 13.200 AFTER 1 ITERATIONS. INTERCEPT IS.25144634E-02, CI IS.62800828 RUN FUNCTION A FUJNCTIHIN 8 76.8258o9901-0'. 163493 E-01 77.76981308E-03.29826924L-01 78.71878251E-03.28056646L-01 80.64355127L-03.25866242L-01 81.62641169E-03.24757463J-01 82.58411239E-03.23043045E-OL 83.54526136E-03.22187726E-01 RUN HI PRIME RFIN IN HI HO PRIME RFIN OUT HO NU SHELL NU TUBE 76 596.742.0000E 00 596.742 378.858.5137E-02 128.596 230.83 680.497 77 640.197.0000E 00 640.197 433.171.4916E-02 138.421 263. 779 729.429 78 685.944.0000E 00 685.944 423.868.4952E-02 136.780 258.215 781.371 80 767.720.0000E 00 767.720 351.591.5258E-02 123.416 214.132 874.742 81 788.026.0000E 00 788.026 424.410.4950E-02 136.876 258.386 897.008 82 845.191.0000E 00 845.191 464.093.4801E-02 143.763 282.653 962.492 83 906.338.0000E 00 906.338 373.469.5160E-02 127.587 227.560 1030.664 66

TABLE X Wilson Plot Data and Calculated Results for Tube Number 455, Runs 94-103 WILSON PLOT DETERMINATION OF THE INSIDE HEAT-TRANSFER COEFFICIENT FOK TUBE 455, NUMBER OF RUNS IS 10 SHELL SIDE FLUID IS MOBIL LIbHT TUBE'SIDE FLUID IS MOBIL 600 RUNS TUBE TOEMP ITER XAU XAI XAM RM CI REP 10 455 0 10 19.8500 1.1400 1.3100.934UE-04.2800E-01 1.0000 NO K L M NN 0 P Q I.38925000E 00.447500o0E-03 -.00000OOOE 00 -.00000000E 00 -.00000000E 00 -.00000000E 00 -.00000000E 00 2.34400000E 00.46333~32E-03 -.00000000E 00 -.UOOOOOOE 00 -.OOOOOOOE 00 -.00000000E 00 -.00000000E 00 3.67977499E-01 -.197T50uOE-04 -.O0000000E 00 -.COOOOOOOE 00 -.000O000E 00 -.0000OOO0000E 00 -.OOOOOOOOE 00 4.71699999E-01 -.21000000E-04 -.00000U0E 00 -.00000OOOE 00 -.OOOOOOOE 00 -.00000000E 00 -.00000000E 00 5 -.20489551E-03.104642b8E 01 -.52113342E 02.54997295E 03.32380452E 05 -.75056534E 06.0OOOOOOE 00 6 -.21480229E 01.14160692E 04 -.27029259E 06.32850279E 08 -.20186315E 10.45553047E 11.OOOOOOOOE 00 7 -.29052144E 01.229083b7E 04 -.40461752E 06.38134658E 08 -.70443591E 09.OOOOOOOOE 00.OOOOOOOOE 00 8.0OOOOO00E 00.000U0000 00.OOOOOOOOE E 00000E 00.OOOOOOOOE 00.00000000E 00.0OOOOOOE 00 DIAS AFS AFT DIAT.36300E-01.29100E-01.3800OE-02.69500E-01 RUN TSI TSO TTI TTO W SHELL W TUBE 94 302.180 305.700 428.80 415.500 26200 7330 95 300.790 304.440 423.580 412.040 26850 8350 96 307.890 312.950 456.650 443.150 26780 9200 97 301.360 306.590 449.650 436.870 26800 10310 98 298.500 303.890 440.550 428.810 26780 11500 99 299.630 304.820 438.780 427.800 27180 12340 100 301.010 306.300 434.440 424.140 26950 13270 101 299.610 305.030 431.150 421.380 26900 14180 102 301.470 f 306.920 430.150 420.890 26820 15100 103 301.470 306.790 427.390 418.490 26850 15990 NOTE - INPUT DATA TEMPERATURES ARE IN FAHR. RUN TSIF TSOF TTIF TTOF W SHELL W TUBE Q SHELL Q TUBE 94 302.180 305.100 428.180 415.500 26200 7330 48442 50139 95 300.790 304.440 423.580 412.040 26850 8350 51419 51801 96 307.890 312.950 456.650 443.150 26780 9200 71570 68615 97 301.360 306.530 449.650 436.870 26800 10310 73625 72387 98 298.500 303.890 440.550 428.810 26780 11500 75641 73635 99 299.630 304.8Z0 438.780 427.800 27180 12340 73988 73811 100 301.010 306.300 434.440 424.140 26950 13270 74866 74205 101 299.610 305.030 431.150 421.380 26900 14180 76477 75019 102 301.470 306.920 430.150 420.890 26820 15100 76794 75668 103 301.470 306.790 427.390 418.490 26850 15990 75042 76843 RUN Q AVG PER DEV LMTD UO RE SHELL RE TUBE PR SHELL PR TUBE 94 49290 1.722 117.841 21.072 19120 64132 14.489 17.945 95 51610.370 i15.150 22.579 19470 71447 14.559 18.261 96 70092 -2.108 139.437 25.324 20153 93344 14.158 15.997 97 73006 -.848 139.251 26.412 1956L 101.110 14.488 16.421 98 74638 -1.344 133.460 28.174 19286 107832 14.635 17.002 99 73899 -.120 031.044 28.409 19672 114858 14.580 17.099 100 74535 -.444 125.618 29.892 19640 120901 14.504 17.386 101 75748 -.962 123.932 30.791 19478 127098 14.575 17.609 102 76231 -.739 121.315 31.656 19596 134798 14.476 17.665 103 75942 1.186 118.801 32.203 19612 140747 14.479 17.860 AFTER 5 ITERATIONS, INTERCEPT IS.51550185E-02, CI IS.03253048 RUN FUNCTION A FUNCTION H 94.11531950E-02.40629388E-01 95.10476325E-02.37429564E-01 96.90313588E-03.32760061E-01 97.83850878E-03.31092225E-01 98.78283582E-03.28799747E-01 99.74000400E-03.28328018E-01 100.70275673E-03.26636983E-01 101.67086352E-03.25649157E-01 102.63737563E-03.24717805E-01 103.61161703E-03.24125262E-01 RUN HI PRIME RFIN IN HI HO PRIME RFIN OUT HO NU SHELL NU TUBE 94 499.964.0000E 00 499.964 196.732.6131E-02 89.175 115.244 552.940 95 550.868.0000E 03 550.868 195.197.6141E-02 88.776 114.297 608.418 96 642.212.0000E 00 642.212 204.767.6077E-02 91.239 120.200 716.984 97 693.276.0000E 00 693.276 193.212.6155E-02 88.257 113.184 772.263 98 741.985.0000E 00 741.985 216.756.5998E-02 94.239 126.863 824.142 99 786.448.0000E 00 786.448 154.263.6217E-02 85.882 107.881 873.121 100 827.006.0000E 00 827.006 203.979.6082E-02 91.038 119.479 916.918 101 866.740.0000E 00 866.740 204.373.6079E-02 91.139 119.659 959.999 102 912.511.0000E 00 912.511 200.504.6105E-02 90.150 117.464 1010.443 103 951.369.0000E 00 951.369 193.078.6156E-02 88.222 113.111 1052.563 67

TABLE XI Wilson Plot Data and Calculated Results for Tube Number 456, Runs 13-22 WILSON PLOT DETERMINATION OF THE INSIDE HEAT-TRANSFER COEFFICIENT FOR TUBE 456, NUMBER OF RUNS IS 8 SHELL SIDE FLUID IS MOBIL LIGHT TUBE SIDE FLUID IS MOBIL 600 RUNS TUBE TEMP ITER XAU XAI XAM RM CI REP 8 456 0 8 19.959U 1.1400 1.3080.9300E-04.2800E-01 1.0000 NO K L M NN 0 P Q 1.38925000E 00.44750000E-03 -.00000000E 00 -.00000000E 00 -.00000000E 00 -.00000000E 00 -.OOOOOOOOE 00 2.34400000E 00.46333332E-03 -.00000000E 00 -.00000000E 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.00000000E 00 3.67977499E-01 -.19775000E-04 -.0000OOOOE 00 -.OO00000000E 00 -.00000000E 00 -.00000000E 00 -.00OOOOOOOOE 00 4.71699999E-01 -.21000000E-04 -.00000000E 00 -.00000000E 00 -.00000000E 00 -.00000000E 00 -.00000000E 00 5 -.20489551E-03.10464268E 01 -.52113342E 02.54997295E 03.32380452E 05 -.75056534E 06.OOOOOOOOE 00 6 -.21480229E 01.14160692E 04 -.27029259E 06.32850279E 08 -.20186315E 10.45553047E 11.00000000E 00 7 -.29052144E 01.22908387E 04 -.40461752E 06.38134658E 08 -.70443591E 09.00000OOOE 00.OOOOOOOOE 00 8.0000000E 00.OOOOOOOOE 00.00000000E 00 00000000 00.00000000 00.00000000E 00.OOOOOOOOE 00 DIAS AFS AFT DIAT.36300E-01.29100E-01.38000E-02.69500E-01 RUN TSI TSO TTI TTO W SHELL W TUBE 13 228.160 230.670 338.960 329.940 30900 8470 15 227.750 230.590 338.730 329.770 30900 9303 16 228.970 232.000 337.900 329.450 30900 10150 17 230.580 233.480 335.240 327.340 30800 11250 18 230.450 233.420 331.120 323.770 30800 12480 19 226.630 230.810 346.590 337.790 30900 13930 20 227.410 231.790 342.610 334.490 30300 15230 22 227.090 231.760 348.050 340.250 30800 15830 NOTE - INPUT DATA TEMPERATURES ARE IN FAHR. RUN TSIF TSUF TTIF TTOF W SHELL W TUBE Q SHELL Q TUBE 13 228.160 230.670 338.960 329.940 30900 8470 38152 38120 15 227.750 230.590 338.730 329.770 30900 9303 43159 41583 16 228.970 232.000 337.900 329.450 30900 10150 46101 42764 17 230.580 233.480 335.240 327.340 30800 11250 44042 44215 18 230.450 233.4z0 331.120 323.770 30800 12480 45101 45471 19 226.630 230.810 346.590 337.790 30900 13930 63496 61604 20 227.410 231.790 342.610 334.490 30300 15230 65295 61940 22 2'27.090 231.760 348.050 340.250 30800 15830 70755 62164 RUN Q AVG PER DEV LMTO UO RE SHELL RE TUBE PR SHELL PR TUBE 13 38136 -.042 105.001 18.197 14870 42637 20.100 28.030 15 42371 -1.859 105.050 20.208 14846 46762 20.126 28.064 16 44433 -3.755 103.166 21.579 14974 50805 19.985 28.162 17 44129.196 99.239 22.279.15077 55329 19.823 28.576 18 45286.408 95.493 23.760 15067 59642 19.833 29.266 19 62550 -1.512 113.454 27.623 14802 74149 20.175 26.765 20 63618 -2.636 108.939 29.259 14599 78984 20.080 27.347 22 66460 -6.464 114.718 29.026 14823 85441 20.099 26.461 AFTER 8 ITERATIONS, INTERCEPT IS.21737521E-02, CI IS.03106755 RUN FUNCTION A FUNCTION R 13.13820273E-02.48556836E-01 15.12857516E-02.43764472E-01 16.11980738E-02.40731467E-01 17.11045638E-02.38717383E-01 18.10267793E-02.35986915E-01 19.90929025E-03.30966429E-01 20.85318458E-03.29030193E-01 22.81245877E-03.28655219F-01 RUN HI PRIME RFIN IN HI HO PRIME RFIN OUT HO NU SHELL NU TUBE 13 399.288.0000E 00 399.288 254.843.5763E-02 103.236 145.818 429.066 15 427.988.OOOOE 00 427.988 440.530.4888E-02 139.707 252.046 459.876 16 459.245.0000E 00 459.245 483.673.4732E-02 147.065 276.844 493.370 17 499.523.0000E 00 499.523 328.177.5370E-02 118.812 187.932 536.227 18 537.243.0000E 00 537.243 353.443.5250E-02 123.774 202.395 576.000 19 606.950.0000E 00 606.950 618.667.4321E-02 168.434 353.916 653.858 20 646.542.0000E 00 646.542 670.116.4187E-02 176.067 383.454 695.686 22 682.626.0000CE 00 682.626 416.178.4982E-02 135.411 238.132 735.853 68

APPENDIX C. SHELL-SIDE CORRELATION COMPUTER PROGRAM AND SHELL-SIDE HEAT TRANSFER DATA AND CALCULATED RESULTS FOR. TUBE NUMBERS 455 AND 456 69

TABLE XII Shell-side Heat Transfer Correlation Computer Program Written in The University of Michigan Algorithm Decoder Language CUTSICE HEAT-TRANSFER COEFFICIENT CORRELATION PROGRAM PRSH(NI ICPSINI.RISSINI1/ESHEL(N) PICENSI N LRES(LOO), LPRSHII00), LNUSH(0IO), LRVISS(IOOI, LPRSHIN) I ELOG.(PASHIN) TSIC:ICO), TSCC(tOOI) TTIC(100), TTOC(I00), TSIFIGOOIt PRTUIN)I (CPT(NI.VISTIN).)/TUARE(NI 2 SCF 00l TTIPII( OTOFI00 ), WSHEL(10O), WTUBE(1O0), WHENEVER N.E. RUNS, TRANSFER TO DELTA A CTUiEIECOI, QIShELILOO)I UAVGIIOO)t PEROE(100), LMTA(IOI) N - N I A4 EAF~IYI(1CU, CPS(lU00~),t CFP~TI I VISSIGOG~ AI~SO I, TRANSFER TC ALPHA 4 XA I(IIC), CPS 1OO), CPT It II VS(001 VISTI100!, 5 KTUBL(ICOO, KSHLL(IOO, PRSHI100)t PRTU 100)It TWIAI100)t DELTA PRINT FERCAT HEADA 6 TklBDIR00), ~1G1([I0, h"(100), RET(100), RES(100), THROUGO CII, FCR J=t,I, J.G. RUNS 7 RESILOUI, VISVO(UCI ), FUNC(GO0), FUN(100), UO(1O0)0, CII PRINT FORMAT RESLTI,R(J),TSIF(JITSCFIJ), TTIFIJTTOFIJ, A RHCFISOU, APINIIOVI, TI UIR(I I, EDRI, Lb), MIMI, NNFIMI 1 WSHELIJI), WTUE(JI, OSHELJI)t QTUBE(J) 9 ((8), PFH), RVISSIIO)), RVIST(100)O NUSHELLLOO)A NUTUREItO0) PRINT FURFAT HEADC PIMENSIC N ECP R(VO), GRAPIIUGOOI, PIPFIODI, RFININIMOOt THRCUGh CIUT, FCR J = 1,,It J.G. RUNS SCALE(S), FUNE(I100), HOM0), LNNUVI 00), TTAV(IOa)t OUT PRINT FORFAT RESLT9t R(J)t AAVG(J), PERDE(J), LMTAIJ), LO(J), 2 TSAV(1CO), V(I)t A() g(2) MUI(2), RO(100) 1 RESJ)t RET(J) DIFENSICN CEV(AIOOU FIUNCCII(OO NP 1 INTEGER RUNS, R, TDUP, N, J, HMI, NM2, HM3, PM4, DECR., RAG I FXVA, PAXVC, SH, LIHt SV, LIV, SCALE, FIRST, LAST, MINVA, PFAG = 10C00.O I FIVUC OMEGA TWIA(N) = TTAV(N) RI REACM FBRAT INFC, RGS, TUBEA TLHP, XAOt XAIt XAE t RMt CI RETA VISWI(NI = EXP.(K(7) + L(7I/rWIA(N) + MN(7)/TWIAIN).P.2 + PRINT FCRMAT TITLEA I NN(?)/TWIA(N).P.3 + O(7)/TWIA(N).P.o + P(7)/TWAA(N)oP.5 + PRINT FCRMAT TITLE6, TUHE, RUNS 1 O.II/T/1IA:().P.6) THUCb6I INPUT, FOR 1l1, 1, J.G. RUNS HIP(N) = (CISRET(N.P.O.8ePRTU(N).P. O.33333eKTUBR (N)e. IST(N) INLT RLACe FCRPFAT CEAT,'SICIJ), TSOC(J)t TTIC(J), TTOC(J),t I.P.O.I4)/VISWI(NI.P.O.1i OIAT )2 1 SF~LiJ), WTUBERIJ),=R(jJ)I F iNN =KW 8/PN) M H N.P L kSPELIJI, ATUHEIJI, AIJI AFININ( NI = K(E ) + LIR)/hIPINI + M(8)/HIPINI.P.2 + TIALCEC NCR, PER J 1 1, J.0. AI NNJS)/PIPfN).P.3 A CH8)/hIP N.P.F. + P(8)/HIPIN).P.5 + REAC FPRAI CCNSTA, KI(J, L(J), MJ), NN(JN)' I Q(8)/-IP(N).P.6 4CR R~AC FCR^AT CENSTB, CIJ), P(J)I, (J) Hi(NI) = I /HIP(N) + RFINIINI(N)) AEAC FCRTAT CATAC, CIAS, AFS, AFT, ClAT, TTEMP, NAHEAt WHENEVER TTAV(N).G. TSAV(N), TRANSFER TO KAPPA I NAFEP, NAEC, NAIEC TWIVIN) = TTAV(N) * (QAVG(NI/(XAIpII(N))) PRIA l CR1AT FLUCS, E NAPEA, NAPEB TRANSFER TC PHI PRI PT FTA l U:CUIDTt NAPECr NAMLO KAPPA TWIB(k) = TTAV(N) -(CAVG(N)/(XAIhI(N))) P01ST FERFAT FLUTT EFCRPE AFA DAUN TTAVINI IAES/IA.IN PRINT CCFFENT M-$ PHI WHENEVER.ABs. I(WIA(N) - DWIHIN).LE. 0.2, TRANSFER TDEIGHT PRINT FCRMIT HECA TWIA(N) = TWIB(N) PINT FCRFAT CUTA, RUNSt TUDA, TEMP, RAO, XAI, XA, RHM, CI TRANSFER TC CBETA PRINT CCETUT A-A EIGHT VWHENEVER TTAV(N).G. TSAV(N), TRANSFER TO NINE PAINT FCAT PEC6 TWO(N) = TWIRB(N) + (CAVG(N)IRM/XAP). PR N H ~~~~~~~~~~~~~~~~~~~~~~~~~~~TRANSFER TC rEN THRCGP NCRTH, FR J 1 1 J.G. 8 VANSPAR DC TEN NCRTr PRINT FCRTAT CUrU, J, K(J), LIJI,'(J), NN(J), O(J), PFJ)t NINE TWC(N) = TRIl(N) - (QAVGN)(R6/XA/ )R 1 GJI LTEN VISWC(N) = EXP.(K(6) * LIR)/TAC(N) + H(6)/TkOINI.P.R + I' (J) ) PRINT CC LEKTT $- 1 NN(6)/ WC(NN).P.3 * C(6)/TW(N).P. 4 + P(6)i/TWC(N).P.5 + PRINT FCRPAT IECC EEI ()/TkO(NI.P.6) PRINT FORMAT CLTC, CIAS, AFS, AFT, CIAT RHOINI = (1/UO(N)) - (XAO/(X41A.I(N))) - (XAOeRF/XAP) PQlINT CCrENT N-N - RFINh(N) = K(5) L(5)'RHC(N) + P(5ARHC(N).P.2 + PqINT FCAPAT NEC 1 NN5).RHC().P.3 + C(5)NRHONI).P. P THtR FG FCUR,FOR J=lI,;J;G.RUNS ()_ TPHAG CR FCUCEPC,C J-LIJ.G.RUSS 1 + PI(5).RCIN).P.5 A O(I)* RHC(N).P.E FCLR PRINT CL;RT CATAAR, (J), SIC(J), TSUC(J), TTIC(J),t TTOCJ), HOPRIN)I /IRII - Rl)) I.SPL(JJ), *TUAE(J( HO(N) = 1/RHC(N) PFINT FCrAT ICTE, TTEFP NUSFELN) = HCPR(N)eDIAS/KSHE L(N) N I LNUSH(K) = ELUG.INUSFEL(NI)) MLPFA WPENEV'R TEFP.E. 1, TRANSFER TO GAMMA NUTURE(N) = HIP(IN)CIAT/KTURCIN) TSIF() = TSIC(I) RVISSIN) = VISSINI/VISWO(N) TSCF() N TSOCI) LRVISSIN() = ELCG.(RVISS(N)) TTIi(N). TTIC(N) RVIST(N): VIST(N)/VISWIINI TTCF( ) TRCC(I) LNNUVI(NI = ELOG.)NUSHEL( N)/(RVISS(N).P.C.1))I TRANSFZR TC SIG,6 FUNC(N) = (HCPR(N)ECIASVISWOE(N).PC.E 1/(K4 SHELI(NIVISS(N) GAPER TSIF() = 1.8 ~ TSIC(N) + 32 1.P.O. 14PRSI(N).P.O.3333) TSCF(N) = l.A ~ TSCC)N( N 32 FUNC(N) - ELOG.IFUNCI N)) TTIFlN) = I.R ~ TTIC NI + 30 FUNE(N) = ELOG.(RES(N)) TTRF(N) l.u TTCCNI + 32 WHENEVER FUNE(N).G. TAG TIGER TSAV('h) 0.5 ~ (TST(N) TSOF(N))II MAG FUNE(S) TTAV(I) 0.5~(1 TRIF(N)+ TTOFICN)) EAVE FUNC(N) CPS(N) K(1) L(1)eTSAV(N) + M( I)TSAV(N).P.2 OTHERWISE I N(I1).TSAV(N).P.3 + C(1)eTSAV(N).P.4 CCNTINKUE CPTE ) ) K(2) + L12)eTTAVIN) + M(2IpTTAV{N).P.2 ENC CF CCNCITICNAL I +hN(Z:T.TAf)N).P.3 + O(2))TTAV(NI.P. WHENEVEG FUNEI.L. PMAG QSPELIN) = WSHEL(N).CPS(N)e.ABS. TS OF(N)-TSIF( N)) PRAG FUNE(N) QTUR(N).= RTUES(N)ICPTFIN)..ABS. (TTOF(N)-TTIF(N)) MFAGN FUNE(S) RAVG(S) O.5 ~ ( $ SHELL) QTUHE(IS)) OTHERWISE PERC[I() (Oe10(CTUBE(HNI-HSHE L(N))/ ( QTURE(N) + QSHEL(N)) CONTINUE XAPIT(N.ARS. ITTAVIN) - TSAV(S)) END CF CCNCITICNAL DELA..RRS.(TTIFINI-TSECF)I) WHENEVER N.E. RUNS, TRANSFER TO ELEVEN DELI.ATS.(TITLCFN)-TSIF(N)) N + 1.HENEVER.BS. (OELA - CELb)l.L..3 TRANSFER TC CHEGA LFTA(N) = xATIN) ELEVEN PRINT FORMAT HLACD CTEtLPAISE THRCU1GP nE, FCR J 1, 1, J.G. RUNS LPRMAIN) (EELA -CELT)/(ELUO.IDELA/CELRII DEB PRINT FORMAT RESLT4, R(J),HIP(J),RFNIN II(J),HI(J), HOPR(J), ENC CF CCNCIT ICNAL 1 RFINJ, ( J) ) OJ TSAV(J), TWU(JIt RIRIJI, TTAV(J) WHEIEVEO LITH(A).G. RAFT(N), LMTA(N). XAMT{N) PRINT FORMAT HEDEO UCIN) ( - GAVGI(N))/(XAG.LTRM(N)) THRCUGH WEST, FR J. 1, I, J.G. RUNS VISS(N) EXP.(K(6) LI6)ARSAVS MA I)/TSAVIN).P.2 + WEST PRINT FORMAT RESLT, RIJI)t FUNCIJI) FUND(J)t FUNE(JI), I NN(6)/TSAV(N).P. + O(6)/TSAV(N).P.4 + PFI)/TSAV(N).P.5 + 1 NUSPELJ)t NUTUBE(J), PRSh(J), PRTLIJI I ~~~~~~~j~~~~(6)/TSA.I4~(N) ~.Po6) ~~ FPRINT FORMAT VISCO RISTD.(). CX.(K(7) * LI7)/TTAV(N).. M))/TTAV(N).P.2 + THR..GH SCP.OL, FOR.J 1 1,. J.G. RUNS I NNI?)/TTAV(N).P.) * 3 7(/O rAV(UI).P.4 + PI7)/TTAVINI.P.5 SCHOOL PRINT FORMAT RESLT8, R(J), VISSIJ), VISWO(J), RVISSIJ), I Q(7I)/TTAVINI.P o6 I VRSRIJ), VISWI(J), RVIST(J) K~ESL() I K(3) A L(3) TSAV(N) M(3).TSAV(N)oP.2 + PRINT FRFAT HEOG I INIAI.TSMANP.3 O);1.TSA A OIA INI.F.V4 THROUGH CCOR, FOR J 1 1, J.G. RUNS 1TUA8iN). KRR A LIR4)I.AHV(N M A R4).RTAV(N).P.2 DO INT FORAT RELOG, RIJ, LRES(J), LPRSH(J), LRVISS(IJ), I NN(4).TTAVINo.P.3 I0(4)TTAIV(NI.P.I 1 LNUSH(J)I, LNNUVIJI), FUNDOJ) RES(N). ICIASeWSHEL'(NII/(AFS.EVSSIN)) THROUGH RCODt FOR J 1, 1, J dG. RUNS LCOS(S) = ELOG.(RES(N)) RCCD PUNCH FORMAT HEDH, R(J), LRES(J)t LPRSH(J), LRVISS(J), RT(N) = (DIATMWT UBEMIN) )/(AFTRVISTN)-) 1 LNUSP(J), LNNUVI(JIt FUND(J) 70

TABLE XII (Continued) EXECUTE LSTSQ.(FUNE, FUND, RUNS, B, 1) VECTOR VALUES RESLT9 $ 16, F10.0t 3F10.3, 2FL0.0 S' INTCPT VEXP.(R(OI) VECTOR VALUES ORO. $ FUNCTION D..._LN NU_/PR.P.1_ /3 SUMSDE = 0.0 THROUGH CUT), FOR N = 1. U, N.G. RUNS VECTOR VALUES NAME - $ SHl S46, 31H FUNCTION D VERSUS FUNCTIO FUNCCIN)' INTCPTeRES(N).P.B(I) I N E 0N DEVIN) I (FUNCIN - FUNCCIN)I/FUNCC(N) VECTOR VALUES ABSS - SIHO S40, 36H FUNCTION E - LN REYNOLO OUT1 SUMSDE - SUMSDE + DEV(N)eDEVIN) S S NUMBER'N* STOEV - SQVT.(SUMSOE/RUNSI VECTOR VALUES HEDG - $ 95H1 RUN LN RE SHELL L PRINT FORMAT HEADM I N PR SHELL LN VIST. RATIO LN NU SHELL LN NU/VISC-V THROUGH JET, FOR J -,t 1t J.G. RUNS I FUNCD / es JET'PRINT FORMAT JETI, R(J), RES(J), FUNC(J)I, FUNCC(J), DEV(J) VECTOR VALUES RELOG - * 15, 6F15R6 S PRINT FORMAT RESLT5, INTCPT, Roll VECTOR VALUES HEOH 15, St 6F12.6 N PRINT FORMAT JET2, STUDV VECTOR VALUES HEADHM $ 78HV RUN REYNOLDS NO. FUNCT SCALE(O) S 1 1 ION C FUNCTION C CALC. DEVIATION /a) SCALE(l) = 0 VECTOR VALUES JET1 = $ 15, F14.0, F18.2, F19.2, F18.3 -N SCALE(2) = 3 VECTOR VALUES JET2 = $ 22H4STANDARD DEVIATION = F5.3 mN SCALE(3) 0. TRANSFER TO BEGIN SCALE(4) N3 ND OCF PROGRAM MAXVA = HAGX[O.O MAXVB = (MAXVA + 2)/10.0 MAXVC = MAGNO10.0 MAXVO = (MAXVC + 2)/10.0 MINVA = MMAGU10U. MINVB = IMINVA - 1)/10.0 MINVC - MMAGNNlO.O MINVD = (MINVC - S)/10.O UM(O) = INVB NENCLATURE MU(O) = B(O) + V(I).MINVB UM(I) I= AXVB MU(1) = BIO)+ B(l).MAXVB AFS SHELL-SIDE FLOW AREA - SOFT LIH - 1 AFT TUBE-SIDE FLOW AREA - SOFT SH = 50 B CONSTANTS FROM LEAST SQUARE SUBROUTINE LIV = I CI INSIDE HEAT TRANSFER COEFFICIENT CORRELATION CONSTANT SV = 100 CPS SHELL-SIDE SPECIFIC HEAT - BTU/LB-F EXECUTE PLOTS.(SCALE, LIH, SH, LIVt SV) CPT TUBE-SIDE SPECIFIC HEAT -.RTU/LB-F EXECUTE PLOT2.(GRAPHtMAXVB,MINVBMAXUDMINVDI DIAS SHELL-SID EQUIVALENT DIAMETER - FT EXECUTE PLCT3. ($S$, FUNE(11), FUND(S), RUNS) DIAT INSIDE DIAMETER OF TUBE - FT EXECUTE PLOT3. (SXN, UVIO), MAOI), 2) FUNCC PREDICTED VALUE OF FUNCTION C PRINT COMMPENT $1S FUNC ACTUAL VALUE OF FUNCTION C PRINT FORMAT NAVE FUND FUNCTION D EXECUTE PLCT4.(40, ORD) FUNE FUNCTION E PRINT FORMAT ABSS HIP INSIDE HEAT TRANSFER COEFFICIENT - BTU/HR-SOFT-F PRINT COPPENT $1N HI INSIDE HEAT TRANSFER COEFFICIENT(INCLUDES INSIDE FIN RESISTANCE VECTOR VALUES TITLEA = $ 103HIDETEVR INATION OF THE POWER OF T IF ANY) BTU/HR-SQFT-F O HE REYNOLDS NO. ANO THE CONSTANT FOR THE SEIDER-TATE EQN. - S HPR SHELL-SIDE NEAT TRANSFER COEFFICIENT - EDU/HR-SOFT-F.1 HELL SIDE'S HC SHELL-SIDE HEAT TRANSFER COEFFICIENT (INCLUDES RFIN) - BTU/HR-SQFT-F VECTOR VALUES TITLE'= N 21HOCORRELATION FOR TUBE C5, 20H,N K POLYNOMIAL CONSTANT FOR PHYSICAL'PROPERTIES 2 UMBER PF RUNS IS I3'N KSHEL THERMAL CONDUCTIVITY OF SHELL-SIDE FLUID - BTU/HR-SQFT-F/FT VECTOR VALUES INFO = $ S1, C, 11i5, 3F0.4, 2E10O.4 *N KTUBE THERMAL CONDUCTIVITY OF TUBE-SIDE FLUID - BTU/HR-SOFT-F/FT VECTOR VALUES DATAT = $ 4F10.3, 2F1.0, S7, 13'S L POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES VECTCR VALUES CONSTA = N 4EIS.8e$ LPTA LOGARITHMIC TEMPERATURE DIFFERENCR - F VECTOR VALUES CONSTB = $ 3E15..8$ M POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES VECTOR VALUES DATAC = $ 4E10.5, C5, 4C6' a NN POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES VECTOR VALUES HEAOA = N 101H5 RUN TSIF TSOF NUSHEL SHELL-SIDE NUSSELT NUMBER S TTIF TTOF W SHELL W TUBE Q SHELL NUTUBE TUBE-SIDE NUSSELT NUMBER S Q TUBE /'S 0 POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES VECTOR VALUES RESLT1 - S Ill, 4F10.2, 2F50.0, 2F15.O'N P POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES VECTCR VALUES HEADC = N 66HI RUN Q AVG PER DEV LM PERDE PER CENT DEVIATION IN HEAT BALANCE TDC UO RE SHELL RE TUBE /.$ PRSH' PRANDTL NUMBER OF SHELL-SIDE FLUID VECTOR VALUES RESLT5 = $ 17H2CONSTANT EQUALS F12.8, 15H, PO PRTU PRANDTL NUMBER OF TUBE-SIDE'FLUID I WER EQUALS F12.8 NS S POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES VECTOR VALUES LOUISE = 215, C5, RC6'N QAVG AVERAGE OF SHELL-SIDE AND TUBE-SIDE HEAT FLUXES - BTU/HR VECTOR VALUES HECA = $ 69HORUNS TUBE TEMP XAO XAI QSHEL DHELL-SIDE READ FLUX - TU/HR I XAM RV CI / as QTUBE TUBE-SIDE HEAT FLUX - BTU VECTCR VALUES OUTA = N IS, C5, IS, 3F10.4, 2E12.4 *$ RES SHELL-SIDE REYNOLDS NUMBER VECTOR VALUES HEDB = tllOHO NO K RET TUBE-SIDE REYNOLDS NUMBER SL VM NN 0 F RFININ FIN RESISTANCE OF FINS INSIDE OF TUBE IF ANY - HR-SOFT-F/BTU U / RFIN FIN RESISTANCE OF EXTERNAL FINS - HR-SQFT-F/BTU VECTOR VALUES OUTR = N I5, 7E15.8'$ RM METAL RESISTANCE - HR-SOFT-F/BTU VECTOR VALUES HEOC = $ 48H0 DIAS AFS AF TSAV AVERAGE SHELL-SIDE FLUID TEMPERATURE - F S T DIAT /'N TSIC INLET SHELL-SIDE FLUID TEMPERATURE - F OR C VECTOR VALUES OUTC $ 4E12.5'S TSIF INLET SHELL-SIDE FLUID TEMPERATURE - F VECTOR VALUES HEADO = S109H1 RUN HI PRIME RFIN IN T$OF OUTLET SHELL-SIDE FLUID TEMPERATURE - F I HI HO PRIME RFIN OUT HO TSAV TWALL 0 TDA TSOC OUTLET SHELL-SIDE FLUID TEMPERATURE - F OR C 1 LL I TTAV /' N TTAV AVERAGE TUBE-SIDE FLUID TEMPERATURE - F VECTOR VALUES RESLT4 $ 1S, F10.2, F12.6, 2F10.2, F12.6, TTIF INLET TUBE-SIDE FLUID TEMPERATURE - F I FlOD.2 4F1D.2 *S TTIC INLET TUBE-SIDE FLUID TEMPERATURE - F OR C VECTOR VALUES HEADE N S UOSHI RUN FUNCTION C TTOF OUTLET TUBE-SIDE FLUID TEMPERATURE - F FUNCTION O FUNCTION E NU SHELL NU TUBE PR SHEL TTOC OUTLET TUBE-SIDE FLUID TEMPERATURE - F OR C L PR TUBE./*$ TWIAsTWIE INSIDE TUBE-WALL TFMPERATURE - F VECTOR VALVES RESLT7 S 15 3F20.3, 4F10.2.5 TWO OUTSIDE TUBE-WALL TEMPERATURE - F VECTOR VALUES FLUICT $ 20HOTUBE SIDE FLUID IS 2C6 UO OVERALL HEAT TRANSFER COEFFICIENT - BTU/HR-SOFT-F VECTOR VALUES FLUIDS $ 21HOSHELL SIDE FLUID IS 2C6'A VIOS SHELL-SIDE FLUID VISCOSITY - LB/FT-HR VECTOR VALUES HED - $ 66HO RUN TSI TSO TTI VIST TUBE-SIDE FLUID VISCOSITY - LB/FT-HR 1 TTO W SHELL W TUBE /.e VISWI VISCOSITY AT INSIDE TUBE-MALL TEMPERATURE - LB/FT-HR VECTOR VALUES CATAA - N IA, 4F50., 2SF10.0'5 VISRO VISCOSITY AT OUTSIDE TUBE-WALL TEMPERATURE - LB/FT-HR VECTOR VALUES NOTE - $ 4OHONOTE - INPUT DATA TEMPERATURES ARE WSHEL SHELL-SIDE FLUID FLOW RATE - LB/HR S IN C5 *$ WTUBE TUBE-SIDE FLUID FLOWRATE - LB/HR VECTOR VALUES VISCO = - lHi S35, 22H VISCOSITIES LB/FT-HR // XAI INSIDE HEAT TRANSFER AREA - SOFT 1. 95H RUN VISC. SHELL VISC SH MALL VISS/VISSA VI XAM MEAN METAL MEAT TRANSFER AREA - SOFT I SC. TUBE VISC TU WALL VIST/VISTW /'N XAO OUTSIDE HEAT TRANSFER AREA - SOFT VECTOR VALUES RESLT8 S 15 IS, 6F15.3'$ 7

TABLE XIII Shell-side Heat Transfer Data and Calculated Results for Tube Number 455 OETER~[NATI~N OF THE P(,HLR CF ThE REYNOLDS NO. AND ThE CONSTANT FOR rAE SEIDER-TAT~ EriN. - SHLLL ~IUL CCRRELATIC~ FCR TUBE 4)5 9 KUFUCR CF RUNS IS 76 SHELL SlOE FLbID IS "C[IL LIGHT LUBE SIDE FLLIg IS ~C~IL 600 RUbS TUBE TEPP X~C XAI X~ RM C I 76 455 0 t9.fiS~C t.t400 t.StO0.93408-04.29578-0t hC K L H NN G P!.389250008 O0.447500008-03 -.00COOOOOE O0 -.00000000E O0 -.COOOOOOOE O0 -.00000000E O0 -oOOOOOOOOE O0 i 344000008 O0.463~33328-03,000000COE O0 -.CCCOOOOOE O0.00000000E OO -.00000000E O0 -.00000000E O0 679774~98-0! -.t97750008-04.00000000E O0 -.COOOOCOOE O0.00000COOE O0 -.00000000E O0 -.00000000E O0 4 716~9~998-0! -o2100CCC0~-04 -oOOCO0000~ O0 -.00000COOL O0 oOCOOOOOOL O0 -.0000000CE O0 -oOOOOOOOOE O0 -o204895518-03.104642688 O! -.521133428 02.549972958 03.323804525 05 750565346 06.00000000E O0 -o21480229E Ol.14160h92E 04 -.27029259E 06.J2850279E 08.20186315E 10 45553047E 11.00000000E O0 7 -.29052144E Ol.22908387E 04 -.40461152E Ob.38134658E 08 -.70443591E 09.00000000E O0,00000000E O0 8.OCCOOCOOE O0 oCCCCCCOO~ O0 oOOOOOOOOL O0 oCOOOCOOOL O0 oOOOOOCOOL O0 oOOOOOOOOE O0 oOOOOOOOOE O0 DIAS AFS AFT ~!~T ~ 366008-0!.288008-0!.379508-02.69500~-01 RUN TSI TSC Tfl TILl h S~ELL w TUOE ~ SHELL ~ TUBE Q ~VG,PER CEV LNTg! 352.81 359.20 507.33 494.23 34700 [5250 121634 t15076 [18355 -2.711 144.149 41.192 32430 [97132 5 352,29 35/.71 510.33 4~5 35 34600 1182(' [02789 102163 102476.3f~5 14/.789 34.932 32205 154188 353.14 358.63 519.75 5C3.15 34350 1C720 103439 L03385 103412 -.OZ6 t55.499 33.503 32C87 t45173 353.07 357.78 5[4.06 497 [6 345C0 9025 89096 88t99 88647 -.506 150.[03 29.752 32/6? [19165 [~...... ~53o59 357.98 474.2l 463.70 34300 13350 62586 78753 80669 -2.3/G 113.142 35.919 32C27 149013 12 351.61 355.93 473.18 462.98 34300 1270C ~1136 76949 79042 — 2.648 114.580 34.753 31767 141366 13 359.67 363.29 477.27 466 27 34150 11520 o8118 71291 69704 2.276 1L0.Z49 31.851 32621 130334 14 358o57 362.44 475.76 464.76 33860 10896 /2146 67308 69727 -3.469 109.716 32.016 32219 122319 15 355.49 359.04 476.8~9 464.bE 34500 9850 01254 67106 67180 -.]lO 113.42l 29.839 32406 110892 16 35~.06 361.54 482.00 469.3l 35C00 gl6C 0?022 65605 663L3 -1.069 115./94 2~.850 33211 105563 17 35R 64 362.03 492.74 47~.56 34450 8150 64290 65760 65025 1.130 125.23~ 26.157 32/58 98404 18 342o10 344.23 423.06 4[5 28 34800 9~4C ~0236 41203 40719 I.IL8 /5.970 21.002 30851 84946 ~4 351.44 353,79 417.76 412.31 34400 14300 44223 41797 43010 -2,HZI 62.~07 34.719 31711 120635 ~5 352.71 355.C9 4[7.79 412.53 344C0 1493C 94835 42121 434'18 -3.121 61,249 35.761 31877 126038 ~6 352.03 354.55 418.51 413.44 34400 157t~C 47448 42941 45t95 -4.986 62.676 36.327 31798 133823?8 413.46 403.14 540.9l 530.0~ 15430 14530 91078 93175 92'127 1.138 t26.901 36.573 t751/ 217529 3C 402.90 412.5t 541.50 530.70 169C0 14440 V2849 9~385 92617 -.250 128.394 36.340 19146 216711 32 397.88 407.01 538.74 527.72 t~6O t4b3U ~6997 9464/ 95819 -1.229 1~0.783 36.910 20758 215539 33 414.54 421.35 539.53 528.9~ 22700 14530 09085 90678 89882.886 116.300 38.934 26626 216439 34 414~9-'1- 422.07 538.39 52U 39 21950 14520 90608 85833 88220 -2.706 114.894 38.682 25793 215531 36 4[2o08 418.44 537.64 527.41 25550 14520 9~449 87748 90598 -3.147 117.254 38.925 29700 214773 4C 410,82 416,60 539.14 52fi.41 29300 I4~bC 97274 9[048 941C1 -3.306 120.048 39.5t5 33Efil 213341 42 407~54 412.45 540.08 528 62 34300 1452C 98141 98439 98290.151 124.326 39.828 39850 216373 43 410e90 415.68 542.54 531.03 37200 14520 102101 9905? lC051g -1.514 123.465 41.040 42S56 218515 15 411.29 416.52 541.18 529.83 324C0 [4530 97346 97649 97~97.[56 121.574 40.401 37491 217538 52 336.58 34~o14 510.05 493 bt 33060 [CICC 99464 95611 97538 -[.o75 162.420 30.253 28841 131172 54 339.74 345.94 509.39 4H3.45?8900 1010~ 47236 92785 95010 -2.342 158.330 30.192 25585 130929 55 341,86 348.61 508.94 493.32 26520 [CICC 97335 90901 94[18 -3.418 155.853 30.423 23715 130762 57 326.11 333~89 507.77 491.39 25600 10526 106938 99164 103C5t -3.772 [69.544 30.620 21449 135268 58 327,29 335.88 509.45 492.93 23000 10340 106220 98428 102324 -3.708 169.574 30.399 19404 133904 59 325~93 335.03 508.38 492.08 2ICCU 1C200 [0264! 95728 99[88 -~o48h 169.725 29o441 [7632 [31532 60 326.45 336.26 506.16 490.36 1023(i 98503 92917 95710 -2.91h 166,887 28.892 15744 130770 61 18680 326.41 338.69 509.93 494.28 4770 L0250 )7592 92501 95046 -2.67~ 169.550 28.241 12513 13~276 62 326.66 317.86 511.75 495.6? 16650 [CZbC 100314 95[65 97740 -2.634 17Io439 28,721 14088 134219 64 394.62 399.0! 489.70 48[.66 25C50 [2850 62333 58789 60561 -2.026 88.853 34.337 273[9 155174 65 394.96 398.70 491.29 82.9[ 28950 01~73 61346 6L359 -~022 90.250 34,251 31574 156189 67 [285U 395.15 400.28 490~24 482.92 22600 5300 05763 63776 64770 -1.5~4 88.861 36.720 24726 185~25 68 t52.10 351i.10 46~.26 454.74 2]CCO 15380?5646 72945 74295 -l.Rlt 103.d95 36,025 21417 163536 69 350.29 355 45 46J.03 454.26 28250 [5380 /9759 75063 77411 -3.033 105.765 36.872 163249 70 454o5M dOlB~ 75684 77934 -~o686 71 -2.165 [05.478 26069 34q.99 354.2U 463.42 34180 L5~8~1 106.a49 36.745 31447 163536 349.32 32.669 354 74 462.[6 452.88 235~0 12975 09881 669[9 68400 21685 136903 72 350.66 356.30 458.U6 44').6~ 2~550 15750 127[t 73[58 72935.30~ lOC.~4 30.602 21786 163246 75 ]75.29 380 1~ 484.72 475,17 23100 [[400 62417 6L661 62059 609 102.217 30.576 23492 [34053 76 398.33 402.71 518.34 505.85 22200 8280 ~5277 57695 4.191 11[.526 26.062 24530 1[2441 77 6011~ 395.77 400.58 5[5.57 503.67 22200 9100 50592 6~82 6[/C~ 1.8O! 111.407 27.903 24328 [22267 78 396o88 hOl.fib 5[4.55 503,34 ~7350 g9[C 63089 644[2 6375[ [.037 109.550 29.316 24595 132762 80 390.08 40[.[5 515 17 504.[7 22'400 11350 04465 72431 68448 5.R20 111.029 3L.057 24585 [52530 81 394~62 40(1.36 51[.79!i(11,92 22530 [1820 73342 67530 70436 -4.126 109.352 32,449 24630 156920 82 395.60 401.70 512.92 5'33.25 22580 12E;5C ~8186 71775 74981 -4.275 109,441 34.515 24786 171519 83 397.20 402.81 508.47 499.49 2258A 14080 71983 7~020 72501.715 103.966 35.13.1 24905 184590 85 305.32 3[b.5~ 4J2.34 424.34 13510 72120 69088 70608 -2.[~3 117,886 30.174 [0206 [44495 86 [5920 301~.28 312.66 432.60 424.3[ [5210 6920 75[90?[600 73J98 -~.450 ld0,484 30.690 [1527 144584 87 302o61 310.94 43(1.42 42[.97 16750 [5920 73466 72~41 73153 -.427 [19.420 30.860 12623 [42828 88 ~02o61 3[0.(;9 429.63 421.CU 18~60 [5920 73466?~650 73557.126 [[9.004 31.[39 [4034 142178 89 301.56 308.5(; 429.46 420.?b 21150 [692(; ]7170 750[2 7609[ -[.418 120.073 31.925 [5806 141984 90 301.34 307.~4 428.8? 4[q.97 22~50 15g2d f20~8 76603 74321 3.07[ 120,074 31.182 1702[ [4[455 91 30i.22 429.57 420.30 25500 15920 7729~ 79137 782[6 [.17! 120.862 32.602 18973 141884 92 301.90 306.~9 430.70 8196U -2.0~0 121.550 33.293 21736 307.26 421.5/ 25259 15920 78698 80329 142781 93'~9150 301.15 305.~2 433.28 423.fi3 4050 15920 23492 81625 82559 -l.[30 125.055 33.25~ 144662 94 302,[8 305.70 428.18 415.50 26200 733(1 48442 60139 49290 [.722 117.641 2[.G72 19479 64217 95 300.79 304.44 423.5~ 412.(14 26850 8350 51419 51801 51610.370 115.[50 22.67<; [9835 7154[ 96 307.89 %[2.95 456.65 443.[5?6'/80 9200 ~[570 68615 70097 -2.108 139.437 25.324 20531 93467 97 301.36 4A6.h9 449.65 436,6? 26~00 10310 73(,25 72387 7]006 -.848 139.251 26.412 19928 101243 98 29~.60 ~03.09 440.55 428.8[ 26700 [150(]?564[ 7'$6]5 746]8 -[.344 133,460 28.174 [9648 [07974 99 299.63 304.82 438.78 427.60 27180 12340 /3988 7~811 73899 -.12G 131.044 28.409 20041 115009 lCC 30].0[ 306.30 434.44 424.[4 26960 [3270?4866 74205 74535 -.444 [25.6[8 29.892 20009 121060 [01 299.6[ 305.03 431.15 421.34 26900 [4[80 76477 75019 75748 -.962 [23.932 30.791 [9849 [27266 -739 121 315 31.056 19964 134975 102 301.4/ 306.92 430.[5 426.89 26820 [5100 76794 76668 1:186 I18.8(11 32.203 [9980 14093.{ 7623[ 301.47 75042' 51083 306.79 427.39 4[t~.49 26[~50 [5990 76H43 75942 IC4 217.11 270.1~ 2fiC'.g??'t7.42 15500 [5980 24615 20855 25734 4.349 60.455?[.445 7~70 [05 213.34 216.25 200.04 276.49 [?[~5(! [5980 25472 26829 76150 2.594 63.495:!0.76[ 792[ 50639 [06 2[4 73 2[/.28 279.3J 2/5.72 2'C ~ 50 15980 25835 27262 26549 Z.689 61.519 71.79[ 9330 50287 [07 214.28 216.!!3 280.63 276.92 23300 [5980 28859 28052 28455 -1.4!! 63.21[: 22.bf6 10~94 5088:% ICe 217.60 214.89?~9.35 275.67 25~60 [5980 28427 20018 28772 -.7;'5 Ct.777 22.293 11274 5028/ Iog 210.47 212.57 270.(17 274.20 28~50 15900 28809 2~040 2~%25.399 64.b[! 22.553 [2287 49379 [IC 207.55 209.G[ 27~.4) 2/[.8[ 3[[(;0 [5820 30918 27408 29163 -6.C[? 651067 22.579 13193 4?972 NCT[ - INPUT CAT~ TFFPERfiTIJR[S ARE IK FAHR.?Z

TABLE XIII (Continued) RUN HI PRIFE RFIh IN HI HO PRIME RFIN OUT HO /SAV T~ALL 0 [WALL I TTAV'L 985~[6.COOOO0 985.16 788,[6.C03918 192.79 356.00 386.96 39~~40 500.78 4 802.92 OCOOO0 802.92 703.97.G04105 180.97 355.00 383.58 390.88 502.84 5 751.91.CCOCO0 751.91 764.78.C03968 189.56 355.88 383.43 390.81 511.45 8 646.65.OCO~00 646.65 766 51.C03964 189.80 355.42 379.04 385.36 505.61 ll 835.06.OOOOO0 835.06 693.15.C04131 179.41 555.78 378.46 384,22 468.95 [2 799.88 000000 799.88 689.39.004140 178.87 353.77 376.06 381.70 468.38 [3 749.34.OCOOO0 749.34 490.9~.C04707 148.28 36[.48 385.20 390.[7 47[.77 14 7[1.02.CCC000 711.02 750.99.C03998 187.63 360.50 379.27 384.24 %70.26 [5 654.67 0C0000 654.67 709.71.004092 [8~.79 357.26 375.94 380.73 470.74 [6 623.49.CCOOO0 623.49 753.6?.003992 [88.00 359.80 377,63 362.36 475.65 [7 579.23.00~000 5?9.23 489.59.C04712 [48.05 360.33 382.54 387 17 485.65 18 586.06.GCCGO0 5~6.06 624.15.C04306 169.26 343 [6 355.32 35~.22 419.17 24 790.78 000000 790.78 74[.47.C04019 186.29 ]52.6! 364.26 367.33 415.03 25 8[9.69.00GOO0 8[9.69 757.07.003985 [88.48 353.90 365.53 368.6] 415.16 26 859.07. OOOOO0 859.07 6]6.56.C04273 [71.[2 ]5].29 366.60 ]69.83 4[5.97 28 1944.2[ OOOCO0 I044.21 276.66.C06638 [08.08 408.30 45[.54 458.[0 535.49 30 1039.79.COOOO0 1039.79 271.15.C05669 106.88 407 70 451.36 457.97 536.10 32.000000 1036.55 297.91.C05523 112.62 402.44 445.31 452,14 533.23 [036.55 33 042.85.000~00 1042.85 397.63.C05057 132.06 417.94 452.24 458.65 534,25 ~4 [041.35.CCOOO0 1041.35 ]34.Z9 oC05113 [29.61 418.49 452.79 459.08 5]3.39 36 000000 1037.8~ 404 19.C05028 133.36 415.~6 449.49 455.95 532.52 ~037.88 40 027.95.000000 1027.95 464.43.C04800 [43.82 413.7[ 446.7! 453.42 533~?? 42 [036,87.CCOOO0 471.00.C04777 144.93 409.99 444.19 534.35 1036.87 451.20 43 [040.89.CCOOOO 1040.8Q 568.16.C04463 160.69 4[3.29 444.85 452.02 536.78 45 1040,62 OCCCOC 104().6Z 510.06.C04643 151.42 413.90 440.37 453.32 535.50 52 700.18.00~C00 700.[8 487.46.C04719 [47.70 339.36 )72.69 3?9.64 501.84 54 701,56.CCCOO0 701.56 472.69.CO4771 145.22 342.84 37~.85 382.62 501,62 55 701.78.COCOO0 701.78 504,6[ C0466[ 150.53 345.23 376.78 383.49 501.13 57 7[7.07.000000 717.07 46].56.C0480~ [43.67 330.00 366.17 373.52 499.58 58 709.69.000000 709.69 465.5].C04797 [43.97 ]31.58 367.42 374.72 50[.[9 59 701.96.000000 701.96 C05125 129.10 330.4~ 369.21 376.28 500.23 381~57 60 703.14.000000 703.14 327 Of.C05375 11~.58 331.35 372.03 378.86 498.26 61 712.06.00COO0 712.06 26[.82 C05722 104 81 332.55 378.24 385.02 502.10 62 712.78.0C0~,00 712.7U 292.31.C05553 111.44 332.26 503.71 376.46 383.43 64 858.93.CCDUO0 858.93 411.0l.C05003 134.49 396.81 419.51 423.83 485.68 65 861.33.CCCOO0 861.33 398.27.005055 132.18 396.83 420.24 4~4.61 487.10 67 993.14.000000 9q3.[4 337.66 C05324 120.69 397.7l 424.75 429.37 486.58 68 923.32.OCOOO0 923.32 406.12.005023 133.60 355.10 383.12 388.42 459.00 69 919.95.CCOQO0 9[9.95 486.53.C04722 147.54 352.87 J84.83 458.64 379.3~ 70 920.41.qCOOO0 920.41 473.26.C04769 145 32 352.13 379.1 384.73 459.00 71 799.56.CC(}000 799.56 412.84.C04995 134.81 352.03 377.60 382.48 457.52 72 930.49.000000 930.49 436.69.C04902 []9.04 353.48 379.91 385.11 453.87 75 764.52.CCCOO0 764.52 321.39.C05403 111.45 377.71 404.34 408.76 479.94 76 632.48.CC0060 632.48 267.64.C05689 106.10 400.52 427.96 432.08 512.09 77 678 54.OCOOO0 678.54 305.21.C05485 114.14 398.17 425.45 429.85 509.62 78 726.91.OCOOO0 726.91 306.45.C05478 114.40 399.36 427.47 432.01 508.94 80 813.53.OCOOO0 813.53 269.95.C05675 106.61 398.61 435.87 509.67 430,99 81 835.08 835.0~.005415 116.95 397.49 432.87.CCOOO0 318.91 427.85 506.85 82 895.62.OCOOO0 895.62 350.56.605263 123.22 398.65 429.32 434.66 508.10 83 959.9[.000000 959.9[ 296.08.C05533 112.23 400.00 432.56 437.73 503.98 85 875.26.COOOO0 875.26 179.22.006252 84.52 310.45 352.54 357.58 428.34 86 873%07.COCOO0 873.07 196.39.006133 89.09 307.97 349.48 354.7l 428.45 87 86?.40.000000 867.40 206.26.006067 91.62 306.77 347.00 ]52.22 426.19 88 864.~{4.000000 864.84 218,42.C05987 94.65 306.35 345.50 350.75 425.35 89 861.86.OCOOO0 861.86 253.97.C05768 103.04 305.03 342.24 347.66 425.10 gO 861.70 ~.COOOO0 861.70 222.78.C05959 95.71 304.34 343.46 348.76 424.42 gI 859.54.000000 859.54 290.f?.C05561 [ll.ll 304 lO 339.58 345.15 424.97 92 860.62.OOOOO0 860.62 330.18.005360 119.21 304.57 338.53 344.26 426.13 g] 864o92.000000 864.92 320.96.C05405 117.36 303.48 338.94 344.83 428.55 94 450.56.000000 450.56 415.17.C04986 135.23 303.94 322.36 325.88 421.84 95 496.71.OCOOO0 496.11 375.23.005153 127.92 302.61 322.99 326.67 417.81 96 578 53.COOOO0 578.53 36i.82 005212 125.38 310.42 338.63 343.62 449.90 97 624.70.COOOO0 624.70 317.39.C05423 116.64 303.97 335.54 t40.75 443.26 98 668.81.OCOOO0 66h. Rl 356.28.C05237 124.32 301o19 331.47 336.79 434.68 709.50.000000 709.50 277.18.005635 108.19 302.22 336.66 433.29 341o92 lCO 746.]7.000000 746.37 308.48.005468 114.82 303.65 336.38 341.69 429.29 [Cl 782.43 CCOOO0 782.43 302.32 C05500 113.54 302.32 335.94 341.34 426.26 [02 824.14.OCOOO0 824.14 288.08.C05575 110.54 304.19 338.95 344.38 425.52 ~03 859.57 OCOOO0 859.57 269.92 005676 106.6] 304.13 340.03 345.44 422.94!04 5]0.30.C06000 530.30 165.75.006349 80.76 218.74 234.79 236.63 279.19 i05 526o99 000000 526.99 139.54.C06544 72.94 214.81 232.87 234.74 278.26 i06 88.08 216.00 233.08 524.02.OCOOO0 524.02 192.55.006159 231.19 277.52 107 524.28.OCPOO0 524.28 265.20.005702 105.56 215.55 229.14 23[.17 278.77 108 521.08.qOOOO0 521.08 239.63.005854 99.73 213.74 228.00 230.02 277.52 log 513.48.000000 513.48 289.92.005565 110.93 211.52 224.66 226.72 276.13 [lO 503.46.00GOO0 503.46 337.49.005325 120.66 208.58 220.76 222.84 273.65 75

TABLE. XIII (Continued)...RUN_.... FUNCTION C FUNCTION O FUNCTION E NUOSHELL NU TUBE PR SHELL PR TUBE 1_... 202.014 5.308 10.:387 473.38 1119.07 12.24 13.34 4 180.414 0.195 10.380 422.68 912.70 12.28 13.20 5 196.335 5.280 10.376 459.32 857.25 12.28 12.89 8 197.063 5.284 10.379 460.29 735.76 12.26 13.13 11 178.374 5.184 10.374 416.29 938.32 12.2 14.89 12 176.969 5.176 10.366 413.76 898.61 12.32 14.92 13 127.228 4.846 10.393 295.41 842.80 12.05 14.74 14 194.861 5.272 10.380 451.71 799.29 12.08 14.82 15 183.381 5.212 10.386 426.44 736.07 12.20 14.79 16 195.472 5.275 10.411 453.22 702.18 12.11 14.53 17 126.778 4.842 10.397 294.47 654.56 12.09 14.03 18 158.826 5.068 10.337 373.32 647.58 12.72 18.15 24 191~~~~~~~~~~~~~~~~~~~~1.140 18.15 24 191.140 5.253 10.364 444.85 872.58 12.36 18.48 25 195.493 5.276 10.370 454.39 904.53 12.32 18.47 26 164.092 5.100 10.367 381.99 948.24 12.34 18.41 28 75.250 4.321 9.771 169.03 1200.45 10.69 11.98 30 73.688 4.300 9.860 165.66 1195.61 10.70 11.96 32 p0.490 4.388 9.941 181.67 1190.71 10.84 12.06 33 109.764 4.698 10.190 243.72 1198.36 10.46 12.02 34 106.148 4.665 10.158 235.59 1196.28 10.44 12.06 36 111.409 4.713 10.299 247.89 1191.94 10.52 12.09 40 127.666 4.849 10.431 284.27 1181.05 10.56 12.04 42 128.859 4.859 10.593 287.93 1191.53 10.65 12.02 43 156.205 5.051 10.668 347.71 1197.17 10.57 11.94 45 140.274 4.944 10.532 312.22 1196.32 10.55 11.98 52 121.961 4.804 10.270 291.20 795.64 12.87 13.29 54 118.866 4.778 10.150 282.70 797.09 12.73 13.31 55 127.415 4.847 10.074 302.02 797.26 12.64 13.32 57 114.250'4.738 9.973 276.09 814.21 13.25 i3.39 58 114.976!4.745 9.873 277.29 806.27 13.19 13.32 59 93.979 4.543 9.777 227.29 797.23 13.23 13.36 60 80.565 4.389 9.664 194.86 798.02 13.20 13.45 61 64.442 4.166 9.435 156.07 809.22 13.14 13.28 62 71.972 4.276 9.503 174.22 810.48 13.16 13.21 64 111.319 4.712 10.215 250.17 970.65 1. 98 14.03 65 107.834 4.681 10.360 242.42 973.84 10.98 13.96 67 91.365 4.515 10.116 205.59 1122.66 10.96 13.99 -68 104.125 4.646 9.972 243.85 1033.99 12.27 15.45 69 124.470 4.824 10.168 291.92 1030.09 12.35 15.47 70 120.918 4.795 10.356 283.89 1030.73 12.38 15,45 71 105.547 4.659 9.984 247.64 894.95 12.38 15.54 72 111.813 4.717 9.989 262.07 1040.22 12.33 15.75 75 84.901 4.441 10.064 194.40 862.27 11.53 14.31 7 2.645 4;.86 10.108 163.11 721.25 10.89 12.86 77 82.620 4.414 10.099 185.86 773.12 10.95 12.96 78 83.041 4.419 10.110 186.69 828.04 10.92 12.99 80 72.946 4.290 10.110 164.41 926.93 10.94 12.96 81 86.138 4.456 10.112 194.16 950.57 10.97 13.08 82 94.805 4.552 10.118 213.51 1019.91 10.94 13.03 83 80.129 4.384 10.123 180.41 1091.59 10.90 13.20 85 42.735 3.755 9.231 106.07 970.11 14.16 17.46 86 46.661 3.843 9.352 116.14 967.72 14.28 17.45 87 48.948 3.891 9.443 121.93 960.71 14.34 17.61 88 51.832 3.948 9.549 129.10 957.60 14.36 17.68 89 60.209 4.098 9.668 150.05 954.22 14.43 17.70 90 52.696. 3.965 9.742 131.60 953.82 14.47 17.75 91 68.903 4.233 9.851 171.75 951.62 14.48 17.71 92. 79.370 4.361 9.987 195.05 953.18 14.46 17.62 93 75.981 4.330 10.137 189.54 958.72 14.51 17.44 94 99.387 4.599 9.877 245.21 498.30 14.49 17.94 95 89.528 4.495 9.895 221.53.548.60 14.56 18,26 96 36.973 4.466 9.930 214.14 645.89 14.16 16.00 -,.97 75.372 4.322 9.900 187.47 695.88 14.49 16.42 98 84.295 4.434 98. 210.25 742.87 14.64 17.00 99 65.525 4.182 9.9 6 163.62 787.69 14.58 17.10 100 73.168 4.293 9.904 182.19 827.51 14.50 17.39 101 71.512 4.270 9.896 178.47 866.62 14.58 17.61 -"102. 68.304 4.224 9.902 170.16 912.59 14.48 17.66 103 63.949 4.158 9.902 159.44 951.00 14.48 17.86 104 33.860 3.522 8.864 95.31 559.81 21.32. 41.19 105 28.196 3.339.8.977 80.14 556.15 21.81 41.50 106..39.118 3.667 9.141 110.62 552.88 21.66 41.75 107 53.899 3.987 9.249 152.34 553.38 21.72 41.33 108....48.467 3.881 9.330 137.58 549.78 21.95 41.75 109 58.391 4.067 9.416 166.33 541.52 22.24 42.23 110..67.556 4.213 9.487 193.45 530.53 22.64 43.11 74

TABLE XIV Shell-side Heat Transfer Data and Calculated Results for Tube Number 456 DETERMINATION Or THE POWER OF THE REYNOLDS NO. AND THE CONSTANT FOR THE SEIDER-TATE EDN. - SHELL SIDE CORRELATION FOR TUBE 456, NUMBER OF RUNS IS 12 SHELL SIDE FLUID IS MOL]IL LIlHT TUBE SIDE FLUID IS MOBIL 600 RUNS TUBE TEMP 00O XAI XAM RM Cl 12 456 0 19.9590 i.1400 1.3080.9300E-04.2957E-01 NO K L M NN 0 P Q 1.38925000L 00 *447500u0u-03 -.00OOOOOOE 00 -.OO 0 -.OGOOOOOE 00 -.00000000E 00 -.00000000E 00 2.34400000E 00.46333332E-03 -.00000000E 00 -.00000OOOOE 00 -.OUOOODOOE 00 -.0000OOO 0E 00 -.00000000E 00 3.67977499E-01 -. 197750uOE-04 -.00COOOOOE 00 -.0000000CE 00 -.00OOOOOO 00 -.00000000E 00.00OOOOOE 00 4.71699999-01E -.210000uOE-04 -.C000O000E 00 -.COOOOOOOE 00 -.OGOODOOOE 0 -.OOOOOOOOE 00 -.OOOOOOOOE 00 5 -.20489551E-03.10464268E 01 -.52113342E 02.54997295E 03.32380452E 05 -.75056534E 06.OOOOOODE 00 6-.21480229E 01.141606j2E 04 -.27029259E 06.32850279E 08 -.20186315E 10.45553047E 11.00000000E 00 7 -.29052144~ 01.22906367E 04 -.40461752L 06.38134658E 08 -.70443591E 09.OOOOOOOE 00.OOOOOE 00 8.OOOOOOOOO 00.000000u0E 00.000OOE 00 OOOOOOOO OOOOOOE 00.00000OOE 00.ODOOOOOE 00 18AS AFS AFT DIAT.36300E-01.291COE-01.3u0OOE-02.69500E-01 RUN TSI TS(.' TTI ITT) W SHELL W TUBE Q SHELL TUBE 0 AVG PER DEV LMTD UO RE SHELL RE TUBE I 251.31 256.06 339.63 333.88 17910 15720 42772 45198 43985 2.707 03.069 26.529 10017 80473 2 250.38 255.05 039.64 333.90 19240 15720 45136 45120 45128 -.018 84.054 26.900 10700 80482 3 249.50 253.73 338.54 332.54 20800 15720 44155 46953 45554 3.072 83.932 27.193 01493 79771 4 247.18 25.32 337.17 331.17 22370 15520 46379 46451 46415.078 84.917 27.386 12188 77966 7 240.67 244.23 336.10 329.58 27000 15730 47843 51097 49470 3.288 90.382 27.423 14116 78253 8 239.98 243.303 336.51 329.92 29050 15730 47971 52450 50210 4.460 91.615 27.459 15112 78498 9 239.47 242.6G 337.14 330.43 31350 15730 48779 52632 50706 3.799 92.739 27.394 16248 78790 10 238.94 241.97 307.69 330.72 33570 15730 50539 54693 52616 3.948 93.736 28.123 17336 79041 11 238.12 240.99 336.70 329.76 35600 15730 50723 54408 52566 3.505 93.660 28.120 182P1 78478 13 228.16 230.67 338.96 329.94 30900 8470 38152 38120 38136 -.042 ~05.001 18.197 14870 42637 17 230.58 233.48 305.24 327.34 30800 11250 44042 44215 44129.196 99.239 22.279 15017 55329 18 230.45 233.42 331.12 323.77 30800 12480 45101 45471 45286.408 95.493 23.760 15067 59642 NOTE - INPUT DATA TEMPERATURES ARE IN FAHR. RUN HI PRIME RFIN IN HI HO PRIME RFIN OUT H0 TSAV TWALL 0 TWALL I TTAV 1 652.75.000000 652.75 266.20.005697 105.78 253.68 274.52 277.65 336.75 2 651.35.000000 651.35 298.09.005522 112.66 252.71 272.79 275.99 336.17 3 647.51.000000 647.51 335.39.005335 120.25 251.61 270.60 273.84 335.55 4 635.47.000000 635.47 400.25.005047 132.54 249.25 266.80 270,10 334.17 7 635.23.000000 635.23 406.13.005022 133.60 242.45 261.01 264.53 332.84 8 635.38.000000 635.38 410.21.005006 134.34 241.64 260.38 263.95 333.26 9 636.13.030000 636.13 398.54.005054 132.23 241.03 260.26 263.86 333.78 10 634.62.000000 634.62 517.10.004619 152.67 240.45 257.74 261.48 334.20 11 631.96.000000 631.96 534.05.004567 155.30 239.50 256.53 260.27 333.23 13 377.91.000000 377.91 435.14.004908 138.77 229.41 243.22 245.93 334.45 17 473.17.000000 473.17 530.21.004579 154.69 232.03 246.34 249.48 331.29 18 509.07.00(000 509.07 559.57.004459 159.35 231.93 246.19 249.41 327.44 RUN FUNCTION C FUNCTION D FUNCTION E NU iSHELL NU TUBE PR SHELL PR TUBE 1 57.118 4.057 9.212 1~3.40 701.96 17.81 27.64 2 64.661 4.169 9.278 171.81 700.45 17.89 27.64 3 72.657 4.286 9.350 193.24 696.05 17.98 27.84 4 86.401 4.459 9.408 23(0.44 602.80 18.19 20.00 7 86.420 4.459 9.555 233.33 682.25 1A.80 20.31 8 87.133 4.467 9.b23 235.62 682.51 10.87 28.23 9 84.517 4.437 9 Z.28.8 7 683.43 18.93 28.14 10 109.827 4.69)9 3. /61 297.25 181.89 18.98 28.07 11 113.113 4.728 ().114 306.54 678.82 19.07 28.24 13 90.459 4.505 5).(o07 L48.98 406.10 20.10 20.03 17 110.800 4.700 39.62.1 O33.69 507.94 19.82 28.58 18 116.909 4.761 9.620 j20.4J i45.79 13. 53 29.27 75

TABLE XV Regression Analysis Results for Tube Numbers 455 and 456 for the Shell-side Heat Transfer Coefficient Correlation Constant and Power to which Reynolds Number is Raised STEPWISE REGRESSION,~~~~~~~~~STEPU~ISE REGRESS ~ION ~PREDICTDEO VS ACTUAL RFSULTS RUN ACTUAL PREDICTED DEVIATION PERCENT PROBLEM NO [ NO OF DATA = 88 1.53093E 01.49442E 01.36414E 07 6.86 4.51953E 01.49379E CI.25734E 00 4.95 NO OF VARIABLES = 2 5.2798E 0.49346E 01.345240 AD 6.54 8.52835E o,.4936,E 01.34666 00A 6.56 WEIGHTED DEGREES OF FREEDOM,88.00 11.51d39F 0.49329o CI.25099E 00 4.84 12.5176C. 0I.49255E 01.25044E 00D 4.84 F LEVEL T'O ENTER VARIABLE =.004 13.84V60 01.4495SE 01.10354E 00 -2.14 14.52723E 01.4933E l01.33399E 00D 6.33 F LEVEL TO REMOVE VARIABLE =.004 15.52116F 01.49435 01.26802 00 5.14 16.52754E C1.49657E 01.309680E 00 5.87 17.48424 01l.495330 GD -.olC89E 00 -2.29 18.5067E 01,.4899oC oL.16R7SE 00 3.33 SUM OF VARIABLES 24.52530E 01.49239E 01.32909E 00 6.26 25.52755E 01.49256E Cl.34689E 00 6.58 26.51004E 01.49264E D1.17403E 00 3.41 X( 1) =.8738E 03 XI 28.43208E D1.43868E 01 -.65973E-01 -1.53 Y =.3987E 03 30.42998E 01.44673E 01 -.16745E 00 -3.89 32.4381E L01.45404E 01 -.15231E 00 -3.47 RAW SUM OF SQUARES AND CROSS PRODUCTS 33.46983E 01.47657E 01 -.67404E-01 -1.43 34.4664VE 01.47370C (;1 -.72148E-0G -1.55 36.47132E 0L.48646E 01 -.15141E 00 -3.21 X( 1) VS X{ ) =.8691260 04 XA 40.48494E G1.49838E DI -.13441E 00 -2.77 X8 1) VS Y =.391182E 04 X( 42.485897E 01.51307E 01 -.27196E 00 -5.60 Y VS Y =.18Z26BE 04 43.50512E 01.51996E 01 -.14742E 00 -2.92 45.49436C Ol.50754E Dl -.13185E 00 -2.67 RESIDUAL SUMS OF SQUARES AND CROSS PRODUCTS 52.48037E 01.4R391E 01 -.34362E-01 -.72 54.47780E CD.47797E 0L.48338E-01 1.01 55.484 14 l 01 46610E 01.18649E 00 3.85 XI 1) VS X(t 1) =.138629E 02 Xl 57.47384F O1.45701E 01.16b833E 00 3,55 XI 1) VS V =.125461E 02 X( 58.47447E 01.44794E 01.26532E 00 5.59 Y VS Y =.16572E 02 59.45431E Cl.43927E 01.15036E 00 3.31 60.438931E l01.42902E 0D,.98843E-01 2.25 AVERAGE VALUE OF VARIABLES 61.41658E 01.40824E 01.833P0E-01 2.00 62.42763E 01.41897E l01.86602E-01 2.03 64.47124E 01.47890E l01 -.76591E-01 -1.63 X(l 1) =.9930E i01 X( 65.46806E L01.49200E l01 -.23940E 00 -5.11 Y =.4531E l01 67.45149E 01.46987E 01 -.183877E 00 -4.07 68.46456E 01.45687E 01.76885E-01 1.66 STANDARD DEVIATIONS 69.48241E l01.47466E 01.77463E-01 1.61 X( 11 =.3992E 00 XI 70.47951E 01.49163E O1 -.12123E 00 -2.53 Y.4309E 00 71.46592E 0D.45800E 01.79187E-01 1.70 72.47168E 0D.458426 i1'.'13267E-00 20-;8i CORRELATION COEFFICIENTS 75.44415E 01.46524E 01 -.21094E 00 -4.75 76.42856E 01.46915E 01 -.40595E 0 -9.47 77.44143.E.01.46841E 01 -.269801-E 0 - &.0 X{ 1) VS X( 2) =.838297~ 00 xA 78.44193E 01.46940E 01 -.27462E 1 0 -6.2G Xi X) VS Y =.83d297E O0 X( 80.42897E 01.46936E 01 -.40386E O0 -9.41 81.44560E 01.46952E l01 -.23925E O0 -5.37 STANDARD ERROR OF V =.430947E 00 VARIANCE =.185715E 00 82.45518E OL.47CO9E OL0 -.1491LE 00 -3.28 83.43836E 01.47053E 01 -.32161E 0 -.3 STEP NO. 1 85.37550E Cl.38979E l01 -.14288E 5 0 -3.81 VARIABLE ENTERING 1 86.3429!- 01.400DIE 01 -.16519E O0 -4.30 F LEVEL = 203.3106 87.389CRE 01.40902E I01 -.19945E 6 0 -5.13 STANDARD ERROR OF Y =.2.63E 00 88.33480E 01.41861E Dl -.23814E O0 -6.03 COEFF OF DETERMINATION =.70214159E 00 89.40978r: l01.4293BC 01 -.19599E G0 -4.78 MULTIPLE CORLTN COEFF =.H3829683E 00 90 o 39645 01.43608F 01 -.39624E 00 -9.99 91.42327 01l.44591E TI -.22637E 00 -5.35 92.43614: 01.45H22E 01 -.22074E 00 -5.06 93.43305[ 01.4715iE 01 -.3875E 0 -8.9 94.45190E 01.44T29 01l.11616B 00 2.53 95.44')45 01.44993~ 01 -.47196E-u2 -.11 96.446561} (1.45305 01l -.64906C-01 -1.45 97.43224'_ 01.4590SF 01 -.1S107E 00 -4.19 CONSTANT TERM = -.44559871E l01 98.44343' 01 449(71 GI -.56372L-Cl -1.l1 VARIABLE NO. COEFFICIENE STD 08R.CF 00EFF 99.41824C 01.4506E 1 -.313 02 -7.80 X- I.90501034E 00.63470740f-01 100.42923E 01.45072E Dl -.214410 G0 -4.99 COMPLETED 1 STEPS OF REGRESSION 101.42699 01.449970 01 -.229DTC 00 -5.35 102.42243F OL1.45051E 01 -.28116L 00 -6.66 DIAGONAL ELEMENTS 103.4151 01.45059E 01 -.347194 0D -0.36 104.35222( 01.35657E 01 -.4348(0-51 -1.Z3 VAR.NO. VALUE 1C5 332.36685 01 -.3293' 0D -9.86 100.6=66c n1. 38167E 0 -.15017E S0 -4.10 1 1.CDDDD 107.39911, O1.39144E 01O.72703E-01 1.82 108.380o 20.39880-E 1 -.1070HE (O -2.16 109 40672 1.40658E 01.13266E-02.03 SUM OF SQUARED DEVIATIONS =.48026E 01 110.413) I.41302E 01.82748E-(1 1.96 ~~~~~~NUMBER OF DATA CASES 8.4 5049' CI.42385E D6.266310 00 5.91 ~~~~~~~NUMBER OF DATA CASES =~ 84~ ~2.41077F l.42510E 01.45670E 00 9.70.4761r ()i1.42505: l01.iOg10E 00 10.73 4.4:)5137 3 l.38IE elCI.17626E 00 4.34 7.410)2' - CI 39411 01.22844E 00 5.48. 8 427:: C01.40054 01O.28034E 00 6.54 9.445901: CI.405V5E TI.40046E G0 8.98 10.445 2 1.41915C 01.26777E G0 6.00 11.446749 CI.42532E 01.21428E CO 4.80 1.4436": 01.431870 C1.11823E 00 2.66 17.46)390 CI.49774 01l.32152E 00 6.84 18.4729q4 01.44254 01l.30295E 00 6.41 76

APPENDIX D. BOND RESISTANCE ERROR ANALYSIS 77

TABLE XVI Bond Resistance Error Analysis Using the Heat Transfer Correlation Data for Tube Number 455 in Conjunction with the Experimentally Obtained Heat Transfer Correlations!BOND RESISTANCES FOR TUBE 455 NUMBER OF RUNS IS 76 RUN TUBE TEMP XAO XAI XAB RMT RMI RMO 76 455 0 19.8500 1.1400 1.3100.14130E-02.46700E-04.46700E-04 CO POWER PRPOW CI AML AMO OOL 00.01150.90500.33333.02957 1.22500 1.39500.96100 2.02600 NO K L M NN 0 P Q 1.38925000E 00.44750000E-03 -.00000000E 00 -.00000000E 00 -.OOOOOOOOE 00 -.00000000E 00 -.0000000OE 00 2.34400000E 00.46333332E-03 -.00000000E 00 -.00000000E 00 -.00000000E 00 -.00000000E 00 -.00000000E 00 3.67977499E-01 -.19775000E-04 -.00000000E 00 -.00000000E 00 -0OOOOOOOOE 00 -.00000000E 00 -.00000000E 00 4.71699999E-01 -.21000000E-04 -.0000000OE 00 -.00000OOOt 00 -.OOOOOOOOE 00 -.00000000E 00 -.00000000E 00 5.13965872E-02.24329326E 01 -.49320430E 03.50414862E 05 -.24712216E 07.48344347E 08 -.12876992E 09 6 -.21480229E 01.14160692E 04 -.27029259E 06.32850279E 08 -.20186315E 10.45553047E 11.00000000E 00 7 -.29052144E 01.22908387E 04 -.40461752E 06.38134658E 08 -.70443591E 09.OOOOOOOOE 00.OOOOOOO E 00 8.66227230E-01.12066216E 03 -.159793758 05.16121989E 07 -.10121598E 09.34104823E 10 -.46683010E 11 DIAS AFS AFT OIAT AFIN AROOT FPI FINT RCONT.03660.02888.00379.06950 18.70000 1.13000 9.39000.01840.0000000 RUN TS IN TS OUT TT IN TT OUT W SHELL W TUBE Q SHELL Q TUBE PER DEV F F F F LB/HR LB/HR BTU/HR BTU/HR + OR - 1 352.81 359.20 507.33 494.23 34700 15250 121634 115076 2.77 4 352.29 357.71 510.33 495.35 34600 11820 102789 102163.31 5 353.14 358.63 519.75 503.15 34350 10720 103439 103385.03 8 353.07 357.78 514.06 497.16 34500 9025 89096 88199.51 11 353.59 357.98 474.21 463.70 34300 13350 82586 78753 2.38 12 351.61 355.93 473.78 462.98 34300 12700 81136 76949 2.65 13 359.67 363.29 477.27 466.27 34150 11520 68118 71291 2.28 14 358.57 362.44 475.76 464.76 33860 10890 72146 67308 3.47 15 355.49 359.04 476.80 464.68 34500 9850 67254 67106.11 16 358.06 361.54 482.00 469.31 35000 9160 67022 65605 1.07 17 358.64 362.03 492.74 478.56 34450 8150 64290 65760 1.13 18 342.10 344.23 423.06 415.28 34800 9840 40236 41203 1.19 24 351.44 353.79 417.76 412.31 34400 14300 44223 41797 2.82 25 352.71 355.09 417.79 412.53 34400 14930 44835 42121 3.12 26 352.03 354.55 418.51 413.44 34400 15780 47448 42941 4.99 28 413.46 403.14 540.91 530.08 15430 14530 91078 93175 1.14 30 402'.90 412.51 541.50 530.70 16900 14440 92849 92385.25 32 397.88 407.01 538.74 527.72 18660 14530 96997 94641 1.23 33 414.54 421.35 539.53 528.98 22700 14530 89085 90678.89 34 414.91 422.07 538.39' 528.39 21950 14520 90608 85833 2.71 36 412.08 418.44 537.64 527.41 25550 14520 93449 87748 3.15 40 410.82 416.60 539.14 528.41 29300 14350 97274 91048 3.31 42 407.54 412.45 540.08 528.62 34900 14520 98141 98439.15 43 410.90 415.68 542.54 531.03 37200 14520 102101 99057 1.51 45 411.29 416.52 541.18 529.83 32400 14530 97346 97649.16 52 336.58 342.14 510.05 493.63 33060 10100 99464 95611 1.98 54 339.74 345.94 509.39 493.45 28900 10100 97236 92785 2.34 55 341.86 348.61 508.94 493.32 26520 10100 97335 90901 3.42 57 326.11 333.89 507.77 491.39 25600 1 520 106938 99164 3.77 58 327.29 335.88 509.45 492.93 23000 lp340 106220 98428 3.81 59 325.93 335.03 508.38 492.08 21000 10200 102647 95728 3.49 60 326.45 336.26 506.16 490.36 18680 10230 98503 92917 2.92 61 326.41 338.69 509.93 494.28 14770 10250 97592 92501 2.68 62 326.66 337.86 511.75 495.67 16650 10250 100314 95165 2.63 64 394.62 399o01 489.70 481.66 25050 12850 62333 58789 2.93 65 394.96 398.70 491.29 482.91 28950 12850 61373 61346.02 67 395.15 400,28 490,24 482.92 22600 15300 65763 63776 1.53 68 352.10 358.10 463.26 454.74 23000 15380 75646 72945 1.82 69 350.29 355.45 463.03 454.26 28250 15380 79759 75063 3.03 70 349.99 354.28 463.42 454.58 34180 15380 80183 75684 2.89 71 349.32 354.74 462.16 452.88 23580 12970 69881 66919 2.16 72 350.66 356.30 458.06 449.68 23550 15750 72711 73158.31 75 375.29 380.13 484.72 475.17 23100 11400 62417 61661.61 76 398.33 402.71 518.34 505.85 22200 8280 55277 60113 4.19 77 395.77 400.58 515.57 503.67 22200 9100 60592 62822 1.81 78 396.88 401.85 514.55 503.34 22350 9910 63089 64412 1.04 80 396.08 401.15 515.17 504.17 22400 11350 64465 72431 5.82 81 394.62 400.36 511.79 501.92 22530 11820 73342 67530 4.13 82 395.60 401.70 512.92 503.28 22580 12850 78186 71775 4.28 83 397.20 402.81 508.47 499.49 22580 14080 71983 73020.72 85 305.32 315.58 432.34 424.34 13310 15920 72128 69088 2.15 86 303.28 312.66 432.60 424.31 15210 15920 75196 71600 2.45 87 302.61 310.94 430.42 421.97 16750 15920 73466 72841.43 88 302.61 310.09 429.63 421.08 18660 15920 73465 73650.13 89 301.56 308.50 429.46 420.75 21150 15920 77170 75012 1.42 90 301.34 307.34 428.87 419.97 22850 15920 72038 76603 3.07 91 301.22 306.99 429.57 420.38 25500 15920 77295 79137 1.18 92 301.90 307.25 430.70 421.57 29150 1960 78698 2.03 93 301.15 305.82 433.28 423.83 34050 15920 13492 81625 1.13 94 302.18 305.70 428.18 415.50 26200 7330 48442 50139 1.72 95 300.79 304.44 423.58 412.04 26850 8350 51419 51801.37 96 307.89 312.95 456.65 443.15 26780 9200 71570 68615 2.11 97 301.36 306.59 449.65 436.87 26800 10310 73625 72387.85 98 298.50 303.89 440.55 428.81 26780 11500 75641 73635 1.34 99 299.63 304.82 438.78 427.80 27180 12340 73988 73811.12 100 301.01 306.30 434.44 424.14 26950 13270 74866 74205.44 101 299.61 305.03 431.15 421.38 26900 14180 76477 75019.96 102 301.47 306.92 430.15 420.89 26820 15100 76794 75668.74 103 301.47 306.79 427.39 418.49 26850 15990 75042 76843 1.19 104 217.11 220.37 280.97 277.42 15500 15980 24615 26853 4.35 105S 213.34 216.28 280.04 276.49 17850 15980 25472 26829 2.59 106 214.73 217.28 279.33 275.72 20850 15980 25835 27262 2.69 107 214.28 216.83 280.63 276.92 23300 15980 28859 28052 1.42 108 212.60 214.89 279.38 275.67 25600 15980 28427 28018.72 109 210.47 212.57 278.07 274.20 28350 15900 28809 29040.40 110 207.55 209.61 275.49 271.81 31100 15820 30918 27408 6.02 78

TABLE XVI (Continued) RUN RE SHELL RE TUBE PR SHELL PR TUBE V[SC SHELL VISC S-WALL VISC RATIO V[SC lUBE ~ISC T-WALL VlS~ ~ATIU LB/FT-HR L8/FT-HR SHELL Lb/FT-HR LH/FT-HR TtJUt I 32]40 [97[]2 [2.24[ [].]J8 [o]60 [oJ?8 J,[~4 Jo4[7 2,4]J.58J 4 32116 154188 12.277 /3.249 /o365 1.204 1.134 [~404 2.497.~b2 5 3L998 145173 12.245 12.888 1.360 1.198 1.[36 1.352 Z.498.541 8 32078 tlg165 12.262 13.13! 1o363 i.221 [.IL6 1.387 Z.5B2 obt? il 31939 149013 12.249 14.889 1.361 1.23l 1.106 1.641 2.602.031 12 31679 141366 12.32l 14.920 1.372 1.242 1.[05 1.645 2.b42.b23 13 32530 130334 12.051 14.737 lo330 lo221 1.090 1.6[9 2.509.6~b 14 32130 122319 12.085 14.8i8 1.336 1.224 1.091 1.630 2.60i.b27 15 32317 110892 12.197 14,792 1.353 1.244 1,088 1.627 2.65~.612 16 13119 105563 12.109 14.533 1.339 1.234 1.085 1.589 Z.631.604 17 32668 98404 12.090 14.033 1,336 1.233 1.084 1.517 Z.554.594 18 30765 84966 12.716 18.153 1.434 1,357 1,056 2.121 ~.072.691 24 31623 120635 12.362 18.485 1.379 1.304 1.057 2.17l?.894./bO 25 31789 126038 12.316 18.474 1.371 1.297 1.058 2.169 2.870.Tbb 26 31710 133823 12.338 18.408 1.375 1.297 1.060 2.159 2.848.15e 28 17468 217529 10,689 11.981 1,119.977 1.146 1.223 1.728.708 30 19093 216711 10.703 ll.9bO 1.122.983 1.141 1.220 1.730.tOO 32 20700 215539 10.837 12.061 1.142 1.001 1.141 1.235 l.~BZ.093 33 26552 216439 10.456 12o025 i.08].974 1.112 1.229 1.724.ll~ 34 25722 215531 10.944 12.055 1,081.973 1.112 1.234 1.720.71! 36 29618 214773 10.520 12,086 1,093.987 1.108 1.238 1.?47./09 40 33788 213341 10,557 12,041 1.099,995 1.104 1.232 1.77l.Oq6 42 39740 216373 10.647 12.021!.113 1.011 1.101 1.229 1.79l.686 43 42837 218515 10.567 11.936 1,101 1.002 1.098 1,217 1,783.582 45 37387 217538 10.552 11,981 i,098.996 1.102 1.223 1.772.690 52 28761 131172 12.866 13.292 1,457 1.276 1.141 1.410 2.675.527 54 25514 130929 12.729 13,310 1.435 1.253 1.145 1.413 2.626 oS~b 55 23649 130762 12.637 13.323 1.42l 1.237 1.149 1.415 2.612.541 57 21389 135268 13.253 13.391 1.517 1.286 1.[79 1.424 2.780.512 58 19351 133904 13. i85 13.320 1.506 1.269 [.187 1.414 2.759.513 59 17583 131532 i3o232 13.362 1.514 1.271 l.i9l ioq20 2.732.52o 60 15700 130770 13.195 13.449 1.508 1.262 1.194 1.433 2.688.533 61 12479 133276 13.145 13.281 1.500 1.234 1.216 1.408 2.588.b44 62 14049 134219 13.157 13.211 1.502 1.242 1.209 1.399 2.613.b35 64 27243 155174 10.985 14.032 1.165 1.080 1.079 [.5L7 2.066.73~ ~5 31486 156189 10.984 13.964 1.165 1.085 1.074 1.507 2.058.732 67 24657 185525 10.961 13.988 i,162 1.067 1.089 1,510 2.006.753 68 21357 163536 12.273 15.449 1.365 1.217 1.121 1.722 2.536 ~679 69 25996 163249 12,353 15.470 1.377 1.236 l.li4 1.725 ~.592.666 70 31359 163536 12.380 15.449 1.381 [.251 [.iOq 1.722 2.594.664 71 21625 136903 12.384 15.536 1.382 1.243 1.1t2 1.735 2.630.~60!2 21725 163246 12.331 15.754 1.374 1,228 1.118 1.767 2.585.6u4 75 23427 134053 11.530 14.315 1.250 1.145 1.092 1.557 2.247.693 76 24462 112441 10o887 &2.862 1o150 1.066 1.079 1.349 1.9?B.682 77 24260 122267 10o948 12.963 1.160 1,068 [.085 1.363 ~.001.6ul 78 24527 132762 10.917 12.991 1.155 1.062 1.087 1.367 1.97~.691 80 24517 152530 10.937 12.961 1.158 1.058 1.094 1.363 1.936.~04 ~1 24561 156920 10.967 i3.078 1.162 1.060 1.096 1.379 1.967.101 82 24717 171519 10.936 13.026 1.158 1.051 1.102 1.372 1.949.709 83 24836 184590 10.900 13.200 1./52 1.049 1.098 1.397 L.9L~.72[~ 85 10177 144495 14.156 17.456 1,657 1.395 1.188 2.0/8 3.089.653 06 11495 144584 14.281 17o447 1o677 1.415 1.185 2.016 Jo[49.b4L 87 12588 142828 14.342 17.6~4 1.686 [.433 1.177 2.041 3.203 b37 88 13995 142178 14.364 17,677 1.690 1.445 1,169 2.051 ~.236.034 89 15763 141984 14.432 17.696 1.700 1.459 1.166 2,053 J,306 oGZ[ 90 16973 141455 14.468 17.748 1o706 1.476 1.156 2.061 3.280.b28 91 18921 141884 14.481 17.706 1.708 1.478 1.155 2.055 3.364.6It 92 21678 142781 14.456 17.619 1.704 1.484 1.lq8 2.042 3.385.003 93 25t89 144662 14o513 17.440 1.713 1.501 1.141 2.015 3.3?2.b98 94 19425 64217 14.489 17.965 1.709 1.558 1,097 2.090 3.871.540 95 19780 71541 14.559 18.26[ 1.720 1.562 l.lOl 2.lJ? ~.~48.bb6 96 20474 93467 14.158 15.997 1o658 1.465 1.13l 1.803 3.399.b3b 97 19873 101243 14.488 16.42L 1,709 1.497 1.[41 1.865 3.470.5.~ 98 19593 107974 14.635 17.002 lo732 t. Bll t.147 1.951 3.5?0.546 99 19985 115009 14.580 17.099 1.724 1.507 1.[43 1.965 ~.441.5/1 100 19953 121060 14.504 17.386 1.712 1.496 1.i44 2.007 3.447.5~2 lOl 19789 127266 14.575 17.609 1.723 1.501 1. i48 2.041 3.456.590 102 19909 134975 14.476 17.665 1.707 1.488 1.147 2.049 3,382.bOb 103 19925 140933 14.479 17.860 1.708 1.489 1.147 2.078 J.35!.619 104 7051 51083 21.322 41.190 2.786 2.507 l.lll 5.729 ~.U34.u34 105 78q9 50639 21.812 41.50~ 2.864 2.583 1.109 5.7?9 9.250.625 106 9305 50287 21.661 41.752 2.840 2.5r8 1.101 5.820 9.470.~i5 107 10365 50883 21.718 41.330 2.849 2.582 1.103 5.752 9.709.~')2 108 11243 50287 21.950 41.752 2.886 2.625 1o099 5.820'~o~5~.590 109 12253 49379 22.242 42.230 2.932 2.670 1.098 5.897 t0.305.572 llO 13156 47972 22.642 43.110 2.996 2.731 1.097 6.039 1Oo87V.:{55 79

TABLE XVI (Continued) RUN Q AVG LHTD HO PRIME R FIN HO HI UO CALC UO EXP R BOND BTU/HR F BTU/HR-SQFT-F HR-SQFT-F/BTU BTU/HR-SQFT-F BTU/HR-$QFT-F BTU/HR-SQFT-F BTU/HR-SQFT-F HR-SQFT-F/BTU! 1183~5 144.75 542.92 ~00449 157o88 985,16 39~34 41o19 -~00008 4 102476 147.79 538o91.00451 157.17 802.92 33.94 34.93 -.00006 5 103412 155,50 536,99,00452 156,77 751,91 32,31 33,50 -~00007 8 88647 150.10 536.82.00451 156.81 646.65 28.80 29.75 -.00007 1! 80669 113o14 533~77 ~00453 156,27 635~06 34~89 35,92 -,00005 12 79042 114,58 531,15 ~00454 155o81' 799,88 33,78 3~o75 -oOOOOb 13 69704 110.25 537~69 ~00451 156o96 749.34 32.24 31.85 ~00002 14 69727 109,72 532o41,00453 156o03 711,02 30,95 32,02 -,00001 15 67180 113,42 537,22,00451 156,88 654,67 29,08 29,84 -o00006 16 66313 115.79 547.30.00448 158,64 623o~9 28.06 28.85 -~00006 17 65025 125,24 540,10,00450 157,38 579~23 26,44 26,16,00003 18 40719 75.97 521.27.00457 154.06 586.06 26.59 27o00 -.00004 24 43010 62,41 527,85,00455 155,23 790,78 33,47 34,72 -.00007 25 43478 61.25 529.48.00454 155.51 819.69 34.38 35.76 -.00007 26 45195 62.68 528.89.00454 155.41 859.07 35.57 36.33 -o0000~ 28 92127 126,90 291,85,00565 110,15 1044.21 36,81 36,57,00001 30 92617 128,39 316,32,00552 115,19 1039,79 37,26 36,34 ~00004 32 95819 130,78 342,35 ~00538 120,44 1036,55 37,72 36,91.00004. 33 89882 116.30 420.11.00500 135.54 1042.85 39.23 38.93 o00001 34 88220 114,89 407.94,00505 133,23 1041.35 39,00 38,68 oOOOOi 36 90598 117,25 464.83,00~80 143o87 1037,88 39,78 38~93 ~00004 40 94161 120,05 524,36,00456 154,61 1027,95 40.29 39,51 ~00003 42 98290 124,33 609,~8 ~00427 169,30 1036,87 41,47 39,83 ~00007 43 100579 123,46 649~75,00414 175,99 1040,89 ~1,98 41,04 ~00004 45 97497 121,57 574,39 ~00438 163.33 1040o62 41,21 40,40,00003 52 97538 162.42 498,32.00466 149.96 700.18 30.35 30.25,00001 54 95010 158,53 445~26.00488 140,26 701o56 29,97 30,19 -,0000Z 55 94118 155,85 414,55,00502 134.49 701,78 29,71 30,42 -~00005 57 103051 169o54 387,88.00515 129,38 717,07 29,92 30~62 -.00005 58 10232~ 169.57 353,80,00532 122,72 709,69 29,33 30,40 -~00008 59 99188 169,72 325,07 ~00547 116,97 70[.96 28,76 29,44 -~00005 60 95710 166,89 293,17,00565 110,42 703,14 28,38 28,89 -~00004 61 95046 169.55 238.35.00594 98.64 712.06 27.77 28.2~ -.00004 52 97740 171.44 26526.00580 104.52 712.78 28.2~ 28.72 -.00004 54 60561 88.85 438.30 ~00491 138.96 858.93 34.62 34.3'4.00002 ~5 61359 90.25 499.31.00466 150.14 861.33 35.35 34.25.00006 ~7 64770 88.86 400.57.00509 131.82 993.14 37.69 36.72.00005 58 74295 103.90 371.88.00523 126.27 923.32 35.4? 36.03 -.00003 59 77411 105o76 445.19 ~00488 140.24 919.95 36.40 36.87 -.00002 70 77934 106,85 527,38 ~00455 155,14 920,41 37,35 36.74.00003 71 68400 105,48 377,14,00520 127,30 799~56 32,21 32.67 -.00003 ~ 72935 100,38 378,33 ~00520 127,53 930,49 35,76 36,60 -.00004 75 62039 102.22 391.65.00513 130.11 764.52 31.37' 30.58.00005 76 57695 111.53 395.93 o00511 130.93 632.48 27.34 26.06.00012 77 61707 111.41 394,35 ~00512 130.63 678,54 28,79 27,90.00007 ~8 6375! 109.55 397,84,00510 131,30 726.91 30.32 29.32.00007 80 68448 111,03 398.37 ~00510 131,40 813.53 32.87 31.06.0001Z 81 70436 109.35 399.64 ~00509 131.64 835.08 33.49 32.45.00006 82 74981 109.44 401,69 ~00508 132,04 895,62 35,18 34.52.00004 8~ 72501 103.97 402.61 ~00508 132.21 959.91 36.88 35.13.00009 85 70608 117.89 203.94.00612 90.73 875.26 30.93 30.17.00005 86 73398 120.48 228.47.00599 96.42 873.07 31.52 30.69.00006 87 73153 119,42 248,25,00589 100,83 867,40 31,84 30,86.00007 g8 73557 119,00 273.15.00575 106.21 864.84 32.30 31.14.00008 89 76091 120,07 304.67,00558 112,80 861.86 32.81 31,92.00006 90 74321 120.07 325.75,00547 117.10 861,70 33,16 31.18.00013 g! 78216 120.86 359.49.00529 123.84 859.54 33.62 32.60.00006 92 80329 121.55 405,95.00506 132,85 860,62 34.28 33,29.00006 93 82559 125,05 465,40.00480 [43.98 864.92 35,10 33,26.000iO 94 49290 117.84 365,58.00526 125,04 450.56 20,8! 21,07 -.00004 ~5 51610 115.15 372.58 ~00523 126.41 496.71 22.53 22.58 -.0000[ 96 70092 139.44 381.31 ~00518 128,11 578,53 25,43 25,32 oOOOOi ~7 73006 139.25 375.26.00521 126.93 624.70 26.91 26.41.00005 98 74638 133.46 372.31.00523 126.36 668.81 28.28 28.17.00001 99 73899 131.04 378.29 ~00520 127.52 709.50 29.59 28.41.00009 100 74535 125.62 376.95.00520 127.26 746.37 30.67 29.89.00006 101 75748 123.93 375.06,00521 126.89 782,43 31,70 30,79.00006 102 76231 121.32 376.02.00521 127.08 824.14 32~88 31.66.00008 103 75942 118.80 376.3!.00521 127.14 859.57 33.86 32.20.00010 104 25734 60.45 171.02.00628 82.49 530.30 21.57 21.44.00002 105 26150 63.45 191.14.00618 87.63 526.99 21.80 20.76.000/5 106 26549 61.52 220.88.00603 94.69 524.02 22.12 21.7~.00005 107 28455 63.22 243~85.0059! 99~86 524.28 22.40 22~68 -.00004 108 28222 63.78 263.4!.00581 104.12 521.08 22.5i 22.29.00003 109 28925 64.61 286.16.00568 108.96 513.48 22.47 22.55 -.00001 110 29163 65.07 307,23.00557 113,33 503,46 22,31 22,58 -.00004 8o

TABLE XVI (Continued) RUN IS AVG T FIN AVG T ROOT T BOND O T BOND T BOND I T LINER T WALL I IT AVG FIN EFF F F F F F F F F F''! 356.00 365~34 393.77 397~73 39~o3! 390.88 393o[~ 395.40 500.7~.243 4 355~00 363o15 387.85 391.28 389o13 386~98 388.93 390.88 502~84.2~4 5 355.88 364o15 389ol2 302.58 389.72 386~87 388~84 390o81 511.45 o945 8 355.42 362o51 383.90 386.87 384.43 381o98 383,67 385.36 505.61 o2~5 1! 355~78 362.27 38Io79 384.49 382.82 381.14 382~68 384.22 468.95 o2qb 12 353.77 360o16 379.33 381o97 380.33 378.68 380o[9 381o70 468o3a ~246 13 361.48 367~04 383.85 386o19 386.85 387.52 388.86 390o17 671o77 ~245 14 360.50 366o13 383.02 385.35 383~47 38Io58 382.91 38~o24 470.26.246 15 357~26 362~63 378~84 38to09 379L63 378o[6 379o45 380~73 ~70o74.245 16 359.80 364~99 380.86 383~08 381.45 379.83 381o09 382~36 475~65.242 17 360~33 365.50 381,15 383.33 384.01 384.70 385~94 387.17 485.65.244 18 343o16 346~53 356~48 357~84 357~26 356~67 357~65 358~22 619o17.249 24 352.61 356.12 366~57 368o0! 366.85 365.69 366o51 367.33 415.03.247 25 353.90 357~43 367~98 369.44 368o2! 366~97 367~80 368.63 415o/6 ~247 26 353~29 356~96 367~94 369.45 368~78 368.10 368~97 369.83 q15o97 ~267 28 408.30 422.66 450.44 453.52 454.06 454.59 456.35 458o10 535.49.344 30 407.70 420~94 448.21 451o3! 452.87 454o~3 456.20 457~97 536o10 ~330 32 402~44 415o0l 442~52 445~73' 447ol! 448~49 450~32 452o[4 533~23 o316 33 417oq4 427.37 451.35 45qo36 454.79 455~22 456o9~ 458~65 534~25.282 34 418.49 428.04 45[o85 454.80 455~26 455o71 457.39 459~08 533.39 ~286 36 415o26 623.75 446.98 450~02 451o26 452.50 454.23 455.95 532~52 ~266 40 613o7! 421o43 444,39 447~54 448~69 440~83 451.63 453~42 533~77 ~248 42 409.99 416o8! 439.24 442~53 44~o99 447.45 449~32 451o20 534.35 ~228 43 q13.29 419o78 442~08 445~45 446~82 448oi9 450oi! 452~02 536~78 o219 45 413o90 421o13 443~98 447~24 448.42 449~60 45[o46 453~32 535~50,235 52 339.36 347.83 372.13 375o39 375.66 375.93 377.78 379.64 50/o84.256 54 342.84 352o18 376.97 380ol5 379.57 379~00 380.8! 382.62 501.~2.272 55 345.23 355.24 380.49 383.64 381.77 379.90 38Io69 383.49 50lo13 ~284 57 330~00 341.79 370.13 373.58 371.58 369~59 371.55 373.52 490.58.295 58 331.58 344.53 373.59 377.02 373.92 370.8[ 372.76 376~72 501o19 o310 59 330.48 344.24 373.20'376o52 374.51 372~50 374~39 376~28 500.23 ~325 J60 331o35 346.20 375.02 378.23 376.72 375o21 377.03 378.86 698.26 ~344 61 332.55 350.97 381.09 384.27 382.83 381.39 383.21 385.02 502.10.383 52 332.26 340o15 379.37 382~64 381.17 379.70 381.56 383.43 503o7[ ~362 64 396o8! 402~87 418.77 420~80 421ol6 421o52 422~68 423.83 685~68 ~275 65 396.83 602o14 417o42 419o47 420.87 422~27 423~44 424o6! 487.10.255 67 397o71 404.87 422~47 424~64 425~77 426.90 428o14 429~37 486.58.289 68 355.10 364.00 384.74 387~23 386.41 385.58 387.00 388.42 459.00 ~302 69 352.87 360~48 380~68 383~27 382~57 381.88 383.36 384~83 458o6~.273 70 352o13 358~49 377~44 380.05 380.90 381o75 383.2~ 384.73 459.00 ~247 7! 352~03 360.10 379,10 381.39 380~63 379.87 381.17 382.48 457.52 ~299?2 353.48 362.05 382.29 384~73 383.53 382~33 383.72 385.11 653~87 ~299 75 377o71 384~73 601o73 403.8! 405o10 406.40 407.58 608~76 470~94.293 76 400~52 406~97 422.72 424~65 627~26 429.88 430.98 432~08 512o09 o29! 77 398.17 405.11 421.97 424.04 425~77 427.50 428~67 429~85 509~62 ~292?8 399~36 406~46 423~83 425~96 427.77 429~58 430.80 432o0/ 508~94 ~290 30 398o6! 406~22 424~86 427o15 430.20 433~26 434~56 435.87 509~67.290 ~1 397.49 405~29 424~44 426~80 428.49 430o18 431o52 432~87 506.85 ~290 02 398~65 406o91 427.26 429~77 430.79 431o80 633~23 434.66 508o10 ~289 33 400~00 407~97 427~63 430.06 432o51 434,96 436.34 437~73 503~98 ~289 05 310o45 326o61 349.66 352~02 353.45 354.88 356~23 357.58 428.34 o414 06 307~97 322~85 346~32 348~77 350.36 351.91 353.3! 356o7! 428.45 o39! ~7 306.77 320.35 343.32 345.77 347~60 369~63 350.82 352~22 626.19.375 ~8 306.35 318.67 341.24 343~70 345~82 347~94 349.34 350~75 425.35.357 Og 305.03 316o35 339.01 341.56 363.16 344.76 346.21 367.66 425o10.337 90 304~34 314o63 336o3! 338~80 342~36 345.93 347.35 348~76 424o~2.325 91 304.10 313.83 335~92 338.54 340.36 342ol7 343.66 3q5o15 42qo97.307 92 304.57 313o32 335.04 337.73 339~46 341.20 362.73 344.26 626.13 ~28? 93 303.48 311.2! 332.37 335o14 338o4! 341.68 343.25 344.83 428.55 ~266 94 303,94 309.96 323.80 325.45 324.72 324.00 324~94 325.88 42Io84.305 95 302o6! 308.79 323o18 324.91 324.80 324.70 325.68 326.67 417.81 o30! 96 310o42 318.59 337.98 340~33 340~64 340.95 342~29 343~62 449.90.297 97 303.97 312.64 332.95 335~39 336,68 337.96 339.35 340~75 663.26 ~300 98 301.19 310.13 330~95 333.45 333.70 333094 335036 336~79 634.68.30! 99 302.22 3t0.91 331o42 333.89 336~50 339o1! 340.52 341.92 433.29.29~ 100 303~65 312o45 333o16 335~66 337~25 338.85 340~27 341o69 429~29 o29q lot 302~32 311o31 332.39 334.93 336.69 338.46 339.90 341o3~ 426.26.300 102 304 19 313o22 334.41 336~97 339,22 34lo48 342.93 344.38 425.52.300 103 304.13 313oll 334~22 336~76 339~66 342.55 343.99 3~5o44 422.94.300 104 218.74 225~84 234.46 235~32 235~48 235.65 236ol4 236~63 279.19 o~51 105 216o81 221o22 229.84 230~72 232~23 233~76 236~24 234,74 278.26.628 106 216o00 221.59 230o13 231o02 231.54 232.07 232.58 233.08 277.52.398 107 215o55 220.96 229o91 230.86 230.47 230~08 230.62 231.17 278.77.379 108 213o74 218o66 227~60 228.34 228.64 228.96 22'9.48 230.02 277.52.364 109 211.52 216.13 224.89 225.86 225.76 225.62 226.17 226~72 276./3.3~8 110 208.58 212.88 221.56 222.52 222.12 221.73 222.28 222.84 273.65.335

TABLE XVI (Continued) RUN T LINER T FIN TLINER-TFIN MU K AIR ALPHA LINER ALPHA FIN R BOND F F F BTU/HR-SQFT-F/FT IN/IN IN/IN HR-SQFT-F/BTU 1 393.14 365.34 27.80.2338E-06.0223.6761E-05.1350~-04 -.00008 4 388.93 363.15 25.78.2334E-06.0222.6751E-05.1349E-04 -.00006 5 388.84 364.15 24.69.2336E-06.0222.6751E-05.1349E-04 -.00007 8 383.67 362.51 21.16 *2333E-06.0221.6739E-05.1349E-04 -.00007 11 382.68 362.27 20.41.2332E-06.0221.6737E-05.1349E-04 -.00005 12 380.19 360.16 20.03.2328E-06.0220 *6732E-05.1348E-04 -.00005 13 388.84 367.04 21.80.2342E-06.0222 *6751E-05.1350E-04.00002 14 382.91 366.13 16.78.2339E-06.0221 *6738E-05.1350E-04 -.00007 15 379.45 362.63 16.82.2333E-06.0220 *6730E-05.1349E-04 -.00006 16 381.09 364.99 16.11.2337E-06 *0220.6734E-05.1349E-04 -.00006 17 385.94 365.50 20.44.2338E-06.0221.6744E-05.1350E-04.00003 18 357.45 346.53 10.92.2301E-06.0215.6681E-05.1344E-04 -.00004 24 366.51 356.12 10.39 *2320E-06.0217.6701E-05.1347E-04 -.00007 25 367.80 357.43 10.38.2322E-06.0218.6704E-05 *1347E-04 -.00007 26 368.97 356.96 12.00.2321E-06.0218.6706E-05.1347E-04 -.00004 28 456.35 422.66 33.69.2458E-06.0236.6902E-05.1367E-04.00001 30 456.20 420.94 35.26 *2454E-06.0236.6902E-05.1366E-04.00004 32 450.32 415.01 35.31.24411-06.0235.6889E-05.1365E-04.00004 33 456.94 427.37 29*57.2468E-06.0236.6904E-05.1368E-04.00001 34 457.39 428.04 29.36.2470E-06.0236.6905E-05.1368E-04.00001 36 454.23 423.75 30.47.2460E-06 *0235.6897E-05 -.1367E-04.00004 40 451.63 421.43 30.20.2455E-06.0235.6892E-05.1366E-04.00003 42 449.32 416.81 32.51.2445E-06.0234.6886E-05.1365E-04.00007 43 450.11 419.78 30.33.2452E-06.0235.6888E-05.1366E-04.00004 45 451.46 421.13 30.33.2455E-06 *0235.6891E-05.1366E-04.00003 52 377.78 347.83 29.96.2305E-06.0219.6726E-05.1344E-04.00001 54 380.81 352.18 28.63.2313E-06.0220.6733E-05 o1346E-04 -.00002 55 381.69 355.24 26.45.2319E-06.0220.6735E-05.1347E-04 -.00005 57 371.55 341.79 29.76.2293E-06.0218.6712E-05.1343E-04 -o00005 58 372.76 344.53 28.24 *2298E-06.0219.6715E-05.1343E-04 -.00008 59 374.39 344.24 30.15.2298E-06.0219.6719E-05.1343E-04 -.00005 60 377.03 346.20 30.83.2302E-06.0219 *6725E-05.1344E-04 -.00004 61 383.21 350.97 32.24.2311E-06.0221.6738E-05.1345E-04 -.00004 62 381.56 349.15 32.41.2307E-06.0220.6735E-05.1345E-04 -.00004 64 422.68 402.87 19.80 *2415E-06.0229.6827E-05.1361E-04.00002 65 423.44 402.14 21.30 *2413E-06.0229.6829E-05.1361E-04.00006 67 428.14 404.87 23.27.2419E-06.0230.6839E-05.1361E-04.00005 68 387.00 364.00 23.00.2336E-06.0221.6747E-05.1349E-04 -.00003 69 383.36 360.48 22.87.2329E-06.0221.6739E-05.1348E-04 -.00002 70 383.24 358.49 24.75.2325E-06.0220.6738E-05.1348E-04.00003 71 381.17 360.10 21.08.2328E-06.0220.6734E-05.1348E-04 -.00003 72 383.72 362.05 21.67.2332E-06.0221.6740E-05.1349E-04 -.00004 75 407.58 384.73 22.85.2377E-06.0226.6793E-05.1355E-04.00005 76 430.98 406.97 24.00.2424E-06.0230.6845E-05.1362E-04.00012 77 428.67 405.11 23.56 -.2420E-06.0230.6840E-05.1362E-04.00007 78 430.80 406.46 24.34.2423E-06.0230.6845E-05.1362E-04.00007 80 434.56 406.22 28.34.2422E-06.0231.6853E-05.1362E-04.00012 81 431.52 405.29 26.24.2420E-06.0231.6847E-05.1362E-04.00006 82 433.23 406.91 26.33.2424E-06.0231.6850E-05.1362E-04.00004 83 436.34 407.97 28.38.2426E-06.0231.6857E-05.1362E-04.00009 85 356.23 326.61 29.62.2277E-06.0214.6678E-05.1338E-04.00005 86 353o31 322.85 30.46.2276E-06.0214.6671E-05.1337E-04.00006 87 350.82 320.35 30.47.2275E-06.0213.6666E-05.1336E-04.00007 88 349.34 318.67 30.68.2274E-06.0213.6663E-05.1336E-04.00008 89 346.21 316.35 29.86.2273E-06.0212.6656E-05.1335E-04.00006 90 347.35 314.63 32.72.2273E-06.0212.6658E-05.1334E-04.00013 91 343.66 313.83 29.83.2272E-06.0212.6650E-05.1334E-04.00006 92 342.73 313.32 29.41.2272E-06.0211.6648E-05.1334E-04.00006 93 343.25 311.21 32.04.2272E-06.0211.6649E-05.1333E-04.00010 94 324.94 309.96 14.98.2270E-06.0208.6608E-05.1333E-04 -.00004 95 325.68 308.79 16.90.2270E-06.0208.6610E-05.1333E-04 -.00001 96 342.29 318.59 23.70.2274E-06.0212.6647E-05.1336E-04.00001 97 339.35 312.64 26.72.2272E-06.0211.6640E-05.1334E-04.00005 98 335.36 310.13 25.24.2271E-06.0210.6631E-05.1333E-04.00001 99 340.52 310.91 29.60.2271E-06.0211.6643E-05.1333E-04.00009 100 340.27 312.45 27.82.2272E-06.0211.6642E-05.1334E-04.00006 101 339.90 311.31 28.59.2271E-06.0211.6641E-05.1333E-04.00006 102 342.93 313.22 29.71.2272E-06.0211.6648E-05.1334E-04.00008 103 343.99 313.11 30.88.2272E-06.0211.6651E-05.1334E-04.00010 104 236.14 225.84 10.30.2239E-06.0189.6409E-05.1308E-04.00002 105 234.24 221.22 13.02.2237E-06.0188.6405E-05.1306E-04.00015 106 232.58 221.59 10.99.2237E-06.0188.6401E-05.1306E-04.00005 107 230.62 220.94 9.69.2237E-06.0188.6397E-05.1306E-04 -.00004 108 229.48 218.66 10.82.2236E-06.0187.6394E-05.1306E-04.00003 109 226.17 216.13 10.04.2235E-06.0187.6387E-05.1305E-04 -.00001 110 222.28 212.88 9.40.2234E-06.0186.6378E-05.1304E-04 -.00004 82

TABLE XVII Bond Resistance Error Analysis Using the Heat Transfer Correlation Data for Tube Number 456 in Conjunction with the Experimentally Obtained Heat Transfer Correlations BOND RESISTANCES FOR TUBE 456 NUMBER OF RUNS IS 12 RUN TUBE TEMP XAC XAI XAB RHT RMI RMO 12 456 0 19.9596 1.1400 1.3080.14200E-02,46500E-04.46500E-04 CO POWER PRPOW CI AMI AMO ODL 00.01150.90500.33333.02957 1.22500,.39500.96100 2.02000 NO K L M NN O P Q I.38925000E 00.44750000E-03 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.00000000E 00 -.OOOOOOOO00000000E 00 2.34400000E 00.46333332E-03 -.0OOO0000E 00 -.COOOOOOOE 00 -.OOOOOOOOE 00 -.00000OOOE 00 -.00000000E 00 3.67977499E-01 -.19775000E-04 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 -.OOOOOOOOE 00 4.71699999E-00 -.21000000E-04 -.00000000E 00 -.000000E 00 -.00000000E 00 -.000000OOE 00 -.00000000E 00 5.13965872E-02.24329326E 01 -.49320430E 03.50414862E 05 -.24712216E 07.48344347E 08 -.12876992E 09 6 -.21480229E 01.14160692E 04 -.27029259E 06.32850279E 08 -.20186315E 10.45553047E 11.00000000E 00 7 -.29052144E 01.22908387E 04 -.40461752E 06.38134658E 08 -.70443591E 09.00000000E 00.00000000E 00 8.66227230E-01.12066216E 03 -.15979375E 05.1612l989E 07 -.10121598E 09.34104823E 10 -.46683010E 11 DIAS AFS AFT CIAT AFIN AROOT FPI FINT RCONT.03630.02910.00380.06950 18.83000 1.13000 9.40000.01840.0000000 RUN TS IN TS OUT TT IN TT OUT W SHELL W TUBE Q SHELL Q TUBE PER 0EV F F F F LB/HR LB/HR BTU/HR BTU/HR + OR - 1 251.31 256.06 339.63 333.88 17910 15720 42772 45198 2.76 2 250.38 255.05 339.64 333.90 19240 15720 45136 45120.02 3 249.50 253.73 338.54 332.56 20800 15720 44155 46953 3.07 4 247.18 251.32 337.17 331.17 22370 15520 46379 46451.08 7 240.67 244.23 336.10 329.58 27000 15730 47843 51097 3.29 8 239.98 243.30 336.61 329.92 29050 15730 47971 52450 4.46 9 239.47 242.60 337.14 330.43 31350 15730 48779 52632 3.80 10 238.94 241.97 337.69 330.72 33570 15730 50539 54693 3.95 11 238.12 240.99 336.70 329.76 35600 15730 50723 54408 3.50 13 228.16 230.67 338.96 329.94 30900 8470 38152 38120.04 17 230.58 233.48 335.24 327.34 30800 11250 44042 44215.20 18 230.45 233.42 331.12 323.77 30800 12480 45101 45471.41 RUN Q AVG LMTO HO PRIME R FIN HO HI UO CALC UO EXP R BOND BTU/HR F BTU/HR-SQFT-F HR-SQFT-F/BTU 8TU/HR-SQFT-F BTU/HR-SQFT-F BTU/HR-SQFT-F BTU/HR-SQFT-F HR-SOFT-F/BTU 1 43985 83.07 221.47.00603 94.83 652.75 25.78 26.53 -.00007 2 45128 84.05 235.50.00596 98.01 651.35 25.97 26.90 -.00009 3 45554 83.93 251.66.00587 101.58 647.51 26.11 27.19 -.000L1 4 46415 84.92 266.58.00579 104.80 635.47 25.97 27.39 -.00013 7 49470 90.38 308.57.00556 113.60 635.23 26.47 27.42 -.00009 8 50210 91.61 328.64.00545 117.69 635.38 26.69 27.46 -.00007 9 50706 92.74 351.08.00534 122.20 636.13 26.94 27.39 -.00004 10 52616 93.74 372.86.00523 126.46 634.62 27.09 28.12 -.00009 11 52566 93.66 391.75.00513 130.13 631.96 27.17 28.12 -.00008 13 38136 105.00 330.93.00544 118.15 377.91 17.79 18.20 -.00008 17 44129 99.24 333.92.00543 118.75 473.17 21.35 22.28 -.00013 18 45286 95.49 333.93.00543 118.76 509.07 22.61 23.76 -.00014 RUN RE SHELL RE TUBE PR SHELL PR TUBE VISC SHELL VISC S-WALL VISC RATIO VISC TUBE VISC T-WALL VISC RATIU LB/FT-HR LB/FT-HR SHELL LB/FT-HR LB/FT-HR TUBE 1 10017 80473 17.810 27.642 2.230 1.959 1.138 3.573 5.812.615 2 10700 80482 17.890 27.640 2.243 1.971 1.138 3.572 5.903.605 3 11493 79771 17.983 27.844 2.258 1.989 1.135 3.604 6.027.598 4 12188 77966 18.185 28.077 2.290 2.018 1.135 3.641 6.250.582 7 14116 78253 18.796 28.306 2.386 2.099 1.137 3.676 6.609.556 8 15112 78498 18.872, 28.232 2.398 2.114 1.134 3.665 6.648.551 9 16248 78798'18.929 28.143 2.407 2.128 1.131 3.651 6.654.549 10 17336 79041 18.984 28.071 2.416 2.135 1.132 3.640 6.819.534 11 18281 78478 19.070 28.238 2.429 2.153 1.128 3.666 6.906.531 13 14870 42637 20.100 28.030 2.592 2.339 1.108 3.633 8.079.450 17 15077 553i&3 19.823 28.576 2.548 2.268 1.124 3.719 7.761.479 08 15067 59642 19.833 29.266 2.550 2.263 1.127 3.827 7.769.493 RUN TS AVG T FIN AVG T ROOT T BOND 0 T BOND T BOND I T LINER T WALL I TT AVG FIN EFF F F F F F F F 1 253.68 262.85 276.92 278.39 277.18 275.98 276.81 277.65 336.75.398 2 252.71 261.52 275.79 277.29 275.79 274.28 275.14 275.99 336.77.385 3 251.61 259.89 274.08 275.60 273.86 272.11 272.97 273.84 335.55.372 4 249.25 257.18 271.44 272.99 270.66 268.34 269.22 270.10 334.17.361 7 242.45 249.67 264.27 265.92 264.28 262.65 263.59 264.53 332.84.334 8 241.64 248.48 263.02 264.69 263.36 262.04 262.99 263.95 333.26.323 9 241.03 247.46 261.82 263.51 262.73 261.94 262.90 263.86 333.78.311 10 240.45 246.70 261.30 263.05 261.27 259.48 260.48 261.48 334.20.301 11 239.55 245.47 259.79 261.55 259.91 258.27 259.27 260.27 333.23.293 13 229.41 234.57 245.59 246.86 245.67 244.48 245.21 245.93 334.45.322 17 232.03 237.94 250.65 252.12 249.96 247.81 248.64 249.48 331.29.320 18 231.93 238.00 251.04 252.55 250.12 247.69 248.55 249.41 327.44.320 RUN T LINER T FIN TLINER-TFIN MU K AIR ALPHA LINER ALPHA FIN R BOND F F F BTU/HR-SQFT-F/FT IN/IN IN/IN HR-SQFT-F/BTU 1 276.81 262.85 X3.96.2257E-06.0198.6500E-05.1319E-04 -.00007 2 275.14 261.52 13.62.2257E-06.0198.6496E-05.1318E-04 -.00009 3 272.97 259.89 13.08.2256E-06.0197.6491E-05.1318E-04 -.00010 4 269.22 257.18 12.04.2255E-06.0196.6483E-05.1311E-04 -.00013 7 263.59 249.67 13.92.2253E-06.0195.6470E-05.1315E-04 -.00009 8 262.99 248.48 14.51.2252E-06.0195.6469E-05.1315E-04 -.00007 9 262.90 247.46 15.44.2252t-06.0195.6469E-05.1314E-04 -.00004 10 260.48 246.70 13.77.2251E-06.0194.6463E-05.1314E-04 -.00009 11 259.27 245.47 13.80.2251E-06.0194.6461E-05.1314E-04 -.00008 13 245.21 234.57 10.63.2247E-06.0191.6429E-05.1310E-04 -.00008 17 248.64 237.94 10.70.2248E-06.0192.6437E-05.1311E-04 -.00013 18 248.55 238.00 10.55.2248E-06.0192.6437E-05.1311E-04 -.00014 83

APPENDIX E. BOND RESISTANCE COMPUTER PROGRAM AND BOND RESISTANCE DATA AND CALCULATED RESULTS FOR BIMETALLIC TUBE NUMBERS 461 -463 84

TABLE XVIII Bond Resistance Program Written in The University of Michigan Algorithm Decoder Language BONO RESISTANCE MEASUREMENTS 1 Q(7)/TWIA(N).P.6) DIMENSION TSIr 90)I TSOC(90), TTIF(90), TTOC(90), TSIF(S0), H C(N) (CIRET()I.P.O.8.PRTU(N).PO.333333K TUBE(N) I TSOF('O); TTIF(90)T WSHEL(90), ATUBE(90), QTUME(90)C V1IST(qI.P.O.4)/(V1SWI(N).P.O.I44DIATN QSHELI90), QAVG(90) PERDE(0SO) LMTA(90TI XAMTA90), CPS(90), WHENEVER TTAV(N).G. TSAVIN) TRANSFER TO KAPPA 3 CPT(90)I, VISS(I )t VISTI90)t KTUBE(90), KSHEL(90), PRSH(90), TWIB(N) = TIAV(N)I + (QAVG{N)/(XAIAHI(N))) PR~~~~~~~~~~~~~~~~~~~~~~~~~~~TRA9 WISFE1 R To P I PRTU(UO), JIAC90), TRIBSO)T, VISAI$ S01, HI(90), RET(90), TNSFER TO P1 RES(90, V ISWO( 90 UOT90), RHOI90), HOPR(90), TTOA(90), KAPPA THIR(N) = TIAV(N) -(QAVG(NI/IXAIHIIRN))) 6 RFIN(90), TWO(90), KIB), L(8), R(8)M, N(a), 0(8), P(I)I PHI WHENEVER.AUS. (TWIA(N) - TIBIN)).LE. 0.2, TRANSFER TOEIGHT RUOT(90), RBOND(90j), RHOPRI90)T, UoT(90), TTOF(S0)T, HU9O), TWIA() = TnI(N) RFEFF(90), ILINE(90), TFINI90 ), DELT(90), VISRS(90), PCO(90), TRANSFER TO BETA 9 VISRT(90), ALINER(90), ALFIN(90), TTAV90), TSAV(90), Q(8I) EIGHT TAO(N) = TSmV(N) DIMENSION ToOND(90) TBOND(90), TR ONDO(90), R(90), PCOLL(90) LOOP VISWO(N) = XP.I(K(6) + L(6)/TWO(N) + M{6)/TWO(N).P.2 + DIMENSION TIIC(go), HOI90), KAIR90O), ELINER(90), EFIN(90) I NN(6)/T{OINI.P.3 + O(6)/TWO(N).P.4 + P(6)/TWO(N).P.5 + I PCOUL(90), DEV(90) 1 0(6)/TwO(M).P.6) INTEGER RUNS, TUBE, TEMPO N, J, R HOPR()=(ICO.RES(N).P.POWER-PRSH(N).P.PRPOW -VISS(N).P.O.14 BEGIN READ FORMAT INFO, RUNS, TUBE, TEMP, XAO, XAU, XABT, KRMT, 1 KSHEL())/(ISWO(N).P.O.140DIAS) I RMI, RMO RHOP(N) = I/HOPRIN) REA0 FORMAT NFOA, COU, POWER, PRPOW, CI, AMI, AMOT ODL, O RFIN(N) K15) + LISIRTOPR(N) + M(R51RHOPR(N).P.2 + READ FORMAT DATAC, DIAS, AFS, AFT, gIAT, AFPIN AROOTI, I NN)S)RHOPK(N).P.3 + O(IIRHUOPR(I).P.P I FPI, FINT, RCONT, BRERR I + P(5)1RHOPoIN).P.5 + Q(5)eRHOPR(N).P.6 PRINT FORMAT TITLE, TUBE, RUNS RHO(INI = RHPR(N) + RFIN(N) THROUGH INPUT, FOR J = 1,, J.O. RUNS HO(N1) = I.ORHO(N)' INPUT READ FORMAT DATAT, TSICIJ), TSOC(J), TTIC{J), TTOC(J), WHENEVER TTAV(N).T.TSAV(NI, TRANSFER TO NINE I WSHELIJ), W)UBEIJ), R(J) TTWOA(N) = TAV1N) - QAVG(N)IRHO(N)/XAO THROUGH NOR, FOR J = 1, 1, J.. 8 TRANSFER TO TEN 6EAD FORMAT CONSTA, K(J), L(J), M(J), NN(J) NINE TWOA(N) = TTAV(N) + QAVG(N)-RHO(N)/XAO NOR READ FORMAT CONSTB, (0J), P(J), O(J) TEN WHENEVER.AUS. (TWOA(N) - TWO(N)).LE.O.2, TRANSFER TO BOUT 10. OIAT-I.O TWO(N) = TWUAIN) PRINT FORMA0 HEDA TRANSFER TO LOOP PRINT FORHAT INPUTA, RUNS, TUBE, TEMP, XAOT, XAI, XAB, RMT, BOUT TUOT(N) = R.O(N) + XAO/(XAIUHI(N)) + RMT XAOTRCONT/XAB I RMI, RMO VISRSIN) = vISS(N)/VISWO(N) PRINT FORP AT HEDB VISRTiN) = vIST(N)/VISWISN) PRINT FORMAT INPUTB, CO, POWER, PRPOW, CIt AMI, AMO, ODL, OD UOT(N) = I/.UOTIN) PRINT FORMAP HEDC RBnND(N) = ((I/UO(N)) - RUOT(N))S XAB/XAO THROUGH NORTH, FOR J = 1, 1, J.G. 8 FEFF(N) ) = K(8) + LI ()/HUP(N) + M(8)/HOPR(N).P.2 +' NORTH PRINT FORMAT INPUTC, J, K(J), LIJ MJ, NN(J) O(J), PJ), I NN(()/HOPK(,).P.3 + O(U)/HOPR(N).P.T 6 P(B)/HOPK(N).P.5 + Q(J) I O(H)/HOPR(N).P.6 PRINT FORM'AI HED WHENEVER TTAV().G. TSAV(N), TRANSFER TO TRA PRINT FORMAl INPUTD, OIAS, AFS, AFT, TIAT, AFIN, AROOT, TBONDI(N) = TWIB(N) + QAVG(N).RMI/AMI 1 FPI, FINT, RCONrT, BRERR TOONDO(N)I = TWOA(N) - QAVGC(N)RMO/AM PCOTOT = o.u IFIN(N) = TAV(N) - QAVG(N)/(HOPR(N)e(AFIN + AROOT/FEFF(N ))) SUMSDE o.u TRANSFER TO EXCH N =I TRA TBOIDOI(N) = TWI(N) - OAVGO N)RMHI/AMI LPHA 6WHENEVER TEMP.E. 1, TRANSFER TO GAMMA TONOJ(NI) = TWOA(NS) + AVG(N)RMO/AMO TSIF(P) = TIC(N) TFIN(N) = TjAV(N) + QAVG(N)/(HOPR(N)(AFIN + AROOT/FEFF(N)) ) TSOF(N) TOC(IN) EXCH TBOND(N) = I TOONOI(N) + TBONDO(N))/2 TTIF(N) = TIICIN) TLINC(N) = (TOTNDIT N) A TWIB{N))/2 TTOFIN) = TIOC(IN) DELT(N) = TLINE(N) - TFIN(N) TRANSE TO SIGMA MFINS = 0.32 GAMMA TSIF(N) = 1.0. TSIC(N) + 12 MLINER = 0.0 TSOF(0E ) I.. TSOC(N)) 32 KAIR(N) = 0.0138 +.000021E6TBOND(N) TTIFIN) 1.8 TTIC(N) 32 ALINERIS). (5.0 + 0.00?24.TLINE(N)/10. 10.P.6 TTnF(N) =.1.0 ~ TTOC(N 6 32 ALISIS) (2. 0. 320TFI(N))/IO..P. 6 SIGMA TSAV(N) 0.5 I TSIF() + TSOFI(N)) HEEEVER TIE.LE. 265.0 TTAV(N) = 0.5 ~ (TTIF(N) + TTOF(N)) ELINER(N). (30.1 - 0.0O3O8T TLINE(N))S IO.0.P,6 CPSN) = K(I + L(IiTSAVN) I M(1)mTSAIN).P.2 OTHERWISE I+ N5N(I)eTSAV(N.P.3 + O(1) TSAV(N).P.4 ELINER(N) = (31.1 - O.00767eTLINE(N)).10.O.P.6 CPT(N) = K(Z) + L(2)-rTAV(N) + M02)mTTAV(N).P.2 END OF CONDITIONAL 1 +NN()2)TTAVN).P.3 0O(2) TTAV(N).P.S WHENEVER TFIN(N)I.LE. 335.0 oSHEL(N)I = nSEL(N ICPS IN)..AVS.(TSOFS(N-TSIF(N)) EFININ) = (10.75 -.0013ITFINJN))eJO.O.P.6 RTUBEIN) = /TUBE(N).CPTSN).A6S.- (TTOFIN)-TTIF(N() OTHERISE RAVG(S) = 0.5, ( ORCIIL( + QTUBEINH). EFPTS(S) = (10.42 - 0.OS98ETFI(N+T) ))S.0.P.6 PERDE(N) =( OT ~.ABS.(ATUTE(N)-SEL(N)))/(QTBEE(N ) + END OF CONDITIONAL I OSHELIN)) MU(S) = ((I.31/E FIN(N)).i)ODO D 0 ODL*ODLI/(OODO -OOLeOOL) + LMTA(N) = (.AS.ITTIF)(I)-TSOFIN)J-.AB$S.(TTOF(N —T SIF(N))I/ I MFIP') + (FPI.FINT/ELINiN)))IIODL.ODL + ITIOI/(ODLOODL - ELOG. I(TTIFIN)-T SOF(N) )I /(TTOF(N)5- PIF(SN 2 0.101 - TLINER)) XAMTIN) =.ABS. (TTAV(N)-TSAVON)) PCO(N). (ALFIN(N))TFIN(N)- 70.0) - ALINER(N)(TLINE(N ) - WHENEVER LMA(N).0. XAMT(N), LMTA(N) = XAMT(N) I 70.0) 24.O.RBONOD(N-KAIR(N)/ODL)/MU(N) UO(N) =( OTVG(N))/I XAOLMTA(N)) PCOUL(N) = (ALFIN(N )(I(TFIN(N) - 70.0)- ALIER (OLI NE(N N) - VISS(N) = EP.(K(). 6 L()/TSAVIN) + M(6)/TSAV(N).P.2 + 1 70.0)- 24.0)(RBONO(I) -BREBR)KAIRK (N/ODL/HU(NM ) 1 5NN56/TS v)T).P.3 6 O /TSAV(NO).P.4 6 P(6)/TSAV(N).P.5 M PCOLL(N) = IALFI(N)S)(T FIN(N) 70.0)- ALINER(N)N(TLNE(N) - I I(6)/TSAV(NI.P.6) 1 70.0) 24.0.(RBOND00N)+ BRERRA)KAIRIN)/ODL)/PU(N) VISTIN) = EAP.(KI7) + L(?)/TTAV(IN) + M(7)/TTAV(N).P.2 + PCO0 PCoTOT 6 PT (N) I SNN7)/TTAV(O.).P.3 3 0(7)/TTAV(N.P.T4 + P(T7/TAV(N)S.P.5 6 WHENEVER N.E. RUNS, TRANSFER TO PRIOUT I O(7)/TTAV(NI.P.T) N = N + 1 KSHEL(N) = 0(3) + L(3)S TSAV(N) + M(3)eTSAV(N).P.2 6 TRANSFER TO ALPHA I NN(T)TSAVI().P. 3 A O(T)TSAV(N).P.4 PRIOUT PRINT FORMAI HEADA TUBE(N) = (4) LI ) TTAV(N) + M()TTAV(N).P.2 + THOUGHOUT, FOR J = 1, 1, J.. RUNS I NN(4)eTTAV(T).P.3 + 0()ITTAVIN).P.4 OUTI1 PRINT FORMAT RESLT, R(J), TSIFPJ), TSOF(J), TTIF(J), RESIN) = IOAS-WS EL(S)IN/1)ASI/ SSISI 1 TTOF(J), WbHEL(J), W0UBE(J), OSHEL{J), QTUBE(J), PERDE(J) RE( N =UDA*WH~ )/:AF S"VISN) RETA() = (OAT*WTUBEIN))/(AFT -VIST IN)) PCOAVG = PCuTOT/RUNS PRSH(N) ( {PS1N).VISS(N))/KSHELN) THROUGH TWA, FOR N = 1, 1, N.G. RUNS PRTUIN) = (LPT(N)VISI(N)S/KTUBE(N) DEV(N) = PCU(N) - PCOAVG TWIA(N) = 1rAV(N) TWA SUMSDE.=':SUMSDE.E OEV(N)DEV(N) META VISWI(IN)= XP.IK(7) + L(7)/TWIA(N) +' M(T)/TWIA(N).P.2 + STOEV = SQRI.(SUMSDE/RUNS) I NN(7)/TWIA)T).P.3 + 0(7)/TWIA(N).P.4 + P(7)/TWIA(N).P.5 + PRINT FORMAT HEADB 85

TABLE XVIII (Continued) NOIENCLATURE THnROUGH OUTe, FOR J ll, J NG. RUNU 0002 1PKINT FORMAl RLT2, RJ) L AV (J), A, LMTA)J), HOPA(J)., RFINI(J), HU(J), H((J), UOT)J), UO(J), UBOND(J) AFIN FIN HEAT TRANSFER AREA - SOFT PRINT FORMAt HEAOC AFS SHELL-SIDE FLOW AREA - SOFT 1HOOOGH )UTo, F0(0 J - I, 1, J.G. RUNS AFT TUBE-SIDE FLOW AREA - SOFT OUTS PRIN'T F000A0 RESLT3, R(J), RES(J), RET(J), PRSH)J), PRTU(J), ALFIN THERMAL EXPANSION COEFFICIENT OF FIN MATERIAL - IN/IN VISIJ}(J, VtS1OiJ), VISRS(J), VIST(J), VISWI(J), VISRT(J) ALINER THERMAL EXPANSION COEFFICIENT OF LINER MATERIAL IN/IN PGINT F000AI HE0I0) ART MEAN HEAT TRANSFER AREA OF LINER METAL - SOFT (((SOUT;H (OUT,, TOT J - 1, 1, J.G. RUNS ARO MEAN HEAT TRANSFER AREA OF ROOT METAL - SOFT (000U4 /P0') FO0000 RESLT4, R(J), TSAV(J), TFIN)J), TAOA)J). AROOT HEAT TRANSFER AREA AT ROOT OF TUBE - SOFT 0I T60000(J), T001O(J), TOONO)(J), TLINE(J), TWIR(J), BTAV(J), BRERR MAXIMUM LIKELY ERROR IN BOND RESISTANCE - HR-SAFT-F/BTU 2 ~~~~~~~~~ ~~~~~~~FEFF~(J) ~CI INSIDE HEAT TRANSFER COEFFICIENT CORRELATION CONSTANT PK2 F ORMl lE^D PRINT F000M400 (000 CO SHELL-SIDE HEAT TRANSFER COEFFICIENT CORRELATION CONSTANT 0THROUGH OUTo, FOR J 1, 1, J.G. RUNS CPS SHELL-SIDE SPECIFIC HEAT - BTu/LB-F OUT5 PRINT F00000 ORELT5, R(J), TLIN(J), TFIN0(J). DELTUJ), CPT TUBE-SIDE SPECIFIC HEAT - BTU/LB-F I M1(J), KAO-oJ), ALINERSJ),ALFIN(J), RBON0(J), PCO(J) DIAS SHELL-SIDE EQUIVALENT DIAMETER - FT /0INT FOROAI JOT DIAT INSIDE DIAMETER OF TUBE - FT TH0I0UGH THR0(0 fOR J = I, 1, J.G. RUNS EFIN MODULUS OF ELASTICITY OF FIN METAL 00THRE00 PR)INT F00 JET), 0(J), PCO)J), PCOA(RR, DEV(J), PCOLL)J(, ELINER MODULUS OF ELASTICITY OF LINER METAL 1 PC((UL(J) FEFF FIN EFFICIENCY PRIN4T FOMHAI JEI2, STDEV FINT FIN THICKNESS IN /0(0) 001(00) J002, 00000 P~~~ ~ ~~~~~~~~~~~INT FIN THICENESs - IN VECTO00 VALULS JCT2 - A Z2H4S0ANUARD 0EV010010 - F5.0 N FI FINS PER INCH )VECTO( VALUS TITLE - A 20H1B00D RESISTANCES FO0 TUBE 15, HI INSIDE HEAT TRANSFER COEFFICIENT - BTU/HR-SOFT-F 1HOH NU000R uF RUNS IS (S *A HOP SHELL-SIDE HEAT TRANSFER COEFFICIENT - BTU/HR-SQFT-F VECTOR VALUES( IFO S A 315, 3010.4, 3000.5.0 HO SHELL-SIDE HEAT TRANSFER COEFFICIENT (INCLUDES RFIN) - BTU/HR-SOFT-F VECTOR VALULS (1004 A 0010.5 *A K POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES 00VECTOR V.LUS D000AT 4F10.3, 20)0.0. 50, 13 A EKSHEL THERMAL CONDUCTIVITY OF SHELL-SIDE FLUID - BTU/HR-sQFT-F/FT 0VE0TO VARLUS CO(ST0 = A 4E15.8.A KTUBE THERMAL CONDUCTIVITY OF TUBE-sIDE FLUID - BTU/HR-SOFT-F/FT 10FCT0 VALULS CONSTO =S 3015.0.0 L POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES VECTOR VALUES DATAC = A 410.5, 4FR0.5 /2F10.7 -A LMTA LOGARITHMIC TEMPERATURE DIFFERENCR - F 00VECT0 VALUS HE0A -S 81HO 0UN TUBE TEMP 0xA XAI M POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES I AA( RMT RMI RHO NS HFIN POISSONS RATIO FOR FIN METAL vECT00 VALUtS ('0PUT0. A 315, 3F50.5, 3010.5'A MLINER POISSONS RATIO FOR LINER METAL VECTOR VALUoS 0HC00U A HOT CD) POWER PA POT NN POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES I C) AMI A( ODL 00 0S NUSHEL SHELL-SIDE NUSSELT NUMBER 0V0CTO0 VALUS IN(/UT00 S A000.5'A NATURE TUBE-SIDE NUSSELT NUMBER VECT0 r VALUES HEOC =- A 1OHC NO K 0 POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES L L~~~L m ~1N 0 ODL LINER OUTSIDE DIAMETER - IN I P VAUL OD FIN DiAMETER - IN -VECTOR VA -wS INPUTC P6 I5, 7EI5.8 -S p POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES 1VECTOR VLUES 003D = A1OOSO DIAS AS OFT PCOAV AVERAGE INITIAL CONTACT PRESSURE - PSI I J)0 0)FIN 0OOT FPI FIST RCONT B PCOLL LOWER LIMIT OF INITIAL CONTACT PRESSURE - PSI 000.0 PCOT CALCULATED VALUE OF INITIAL CONTACT PRESSURE - PSI VECTOR VALUoS [NPUTI) = A 8F10.5 F10.7, F10.6.$ PCOUL UPPER LIMIT OF INITIAL CONTACT PRESSURE - PSI VECTOR VALUES HEADA = $ 95HI RUN TS IN TS OUT TT PERDE PER CENT DEVIATION IN HEAT BALANCE ACCTO005L~~oS 00000 - A 350(1 TOG 05 IN 05 000 10 T~~~ERSE PER CENT D EVIATION IN HEAT BALANCE I (N TT ((0) W SHELL W TUBE 4 SHELL C TUBE PEO SE PRPOW POWER TO WHICH PRANDTL NUMBER IS RAISED 2 V / s95h F F F F PRS PRANDTL NUMBER OF SHELL-SIDE FLUID 3 0L9/H0R L/H 0TU/HR BTU/HR 0OR - /' PRTU TPRANDTL NUMBER OF TUBE-SIDE FLUID VECTOR VALUoS OSLO) HIS, 40)0.2, 50 10.0, F0.2 A a POLYNOMIAL CONSTANT FOR PHYSICAL PROPERTIES VECTOR VALULS 000B - 1A300HL RUN Q RAG LNTA HO OAVG AVERAGE OF SHELL-SIDE AND TUBE-SIDE HEAT FLUXES - BTU/HR L P)10 0 FIN HO H1 UO C OQSHEL SHELL-SIDE HEAT FLUX - BTU/HR 2 00LC O / BOND00 / 130H BTU/HA OTUBE TUBE-SIDE HEAT FLUX - BTU 3 HIU/HR-SOFT-F HR-SUFT-F/UT HTU/HR-SOFT-F BTU/H0 ROND BOND RESISTANCE - HR-SOFT(BOND AREA(-F/UTU 4 -000-F 0 Tj/HR-SQFT-F 0TU/H0-S0FT-F HR-SPFT-F/0TU /.0 RCONT INITIAL CONTACT RESISTANCE IF ANY - HR-SOFT(BOND AREA)-F/BTU VECTIR V3LU0. 00SLT02 = - 15, 010.0, 1O.2, FI11.2, 016.5, REP POWER TO WHICH REYNOLDS NUMBER IS RAISED I 010.2, rI5.2, F15.2, F15.2, F01.0'A RES SHELL-SIDE REYNOLDS NUMBER VECTO VALUES (0ADC = A 130H0 RUN RE SHELL RE TUBE PR S RET TUBE-SIDE REYNOLDS NUMBER I HELL PR ToH.E VIS0 SHELL VISE S-WALL VIS0 RATIO RISC RFIN FIN RESISTANCE OF EXTERNAL TINS - HR-SOFT-F/RTU 2 TUBE VIS. T-WALL VISE RATIO / 130H RMI METAL RESISTANCE OF LINER - HR-SOFT-F/BTU 3 00/FT-HR LI/FT-HO RMO METAL RESISTANCE OF FIN ROOT - HR-SOFT-F/BTU 4 SHELL 0/FT0-HR LO/FT-HR TUBE /'~ RMT TOTAL METAL RESISTANCE - HR-SOFT)OUTSIDE AREA)-F/BTU VFCTOR VALUES RESLT3.= 15, 2F10.0, F11.3, F11.3, 0115, TONDI TEMPERATURE AT LINER 00 - F O F13.3, F14.3, F12.3, F13.3, F14.3'$ TBONDO TEMPERATURE AT FIN TUBE ID - F VECTOR VALULSHFA(D O = N 126H1 RUN TS A 0 AVG T FITBOND BOND TEMPERATURE - 1 T R01(T T 000D 0 0 OND T BON1 I LINER TFIN AVERAGE FIN TEMPER.%TURE - F 2T WALL I TT AVG FIN EFF /LINE LINER TEMPERATURE - F 3 114H F F TSAV AVERAGE SHELL-SIDE FLUID TEMPERATURE - F 2 F F F F F TSIC INLET SHELL-SIDE FLUID TEMPERATURE F OR C 3 0 F /.o TSIF INLET SHELL-SIDE FLUID TEMPERATURE - F VECIO VALU)S RESLOS = A 15, P11.2, 012.2, F13.2, SF2122, TSOC OUTLET SHELL-SIDE FLUID TEMPERATURE F OR C I FIS.2, FHl.2, F10.3 A TSOF OUTLET SHELL-SIDE FLUID TEMPERATURE - F VECTOR V000.0 H0 0- A 12001 RON 0 LINER T FIN TLINER TTAV AVERAGE TUBE-SIDE FLUID TEMPERATURE F ~~1 -00)0F~ 00 K 010 ALPHA LINER O ~LPO ~ F~i~~ OTIC INLET TUBE-SIDE FLUID TEMPERATURE - F OR C 2 5 U 0Bu5 P CD / 120H F F TTIF INLET TUBE-SIDE FLUID TEMPERATURE - F 3 0F TU/H0-SFT-F/FT IN/IN TTOC OUTLET TUBE-SIDE FLUID TEMPERATURE FOR C F4 I RIN,-F-S-FT-F/BTU PSI / ITS TTOF OUTLET TUBE-SIDE FLUID TEMPERATURE F 0EC001( VLAUL0 S RSLS = N I15, F9.2, F1O.2, F11.2, 015.0, TTIAFTWIB INSIDE TUBE-HALL TEMPERATURE - F I F14.0, 018.0, E13.0, F14.6, P10.0'0 TWOAR TWO TEMPERATURE AT ROOT OF FIN - P SECTOR VALUL0 JET = N OH1 RUN P CO P CO AVG 0EV UO OVERALL HEAT TRANSFER COEFFICIENT - BTU/HR-SOFT-F I P C 0 LL P CO UL / 0 PSI PSI VISS SHELL-SIDE FLUID VISCOSITY - LI/FT-HR I P01 PSI PSI. ~s VIST TUBE-SIDE FLUID VISCOSITY - L/FT-HR VECTOR VALUES JCTI. A (5, F9.0, FIIO, 2010.0, F12.0.0 VISWI VISCOSITY AT INSIDE TUBE-HALL TEMPERATURE - LI/FT-H 00050000NSFER~~~~~~ 011T 000~ HISWO VISCOSITY AT OUTSIDE TUBE-WALL TEMPERATURE LB/FT-HR 050 or P0000) AWSHEL SHELL-SIDE FLUID FLOW RATE - LI/HR WTUBE TABE-SIDE FLUID FLOWRATE - LB/HR XAI INSIDE HEAT TRANSFER AREA - SOFT XAO OUTSIDE HEAT TRANSFER AREA - SOFT 86

TABLE XIX Bond Resistance Data and Calculated Results for Bimetallic Tube Number 461 8(60 RESISTANCES FCR TUBE 461 NUFBLR CF RUNS IS 43 RLN TUBE TEYP XAC XAI XAB MT! R!U 43 461 0 18.4460 1.1350 1.36C00.43690E-02.26400E-03.34600E-04 CC P06CR PRPGW CI A! I AVO CAL 00.01150.90500.33333.02957 1.24200 1.421C0.44700 2.02000 6 K L 8M NN A P 1.38925CCOE 00.4475000oE-03 -.000C00AAA 00 -.COOCOOCE 00 -.AO0AACAE 00 -.ACAUOOCCE U0 -.U0AAAAUE 00A 2.34400C00E 00.41333332E-03 -.00COCAOOE 00 -.COOOOCOCCE 00 -.CCOOOCOU E 00 -.000000C2 00 -.OOOOOOOOE 00 3.67977499E-01 -.19775000L-04 -.COOOOOOOEE 0 -.COACOO AE A0 -.AOOOACOOE 00 -.CA AUE 00 -o.0000000E 00 4.71699999E-0 1 -.21000CAOE-04 -.OOOOOOOOE 0O -.CAAACCOOE 00 -.CCOOOACOE 00 -.OOCOOOOCE 00 -.OOOOOOOOE 00 5.10162712E-02.33618253E 01 -.95869080E 03.15870848E 06 -.14467381E 08.65730443E 09 -.11027932 11 6 -.21480229E 01.14160692E 04 -.27029259E 06.32850279t AR -.20186315E IA.45553047O 10.OOOOOOOE 00 7 -.2905214E 01A.22908387E 04 -.40461752E 06.38134658E 08 -.70443591E 09.0000O000E 00.00000000E 00 8.46279078E-01.!5340877E 03 -.46291989E 05.11906814E 08 -.17615316E 10.13164353E 12 -.386598186 13 DIAS AFS AFT CIAT AFIN AROOT FP1 FINT RCONT B6ERR.C3930.02900.00378.06930 17.24100 1.206CO 8.72000.01595.0000000.000130 R8N TS IN TS CUT TT [N TT OUT k SHELL W TUBE G SHELL TUBE PER DEV F F F F LB/AR LB/HR BTU/hR BTU/HR + OR - 5 169.11 173.59 305.16 298.13 257C0 14400 53645 48972 4.55 6 168.74 172.80 307.64 299.78 258C0 11820 48778 45033 3.99 7 178.68 181.90 320.08 310.82 26850 8730 40629 39624 1.25 8 177.42 180.58 314.86 306.68 323C0 11480 47906 45825 2.22 9 177.41 183.11 315.61 308.13 177C0 11950 47410 43665 4.11 O10 200.32 204.38 340.91 332.05 25250 9800 49187 43406. 6.24 11 199.75 203.36 338.69 330.54 328C0 12050 56770 49C09 7.34 12 200.CO 204.38 339.03 331.10 24850 12050 52215 47706 4.51 13 168.16 169.90 249.63 245.47 249C0 9550 20142 1d223 5.00 14 168.C8 17C.05 242.99 239.86 24850 14200 22759 20261 5.81 15 185.71 188.61 284.43 279.63 264C0 15C00 36213 34177 2.89 16 183.23 184.84 259.93 255.61 26700 9010 20273 18038 5.83 17 157.98 162.55 332.76 321.48 265C0 9320 55826 52099 3.45 19 L82.06 189.02 377.11 365.99 26450 14100 86943 80928 3.58 20 192.CO 197.22 342.89 335.12 266C0 14960 66140 56244 6.35 21 191.45 194.93 332.32 322.71 26600 9710 44035 46260 2.46 22 201.87 204.45 286.25 282.13 265C0 14550 32829 2d515 7.03 23 202.41 203.86 269.31 265.19 262CO 8400 1A241 16191 5.96 24 225.74 228.38 310.18 306.06 25950 14620 33628 29320 6.84 25 248.76 251.05 324.87 321.26 255C0 14620 29261 26056 5.76 b26 272.C0 274.06 342.99 339.86 253C0 14630 26655 22996 7.37 27 295.17 297.01 359.84 357.07 24850 14670 23857 20728 7.02 28 218.07 222.78 358.87 351.20 26550 14500 61011 56553 3.79 29 217.41 221.50 368.13 357.68 26450 9060 52733 48488 4.19 30 241.79 245.75 308.18 378.03 26350 9030 51999 41798 4.21 31 242.25 246.89 382.04 374.47 26C50 14300 60278 56210 3.49 32 324.46 325.98 384.45 381.94 25750 14C70 20932 16419 6.39 33 323.49 324.97 394.49 390.04 25650 7910 20285 18506 4.59 35 339.11 341.01 414.22 410.94 255C0 13200 26232 23170 6.20 36 261.27 265.49 392.66 385.85 264C0 13530 56496 48314 7.81 37 259.27 263.11 396.86 387.41 25150 8970 48880 44561 4.62 38 185.96 191.44 391.72 376.52 271CO 8480 70347 60281 2.23 39 212.63 218.01 407.15 392.79 26950 8550 70408 64989 4.00 40 247.06 252.05 403.58 394.26 271CO 12600 67740 6Z102 4.34 41 245.01 249.45 404.89 395.57 27050 12600 60037 62173 1.75 42 291.20 294.87 433.98 424.08 26500 8830 50610 47449 3.22 43 289.03 293.35 430.43 422.60 26450 12750 59367 54071 4.67 44 312.26 316.51 448.78 442.17 25650 L49CO 57770 54209 3.18 46 335.51 339.69 473.71 467.07 252C0 14520 56916 54179 2.46 47 359.89 363.66 490.23 484.53 249C0 14480 51738 47031 4.77 48 360.71 364.13 498.67 489.39 25050 8320 47242 44233 3.29 49 367.04 368.75 433.19 430.35 256C0 14700 24247 22713 3.27 50 389.83 392.18 476.75 473.05 251CO 14640 33281 30553 4.27 LCAC UO EXP R BOND RLN Q AVG LMTC HO PRISE R FIN HO Hi LA 0010 00 605 8 8090 BTU/HR F BTU/HR-SQFT-F HR-SAFT-F/B[U BTU/HR-SUFr-F BTU/HR-SOFT-F BTU/HR-SQFT-F BTU/HR-SQFT-F HR-SQFT-F/BTU 5 51309 130.29 218.52.00641 91.05 497.52 20.83 21.35 -.000087 6 46905 132.93 218.01.00641 90.93 422.48 18.58 19.13 -.000115 7 40127 135.14 236.A7.00629 94.98 348.95 16.27 16.10.000048 7 40127 135.14 236.07 -.00629 99.9 8 46866 131.75 277.72.0C604 103.70 429.37 19.28 19.28 -.000000 9 45537 131.61 163.41.00683 77.22 452.75 18.79 18.76.000007 9 45537 131~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~5.61 1654 18.792 18.71.000042 10 46296 1394.12 248.08.00422 97.57 424.93 18.92 18.71.000042 11 52890 133.05 313.32.00584 110.66 499.77 21.77 21.55.000035 12 49961 132.87 244.86.0C624 96.86 505.94 21.36 20.38.000165.OC624 96.66 ~ 505.94 21.36 20.38.000165 13 19183 78.51 205.29.00650 87.96 281.62 13.62 13.15.000151 14 215LO 72.36 205.32.00650 87.96 382.68 17.18 16.12.000283 15 35195 94.87 239.60.00627 95.77 493.86 20.96 20.ll.000148 16 19156 73.73 236.21.00629 95.01 289.12 14.06 14.09 -.000008 1 53962 166.3 211.95.0645 9.53 362.40 16.56 17.53 -.000247 19 83936 186.00 244.58.60624 96.02 630.40 24.71.24.46.000029 19 8 39 36 186.00 244.58.00C624 23.3 001 20 62192 144.39 253.30.00619 98.60 608.23 24.26 23.35.000118 21 45147 134.30 249.50.0621 497.87 404.15 18.25 18.22.000005 22 30672 81.03 257.91.00016 99.64 495.18 21.18 20.52.000111 23 07216 64.11 253.40.00619 98.70 293.67 14.32 14.56 -.000085 24 31474 61.06 278.87.OC604 103.93 559.23 23.23 21.05.000328 25 27658 73.16 297.58.0C593 107.63 601.76 24.59 20.50.000599 2 5 27658 7 3. 116 297.58 9.68.~~~~~~~~~~~~~~~~000920 26 24826 68.39 318.32.00582 111.61 649.94 26.09 19.68.000920 27 22292 62.36 335.25.00573 114.79 694.67 27.42 19.38.001115 28 587822 134.36 280.60.OO03 104.31 639.13 25.39 23.67.000211 28 5067L8 143.43 280801.8529.3.009 29 50611 143.43 277.82.00604 103.72 436.84 1 9.59 19.13.000091 30 49899 139.31 302.63.00590 10.61 47.53 20.94 9.42.0026 31 58244 133.08 301.32.00591 108.35 690.78 26.94 23.62.000384 32 19675 57.97 374.43.00553 121.95 729.94 28.71 18.40.001439 33 19395 68.02 372.13.00554 121.54 467.53 21.12 15.46.001278 35 24700 72.502 35.79.3.00547 123.98 751.80 29.37 18.47.001482 36 52405 025.67 323.86.00579 112.66 690.27 27.18 22.57.000554 37 46721 130.93 307.3A.OC8A 109.51 492.19 21.50 19.35.000381 38 68814 195.38 251.63 0C620 98.32 421.54 18.63 19.09.000053 39 67699 184.61 280.04.00603 104.1 456.53 20.24 19.0000 ~~~~40 64921 149.;~35 318.25.~00582 111.60 657.37 26.28 23.56.000323 I,;.000615 41 61805 152.99 314.82.00584 110.95 664.40 26.42 21.65.000615 42 49029 135.97 355.02.00563 118.44 544.85 23.45 19.55.000628 43 56719 135.32 353.31.00564 118.12 733.68 28.58 22.72.000665 44 55989 131.09 366.24.00557 120.46 864.05 32.20 23.15.000895 46 55547 132.79 382.33.00549 123.37 923.36 33.25 22.68.001034 47 49304 125.610 399.78.0C541 126.46 964.16 34.33 21.32.00131 48 45738 131.59 402.21.00539 126.89.U19.15 25.97 18.84.001074 49 23480 63.A7 413.20.00534 126.61 666.45 32.37 19.93.001422 50 31917 03.89 427.49.00528 131.30 556.06 34.50 20.62.001438 87

TABLE XIX (Continued) RE SHELL RE ThEE PR SVELL PR TUBE rISC ShCLL rISC S-WALL ~[SC RATI~ VISC TUBE ~1SC T-WALL ViSE RATID LB/F~-HR LB/FT-HR SHELL LB/FT-HR LB/FT-HR TUBE 8532 5621~ 29.448 34.756 4.082 3.[50 1.296 4.696 13.066.359 8518 46946 29,5~8 34,252 4,1C5 3,228 1.27[ 4,616 [4,174,326 9672 38[30 27,447 3t,6L6 3,762 3.tLg 1,206 4,197 12,377,339 11502 483O5 27.7t9 32.623 3.806 3.112 1.223 4.357 12.2~2.354 6374 50729 27.454 32,3a2 3.763 2.918 1.290 4,319 10.814 ~399 [OqOl 501~8 23,542 27,688 3,139 2.615 1,200 3,580 8,630,415 14074 60~77 23.662 28.002 3.t58 2.626 1,203 3,629 8.538.425 107[5 6[O78 23,566 27,925 3.143 2,580 [,2L8 3,6L7 7,884,459 8C86 22040 ~0,017 54,7~3 4,t73 3,740 1,116 7,944 20,430,389 8072 30407 ~O.OO8 5B.404 4.172 5.692 1.130 8.536 18.54t.460 lCO90 49285 26.092 40.266 3 546 3.029 l.lO 5.5U0 1[.455.487 q9J7 23282 26.69[ 49.604 7,095 3.64[ 3.324 1.C96 15.946.445 /888 44538 32,382 29.326 4.553 3.381 1.347 3,836 [7,07l.225 9972 9173/ 26,399 22,762 3.595 2,541 L,415 2,618?,365,383 tOBO9 78025 24.172 27.273 3.335 2,603 t.Z~k 3.5t5 7,807,450 10686 46540 25,0t3 29,253 3,373 2,797 1,206 3,825 9,975,383 ItSIt 48764 23.421 39.5~6 3.120 2.762 1.130 5.410 9.90U.552 1t379 23942 23.424 45.533 3.120 2.9O9 1.073 6.432 12.'ttO.531 13357 60211 20.356 3S.269 2.633 2.36q 1,ttt 4.452 7.037.633 15153 67]48 18.[29 30.C8!a 2.28[ 2.[03 1.084 3.q56 5.547.713 17139 /7638 16.549 26.886 2.0C0 1.877 1.066 3.455 6.463 174 18962 U7583 14.916 24.409 1.776 1.6~7 1.053 3.071 3.749.819 13066 84502 2l.tt~ 24.87J 2.759 2.266 1.2t5 3.143 6.015 522 12930 557t8 21.Z35 23.826 2.772 2.336 1.t~7 2.~81 6.822,437 L5088 631H9 18,674 Z1.464 Z.36/ 2.G48 1.[55 2,620 5,[58.508 t4OgO q7087 18.601 21.092 2.355 1.993 1.182 2.700 4.605.586 22525 9R513 13.46k 21.454 1.549 l.qgl 1.039 2.618 3.050.858 22339 58531 13.505 20.525 1.556 1.498 2.478 3.127 792 23793 109946 12.838 [H.6B7 1.452 1.388.G46 1.039 2.20[ 2.611.843 t6qSg 983L4 t7.044 2G.826 2,1[0 1.844 t,144 2.523 3.977,634 15q57 66323 17.210 20.538 2.136 1.885 1.133 2.4U0 4.436.559 10492 59719 25.807 21.356 3.500 2.640 1.326 2.604 8.648.301 12798 66229 Z1.747 19o791 2~854 2.272 1.256 2.367 6.261.378 16070 97000 18,159 19,888 2,285 1,917 1.192 2.381 4o315.552 t58L8 97749 L8,362 19.767 2.317 1.958 1.184 2.363 4,075,580 19917 15.090 17,405 1,803 1.618 lltb 2,O10 3.258,617 80529 kgh96 ~663' llqTtO t5,197 k7,599 [,b2G [,k33 2,O38 21361 148tb3 13,963 16,27~ 1,627 1.455 1.118 1.844 2.~15,733 25393 17641/ t2,041 13,950 1,225 [.32~ 1,565 1,874,803 [.Oh5 25611 104473 t2.019 13.640 325 1.229.078 l.q60 2.010.726 26740 136046 tl.838 17.201 1.2g/ 1.249 1.039 1.9Bl 2.260.876 28588 t68297 t1,143 [4,573 L.[90 [,L35 1,048 1.595 1o844,86~ RLN IS AVG T FiN AVG T ~C~T [ ~GN!: G T BCN~ I 6CNO [ T LINER [ WALL I IT AVG FIN EFF F F F F F F F F F s 171.35 182.83 2Ct.90 203.15 201.51 199.88 205.33 2lO.?d 301.64.376 170,77 tut.2~ 1~.73 199.88 197.90 195.92 200.9l 205.89 303.71 377 7 180,29 t88,55 20~.[9 204,[7 Z0~.89 20bBt 209.U? 214.14 315,45.361 8 179.0C l~l.01 2C3.50 204.64 204.b4 204.64 20g.b2 214,60 310.77.329 9 180.Z6 [94.19 212.23 213.)q 213.46 213.57 21B.41 223,25 31[.87.437.61 308 It 201.55 209.53 22/.47 22~.75 229.44 23C.13 235.15 241.37 334 ~ 12 202.19 212.07 23C.15 231.36 2'34.40 237.44 Z4Z.15 248,0b 335.06 353!3 lug.G3 173o62 [8U.85 [A1.32 182.39 183.46 185.50 1h~,54 247.55.389 169.06 174.22 182.32 182.~$ leS.0q 187.33 189.62 191,90 241.42.389 187.16 194.28 207.08 201.9q 2C9.k5 2It.t6 2tq.24 2~2.03 t58 194.97 195.43 195.32 199.40 t4!5 2[5,50 257.77 16 184.03 l~?,g7 195.38 191.36.360 17 160.26 172.75 [92.g4 194.26 189.36 184.46 190.26 195.93 327.12.382 [g 185.54 202.L6 232.54 234.58 235.49 236.40 245.32 254.24 371.55.354 20 194.61 206.46 228,78 230.29 232.99 235.70 242,31 248,92 339.00.347 21 193.19 201.94 218.20 219.30 219.40 21g.50 224.29 2Z9.09 327o5[ ~350 22 203.16 208.89 219.85 22u.59 221.85 223.10 22b.36 229.62 284.19.343 23 201.13 206.41 212.59 213.0l 212.48 211,94 213.77 21D.60 267.25.347 24 227.06 232.46 24:3.48 244.24 248.04 251.84 255.[9 258.53 308.12.329 25 249.90 254.32 263.84 264.5[ 270.60 276.69 2?9.63 282.57 323.06.317 307.77 341.4a.306 26 27'3.03 276,71 2~5.09 ZgS.6q 294.09 302.49 305. 3.297 27 296.09 299.21 306.62 t01.16 3L6.tO 325.44 327. i 33G.18 358.45 28 220.42 230.43 d5C.97 252,q1 256.90 261.51 267.75 274.00 355.03.327 29 219.45 228,17 245.9l 247.14 248.U4 25(3.54 255.91 261.29 362,90 ~329 30 243.77 251 59 268~68 269.89 274.97 280.05 285.35 290~65 383.10.314 31 244,57 25.5,74 273o?[ 275,13 285,36 291,59 297,78 303~9? 378,25,315 32 325.22 327.66 333.97 3t4.95 344.85 355.26 357.36 359.45 383.19.279 33 324.23 326.65 332.88 333.35 342.47 ~51.5q ~53.65 355.7[ 392~26,280 35 340.06 343.02 3b0.86 35L.46 364.92 37~.38 38L.Ot 383,63 412.58 ~275 36 263.38 271.00 281~.60 2~.h7 3C0.55 311.23 310.80 322.37 389.25.303 37 261.t9 268.39 2~4.32 285.46 292.01 298.57 3O3.54 308.50 392.13.312 38 188.70 2CI.ql 226.64 Z2U.32 226.99 225.6? d3Z.98 240.29 384.12.348 39 215.32 226.88 250.55 252.2~ 253,~5 255.50 262.69 269.89 399.97.328 40 249.55 259.18 28L.09 2~2.61 Z90.39 2gd.ll 3Oh.O[ 311.9[ 398.92.306 41 247.23 256.40 277.09 278.5U 292.39 306.21 312,71 3[9,20 400.23,307 349.75 429.03,288 42 293.03 3[5.48 316.67 328.00 ~39.33 344.54 209.48.40 426.51.288 43 291.19 zg~.BU 3[?,22 3[H.6().332,47 346,35 352.37 358 44 314.38 321.49 33';.58 340.94 ~59,36 377,?7 385.?2 389.68 445.47,283 46 337.60 344.32 362.01 36J.36 384.47 405,58 411,48 417.39 470.39,276 47 361.77 36/.46 382.95 384.15 407.~5 931.76 43/.0C 442.25 487.38,270 ~ 15 419.22 424.08 428.94 494.03,269 48 362.42 ~67.65 381.96 383.07 401 405,40 4O7.89 431.77.265 49 367.89 3'/0.50 37/.78 37~.35 Jgo.6~ 40Z.90 3gl.00 50 394.42 40q.lB 4()A.S6 42[.83 q38,70 44Z.Og 445.4g 474.90.260 88

TABLE XIX (Continued) RLN T LINER T FIN TLIN R-I FIN Y0 K AIR ALPHA LINLK ALPHA FIN S BUND P CO F F F UTU/FR-SFT-F/FT IN/IN /IN HR-SOFT-F/BTA PSI 5 205.33 172.73 22.50,2135E-CC.C18/.6340E-05.295E-04 -.000087 3003 6 200.91 181.20 19.61.2134L-C6.O0b1.63304-05.12NL-04 -.000115 3102 7 2(09.87 188.55 21.32.2137E-06.O012.6350E-O.1237K-04.000048 2938 8 2C9.62 187.07 22.55:2136C-06.0162.635UE-05.1296E-04 -.000000 2954 9 218.41 194.1') 24.22. 213')E-Ob.0R4.63690-Ci.129E-04.000007 3104 10 235.51 211.37 24.19.2145L-06.010.640d-0A.1303E-04.000042 A556 11 235.75 209.53 26.22.2144E-06.O0611.6406E-0A.1303E-o4.000035 3450 12 242.75 21?.07 50.68.2146E-06.0A19.6424E-0A.1304E-04.000165 3110 13 165.50 171.62 11.87.2131-C06.e1 1.6296C-0A.1292E-04.000151 2568 14 189.62 179.22 15.4(.21310-06.0178.63050-0A.1292L-04.000283 2210 15 215.50 194.28 21.22.2139E-06.0183.6363b-05.129HE-04.000148 2911 16 197.36 187.97 9.39.2136E-0.018O0.6322E-0A.12968-04 -.000008 3407 17 190.20 172.75 17.45.21310-06.0179.63060-05.1292E-U4 -.000247 3172 19 245.32 702.16 43.16.2142L-06 0189.6430E-0 5.1301L-U4.000029 2700 20 242.31 206.40 35.65.21430-06.0168.6423E-05.1302E-04.000118 2876 21 224.29 201.94 22.36.2142E-C6.Ol.630KE-05.1301E-04.000005 3403 22 226.36 208.89 17.47.2144C-C6.016.6387E-05.1303E-04.000111 3549 23 213.77 206.41 7.36.2143L-06.0184.6359L-05.1302L-04 -.000085 4198 24 255.19 232.46 22.73.2153E-06.0192.6452E-05.131CE-0.000328 3631 25 279.63 254.32 25.31.2161E-06.0196.6506E-AS.1316E-04.000599 3606 26 305.13 276.71 28.42.2169E-C6.0202.6563E-05.1323E-04.000920 3435 27 327.81 299.21 28.60.2177o-00.0206.66149-05.1330E-04.001115 3623 28 267.75 230.43 97.32.2152E-06.0194.6480E-05.13098-04.000211 3349 29 255.91 228.17 27.74.2151E-O0.0192.6453E-05.1308E-04.000091 3849 30 285.35 251.59 83.76.2160E-06.A197.65190-05.131SE-04.000276 3952 31 297.78 253.74 44.03.2161[-Cb. 199.65470-0.1316E-04.000384 3437 32 357.36 327.66 29.70.21bbE-C06 0212.6680E-AN.1338E-04.001439 3622 33 353.65 326.65 27.00.lR2187E-0b.0212.6672E-05.1338E-04.001278 4065 35 381.01 343.02 37.99.2206E-C6 C217.6733E-05.1343E-04.001482 3620 36 316.80 271.00 45.79.2167L-06.0203.65906-05.1321E-U4.000554 3502 37 303.54 268.39 85.15.21600-06.A201.6560E-05.1321E-04.000381 4170 38 232.98 201.91 31.07.2142E-C6.0187.6402E-05.1301E-04 -.000053 3250 39 262.69 226.88 15.82.2151E-C6.0193.646bE-05.1308E-04.000066 3604 40 305.01 259.18 45.83.21630-06.0201.65630-0A.1318E-04.000323 3673 41 302.71 256.40 56.30.2162E-06.0201.6580E-05.1317E-04.000615 2590 42 344.54 299.48 45.06.2170E-C6.02C9.6652E-0A.133CE-04.000628 4178 43 352.37 298.68 53.69.2178E-06.C210.6669E-05.1330E-04.000665 3772 44 383.72 321.49 62.23.21600-06.0216.6740E-05.1336E-04.000895 3578 46 411.48 344.32 67.16.2210E-06.0221.6a02E-0A.1343E-04.001034 3676 47 437.00 367.46 69.54.22550-06.0226.6859E-05.135CE-04.801311 3483 48 424.08 367.65 56.43.2255C-06.0225.6830E-05.1350E-04.001074 4522 49 405.40 310.50 34.90.2261IL-0.0222.6788E-05.1351E-04.801422 4522 50 442.09 394.42 47.66.2311E-06.0229.6870E-05.1358E-04.001438 4575 Rb0 P CC P CC AVG DEV P CO LL P CO UL PSI PSI PSI PSI PSI 5 3003 3477 -474 2737 3269 6 3102 3417 -375 2837 3367 7 2938 3477 -538 2671 3205 8 2904 3471 -522 2687 3221 9 3104 3477 -372 2835 3374 10 3556 3477 79 3282 3830 11 3450 3477 -26 3177 3724 12 3110 3477 -367 2835 385 13 2568 3477 -909 2307 2828 14 2210 3477 -1266 1949 2472 15 2911 3477 -565 2643 3179 16 3407 3477 -70 3143 3671 17 3172 3477 -305 2909 3435 19 2700 3477 -777 2424 2976 20 2876 3477 -601 2601 3851 21 3403 3477 -74 3132 3674 22 3549 3471 73 3278 3821 23 4198 3477 721 3929 4466 24 3631 3477 154 3352 3909 25 3606 3477 129 3321 3090 26 3435 3477 -42 3144 3726 27 3623 3417 146 3326 3919 28 3349 3477 -128 3068 3630 29 3849 3477 372 3570 4127 30 3952 3477 476 3666 4238 31 3437 3477 -39 3149 3126 32 3622 3477 145 8318 3926 33 4065 3477 588 3761 4366 35 3620 3477 144 3313 3928 36 3502 3477 25 3209 3795 37 4170 3417 694 3780 4461 38 3250 3477 -227 2977 3523 39 3604 3477 127 3324 3865 40 3673 3477 196 3382 7963 41 2590 3477 -887 2298 2881 42 4176 3477 702 3878 4478 43 3772 3477 295 347A 4073 44 3578 3477 102 3270 3887 46 3676 3471 200 3363 3989 47 3483 3477 7 3169 3797 48 4522 3477 1045 4210 4634 49 4522 3477 1045 4214 4729 50 4575 3477 1099 4265 4885 STANDAR0 DEVIATICN = 523 89

TABLE XX Bond Resistance Data and Calculated Results for Bimetallic Tube Number 462 BChC RESISTANCES FOR TUBE 46/ TURBER CF,UNS IS 27 RUN TUBE TEEP XAC XAI XAB RMT 07I 7RG 27 462 O 17.3830 1.1350 1.36UO.4ISSCE-02.2L400E-0O.361000-04 CO PChER PRPCh CI Anri AO CCL.C1150.90500.33333.02357 1.24000 1.42UC0.4'INCO 1.96300 NO K L RN C P 0 I.38925C0EE O0.44750000E-03 -.00000006E 07 -.~CCOUCOCE O0 -.CCCNOCOUE 00 -.COCOOObCE 00 -.00000000E 00 2.34400000C 00.46333332E-03 -.OOOCOOOF 02 -.UCOOUCOC[ O0 -.UCCC000O 00 -.OUUU7C0CCU UU -.,000UOONOE 02 3.67977453E-0I -.[197T5C0E-04 -.COCOOOOE 00 -.COOUCCOCL NO -.CCOOOCOOU UO -.COLOUONCL O0 -.OU2COOUt Ou 4.71694999E-01 -.2IOCOCCOL-04 -.000000Ut 00 -.CU0600000 GO -.OCCOOCOU7L 62 -.COUCOOOCC 0U -.000000002 Oo 5.13487617E-02.241020N5E 01 -.5S313574E 01.771264976 05 -.5327NI5EE CT.13R35544NE (13.N4SO4900 09 6 -.21480229E 01.141606970 04 -.27029259E Co.32850279L ON -.206Bd3150 10.4535N0N4l 11.UNN20FN00 6U 7 -.29052144E OL.22908387E 04 -.40461752. 00.38134658[ 08 -.70443591E C9.CUCOCLOCC oN.OCONOE ON 8.66165308[-01.13773820E 03 -.267082436 05.450256U9L 07 -.459497549 7(3.2337393U 11 [-.453730627 12 0I1s A FS AFT CIRT RFIN ARORT FPF FINT O C[;NT B6REi8.C4T7C.03040.00378.06930 16.1430U 1./4CCO N.2CCCUo.017,3( OUnNoUO0.001O30 RUN TS IN TS CUT IT I1 TT OUT 6 S~oLL W TUBU U SHELL 0 TUBE PUr 07V F F F F LU//R LB/HI{ BT0/HR OTU/HN + GR - 1 301.18 304.83 416.75 407.78 I[UCo u350 31931 40072 2.75 2 301.72 305.72 412.52 405.16 19700 10750 4Z419 4/275.25 3 302.92 309.99 465.03 455.61 11150 13870 7(262 72497.BN 4 302.92 309.73 456.71 456.65 1[Cq4O 12260 67245 6o10.41 5 303.17 309.41 472.27 460.37 13C40 9720 62431 69171 1.85 7 205.21 206.79 275.15 270.73 25436 9410 11359 11566.54 8 208.92 205.712 272.54 268.77 /49CU 11980 22753 212CO 3.53 9 204.01 205.88 267.50 264.24 26380 14600 23726 2/236 3.24 11 385.82 390.18 509.91 511.7'. 21400 11160 52519 52797.36 12 385.33 310.10 515.07 507.46 214U0 14420 57445 56/30 1.07 13 375.33 380.30 548.74 533.96 21700 6630 60215 5d228 1.63 14 393.16 398.00 519.36 530.26 21590 11400 59173 61393.4 15 380.17 346.51 354.02 525.98 21630 14620 69643 6.331.25 16 381.95 386.82 530.13 535.23 264C0 8120 72160 73162.69 17 400.73 405.47 566.N1 557.13 25200 11820 68042 63152.81 I8 379.25 384.57 561.36 551.68 27130 14470 8312/ 74301.28 19 342.58 350.26 520.19 509.15 16120 10350 673N2 66555.62 20 341.37 345.47 514.22 502.68 2H8C0 10380 64109 63425 3.98 21 407.80 412.13 545.17 537.46 17550 14420 54517 57575 2.73 22 400.99 405.02 542.43 539.20 26650 14400 01174 6[U06.51 23 402.77 406.13 544.99 537.60 37420 14427 62117 63384 1.01 24 226.19 279.29 332.13 326.65 29030 14900 442(;l 40550 4.31 25 202.74 203.90 257.27 255.34 25400 944(0 14150 I1HG6 4.99 26 302.17 30(5.7H4 415.41 408.86 194CO 10650 37400 31~7.11 27 J00.95 306.7i5 474.34 (.461.67 15c50 9540 59035 51136 1.63 28 351.20 355.71 570.61 511.58 2/600 7280 55796 5666.1/ 29 373.03 778.73 547.77 531.71 217CO 14550 70164 69777.20 RUN 0 AV LUTRI FO PRIE R FIN H7( I([ 0C CALC UO EXP R BONO T16/6R F BTI/HR-SOFT-F HR-3UFT-F/NTO /T0/((-SOFT-F NT(/67-S3F -F 8T(1/77-SNFT-F NTU/HR-SFFT-F HR-SFFT-F/BTU I 39001 109.24 266.93.0U536 109.77 502.05 22.85 20.54.000385 2 42312 105.06 260.57.20035 1C9.75 613.10 26.15 23.17.0N0385 3 71862 153.76 264.20.00337 109.21 850.29 31.92 26.88.00046N 4 67528 155.35 262.48.02536 107.81 773.30 30.17 25.18.N00489 5 63606 100.01 262.06.00537 107.71 644.79 26.95 22.N7.000518 7 19463 66.93 298.47.00350 103.15 331.65 16.66 16.73 -.000020 0 21977 65.78 /33.03.00553 101.83 40U.12 19.14 19.22 -.NNNII7 9 22971 NO.92 245.65.00546 105.77 460.(9 21.31 21.70 -.000066 II 57708 127.1(4 752.17.07456 128.21 726.67 32.71 23.72.00N914 12 56837 124.10 352.27.00496 126.23 1010.74 36.N9 26.35.070849 03 S92S1 163.49 749.47.00597 127.65 559.91 25.42 20.85.000675 14 60283 139.22 161.13.00492 130.04 771.(5 34.00 24.91.000839 15 69472 146.16 153.56.00495 120.49 1053.33 37.81 27.31.00N796 16 72661 178.25'23.76.00466 142.42 677.02 29.68 23.45.00N718 17 68591 15H.H6 421.91.00467 142.07 944.18 36.47 24.84.001005 18 84065 174.60 447.22.00457 146.90 1096.14 40.11 27.10.000874 19 66968 168.24 /49.95.00544 105.89 764.81 29.74 22.90.00186 20 66761 165.00 417.55.00469 141.22 753.66 31.75 23.28.000897 21 56046 131.45 724.19.00509 122.39 1071.7( 37.67 24.53.001113 22 61490 135.70 443.06.00459 146.11 1066.21 39.43 26.05.001019 23 62751 136.84 579.10.00428 167.14 1072.11 40.64 26.38.001040 24 42376 101.65 255.98.00322 116.32 607.'R 26.38 23.9N.00N297 25 13478 57.40 234.51.00552 1(2.11 313.176 15.91 14.50.06678 26 37358 10B.12 /62.66.00537 107.NS 610.77 26.25 19.86.000956 27 58086 165.09 260.04.00539 108.25 643.56 26.89 20.24.000956 28 55731 170.70 745.07.00507 126.37 26.17 16.79.001174 29 70026 167.71 147.76.01(497 1/7.53 1081.25 38.23 24.01.001212 RUN RE SELL RE T11H7 PR S00LL PRN Truc VISC SHELL VISC S-WALL VISO 81110 RISC 1070 RISC 1-URLO VISORATIO LI/FT-RN L7/FT-H R SHLLL LA/FT-7R LB/FT-HR TORE 1 15818 694/6 (4.533 13.113 1.717 7.561 1.170 2./US 3.396.669 2 15796 61636 14.497 L9.C02 1.711 1.543 1.100 2.248 3.291.683 3 15553 147561 74.1.N 1.427 1.184 1.711 2.576.664 4 15454 132/36 4 5.294 1.437 1.700.651 5 15452 107/37~ 14.751 15.033 1.640 1.453 1.163 1.662 2.680.620 7 1163/ /7370 /3.C06 43.368 3.054 2.822 1.082 6.061 11.133.346 B 111791 393/U /3.165 54.215 3.0N7 2.613 1.095 6.218 10.970.567 9 11756 4103H'3.15d 2 46.00 3.077 2.807 1.096 6.522 11.023.592 11 24404 104164 11.277 12.172 1.203 1.106 lUOA 1.327 1.716.773 12 24378 195796 11.2316 12.67 1.209 1.100 1.7(54 1.350 1.694.797 13 238/9 17(7730 11.9201 11.720 1.241 1.134 1.101 1.195 1.819.657 135 2474 214/62 11.353 12.176 1.222 0.045 1.116 1.251 1.616 A74 16 297C9 115356 11.391 11L.15 1.213 1.099 11.100 1.636.672 17 303/8 196504 10.820 11.17/ 1.140 1.038 1.097 1.103 1.434.769 18 31367 /35671 11.404 11.23/ 1.230 1.C95 1.124 1.126 1.493.754 19 15636 16223/l 12.59/ 12.739 1.414 1.226 1.153 1.33~ 1.921.694 20 27588 737S51( 12.707 11.01/ 1.43/ 1.284 1.115 1.370 1.993.687 21 2/842 221663 10.638 11.703 1.112 1.019 1.091 1.193 1.447.624 22 32062 21[77? 10.622 11.766 1.140 1.050 1.(86 1.207 1.500.805 23 39201 221210 10.785 11.77/ 1.134 1.052 1.7778 1.195 1.488.803 24 15193 72425 20.271.917 2.6/1 2.291 1.141 3.772 6.377.591 25 11172 24142 /7.317 37.735 3.116 2.545 1.7757 7.169 11.502.623 26 15573 N7424 14.466 18.7/4 1.704 1.558 1.7797 2.207 3.058.721 27 15284 100627 14.491 15.n6 1.710 1.476 1.151 1.640 2.519.651 28 22564 1C4119 12.33/ 17.374 1.374 1.243 1.105 1.282 1.893.677 29 23661 /25373 11.384 11.700 1.257 1.12/ 1.1/1 1.174 1.579.784 90

TABLE XX (Continued) RLN TS AVG T FIN AVG T RCO T BUNC 0 T 00C0 T BOND I T LINER T WALL 1 TT AVG FIN EFF F F F F F F F F F 1 303.00 31C.50 323.43 324.42 330.00 335.57 339.70 343.82 412.26.369 2 303.77 311.91 325.95 327.02 33.05 339.08 343.56 348.04 408.84.369 3 306.45 320.42 344.32 346.14 358.38 370.63 378.23 385.84 460.32.371 4 306.32 319.73 342.56 344.29 356.70 369.11 376.35 383.60 461.68.372 5 306.29 318.76 339.95 341.56 353.76 365.95 372.68 379.41 466.32.372 7 206.00 210.23 216.85 217.35 217.23 217.12 219.18 221.23 272.94.391 8 204.87 209.16 217.29 217.84 217.73 217.61 219.94 222.26 270.65.395 9 204.94 209.78 217.55 218.13 217.60 217.08 219.51 221.94 265.87.385 11 388.00 395.47 411.65 412.98 430.75 448.52 454.09 459.67 515.84.319 12 387.71 395.77 413.21 414.65 432.45 45C.25 456.26 462.27 511.81.319 13 377.81 38'6.28 404.52 406.01 42G.80 439.58 441.85 448.11 541.39.320 14 395.58 403.89 422.25 423.77 442.45 461.12 467.50 473.88 534.81.314 15 383.64 393.44 414.74 416.50 436.90 457.30 464.65 472.00 530.00.318 16 384.38 392.17 413.73 415.57 434.65 454.13 461.81 469.50 562.68.289 17 403.10 411.06 430.88 432.61 456.03 48:.45 490.70 497.96 561.97.289 18 381.91 391.05 414.83 416.96 444.06 471.17 480.06 488.95 556.52.280 19 346.42 360.23 382.80 384.50 403.93 423.36 430.44 437.52 514.67.381 20 343.42 351.26 370.62 372.31 394.40 416.50 423.56 430.62 508.45.291 21 410.36 419.07 436.71 438.13 461.12 484.11 490.04 495.97 541.81.33 22 403.00 409.76 427.21 428.77 451.88 475.00 461.50 488.00 538.81.282 23 404.45 410.09 426.71 428.30 452.38 476.45 463.09 489.73 541.29.256 24 227.74 235.01 248.70 249.77 254.44 259.12 263.60 268.08 329.39.349 25 203.32 206.30 21C.91 211.25 213.64 216.02 217.45 218.87 256.80.394 26 304.00 311.31 323.75 324.69 337.87 351.04 354.99 358.94 412.13.372 27 303.90 315.38 334.77 336.24 356.72 377.20 383.34 389.48 469.00.374 28 353.45 361.58 378.83 380.24 404.38 428.53 434.42 440.32 524.09.323 29 375.93 385.96 407.52 4C9.29 440.58 471.87 479.27 466.68 543.74.320 RLN T LINER T FIN TLINER-TFIN MU K AIR ALPHA LINER ALPHA FIN R BOND P CO F F F BTU/HR-SOFT-F/FT IN/IN IN/IN HR-SQFT-F/BTU PSI 1 339.70 310.50 29.20.2240E-06.02C9.6641E-05.1333E-04.000385 5452 2 343.56 311.91 31.65.22406-06.0210.6650E-00.1334E-04.000385 5413 3 378.23 320.42 57.62.2244E-06.0215.6727~-03.1336E-04.000460 4606 4 376.35 319.73 56.63.2244E-06.0215.6723E-05.1336E-04.000489 4560 5 3.72.68 318.76 53.92.2243E-06.0214.67150-0O.1336E-04.000518 4558 7 219.18 210.23 8.95.22010-C6.0185.6371E-05.1303E-04 -.000020 4023 8 219.94 209.76 10.18.22016-06.0185.6373C-05.1303E-04 -.000017 3967 9 219.51 209.78 9.73.2201E-C6.0185.6372E-05.1303L-04 -.000066 4079 11 454.09 395.47 58.62.23730-06.0231.6897E-05.1359E-04.000914 5325 12 456.26 395.77 60.49.23766-06.0231.6902E-0.1359E-04.000849 5420 13 441.85 386.28 55.56.2355E-06.0229.687CE-OS.13566-04.000675 5785 14 467.50 403.89 63.61.2394E-C6.0234.6927E-05.1361E-04.000839 5511 15 464.65 393.44 71.21.23710-06.0232.69210-05.13586-04.000796 5129 06 461.81 392.77 69.04.2369E-06.0232.6914E-05.1358E-04.000718 5372 07 490.70 411.06 79.65.2410E-06.0237.6979E-05.1363E-04.001005 4732 18 480.06 391.05 89.01.2366E-06.0234.6955E-0).1357E-04.000874 4283 19 430.44 360.23 70.20.2301E-06.0225.6844E-05.1348E-04.000786 4431 20 423.56 351.26 72.1.2282L-06.0223.6829E-0O.1345E-04.000897 3890 21 490.04 419.07 70.08.2428E-06.0238.6978E-05.13h6E-64.001113 4941 22 481.50 409.76 71.74.24076-6. 0236.6959E-05.1363E-64.001019 4940 23 483.09 410.09 73.C0.2408E-06.0236.6962E-OS.13636-04.001040 4855 24 263.60 235.01 28.59.2211[-06.0193.6470E-05.1311E-04.000297 3491 25 217.45 206.30 11.15.2200E-06.0184.6367E-CS.1302E-04.000478 2835 26 354.99 311.31 43.68.2240E-06.0211.6675E-05.1333E-C4.000956 3704 27 383.34 315.38 67.96.2243E-06.0215.6739E-05.13356-04.000956 2981 28 434.42 361.58 72.84.2303t-06.0225.6653E-00.1348E-04.001174 3462 29 479.27 385.96 93.32.2355E-06.0233.6954E-05.1356E-04.001212 3216 R8N P CC P CC 8V *CEV P CO LL P C0 UL PSI PSI PSI PSI PSI 1 5452 4480 972 5160 5745 2 5413 4480 933 5120 5706 3 4606 4480 126 4305 4906 4 4560 4480 60 4260 4860 5 4558 4480 78 4259 4857 7 4023 4480 -457 3760 4286 8 3967 4480 -513 3704 4230 9 4079 4480 -401 3816 4342 11 5325 4480 845 9020 5629 12 542C 4480 940 5115 5725 13 5785 4480 1305 5481 6089 14 5511 4480 1031 5206 5817 15 5129 4480 649 4822 5436 16 5372 4480 892 5066 5678 17 4732 4480 252 4424 5039 18 4283 4480 -197 3974 4592 19 4431 4480 -49 4125 4738 20 3890 4480 -590 3584 4196 21 4941 448G 461 4635 5247 22 4940 4480 460 4634 5246 23 4855 4400 375 4549 5162 24 3491 4480 -989 3218 3764 25 2835 4480 -1645 2573 3097 26 3704 4480 -776 3409 3998 27 2981 4480 -1499 2681 3281 28 3462 4480 -101H 3156 3768 29 3216 448C -1264 2906 3525 ST1'NC'0 OEVIAflCN 822 9'

TABLE XXI Bond Resistance Data and Calculated Results for Bimetallic Tube Number 463 dChD RESIStANCES FCR TL~t 46~ NUM864 CF kUj'a IS 49 RN TLBE TEPP XIAC A4l X1AU 85 57 R4TO 49 468 0 6.'94C 1.1350 1.36C0.4C240e-02.26400E-03.346000-04 CC PC;LR PR5PC6 C[ A1 40 OCL o00 oCIISC.9O0OO.3-333.02q57 L.24200 1.421CO o~7CC 1o95400 KC K. L M NN 0 P Q I *31925COCE 00.44750MCC0-C3 -.0CCGC000o 0 -. CC0CCCOCE 00 -.CCOOOCOOE,00 -.OCCOOCOCE 00 -.00000000E 00 2.344C0CCCC 0.46333332L-03 -.00CC00000 00 -.00OOOC OOL 00 -.OCOOOCOOE 00 -.00000000 00 -.00000000E 00 3.6747744-9E51 -.19775006E-04 -.00C00000E Ou -.COUOCCOCE 00 -.CCOCOCOGE 00 -.COOE000000 00 -.00000000E 00 4.?16594'4q- _l -.?2!QC0C00 -J4 -.OCCOCOC0 C -.COCUOCoc[ 00 -.CCOOOCOCE 00 -.000000CE 00 -.00000000E 00 5 13484717E-C2.41C7085E t01 -.583135840 00.78142497 05 -.53218e15E 07.L36955486 04.64530490E 09 6 -.214R0229L 01.1416069/0 04 -.27C29251 06.3285C279c 08 -.2016631E O10.45553047E 11.0O000000E 00 7 -.20052144E "1.22403e/E 04 -.40461752E O0.30314654E 08 -.7044359qE 09.00000000E 00.00000000E 00 8.64165106E-01.11739820E 03 -.26808245E 05.45075696C 07 -.45949754E 09.23585991E 11 -.45373062E 12 CIAS 4AF5 rT CIAT AFIN AACr FPI FINT RCONT BREKR.C4210.03045.0C078.06930 15.7700 1.170CO 8.770C0.01633.0000000.000130 RLN TS h TS CL TT IN I T OUT w SELL W TUBE C SHELL L0 TUBE PER DEV F F F F LP/4R LB/HR BTU8 hR 0TU/HR + OR - 4 172.34 176.0b 359.70 302.30 264CO 11900 49838 42778 7.62 7 154.13 159.(2 202.26 275.52 17750 12C30 39868 30370 1.91 9 150.o4 154.1, 27. 11L 272.76 268C0 14600 47467 43745 4.08 0O 175.C3 14.41 8)7.75 300.42 258C0 14750 52696 49574 3.05 11 170.94 174.03 358.69 3CO.O0 2HICO 0470 405C0 37460 3.90 12 198.01 2C1.28 336.07 326.95 24950 0380 40612 34029 3.28 13 194.06 148.15 332.64 324.84 263C0 12C00 51687 46454 5.33 16 194.29 190.07 327.91 320.24 263C0 15100 54968 49793 4.94 14 220.0U 225.06 356.75 849.81 169C0 12150 46112 42809 3.72 15 216.40 220.00 355.84 347.65 310CO 11600 46801 4b165 1.44 16 216.12 220.9C 353.80 346.15 252C0 11800 51316 44691 5.80 17 192.59 191.L3 332.00 324.24 17030 12100 49876 46575 3.42 18 191.90 195.32 381.51 328.19 322C0 12C00 52407 49488 2.86 19 216.55 275.94 852.51 345.87 255C0 15400 55145 51720 3.21 20 216.e8 2/0.42 852.04 352.14 255C0 8520 43970 42971 1.15 21 242.58 245.9/ 381.58 372.16' 24900 8530 41463 41672.25 22 241.h2 245.70 379.i8 371.84 24950 12100 49238 40520.73 23 241.70 246.05 356.42 369.85 24950 15400 54091 52297 1.69 24 265.13 269.55 404.13 397.62 24650 15250 55696 52591 2.87 25 262.07 256.09 403.05 394.46 25250 8280 41271 4L125.10 26 262.63 266.33 J348.74 31.26 252CO 12040 4329 47463.14 27 286.Y91 22.19 411.56 424.02 184CO 11870 50405 42528 1.90 28 242.86 246.08 385.14 376.37 318CO 12100 51060 55225 3.92 29 242.44 245.50 347.61 380.06 179CO 12430 54139 48973 5.01 30 264.87 270.41 4Ll.0 403.28 10780 11840 52959 49192 3.69 31 262.90 266.13 409.81 401.21 326C0 11580 53451 52969.45 32 288.73 241.75 433.05 424.76 320CO 11250 49836 50616.78 33 288.62 292.43 432.73 424.70 250CO 11420 49459 49761.30 34 288.42 291.65 49.65 429.33 26450 8360 44343 47047 2.96 39 287.79 291.75 4 0.0OL 423.27 26050 14900 53531 54398.80 36 312.97 317.16 452.06 445.75 25900 15250 57542 53117 4.00 37 310.95 414.01 449.37 439.92 25850 8530 41851 44336 2.88 38 313.34 3I8.08 455.13 447.65 18050 11650 45391 40202 3.00 39 312.50 316.01 454.61 446.11 25450 11650 47334 50852 3.58 40 311.64 314.74 442.77 434.81 31200 11950 51204 52061.83 91 938.00 3430.4 477.L4 469.63 30800 11870 47335 50218 2.96 42 338.81 3.3.90 477.66 470.73 17470 11860 48146 46409 1.89 43 342.17 345.75 483.06 475.65 25100 11860 48808 49750.96 44 340.90 344.00 486.35 476.41 249C0 8460 41875 47780 6.59 45 339.93 343.76 479.65 473.36 25050 15100 52022 54642 1.53 46 362.85 366.68 504.45 498.25 259C0 15100 54519 54127.36 47 561.81 365.55 505.94 498.18 25350 11720 52334 52442.10 48 361.11 364.69 510.64 500.70 254C0 8970 50162 51562 1.38 49 364.24 369.49 505.00 497.52 174CO 11530 50555 50560.01 50 361.47 364.85 503.23 495.07 31CC0 11820 57814 55486 2.05 51 387.08 390.53 5)0.57 522.52 30850 11680 59947 55283 4.05 52 390.25 395.76 532.46 524.82 17750 11660 55270 52464 2.60 53 388.78 392.90 529.76 521.70 254C0 11680 59037 55316 3.25 54 389.50 393.70 520.98 514.57 25250 15020 58726 56217 2.16 RUN Q AVG L0TC H0 PRI0 R FIN HO HI O CALC UO EXP R BOND BT/J/HR F BTU/H-SF r-F HR-SQFT-F/BTU B0U/HR-SQFT-F BTUI/HR-SOFT-F BTU/HR-SOFT-F BTU/HR-SQFT-F HR-SIFT-F/BTU 46308 131.63 215.60.00562 97.49 433.49 20.48 20.70 -.000040 7 39119 122.31 136.94.00609 74.65 370.31 17.54 18.82 -.000309 9 45606 123.06 194.12.00574 91.85 429.92 20.11 21.81 -.000311 tO 51135 132.06 209.50.00565 95.94 518.40 23.08 22.78.000045 11 38980 131.80 224.68.0C557 99.77 336.48 17.08 17.39 -.000084 12 J3920 131.84 /38.15.0C550 103.0H 368.39 18.39 17.55.000209 13 49071 132.61 238.56.OC550 103.17 490.25 22.60 2L.77.000133 14 5290 124.09 239.36.00550 103.37 58d.29 25.54 24.06.000193 14 44400 130.41 178.94.005R2 87.63 559.31 23.69 20.06.000611 15 47483 138.28 302.96.00519 117.04 529.68 24.52 20.96.000554 16 48503 13.L6 2Z52.20.00543 L06.42 532.54 24.08 21.76.000353 17 48225 152.06 161.90.00593 82.62 494.02 21.54 21.49.000008 18 50947 73.73 282.86.0C526 113.43 403.26 22.82 22.42.000063 19 53418 130.42 255.42.00542 107.17 665.51 27.89 24.11.000450 20 43471 134.42 254.13.00542 106.87 414.27 20.19 18.48.00036 21 41567 132.60 273.16.00533 111.25 451.13 21.64 10.45.000641 22 4879 131.90 274.02.OC532 111.44 601.16 26.38 21.81.000637 23 53194 129.26 276.56.0C532 111.57 729.02 29.89 24.22.000622 24 54144 133.52 273.44.00523 115.7h 792.69 31.70 23.86.000829 25 4119d 136.65 295.45.00522 116.30 475.71 22.64 18.00.000916 26 4739b 13U.51 295.94.00522 116.32 641.23 27.80 21.37.000866 27 49466 138.?4 240.99.09549 10).76 699.16 28.51 21.06.000993 28 53142 186.27 341.04.0C501 126.08 607.37 27.32 22.95.600558 29 51556 130.86 205.03.00568 94.76 630.43 26.09 21.43.000583 30 51076 139.54 230.01.00554 101.09 65J.81 27.16 21.54.000769 31 53210 14C.9e 373.54.0C407 132.55 635.94 20.48 22.21.000793 50226 138.66 390.61.0C477 137.17 669.41 29.69 21.32.001059 33 49610 138.1d 31b.13.00511 121.I1 673.29 24.11 21.13.001039 34 45695 144.43 333.80.0C504 124.41 531.20 24.85 18.62.001077 35 53965 193.47 32q.81.00506 123.57 846.34 33.41 23.20.001854 36 453,0 133.4' 181.00.00496 120.13 910.29 35.37 24.33.001027 37 43034 132.16 347.74.0CC498 127.30 55.,65 25.05 14.19.001075 38 46756 135.68 254.20.0C542 106.91 732.07 29.68 20.30.001247 39 49053 135.19 365.10.05499 126.75 732.69 30.91 21.27.001173 40 51632 125.54 613.49.OC470 140.44 723.75 31.41 24.19.000760 41 48776 133.55 496.63.O04hl 144.89 79C.69 33.43 21.43.001345 42 47303 132.44 253.41.00531, 1C9.02 793.48 31.19 20.95.001254 43 43279 135.39 067.30.00489 131.29 801.46 32.98 21.42.001310 44 44826 130.91 300.95.COC49 130.41 609.59 27.58 10.99.001313 45 5232 134.66 365.11.OC4390 130.84 970.36 36.90 23.09.001298 46 54693 136.57 356.43.0C477 137.2C 1027.45 38.63 23.40.001346 67 52326 130.37 308.23.00481 135.48 835.C7 34.09 22.26.001244 48 50462 142.75 3R9.10.004R5 135.45 624.15 29.75 20.97.001127 49 50550 136.35 276.66.00930 112.49 835.03 32.43 22.14.001147 50 56650 335.58 455.06H.CC0 50 150.26 632.57 34.89 24.52.000971 51 5761S 137.73 443.54.004460 144.00 67o.43 36.25 24.62.001044 52 63407 13S.63 950.22.50S20 117.25 4H8.57 33.83 23.37.001059 53 57177 134.04H 412.77.00471 14C.3C 874.37 35.97 24.94.000945 54 57471 126.13 411.24.00471 140.01 1053.17 39.51 26.81.000959 92

TABLE XXI (Continued) RUN R E SHELL RE TLHc PR SHLIL PlR iUFI VIS'C SFLLL VISC $-.ALL v sc'Arc TUE ICTWLL VS RTU Li /FT-FiR i I~F T-HR SHELL LB/FT-hR LB/FT-HR TB 4 9196 48316& 2~. 741! 33.709 3.9 t 1024 459 8333 3. lq0 [.304 4.29 883 ~35?587 3 8 3B6 ~3 3.q92 4 12?~;2 471 3.S%33~J:75 5 373 1.332 59085 2.3 04 28 9 7 52 8 4 530 4 34.681 4 2.3[),0 A 0 88[0 58u63 2.240 5 4.[5, 4.04g 3~[[0. ]02 454 7839 I 8 4~~~~~~~~~~~~~~~~~.1 4.590 15.089.304 92 Xl94 4380b ~395 7. 54~7 4 3.0 33722 I 1 1.117 3.713 8.955. 1 12 11194 41304 24.9571 29.57 3.205 2.72 l2? 27 3.790 B~609.440 [ 4 I[I067 202b3 7 4.4 6] 29).8U0 3~286 2.646 1 41 3 6 14 862U 70C4C?0.V 30 2 5 I[8 2.7(;8 2.243 I 07 3 8 51 [.2C? 3.[4 6.5087. 528 1 5 5 35 3 6 (:169 e'37 25.315 2.7'J2 2.39 0 3 51 [6 2512 66494 ~ 313 2,5.590 2.?P~5 2.~4U 9 5 7 1? 7142 5t{2bq Y.4.531 29;.143. 22 2.57d 1.280 386 m41. 32 4 2 5 7414 74 94 t 292 8 3 3 362 76~ 1. 2 18 3.U 08 9.301.4512 I8 I34 5244& 24.90 39.2 2 7.6 21 5. 767 56 19 257 83 2.3 18 25.704?.7a5 2:I.]59 3.0926598.7 20 124 0,1 2.333 24.592 2.788 2.3841 {[6 2 4! 8 11l IB H. 2 16260 5ZI4 Z.06 2 l 278967 1 1 787 1 55 2:354 3:~~~~~~~~~~~~~~~~4698. 2 [13642 0 7504 93 1746 18 63 1 l4402 4398.0699 8657 834461C. 1 1:1 2.357 202 5 2.758424 28 I 1~~~~~~~~~~~~~~~~~~~~~~~~~.0.576 [q585 [0121B~~~~~~1 ]5.60 21. 3lb 2.342 193.068[32.604 29 10566 61375 la ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~. 79.42.b99 30 12603 918563 16.729 I9.7046 2.606 [ o787611 2270 351.643 31 62502 96383 16.959 [9.292 2.09? 1.84f202 293.[14 34 19 978 78498 15 265 7 Ot5 8 1 952~~~Zo37 3.065. 607 26 ~66~8~~~~~~~~~ 906 [ I.6 3225 2.0g~ 2.84351 I 1 ~~~~ ~ ~~~~~~.43 30 64758 ~ 35 19650 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 2.5 1.619 I.757 36 [22075 154316 13 0 6.72 09160 2. 46 [750 [.[67 2 243:7 3! ~502 92638 16.9~~~~~~~14 56 16.331 ~.096 [.4H82 2 2 37~~~~~~~~~~~~~~~~~ ~.3 2.1977.04 8455I19I 3Z L5430 10 9308 13.892 1953I [.4 6 1.2 7 1.446 1 2 8 49 3 a 1 11 1:8~~~~~~~~~~~~~~~~~2012 2.94 3. 722 39 28610 [0392 [5 3 L 14~. 6 1.670 1.1238.14 114 13~~~~~~~~~~~~~~~~~~~~~.969 1.98 8 8 ~ 41 29240 13547 12.864 14.0[52 1.456 1.342 1.086 1.6092122.5 42 16722 136113 152787 14.509 1.443 1.302 10913 60 20926 686 4 344 429 I306':C9 5~2.062 2.4 0526 43 24289 541 139230 12. 0 6 1.2 1.45 71.1.2 44 23943 100262 t2 744 14 21,2 1438 1323 1 116 1.547 ~~2.150.745 45 24026 174906 420768 14.490 1:441 1.308 ~.'109 1.8523 205.8 46 27267 195905 941 313 1 313 1:202 1:1193 1 413 2.7758. B04 473939 0. [09 4083 46 6545 185,8 1 03 3.6 12.87 1.28 1.216. [O,8 3.8071 932 49 18469 152116 1:872 13:317 3 3 1~~~~~~~~~~~.194 1.0:1:2 777 40 32430 11476 991 34.021.1 [.32 1o214 [. 427 1. 90975 99 11 269 1 643~~~~~~~~~~69 2077 11.788 52 24 I69930 12.086 12.b226 [.4b IoC75 1.099 1.208.1259 4 2 162 2636~ [2.316 [q633[0 4~ 1742 36 9 8 12.6486, 2.16 20.344 ~ C29 74. 202.04 20.9 62118 0.0.1 4 123987 1006525 t.7 09 1832 2C 17.499 [ 2.3 17.063 18.472 27.93.434 45 17 2026 174906 2C3768 204.830 2C.4[ 20.518 21.94~ 21738 304.2.418 46 2726487 8 7390 L[ 954 [ 1963 42. 195 23. 140 0 1.9b1 2024 32 3047 38.403 47 29965 4 1205240 11.9 77 3 28230 2263 08.20 91 39 2379 4.7 0 3.31. 7709 q4 196545 2085 08 L 22.00 3 23.27 57 2312.236 9.9 O 24 1.32613 32 7.939072 149 22876 123]6:3 25272 3.? 253 31 26380 273 1 0 4 27. 4 [23:4 35320.452 50 321.430 22658 242.165 243[ 3 25299 2621 67 26.729 27 6 31.74 [90.345 165{ P 356 268796 1[ 245 12..3 24. 1 9 25311 259 042 2.57 269 73. 349 97 38 52 1937 61 95 2 t.O3 ]2.2 212 2 22 46 223 647 22)9 0 23.478 3279 35 38 2023 5 9 22 8 16 7 11.42 59. 243 64. 4952 25 4.C0 2608 02.264 6.4 4 35 0 278 22 2943 0 2053 14.[269 612. 706 0. 282 2.o4 29 8 1 9. 8 04~ 071 37.73 ~8064 26 26 748. 26 185. 2C2.3! 2893. 4 34 22741 31 0.80 324.84 3219.88 395.00.349 27 289565 7 30 472. ~ L87.41 3188. 36 ~.97 35 7.94 7 3.60 18.20 354 4278.79.389 28 244.47 2g5.2 4429 2 70.58 20 014.8 2C 7 292.37 298.02 303.67 380.75.34{ 11 124.q4 2181.73 277.49 78[9642 2895.78 300 38 306~ 30 231137 3843 83 422 30 267.64 2798.45 291.37 298. 313.05 326.508 22, 33.2:92 27 3381.5l 40.1 398 L31 264.L 207.36 284.14 289543 300 96.7 32C0.~ 326513q 3315 3879 40,1309 32 290.23 29686238 L 72 31.30 2 33.5 7 6235221223579 406 3246.0 4248 5.90 9 33 290.52 2986.534 45.63 I53.8 334.78 0 7 353.73 3859 20 364.27 4 3328.71 5 33 34 290.03 2976.58 2 31.65 3.12 253328. 3899 3536 28. 7 7 27 358.70 4 4 49 328 35 289.B 77 298.196 31547 346.78 3537.69 2559. 4 364.57 3700 3 426.64. 330 36 315.06 2.323 1 34C.47 341.582 323.71,.2 93 89.47 39 23.35 448o1 3.90.319 37 321.48 3129.83 32.40i 333.45 350.49 367.02 372.77 3768.6 44 34.64.321 20 21R~~~~~~~~~~b5 22~~~~~~7.47 24.5 4.6 2452 25.062 0 0 24 3975 0 378 39 314.25 3215. 2 2624 33 67.3b24 594 37.0 80.59 2 95.7 391.03 45076..322 42 24.0 3219 3.1147 336 62 2760. 30 2.524 364.b 9.96 370405 3 75.4 48.79.294 41 394 243.8 7 2402 27L.3 2360.2 3 28454.438 6 4~.5 1303 305 41 0 73.38 2843 42 341.35 27'IO 29436.87 396804 3[1.64 42q11 4.4 3406. 4170 474~19 o371 43 36443 96 7[.072) 36.3 6 8.3 30.2 3.[ 3.7 22.5 390 8 41471 499 2 8 49.35.312 47 362689 70.55 386.433~.6 38.71 4 $368 4 3 5.9 36.60 35 441.2 46 9 527.06 7 30 48 3244 3,9.4 2524 285.00 3623 470. 7 203.47 4282.39 493.79 4392 505.67 30 50 36q 1 34r.47 2.'20 387.349 2.72 406947 42701.B 4 3063 3 tl.78 439.20 49153 7 51 38286 37.6 1 7.421o.371 429.11 4340 32. 22 4506 33 42.45 438.357 52 407.67 52 391-0.2 4962 [.78 3142. 04 42 3 42.3266 15.12 9 346.02 474.74 528.64.349 53 390.84 3)1.bl 414.U2 45..4 336.09 455.96 462.04 4684127 525o73 236 54 391.3 27 C 1.64 31.7 15.8 417.116 330.7 346 48.9 7 3543.84 439.95 517.77 29

TABLE XXI (Continued) RLN T INE1 R T FIN. TLINER-TFIN mU K AIR ALPHA LINER ALPHA FIN R BUND P CO F F F 8TU/HR-$FT-F/ FI IN/IN I1/IN HR-SFT-F/BTUT PSI 4 206.16 185.84 21.12.220lO-.6.0112 6344E-05.1296E-U4 -.000041 2955 7 113.63 1?72.3 1.30.2195U-0U6:C 7.:62'E-05.1292E-04 -.000309 336? 9 177.63 16', 4 12.09.2193E-06.0176.6276C-05,129CE-U4 -.006311 3140 10 211.94 185.21 26.65.201E-06.018l2.6955L-05.1296t-24.000045 2600 11 198.18 181.7? l6.45.219'1.-0C.U[I80.6324E-0U.1235E-04 -.006084 3057 12 23,39 20U.40 24.13.12291-06.01A7.403E-HO.1303E-24.ooU209 3OZ 13 235I)4 2C7.GU 20.31.2206-G06.0117.640?C-05.1302C-04,000133 3010 14 240.56 208.0H 32.46.220'6-06.C1H8 6 6419-0.1302o-04.000193 2790 14 278.52 /36.3, 42.10.2220O-06.0195.65046-05.t3l1E-04.000611 2421 19 267.77 226.5. 41.13.2216E-06.0193.6480E-05.1300E-U4.000554 2301 t6 20~.5t 27~.16 15.62.22'1E-06.Ct93.6473E-05.t309E-0O.000353 2963 17 236.39 212.32 24.67.2210E-06.0186.6411t-0.13C46-04.000006 3534 18 229.05 2~3.02. 6.0.3.22016-06.0186.63936-05.1301E-04.000063 3106 19 272.77 229,8(1 42.97.221?E-06.0194.6491E-05.13U9E-04.000450 255S 20 250.02 227.67 12.35.22L6E-06.0192,6462C-05.1308E-04.000)867 300 21 231.27 252.22 89.05.2226E-06.Cl98.6532L-0O.13166-04.000641 2906 22 298.88 253.14 45.73.22200-06.0193.6549E-05.1316E-04.000637 2723 23 303.13 254.02 49.17.2227E-06.C200.h559C-05.1316E-04.000622 2667 24 334.94 276.95 57.99.2236C-C6.0206.6630[-05.1323E-04.000829 2556 25 318.47 271.72 46.15.2233L-06.0263.6593c-05.1322E-04.000916 2598 26 324.84 272.81 52.03.2234L-06.0204.6600E-A5.1322E-04.000U866 2560 27 360.20 00.42 59.77.2245E-06.0211.6587E-05.133CE-04.000993 2764 28 298.02 252.44 45.57.2226E-06.0199.65460-05.1316E-04.000558 2878 29 306.30 258.97 47.34.2229L-06.0201.65666-00,13180-04.000583 2948 30 332.92 279.45 )33.47.2237c-06.0206.6626E-05.1324E-04.000769 2906 31 326.13 271.76 54.38.223E6-06.02064.661lE-O.13226-04.000793 2614' 32 357.46 296,62 40.94.2243E-06.O10,6611IE-00.132Y9-04.001059 2480 33 359.00 298.58 60.42.2244 —06.0210.66864-05.1330E-04.001039 2592 34 353.04 297.07 56.77.2246-06.02C9.6673E-05.13296-04.001077 2589 35 364.32 298.19 66.13.22440-06.0211.6696E-00,1329E-04,001054 2352 36 399.47 323.11 66.37.2254E-C6.0216.6752E-05.1337E-04.001027 3070 37 372.10 918.88 53.28.2252E-06.0214.6714C-05.13360-04.001075 3297 38 390.468 325,41 65.06.2254-06.0217.6755E-05.1338E-04.001247 2668 39 385.81 321.54 64.26.2253C-0A.0216.6744E-00.1336E-04.001173 2765 40 370.46 319.41 50.98.2252E-06.0214.6710E-05.1336E-04.0001760 4109 41 413.85 345.00 68.85.2270E-0 6.0221.6907E-03.13446-04.001345 2802 42 416.67 850.80 65.80.229c-0-6.0222.6813E-S05.13456-04.001254 3253 43 419.94 350.73 69.15.22906-06.'0222.682tE-0-.1345E-04.001310 3010 44 411.84 349.75.3.09.22850-06.0221.68036-05.1345-04.001313 3165 45 422.92 849.22 73.70.2287E-06.0223.6827E-06.1345E-04.001298 2841 46 449.00 371.69 77.32.2333t-06.0228.6886E-05.1352E-04.001348 3121 47 441.22 370.51 70.71.2333E-06.0227.6868E-05.1351E-04.001244 3568 48 433.79 369.53 64.26.23286-06.0226.6852E-05.1351E-04.001127 4041 49 442.56 376.35 o6.21.23406-06.0228.6871L-0A.1363L-04.001147 4079 50 433.18 369.20 63.91.2327t-06.0226.6850E-05.1351E-04.000971 4408 51 462.45 394.61 67.84.23826-06.0232.6916E-00.13580-04.001044 4672 52 469.02 402.33 06.69.2399E-06.0234.6931E-05.1361E-04.001059 4840 53 462.04 39q7.81 64.23.2389E-06.0232.69151-05.1359E-04.000945 5093 54 463.84 393.67 65.17.2391i-06b.0232.6919E-0O.1360E-04.000959 5047 RLN P CC P CC AVG C6V P CO LL P GO UL PSI PSI. PSI PSI PSI 4 2955 3138 -183 2697 3214 7 3367 3130 229 3114 3620 9 3140 3136 1 2888 3391 10 2600 3138 -539 2340 2859 11 3057 3138 -81 2800 0313 12 3002 3138 -136 2737 3267 13 3010 3138 -129 2745 3275 14 2790 3138 -348 2524 3057 14 2421 3138 -718 2146 2696 15 2301 3138 -837 2029 2573 16 2963 3138 -175 2691 3235 17 3534 3138 396 3260 3800 18 3106 3138 -32 2842 3370 19 2551 3138 -587 2277 2824 20 3001 3138 -137 2730 3272 21 2906 3138 -232 2628 3184 22 2723 3138 -416 2443 3002 23 2667 3138 -472 2386 2947 24 2556 3138 -583 2268 2043 25 2598 3138 -540 2314 2882 26 2560 3138 -578 2275 2046 27 2764 3138 -375 2470 3058 28 2678 3138 -260 2598 3157 29 2948 3138 -190 2667 3230 30 2906 3138 -232 2619 0194 31 2614 3038 -525 2328 2899 32 2480 3130 -658 2187 2773 33 2592 3138 -546 2239 2865 34 2589 3138 -549 2297 2881 35 2352 3138 -786 2058 2647 36 3070 3138 -68 2770 3370 37 3297 3138 159 3000 3594 38 2668 3138 -470 2368 2369 39 2765 3138 -373 2466 065 40 4109 3138 971 3112 4406 41 2802 3138 -337 2498 31C5 42 3253 3138 114 2949 3556 43 3010 3138 -129 2706 314 44 3105 3138 27 2863 3468 45 2841 3138 -298 2530 3146 46 3121 3138 -18 2015 3627 47 3566 3138 427 3261 3870 48 4041 3138 903 3737 4345 49 4079 3138 941 3775 4383 50 4408 3)18 1269 4104 4711 501 672 300 1534 4368 4977 51 4672 3138~~~~~~~~14 52 4840 3138 1702 4535 5144 53 5093 3138 1954 4708 5397 54 5047 3136 1909 4043 5352 STANEARC CEOVITIC 77 696 91j

UNIVERSITY OF MICHIGAN 3 9015 02656 7233