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A frequently occurring problem in drug design and enzymology is that the binding constants for several 
compounds to the same site are known, but the geometry and energetic interactions of the site are not. 
This paper presents in detail a novel approach to the problem which accurately but compactly represents 
the allowed conformation space of each ligand, accurately depicts their three-dimensional structures, and 
realistically allows each ligand to adopt the conformation and positioning in the site which is most 
favorable energetically. The investigator supplies only the ligand structures and observed binding free 
energies, along with a proposed site geometry. With no further assumptions about how the ligands bind 
and what parts of the ligands are important in determining the binding, the algorithm fits the observed 
binding energies without leaving outliers, predicts exactly how each of the given ligands binds in the 
site, and predicts the strength and mode of binding of new compounds, regardless of chemical similarity 
to the original set of ligands. The method is illustrated by devising a simple site that accounts for the 
binding of five polychlorinated biphenyls to thyroxine binding prealbumin. This model then predicts 
the binding energies correctly for an additional six biphenyls, and fails on one compound. 

INTRODUCTION 

The problem at hand is: what can we de- 
duce about the structure and energetics of a 
binding site given the chemical structures 
and observed binding energies for several 
compounds? In order to understand the mo- 
tivation for the novel approach proposed in 
this paper, i t  is necessary to briefly review 
previous ranked in order of in- 
creasing physical realism. In topological 
methods, the ligand’s three-dimensional 
structure is disregarded entirely, keeping 
only information about which pairs of atoms 
are bonded. Then various graph-theoretical 
features of the interatomic connectivity are 
correlated in a least-squares sense with the 
molecules’ observed activity. Inasmuch as 
there is an incidental connection between 
these topological features and molecular 
size, shape, polarity, etc., one can obtain a 
structure-activity relationship. One is left 
with no picture of what the site may be, how- 
ever. More physically realistic approaches 
start with either explicit or implicit assump- 
tions about how the different ligands bind to 
the site, and then either explicitly or implicitly 
superimpose them. Even if the ligands are 
chemically very similar, this imposes a great 
burden on the investigator, who has little ba- 

sis for assuming that, say, a ring system com- 
mon to all active compounds will always be 
positioned the same way in the binding site. 
Methods of this class vary in quality of repre- 
sentation of the ligands all the way from styl- 
ized two-dimensional structural diagrams to 
full three-dimensional structures with a thor- 
ough search over all energetically favorable 
conformation space. The structure of the site 
thus deduced is implicitly the compliment of 
the superposition of the active compounds. 
The energetics are described generally as a 
least-squares fit of observed binding energy 
to a linear combination of physicochemical 
properties of the ligands and/or significant 
parts of them. What constitutes “significant” 
groups in these molecules is, unfortunately, 
another subjective choice by the investigator. 
Further progression toward physical realism 
and detailed site representation is hampered 
by greater computational complexity and 
cost. In our distance geometry approach to the 
problem (see reference (3) and references 
therein,) we have allowed the ligand mole- 
cules to  explore all of their respective con- 
formation spaces energetically available to  
them, and permit them to bind in the con- 
formation and positioning, i.e. binding mode, 
which is energetically most favorable. The 
site is explicitly represented as a collection 
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of points or binding pockets with three- 
dimensional coordinates specified for each. 
The investigator’s additional input into such 
a study is a working hypothesis about which 
pockets will be occupied by which signifi- 
cant parts of each ligand. Although this hy- 
pothesis may be revised by the algorithm, it 
certainly influences the final site model 
structure and energetics. Energetics of bind- 
ing is expressed as a table of interaction 
energies between site pockets and either sig- 
nificant groups themselves, or proportion- 
ality constants with their physicochemical 
proper tie^.^ The possibility is kept open that 
structurally similar compounds may prefer to 
bind in very different conformations or  
modes, and chemically dissimilar compounds 
can contribute to deducing the site model 
and/or can have their binding energies and 
optimal modes predicted. This is the most 
physically realistic site deduction method 
currently available, because the calculated 
site geometry agrees quantitatively with the 
crystal structure of the receptor protein, 
when known, and the interaction energies 
agree qualitatively with interactions seen in 
the crystal ~ t r u c t u r e . ~  

Nothing is perfect, and even if one is will- 
ing to go to the computational trouble of using 
the distance geometry approach, there are 
drawbacks which have prompted this article 
on Voronoi site models. This type of site model 
was discussed earlier,6 but now we have im- 
plemented the method in computer programs. 
The drive is to be physically yet more accu- 
rate and realistic without overinterpreting 
the data. The ultimate goal is to have an au- 
tomated algorithm which proceeds directly 
from the chemical structures and observed 
binding of the ligands, to as simple and non- 
committal a model for the site as is required 
to account for the data. We want to eliminate 
all subjective decisions by the investigator. In 
particular, we desire improvement on the fol- 
lowing points, and exactly how these will be 
implemented will be covered in the Methods 
section of this article. 

(i) The interaction energies are derived 
from a least-squares fit between observed and 
calculated binding by the distance geometry 
method and many others. This is appropriate 
if the adjustable parameters are supposed to 
account for all the variation in the obser- 
vations except for a physically unimportant 
random error factor beyond the control of the 

experimenter. Suppose, on the other hand, 
that the experimentalist has made a conser- 
vative estimate of his unavoidable errors and 
supplies the binding data with error ranges, 
saying that compound m must bind no worse 
than AG,- and no better than AGm+ (in this 
article we quote what is actually -AGbinding, 
so that greater positive values denote im- 
proved interaction). Then all the uncontrolled 
random variables of the experimental system 
have been expressed by these ranges, and a 
statistical approach is no longer appropriate. 
We must alter the binding model until the 
calculated binding values fall in their re- 
spective ranges: 

(1) 
for all m. If 99 compounds are well fitted by 
some model, but the 100th one is not, then it 
is not an “outlier” caused by a rare large 
value of some uninteresting random variable, 
but rather, the model must be revised until all 
100 compounds obey eq. (1). Note that this 
absolute fitting approach allows us to say un- 
ambiguously whether or not the model fits 
the data. 

(ii) If the ligand molecules are thought to 
be free to adopt a conformation which best fits 
into the site, it is computationally efficient to 
first globally search over all allowed con- 
formation space and summarize the results in 
some compact form. The distance geometry 
approach does this by noting the maximum 
and minimum interatomic distance for every 
pair of atoms, taken over all energetically 
allowed conformations. Unfortunately, the 
molecule really has many fewer degrees of 
conformational freedom than entries in such 
a table, so that although each interatomic dis- 
tance is correctly constrained to lie in a cer- 
tain range, the values taken on by two such 
atom pairs are correlated in general. For ex- 
ample, both the 3- and 5-position substituents 
of a freely rotating phenyl ring will show 
the same range of distances to another atom, 
but when the 3-substituent is near, the 
5-substituent is far, and vice versa. Repre- 
senting the molecule by a smaller set of better 
chosen conformational parameters elimi- 
nates many geometrically impossible bind- 
ing modes. 

(iii) Distance geometry binding studies at 
this point “edit” the molecules, representing 
each one by only a subset of the original at- 
oms, thought to  be the most significant 

AG,- 5 AGm,caLc 5 AGm+ 
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groups in determining the binding. This is a 
subjective decision (common with many other 
methods, although usually not expressed so 
explicitly) that is required to keep the combi- 
natorial search for optimal binding modes to 
a feasible length. It is also inherent in the 
model’s discrete contacts between a site point 
and at  most one atom. For example, a site 
point might have a favorable interaction with 
a methyl group, but the formalism of the 
model requires one of the three hydrogens or 
perhaps the carbon to form a contact with the 
site point, while the other three atoms of the 
group contribute no interaction. Therefore, it 
is preferable to remove the hydrogens and 
think of the carbon atom as a “significant 
group”, namely the whole methyl, that can 
then form a contact with the site point. 

(iv) The distance geometry approach deter- 
mines the interaction energies in a way that 
is influenced by the investigator’s proposed 
binding modes. If only one binding mode were 
geometrically possible for each molecule, 
then one could simply adjust the interaction 
energies involved so that the calculated bind- 
ing energies agreed as well as possible with 
the observed values. Unfortunately, there are 
many modes that must be considered, and in- 
teraction energies which give a good fit for 
one mode may allow another mode to bind 
even more tightly. More precisely, 

AG,,caLc = max AG(b) (2) 
b€B ,,, 

where B ,  = the set of geometrically allowed 
binding modes for molecule m, and AG(b) is 
the total interaction energy for the mode b, 
maintaining the convention that algebra- 
ically greater values correspond to better 
binding. We finally achieve self-consistent in- 
teraction energies by either modifying the 
proposed modes or introducing linear in- 
equality constraints on the least squares fit 
until the AG,,!, values in eq. (2) agree opti- 
mally with the observed ones. Achieving self- 
consistency is unfortunately influenced by 
the investigator’s original binding hypothe- 
sis, a source of subjectivity better avoided. 

(v) Representing the receptor as discrete 
site points has certain computational advan- 
tages, but it tends to require many site points 
unless the binding is largely determined by 
only a few key groups on the ligand. As an 
extreme example, suppose the 12 biphenyls 
shown in Table I11 bound at  a perfectly fea- 
tureless receptor site, such as a large hy- 

drophobic cavity. Distance geometry would 
nonetheless demand 10 site points, each posi- 
tioned so that it could bind a different sub- 
stituent. Only then could the model detect 
which substituents were available for inter- 
action with the cavity. With fewer site points, 
some substituents may have no available site 
point with which to interact regardless of 
mode, so that although the group lies inside 
the cavity, its contribution to the total energy 
would be omitted. Even with all 10 site points, 
the predicted binding modes would be un- 
justifiably precise in that each molecule 
would be locked into a particular positioning 
in the site, whereas in reality, they would 
have a choice of many different modes, since 
the observed binding reflects only general 
hydrophobicity. 

METHODS 

Fitting binding data with a Voronoi site 
model consists of the following steps: (I) ex- 
amine and summarize the conformation 
space of each ligand molecule; (11) propose a 
site geometry; (111) determine all geometric- 
ally allowed binding modes of the molecules; 
and (IV) determine the interaction parame- 
ters. The only step which can fail is the last, 
and in that event, one must return to step I1 
and try a site of a different shape. The rest of 
the Methods section explains how each of 
these steps is carried out, and how the new 
approach improves on the shortcomings of the 
distance geometry method listed in the Intro- 
duction. The Results section will go through 
the steps once again for a simple example 
data set. All programs described here are 
written in the C language and run on a 
SUN/3 c~mpute r .~  

Linearized Molecular Representation 

Examining the conformation space (Step I) 
is carried out just as we and several other 
groups have done for some time. Molecule rn 
is assumed to have rigid bond lengths and 
bond angles such that its conformation can be 
described in terms of a vector of dihedral an- 
gles, $,. For any choice of 4, there corre- 
sponds an internal energy, E(+), which might 
be calculated by some molecular mechanics 
program. Ours consists merely of checking 
van der Waals contacts. Then, there is an al- 
lowed conformation space, consisting of 
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all conformations of adequately low energy: 
(3) 

where E: is the global minimum of con- 
formational energy, and AE is on the order of 
kT, but less than the observed free energy of 
binding. In fact, we discretize @ by specifying 
a small number of allowed values for each 
dihedral angle and then trying all such com- 
binations. What values to use is dictated by 
computer time constraints. Now instead of 
summarizing @ in terms of allowed ranges for 
all interatomic distances as in point (ii) in the 
Introduction, we use ranges on the dot prod- 
ucts of intramolecular unit vectors. In order 
to explain this, consider the linearized repre- 
sentation of the molecule shown in Figure 1. 

The overall translation of the molecule is 
expressed as some unconstrained vector, w, 
chosen to point at one atom, C1 in this case. 
Then the overall rotation of the molecule is 
determined by the unit vector, ul, which in 
this example is defined as the unit vector run- 
ning from C1 toward C7. For a nonlinear 
molecule, an additional vector is required to 
express the positions of atoms off the u1 axis, 
such as uz, defined as the unit vector running 
from C7 toward C8. A planar group needs two 
unit vectors to specify atom positions, and of 
course, a rigid nonplanar group would require 
a third. Viewing the Cl-C7 and C4-015 bonds 
as rotatable demands u4 and us, respectively. 
Technically u3 could be expressed as a linear 
combination of u1 and uz, but it is produced 
due to an imperfection in the linearization 
algorithm. The net result is that the location 
of each atom in the molecule can be expressed 
as a linear combination of vectors, where the 
coefficients are given for compound 5 in 

= {& ( E ( 4 , )  5 E ;  + MI 

, C113 

Figure 1. Representation of compound 5, 3,5- 
dichloro-4-hydroxy biphenyl, as an arbitrary vector w, 
and five unit vectors, ul;-., ug. 

Table I. Thus, for example, 

This is something like setting up a coordinate 
system to express atom positions, where the 
unit vectors resemble the axes, except that 
the axes are not orthogonal, and we need 
more than three axes because rotatable bonds 
introduce extra degrees of freedom. 

A general algorithm for going from an ordi- 
nary molecule description in terms of atom 
coordinates and bonds to this linearized ver- 
sion is frankly quite complicated. Those who 
are interested will find it outlined in the 
Appendix. Note that the sort of distance cor- 
relation problems mentioned in item (ii) of the 
Introduction is automatically eliminated: 
whatever values u1 and u4 may have, the co- 
efficients in Table I ensure that C113 and 
C114, for example, are on opposite sides of the 
ring. 

Once the molecule is linearized, a straight- 
forward recursive program searches out the 
available conformation space exhaustively, 
as outlined above, and the maximum and 
minimum ui - uj are noted for each unit vec- 
tor pair. The result in the case of our example 
molecule is shown in Table 11. This provides a 
compact summary of @ in terms which are 
well suited to  the site representation dis- 

C114 = w - 4.49u1 - 3.10~4 (4) 

Table I. Coefficients for representing the atomic coor- 
dinates in Fig. 1 as linear combinations of an  arbitrary 
vector, w, and five unit vectors, ul, .  . . , us. 

atom w u1 u2 u3 u 4  u5 

c1 1.0 
c 2  1.0 
c 3  1.0 
c 4  1.0 
c 5  1.0 
C6 1.0 
c 7  1.0 
C8 1.0 
c 9  1.0 
c10 1.0 
c11 1.0 
c12 1.0 
C113 1.0 
C114 1.0 
015 1.0 
H16 1.0 
H17 1.0 
H18 1.0 
H19 1.0 
H20 1.0 
H21 1.0 
H22 1.0 
H23 1.0 

0.0 
0.0 

-1.39 
-2.78 
-2.78 
-1.39 

1.48 
1.48 
1.48 
1.48 
1.48 
1.48 

-1.39 
-4.49 
-4.13 

1.05 
-1.39 

1.48 
1.48 
1.48 
1.48 
1.48 

-4.13 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.39 
0.0 

-2.78 
-4.17 
-2.78 

0.0 
0.0 
0.0 
0.0 
0.0 
3.49 
1.05 

-3.83 
-6.27 
-3.83 

0.0 

~~ 

0.0 0.0 
0.0 1.39 
0.0 1.39 
0.0 0.0 
0.0 -1.39 
0.0 -1.39 
0.0 0.0 
0.0 0.0 
2.41 0.0 
4.82 0.0 
4.82 0.0 
2.41 0.0 
0.0 3.10 
0.0 -3.10 
0.0 0.0 
0.0 2.44 
0.0 -2.44 

-1.82 0.0 
2.41 0.0 
6.63 0.0 
6.63 0.0 
2.41 0.0 
0.0 0.0 

~~ 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.00 
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Table 11. Dot product ranges for the vectors ul, .  . . ,u5, 
as shown in Fig. 1. Upper bounds are shown in the 
upper triangle and lower bounds in the lower. 

u1 1.0 0.50 0.87 -0.50 -0.31 
UP 0.50 1 .o 0.87 0.50 0.67 
U:3 0.87 0.87 1.0 0.00 0.21 
u 4  -0.50 -1.00 -0.87 1.0 0.98 
US -0.31 -0.98 -0.74 -0.67 1.0 

cussed in the next section. It is also strongly 
reminiscent of orientational correlation be- 
tween the ends of a polymer chain,’ although 
I was not conscious of the connection at the 
time I devised this method. 

Voronoi Site Representation 

In order to reduce unjustifiable detail in the 
site model’s shape and excessive precision in 
the predicted binding modes (item (v) in the 
Introduction), we choose to represent the 
site not as points, but as non-overlapping re- 
gions covering all space. Thus, in the ex- 
treme example of the featureless hydrophobic 
cavity, one could use a single infinite region. 
Each atom would always lie in one and only 
one region, and a binding mode would consist 
of a listing of the region in which each atom 
is located. In the featureless cavity case, any 
molecule would have only a single binding 
mode, namely all atoms lying in the one re- 
gion, and the orientation of the molecule re- 
mains appropriately vague. A convenient 
way to define such a subdivision of all space 
is in terms ofVoronoi p~lyhedra ,~ ,  lo sometimes 
known as Dirichlet tesselations. Suppose the 
investigator has decided to try a site model 
with n, regions. Then he must supply the 
coordinates of “generating points” c, ,  i = 
1, . . ., n,, chosen such that corresponding to 
each is a Voronoi polyhedron, or “site region” 
r L ,  consisting of the locus of all points that are 
closer to it than to any other generating point: 

r! = {XI IIC, - XI1 < “ c ,  - XI[, v.  f i >  ( 5 )  
For example ,  F igu re  2 shows a two- 
dimensional site model consisting of five 
regions arising from the chosen generating 
points cl, . . . , c5. In this paper, we will deal 
only directly with eq. (51, but Voronoi poly- 
hedra have other potentially useful proper- 
ties explained in the Appendix. 

Given the binding site structure in terms of 
Voronoi polyhedra, and a ligand molecule m 

Figure 2. An example of a two-dimensional Voronoi 
site model consisting of five finite regions specified by 
generator points cl,. . . , c5 and outriggers (see Appen- 
dix) c6, c7, c8. Vertices Vlo and VI1 lie at  a large but 
finite distance out of view. Solid lines are boundary 
edges between regions. 

consisting of n, atoms, each binding mode b 
can be encoded as a vector, where the ith com- 
ponent, b, = k when atom i lies in region rk. 
Because the site regions are non-overlapping 
and altogether space filling, there is always a 
k for each of the n, atoms, and the choice is 
unambiguous. Letting pL denote the position 
of atom i, and supposing r, is adjacent to rk, 
then for b, = k to be true, by eq. ( 5 ) ,  we must 
have 

1 1  PI - C k  11’ < 1 1  PI - c~ 1 1 2  (6) 
Since p, is really a linear expression of the 
form of eq. (4) in the Cartesian components of 
w, u1 ,..., it is easy to show that eq. (6) is 
actually linear in these components. In other 
words, a geometrically feasible binding mode 
has a solution to  a set of linear inequalities of 
the form of eq. (6) involving all adjacent re- 
gions for each atom. In addition, there are 
nonlinear equations and inequalities to be 
satisfied: the unit vectors must each have 
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unit length ( 1 1 ~ 1 1 ~  = 1) and dot products be- 
tween pairs of unit vectors must obey the 
bounds found by exploring conformation 
space, for example as in Table 11. How all this 
is solved, even approximately, is given in the 
Appendix. Suffice it to say, a computer pro- 
gram uses the generation point coordinates 
supplied by the investigator together with 
the linearized description of the molecule 
to produce a list of all geometrically allowed 
binding modes, using a moderately efficient 
algorithm that solves sets of linear inequal- 
ities of the form of eq. (6). Because all atomic 
positions are determined by a few vectors, no 
atoms need be excluded, as in item (iii) of the 
Introduction. Necessary conditions for geo- 
metric realism are checked, but in the present 
state of development, they are not always suf- 
ficient. Therefore, a t  the end of a binding 
study, when the energetically optimal mode 
has been located for each molecule, it is neces- 
sary to check by computer graphics whether 
those modes can in fact be achieved. 

Energy Fitting 

If each molecule had only one binding 
mode, determining the interaction energies 
would be a simple matter of solving a set of 
linear inequalities, As an illustration of the 
real difficulties, however, consider the ex- 
tremely simple case shown in Figure 3 of 
two molecules residing in a small one- 
dimensional site consisting of two regions, rl 
and r2. The short isomer, AA, consists of two 
“A” atoms and can fit into either r l ,  r2, or 
straddle the boundary, for a total of three 
modes: (l , l) ,  (1,2), and (2,2). The long isomer, 
A - A, has the same two atoms fixed a t  such 
a long separation that only the mode (1,2) is 
possible. There are only two interaction ener- 
gies to determine: el for rl and A, and e2 for r2 
and A. Determining the energies amounts to 
picking an appropriate point in the e1e2- 
plane. If the given binding of A-A is the 
range 4 to 5 kcal, then the one mode (1,2) 
translates into two inequalities: el + e2 > 4 
and el + e2 < 5. In Figure 3 this corresponds 
to the diagonal band. In general, for any mode 
b, there is a corresponding energy space vec- 
tor p, whose integer components indicate how 
many times each interaction energy is in- 
voked in binding. In this example, b = (1,2) 
and p = (1,l). Now for the short AA isomer, 
if the binding range is 3.0 to 3.5 kcal, the 

modes, taken from left to right in the figure, 
correspond to 3 < 2el < 3.5, 3 < el + e2 < 
3.5, and 3 < 2e2 < 3.5. Since the molecule 
always prefers the highest (most favorable) 
energy mode, the first is taken when el > e2, 
the third when e2 > el,  and all three are 
equally favored when el = e2. This corre- 
sponds to the bent region in Figure 3. Note 
that the upper bounds for one molecule must 
always be satisfied, but i t  is only necessary 
that at least one lower bound be satisfied. The 
desired interaction energies clearly corre- 
spond to the two shaded regions. Linear 
programming could deal with the total set of 
upper bounds, which must all be satisfied and 
define the convex region outlined in heavy 
lines. However, it cannot cope with satisfying 
at least one lower bound for each molecule, 
which causes the feasible region to be possibly 
discontiguous. In the Appendix we explain 
our method for determining the interaction 
energies, based on subgradient optimization. 

“f 

,rt 1 9 
A-A A-A A-A 

Figure 3. Below is depicted a one-dimensional 
model consisting of two small regions, rl  and r2. 

site 
The 

long A-A mofecule can have o h y  t h e  one binding 
mode shown, but a short AA isomer could have three 
different modes. Above is the corresponding interaction 
energy space diagram, where the diagonal band corre- 
sponds to the A-A allowed energies, the L-shaped 
band is those energies permitted by AA, and the 
shaded parallelograms are the solution sets. The region 
determined by all upper bounds is marked with heavier 
lines. 
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The important concepts to note at this point 
are that determining the interaction energy 
parameters is not a least squares fitting 
procedure, but rather, the absolute fitting 
advocated in item (i) of the Introduction; 
the problem is relatively difficult because the 
molecules are allowed the realistic freedom 
to seek the binding mode of optimal energy; 
and the investigator does not have to supply 
suggestions about interaction energy values 
or optimal binding modes (item (iv) of the 
Introduction). 

EXPERIMENTAL DATA 

We selected the study of Rickenbacher, 
et a1.l’ as a small but nontrivial test of the 
new method. They measured the specific 
binding of twelve biphenyl derivatives to  
prealbumin, a serum protein important in 
thyroxine transport. 

They give the experimentally determined 
binding of these compounds in terms of15,,, the 
molar concentration at  50% total binding, but 
without any explicit statement of estimated 
error. The experiments may indeed have been 
done very well, yet absolute fitting requires 
given ranges on the observed binding. The 
only hint their paper gives is that their mea- 
sured K,, for tetraiodothyronine binding to 
prealbumin gives “good agreement” with the 
values found by others. Altogether the quoted 
K,s  range from 8.6 x lo7 M-l  to  1.3 x 
lo7 M1, a multiplicative factor of 6.6. In this 
paper we add kln6.6 = 21.9 to their -In Is0 
values to get the AG- and AG, values given 
in Table 111. This is a conservative inter- 
pretation of their data, but in the absence of 
further experiments, it is not unreasonable. 

RESULTS AND DISCUSSION 

Step I proceeded quite routinely because 
there are few rotatable bonds in these mole- 
cules, so conformation space could be explored 
with 60” increments in dihedral angles, or 
smaller. The only energy calculations done 
were to  check van der Waals contacts. Linear- 
ization created in each case a small number of 
unit vectors, but not the minimum, although 
that is not an important shortcoming. Even 
so, as in Figure 1, it is a much more compact 
description than considering all atoms inde- 
pendently, due to the rigid phenyl rings. The 
outcome for each molecule is much as that 

shown in Tables I and 11. Clearly this step is 
only a preliminary manipulation of the 
twelve molecules, and is not directly related 
to constructing the site model. 

Step I1 was a little more challenging. The 
simplest possible site consists of a single large 
region, but it is impossible to fit the data for 
even only compounds 1,2, and 3 this way. The 
next most complicated site has two large re- 
gions separated by a plane, and this also 
failed to explain the data for the first three 
compounds. Going to three regions at last 
requires a choice as to the shape of the three 
regions. Noting that 2 binds much worse than 
3, in spite of their identical atomic composi- 
tion, naturally leads to the idea that the 
ability to adopt a planar conformation per- 
mits better binding. Of course, the 0-C1 sub- 
stitutions in 2 force it to adopt conformations 
where the two phenyl rings do not lie in the 
same plane, and this was properly encoded in 
the allowed dot product ranges. The simplest 
sort of site which could detect planarity vs. 
nonplanarity would consist of a thin slab 
separated on either side from large regions 
by two parallel planes. The generating point 
coordinates corresponding to a 1 8, thick slab 
are simply (- l ,O,O) ,  (O,O,O), and (+1,0,0), or 
any rigid translation or rotation of them. This 
final site model geometry follows from a con- 
sideration of only compounds 1, 2, and 3. 

The most time consuming part of the whole 
process was step 111, determining all geo- 
metrically allowed binding modes of the 
molecules. This data set happens to be not 
very chemically diverse, in that each mole- 
cule has exactly the same carbon skeleton, 
and the only other atoms are C1,0, and H. We 
therefore decided that the interaction of C 
with all three regions would be fixed in ad- 
vance at  zero, in an effort to reduce the num- 
ber of adjustable energy parameters. This 
simplifies the binding modes considerably 
and consequently makes the search for all of 
them faster per mode and shorter altogether. 
In addition, it is not necessary for the sub- 
sequent energy fitting to include extra modes 
which are energeticdy identical. For exam- 
ple, for 1 if all atoms lie in region 1 except for 
a single H in region 2, there are 10 different 
ways this can be done because there are 10 
hydrogen atoms in the molecule, and the 
large size of region 1 permits all the different 
orientations required to push each H across 
the planar boundary into region 2. The cab- 
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Table 111. Observed and Calculated Binding of Biphenyls to Prealbumin. 

4’ 

Compound AG :b AG ?b AG L e  Optimal Mode‘ 

1 biphenyl 
2 2,2’,6,6‘-C14 

3 3,3’,5,5’-C14 

4 3,3’,4,4’,5,5‘-c16 

5 3,5-C12-4-OH 

6 3,5-C12-2-OH 

7 2,4,6-C13-4‘-OH 

8 3,5,4’-C13-4-OH 

9 2,3,4,5-C14-4‘-OH 

0.0 
0.0 

17.9 

17.7 

18.6 

15.3 

15.7 

18.1 

17.6 

17.9 

18.4 

17.3 

14.2 
14.2 

21.7 

21.5 

22.4 

19.1 

19.5 

21.9 

21.4 

21.7 

22.2 

21.1 

14.2 
14.2 

18.7 

21.4 

18.7 

19.1 

17.1 

20.0 

20.7 

21.7 

22.3 

23.9 

all in r3 
2-6, 2’ in r2 

rest in rl 
2 in r3 

rest in r2 
2 in r3 

rest in r2 
OH, 2’, 3’ in r3 

rest in r2 
3, 4, 5 ,  in r2 

rest in r3 
4, 2’ in r, 

2, 3, 5 ,  6, 3‘ in r2 
rest in r3 

OH, 2‘, 3‘ in r3 
rest in r2 

2’ in rl 
OH, 2’, 3’ in r3 

rest in r2 
2’, 3’, 4’ in r3 

rest in r2 
4-OH, 4‘-H in r3 

rest in r2 
OH in r3 
rest in r2 

“In terms of --In Z5,,, where Zs0 is the molar concentration at 50% total binding. 
bDerived from reference (11). 
“Each atom must lie in one and only one region, but we are neglecting the carbon atoms in this series. 
Thus 2 through 6 and 2’ through 6’ refer to the substituents at those positions on the two rings. 

lated energy of all these modes is the same, 
regardless of the interaction energy values, so 
even if one of these modes is the optimal one, 
it suffices to include only one representative 
of the ten. Even so, the largest molecules with 
the most diversity of atom types produced as 
many as 900 binding modes. Just  as step I, 
this step involves processing all twelve mole- 
cules for subsequent purposes, but i t  does not 
directly affect the site model. 

Step IV, determining the interaction pa- 
rameters, was fairly straightforward once 
it became clear that three regions were re- 
quired. Compounds 1, 2, 4, 5, and 6 were 
enough to guide the random search to the 
parameters shown in Table IV. In other words, 
these five compounds constituted the train- 
ing set, and the other seven were used for 

Table IV. Interaction Parameters (In 150 units) for 
Thin Slab Site Model Binding Biphenyls. 

Site Regions 
Atom rl r2 r3 

H 0.591 1.320 1.422 
0 0.088 1.030 2.460 

c1 0.468 2.677 -3.746 

testing predictions. Some fifty other binding 
“strategies” were explored but discarded as 
they appeared not to converge on a solution. 

Curiously enough, the optimal binding 
modes corresponding to these energies did not 
reflect the conscious strategy that led to pro- 
posing the thin slab model. Namely, 2 indeed 
has a nonplanar structure that forces it to put 
some of its atoms in rl and the others in r2, but 
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the planar isomer 3, which was to lie com- 
pletely in r2, prefers to push one H into r3. The 
AGcalc column in Table I11 was produced from 
these parameters. Of the remaining seven 
compounds, only 12 was substantially mis- 
predicted. Apparently additional site geo- 
metric detail is needed to account for the 
unexpectedly low contribution to binding made 
by the chloro substitutions. At this level of 
site model structure, all we can say is that it 
explains the binding of five compounds and 
correctly predicts the binding of six more, yet 
any simpler site cannot even do that. It is 
unreasonable to expect the model’s structure 
to correspond to that of the real prealbumin. 
Instead, the model should be viewed as a de- 
vice to discriminate among the twelve com- 
pounds and map their perceived structure 
into a calculated binding energy, just as the 
real binding site does, but not necessarily by 
the same mechanism. Eventually, a more 
detailed site model should have attractive 
regions where the real site has attractive 
binding pockets, and the calculated optimal 
binding modes should reflect how the mole- 
cules actually prefer to bind to the real site. 
Figure 4 illustrates how the compounds typi- 
cally bind by showing 11 in its optimal mode. 
Notice that 11 could equally well be rotated 
and translated about within the slab, and that 
the C - 0  bonds have considerable freedom of 
rotation while still preserving the predicted 
mode. Even more extreme is the predicted 
binding mode of 1: all atoms lie in the infinite 
r3, in any translation, any orientation, and 
any conformation. That such a simple repre- 
sentation of the site accounts for so much 
binding data, tells us that more data on more 
varied compounds are needed to construct 
anything like a reasonable picture of the site. 

CONCLUSIONS 

Voronoi site models are a qualitatively 
different approach to accounting for given 
binding data. The accompanying computer 
algorithms so far enable one to handle rela- 
tively simple, but nontrivial, data sets. Solu- 
tions can be found which agree completely 
with experiment, leaving no outliers. The 
solution in this test case has considerable pre- 
dictive power, although it is geometrically so 
sketchy that we can conclude very little about 
the real site’s structure from these data alone. 

Figure 4a. Compound 11 in its predicted optimal 
binding mode. (a) In this view, the boundary planes 
between the regions are viewed almost exactly edge on. 
Unfortunately, this means that both phenyl rings are 
also viewed from the edge. To the left is region 1; the 
center slab is region 2; and to the right is region 3. The 
4’-OH group extends at the top into r3 while leaving 
the 3’,5’-Cl2 atoms in their preferred r2.  At the bottom, 
the 4-OH remains in r2, which is better than being in 
rl ,  but moving to the preferred r3 would force C1 atoms 
into the energetically repulsive r3 also. Still the H of 
the 4-OH can reach the preferred r3. 

\ P 
/ 
/ 

Figure 4b. A perspective view of the site, where the 
two boundary planes are indicated by rectangles. Here 
the molecule lies nearly in the plane of the paper, 
which corresponds to the plane of the thin slab between 
the boundary planes. 
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The importance of this study is not really in 
what we have learned about prealbumin, but 
rather in the concepts illustrated. 

The first idea is that if the data can be fit 
with such incredibly vague models as two 
or three broad regions, then the limited bind- 
ing studies really are not telling us much 
about the structure of the site. The bias of 
the method toward simplicity is a welcome 
counterbalance to our natural tendency of 
deducing too much detail. In fact, it is the 
only honest conclusion we can make from 
these data. 

The second idea is that requiring AG- 5 

AGcalc I AG+ for all molecules amounts to an 
unambiguous test of whether the model fits 
the data. We do not have to  resort to statisti- 
cal criteria, such as standard deviation, cor- 
relation coefficient, explained variance, 
t-test, etc. It is not really a statistical ques- 
tion, anyway. 

The third concept that emerges is that of 
conformation space of a molecule with respect 
to a model. Usually the most time-consuming 
step in any QSAR method that takes into ac- 
count the conformational freedom of drug 
molecules is exploring all the conformational 
possibilities. When several rotatable bonds 
are involved, there is always the concern that 
the exploration was not thorough enough. In 
the trivial case of one region, conformation 
can be completely disregarded. For our three- 
region example, only fairly gross structural 
features were of interest. In general, the con- 
formation space of a molecule with respect to 
a given site can be completely expressed as a 
list of geometrically allowed binding modes. 
All other detail is superfluous. 

Fourthly, we can parameterize molecular 
comparisons in a similar fashion. Many 
QSAR studies hinge upon superimposing 
sometimes structurally different molecules 
upon one another, but there are always nag- 
ging questions: which atoms of the one mole- 
cule are to be brought into coincidence with 
which  atoms o f  the other? How close is  
“coincidence”? What about the left-over pieces 
of the larger molecule? If instead one looks at 
comparisons with respect to a model, the am- 
biguities largely vanish. Two molecules, m 
and m ’, match with respect to a given model 
if there are p E B ,  and p ’  E B ,  ’ such that 
p = p‘.  Since the ps are always vectors in the 
same interaction energy space, they can be 
directly compared, even for very dissimilar 

molecules. Note that the site geometry deter- 
mines the dimensionality of the energy 
space and the contents of the mode sets, but 
finding a solution set of interaction energies 
is not required. 

Clearly the implementation of this ap- 
proach can be improved on a number of fronts, 
so that larger, more flexible molecules can be 
treated in more elaborate site geometries. In 
its present stage of development, however, it 
is already remarkably objective, requiring 
only a suggested site structure. No longer do 
we have to decide in advance which portions 
of the ligand molecules are important and 
how these important parts superimpose or 
bind to the site. 
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APPENDIX 

Linear Representation of Molecules 

Suppose a molecule is described by the 
atomic Cartesian coordinates for a particular 
conformation, a list of which pairs of atoms 
are bonded, and a list of which bonds are ro- 
tatable. Suppose further, that one bond has 
been deleted from each (rigid) ring, so that 
the molecule is viewed as formally acyclic but 
fully connected in a tree graph. All rings are 
assumed to be rigid groups, i.e., pseudo- 
rotations are not treated here. Then the 
following algorithm produces a linearized 
representation of the molecule, as in Figure 1 
and Table 1. 
Choose the first atom involved in the great- 
est number of rotatable bonds. 
Rearrange the tree representation of the 
molecule so this atom is the root. 
Express root atom coordinates = po = w 
And conversely define w by w = po. 
Recursively for each son i of the root of the 
current subtree o 
This atom pi, has as its “critical bond” the 
last rotatable bond in the chain from the 
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If the equation cannot be solved 
The four generators are coplanar, 
so simply proceed to the next quartet. 

If V is no closer to any generator than it 
is to c , ,  

ree root to it, unless it is an endpoint of the 
bond. 
f only w has so far been determined, 
Define a new unit vector 

u1 = Pl - Po 
II P1 - Po II 

Express PL = Po + II PL - Po I1 u1 
h e  if currently there are w and u1 
If p, is on the line u1 from w 
1 Express p, as above 
Else define u, as the unit vector from po to 
p, and express pL in terms of po and u,. 
h e  if we have w, ul, and uz. 
Let v = pL - po 

v - u, - (u, * u,) (v * Ul) 

1 - (Ul * u2)z 
Let p = 

Let a = v - u1 - flu, * u, 
Let u3 = v - aul - pu, 
If u: is small, p, is coplanar 
1 Express p, = po + aul + pu, 
Else define u3 as the unit vector from po to 
p1 and express pL in terms of po and u3. 
Use if we have w, ul, u,, and u3 
Let v = p, - po 

v * u, - (u, - u3) (v ’ u,) Let r = 
1 - (u, u3y 

Let 
v . (u, - us) + r(u, * u3 * u1- u,) 
1 - u1 u3 + s(u1 * u, - u, - u3) 

Let p = r + as 
Let y = v - u3 - au,  - u3 - pu, - u3 
Express p, = po + aul + puz + yu3 
laving treated atom i, do the same for any 
ions it may have in the tree, where if a 
notatable bond had just been crossed to 
Beach i, 
then the sons will have only w in their 
vector sets. 

a =  

Voronoi Polyhedra Properties 

The boundaries between regions are the 
perpendicular bisecting lines (planes in three 
dimensions) of the lines joining the gener- 
ating points. For instance in Figure 2 ,  v6- 
V, bisects c4-c5. It is convenient to always 
deal with finite regions, so we add a large 
equilateral triangle (tetrahedron in three di- 
mensions) of “outrigger” points, c6, c7, c8. As 
long as the chosen generator points lie within 

this triangle, they will produce finite regions. 
There will always be one region for every gen- 
erator, but the size, shape, and number of 
edges (faces) depends on their relative posi- 
tions. A region r, can conveniently be de- 
scribed in terms of its set of vertices {V},, 
where the three edges (four faces) intersect. 
The vertex sets for adjacent regions of course 
have some members in common. For instance, 

V,,V,,V7}. Any point p in a region r, can be 
expressed as a convex combination of its 
vertices: 

W > z  = {Vz,V3,V4,V~,V~}  and W 1 4  = {Vi, 

and 

C a , =  1 
.i 

A vertex is equidistant to three (four) gener- 
ating points while not being closer to any 
other generator. Due to the interest in Voronoi 
polyhedra for applications in geography, 
there are a number of rapid algorithms 
for locating all vertices of a large set of re- 
gions, but these are restricted to two dimen- 
sions.12,13,14 For our purposes, dealing with 
relatively few regions, the following algo- 
rithm suffices to determine the vertex set of 
each region. 

For some large number B > 0, place out- 
rigger points about the origin at 
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If the next atom needs no extra unit 

I Place that atom 
Else set the next unit vector. 

vectors 

Crippen 

f AG,.. > AGm+ and AG,#- > AG,- 
Remove p’ because it can never be an 

optimal mode. 
fAG,*+ > AG,.+ but AG,.- 5 AG,- 
p ’  - e < AG,., is a redundant upper 
bound, but p ‘  might be the optimal 

I r mode for m ’ . 

It is a vertex and belongs in {V}i, {V}j, I /  I {Vh, and {V>,. 

Search For Geometrically Allowed Binding 
Modes 

Given the coordinates of the site generating 
points, ci, z = 1,. . . , n,, and a ligand molecule 
expressed in linearized form, we need to find 
all geometrically allowed binding modes. In 
order to avoid solving systems of quadratic 
equations, we make the approximation that 
each unit vector can be oriented toward any of 
the six faces of a cube. (Choosing polyhedra 
with more faces gives a more accurate ap- 
proximation at the expense of more combina- 
tions to examine). If two unit vectors point to  
the same face, their dot products are in the 
range 0.65 to 1.0; for adjacent faces we take 
the range to be -0.9 to 0.9; and for opposite 
faces it is -1.0 to -0.65. Then the following 
recursive algorithm examines all possi- 
bilities of placing the atoms in different re- 
gions and pointing the unit vectors toward 
different faces, eliminating geometrically 
impossible choices as early in the search as 
possible. 

)t the atoms and unit vectors so that the 
sition of the first atom depends only on 
, the next atoms need only w and ul, etc. 
.rting with the first atom in the first 
gion, recursively place an atom in a 
gion 
)r all the atoms so far placed and the unit 
rectors so far involved 
solve set of equations (6), where w is vari- 
able, but the unit vector components are 
given their corresponding face values 
with some additional freedom to point 
anywhere on the face. 
Phis is a standard linear programming 
problem. 
f a  solution is not found, 
Try placing the atom in the next region. 
Clse atom placement was successful 
If that was the last atom 
I A new allowed mode has been found. 
Else if the next atom needs no new unit 

1 Try placing it, initially in the first 

Else recursively set the next required 
unit vector I For each face 

vectors, 

region 

Determining Interaction Energies 

Although we generally think of the inter- 
action energies as a table, such as Table IV, 
with a row for each atom type and a column 
for each region, we could write all these en- 
tries as a linear vector, e. Then for any e,  we 
define an error function 
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Locate a solution, e*, by subgradient opti- 
mization. l5 
terate for k = 0 ,1 ,2  , .. . 

e ( k + l )  = e ( k )  + t VF(e'k') 

I ! ; /  
Where F(e*) = 0, and we let A = 0.5. 

Until an attempt converged or too many 

If this algorithm succeeds in finding a solu- 
tion, then one can go back and see which 
modes are indeed optimal. It is possible that 
more than one will have the same maximal 
value for some molecule, particularly (but not 
necessarily) if it corresponds to a duplicated 
mode. In our simple example of Figure 3, if 
A-A could rotate in the plane, there would 
be modes b = (1 ,2)  and b' = (2 ,1) ,  but 
p = p' = (1,l). There may also be other very 
different solutions that could be found from 
different random starts. On the other hand, 
failure to find a solution after many random 
starts and lengthy iterations indicate there is 
no solution (and a different site geometry 
must be tried), but it is not proof. With this 
algorithm, the only case of proven failure is 
when all modes for one of the molecules have 
been eliminated, according to the eighth line 
of the above algorithm. Unfortunately other 
causes of failure manifest themselves only in 

1 1 '  Until k = 2000 or F(e'k') < W5. 

attempts have been made. 

lack of convergence of the subgradient opti- 
mization process. 

References 

1. Y. C. Martin, Quantitative Drug Desi n, Me- 
dicinal Research Series, 8, Marcel Dekfer, Inc. 
New York, 1978. 

2. R. Franke, Theoretical Drug Design Methods, 
Akademie Verlag, Berlin, DDR, 1984. 

3. A.  K .  Ghose and G. M. Crippen, J .  Comp. 
Chem., 6,350-359 (1985). 

4. A. K .  Ghose and G. M. Crippen, J .  Comp. 
Chem., 7,565-577 (1986). 

5.  A. K. Ghose and G. M. Crippen, J .  Med. Chem., 

6. G. M. Crippen, Ann. New York Acad. Sci., 439, 

7. Those interested in the programs a t  this early 
stage ofdevelopment should contact the author. 

8. P. J. Flory, Statistical Mechanics of Chain 
Molecules, Wiley Interscience, New York, 
1969. 

9. G.F. Voronoi, Reine Angew. Math., 134, 198 
(1908). 

10. P. F. AshandE. D. Bolker, Geometriae Dedicata, 

11. U. Rickenbacher, J. D. McKinney, S. J. Oatley, 
and C. C. F. Blake, J .  Med. Chem., 29,641-648 
(1986). 

12.P.J. Green and R. Sibson, Comput. J . ,  21, 

13. M. Iri, K. Murota, andT. Ohya, AFast Voronoi- 
Diagram Algorithm with Applications to Geo- 
gra hic Optimization, Lecture Notes in Control 
an  cf Information Sciences, 59, Springer Verlag, 
1984. 

14. T. Ohya, M. Iri, and K. Murota, Inf. Proc. Lett., 

15. C. Sandi, in Combinatorial Optimization, ed. C. 
Sandi, pp. 73-91, Wiley, New York, 1979. 

28,333-346 (1985). 

1-11 (1984). 

19, 175-206 (1985). 

168-173 (1978). 

18,227-231 (1984). 




