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The molecular mechanics calculations reported earlier for nitrogen heterocycles have now been 
extended to include the title compounds, and related molecules. It is in general possible to calculate 
these structures with an accuracy that compares favorably with experiment. 

INTRODUCTION 

The MM2 force field has been widely used 
for the determination of structures by the 
molecular mechanics method (MM2).l It was 
developed to be applicable to conjugated 
hydrocarbons many years ago,’,’ and this 
version of the program was called MM2(82). 
The procedure by which pi system hetero- 
atoms may be incorporated into the MM2 
frame work was described in an  earlier pa- 
per,3 where we reported the study of hetero- 
cyclic compounds containing nitrogen atoms. 
The geometries of compounds containing 
pyridine and pyrrole type nitrogen atoms 
were calculated quite well using the proce- 
dure developed. [n this article, we shall de- 
scribe the application of this procedure to 
the structural study of furan and thiophene, 
and related  compound^.^ 

To develop the parameters for the furan 
type oxygen atom, our original search for 
structural data was focused on compounds 
with an oxygen atom located in an aromatic 
ring. However, ,since only three such com- 
pounds of known geometry were found, 
namely: furan, benzofuran, and dibenzo-p- 
dioxin, it was felt necessary to employ other 
similar compounds. A molecular mechanics 
study of methyl vinyl ether and related com- 
pounds using the MM2 (1977) program was 
described in an earlier paper.5 It was decided 
tha t  the model compounds used there be 
included to broaden the parameterization 

base. These include s-cis-vinyl alcohol, phe- 
nol, s-cis-methyl vinyl ether, anisol, and 1,4- 
dioxene. It should be pointed out that in the 
earlier MM2 calculations, pi electron delo- 
calization was not explicitly treated, and an 
oxygen atom assumes an effectively tetrahe- 
dral structure with two electron lone pairs. 
This approximation is adequate for vinyl 
ether type structures. However, when the 
oxygen is part of a more extended conjugated 
system as in furan, a more general treat- 
ment is necessary, and in this model the oxy- 
gen atom assumes a planar sigma structure 
with a lone pair of electrons in the plane and 
a p-orbital perpendicular to the plane and 
contributing two electrons to the pi system. 
Because of these differences, most of the pa- 
rameters derived in the earlier paper can 
not be adopted here, and a different “atom 
type” is assigned to the oxygen. (Type 6 is 
used for ordinary e ther  oxygen, and for 
simple vinyl ethers treated as unconjugated, 
and type 41 is used for furan oxygen.) Pa- 
rameters that are not affected by the differ- 
ences mentioned could be adopted with little 
modification. 

The geometry of thiophene and six other 
related compounds were used to develop pa- 
rameters for the sulfur atom in a conjugated 
system. In this model the sulfur atom also 
assumes a planar sigma structure but the 
lone pair orbital was not explicitly included 
in the treatment. 
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The structural formulas and the number- 
ing of atoms are given in Figures 1 and 2. 
Note that the numbering systems used here 
were chosen for computational convenience 
and are not the same as the nomenclature 
numbering systems. 

The new parameters developed for these 
two types of atoms are collected in Table I. A 
description of the procedure employed in ar- 
riving a t  these values and a discussion of 
the results will follow. 

VAN DER WAALS AND PI-SYSTEM 
PARAMETERS 

The pi parameters required for each hetero- 
atom are: the effective nuclear charge, 2; the 
ionization potential, I; and the one center re- 
pulsion integral, y .  The furan-type oxygen 
atom has a valence state electronic configu- 
ration of (tr tr  tr2 n2). The measured valence 

4 3 

state ionization potential is 15.30 eV6 and 
the estimated value of y is 19.342 eV.7 The 
Slater charge 4.55 is taken to be the effec- 
tive nuclear charge. These values were used 
in preliminary studies of furan. It was soon 
discovered tha t  the difference of the two 
types of C-C bond lengths (2-3 and 3-41 
in furan could not be predicted correctly. 
The shorter C-C bond was calculated to be 
too long by ca. 0.01 A and the longer one 
too short by ca. 0.01 A. I t  was also found 
that including nonneighbor resonance inte- 
grals and/or increasing the value of I could 
improve the results. Since the former proce- 
dure is not easily incorporated in the frame- 
work of the present program, it was decided 
to treat the I as an adjustable parameter. 
The value decided upon is 17.60 eV, 15% 
higher than the experimental value of 15.30 
eV for a free oxygen atom of the same va- 
lence state, A similar problem and its solu- 

Furan 
Dibenzofuran 

1 

6 

Dibenzo-p-dioxin 

Phenol 

2 3  

cis-Vinyl alcohol 

1 

cis-Methyl vinyl ether 

4 

5 ( ] :  6 1 

Anisol 
Figure 1. Furan and related compounds 
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1,4-Dithiadiene 

I 

1,4-Thiophthene 

10 8 6 

13 1 3 

Thian threne 

4 3 

trans- 1,2-Bis(2-thienyl)ethylene 

Figure 2. Thiophene and related compounds 

tion were found in the calculation of the 
geometry of p y r r ~ l e . ~  Since the oxygen n- or- 
bital contributes two electrons to the n- sys- 
tem, i t  has a positive n- electron charge. 
Using a higher ionization potential has an 
effect similar to that  which would be ob- 
tained by a variable electronegativity SCF 
t ~ - e a t m e n t . ~ ? ~ ~  The same is true for any n- or- 
bital contributing two electrons such as the 
pyrrole nitrogen or the thiophene sulfur. 
The van der Waals radius and energy used 
are the same as those for the ether and alco- 
hol ~ x y g e n . ~  

The van der Waals radius and energy for 
sulfide type sulfur were adopted for thio- 
phene type sulfur (atom type 42). The va- 
lence state of the S-atom is (tr tr tr2 n2). The 
first and second valence state ionization po- 
tentials were calculated t o  be 10.96 and 
22.88 eV respectively, using information 

given by Hinze and Jaffe.' The difference of 
the two ionization potentials is set equal to 
the one-center repulsion integral. Again, it 
was found necessary t o  employ a larger 
value as the first ionization potential in or- 
der to obtain a good geometry for thiophene. 
Thus the value of 15.8 eV was arrived at. 

THE STRETCHING PARAMETERS 

For the oxygen compounds, parameters for 
four types of bond need to be determined, 
these are the C,2-0 (C,z will be repre- 
sented by C), 0 -H, Lp(1one pair) - 0, and 
0 - Csp3 bonds. The calculated and experi- 
mental  bond lengths in  the  model com- 
pounds are compared by type in Table 11. 

The natural bond length and ;he stretch- 
ing constant for the Lp - 0 bond are taken 
to be the same as those of the Lp - O(alcoho1 
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Table I. Force field parameters for furan type oxygena and thiophene type sulfur. 
~ ~~ ~~ ~~ ~~ 

T orbital parameters 0 5 

Effective nuclear charge 
Ionization potential 
One center repulsion integral 

4.55 
1'1.60 eV 
19.342 eV 

5.45 
15.80 eV 
11.92 eV 

van der Waals parameters 
Radius: ( r* )  
Energy: ( E )  

Stretching parameters 

Bond type 
c-0 1.225 
H-0 0.972 
LP-0 0.600 
CS,3-O 1.414 
c-s 1.459 

Bending parameters 
Angle type 

c-c-0 
c-c-0 
H-C-0 
c-0-c 
c-0-Lp 

csp3 - 0 - Lp 
csp3 - 0 - c 
H- csp3 - 0 

Lp-0-H 

c-s-c 
c-c-s 
H-C-S 
Out-of-plane bending 

Torsional parameters 
Angle type 

c-c-c-0 
H-C-C-0 
c-c-0-c 

H-C-0-C 

C-0-H 

c, 3 - c, 3 - 0 

c-c-0-Lp 

c - c - 0- csp3 

H-C-0-Lp 

H - C - 0 - Csp3 

H-C-0-H 
H - Csp3 - 0 -C 
H - C, 3 - C, 3 - 0 

0-c-c-0 
0- csp3 - csp3- 0 
H - Csp3- 0- Lp 

c-c-c-s 
H-C-C-S 
c-c-s-c 
H-C-S-C 
s-c-c-s 

C-C-0-H 

csp3- csp3- 0- c 

csp3- csp3 - 0 - Lp 

1.740 
0.050 kcal 

k 
slope (rndynlh 
0.196 10.00 

7.20 
4.60 
5.36 

0.397 6.471 

V, (kcal/mol) 
0.0 
0.0 
0.0 
0.0 

-0.46 
0.0 
0.0 

-0.82 
1.00 
1.25 
0.0 
0.0 
0.0 

-2.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
3.0 

O0 (degree) 
120.0 (type 1) 
118.1 (type 2) 
108.0 
113.95 
122.2 
113.6 
124.2 
106.7 
109.0 
128.8 
107.5 
98.5 

119.0 
120.0 

slope 
5.44 

4.861 

V2 (kcalimol) 
15.00 
15.00 
8.30 
0.0 
2.700 
7.50 
9.20 
9.20 
7.00 
0.00 
0.0 
0.0 
0.0 

15.00 
-0.60 

0.0 
0.0 

15.0 
15.0 
1.7 
1.7 

15.0 

2.110 A 
0.202 kcal 

Bond moment 
(debye) 

0.95 
0.70 

-0.75 
0.22 
1.925 

h (mdyn/rad2) 
0.60 
0.60 
0.45 
0.87 
0.35 
0.77 
0.35 
0.54 
0.36 
0.36 
0.70 
0.68 
0.38 
0.40 
0.050 

V,  (kcal/mol) 
0.0 
0.0 

-0.800 
0.25 
0.700 
0.0 
0.0 
3.70 
0.0 
0.50 
0.35 
0.18 
0.40 
0.0 
0.30 
0.0 
0.0 
2.6 
0.0 
0.4 
0.0 
0.5 

~ ~~~~~~~ ~ ~ 

"The symbol C stands for s p 2  type carbon atoms. type 2 in the MM2(85) program; Csp3, sp3 carbon, type 1; H, hy- 
drogen atom of type 5 if attached to carbon, type 28 if attached to oxygen; 0, furan type oxygen of type 41; Lp is the 
lone pair, of type 20; and S is the sp2 type sulfur atom, of type 42. 
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Table 11. Calculated and experimental bond lengths (A) and C - 0 7~ bond orders.a 

Bond length Bond length Bond length Bond order 

Experimental Calculated Experimental Calculated Experimental Calculated Calculated 
0-H o-ccsp3 c-0 c-0 

Molecule 

Furan 
Dibenzofuran 
Dibenzo-p -dioxin 
cis -Vinyl alcohol 0.956 
Phenol 0.957 
&-Methyl vinyl ether 
Anisol 
1,4-Dioxene 

1.362 
1.404(3) 
1.383(3) 

0.972 1.373 
0.971 1.374 

1.428(3) 1.421 1.360 
1.423(15) 1.420 1.361(15) 
1.400( 15) 1.422 1.403(16) 

1.360 
1.377 
1.387 
1.376 
1.378 
1.386 
1.391 
1.387 

0.331 
0.261 
0.203 
0.227 
0.227 
0.221 
0.221 
0.198 

aFor references to experimental data, see Table VIII. 

or ether) bond. The 0-H and o-cc,3 are 
pure sigma bonds, therefore their lengths do 
not vary much from molecule to  molecule. 
The calculated 0-H bond lengths are de- 
liberately adjusted t o  be about 0.020 A 
longer than the microwave bond length, 
which is about the same difference as that 
between the calculated and the microwave 
bond length for C - H bonds, and is largely 
due to the fact that an rg value for the bond 
length is wanted for MM2. The O-C,,3 
bond lengths of the three ether molecules 
are calculated to be approximately the same, 
and since their relative lengths do not change 
with the stretching constant, no further im- 
provement on their agreement with experi- 
ment can be made. The C - 0  bond is part of 
the pi system, and its length and stretching 
constant vary with the bond order. The open 
chain alcohols and ethers are calculated to 
have very similar pi bond orders (ca. 0.221, 
the calculated bond lengths are therefore 
very close to each other. Poor agreement is 
found in dibenzofuran, in which the C - 0  
bond is calculated to be too short by at  least 
0.03 A. Since its bond order is between those 
of the C - 0  bonds in furan and all of the 

other molecules, it is obvious there is no way 
one can fit all of these data at the same 
time. There seems to be some question about 
the accuracy of the observed geometry of 
dibenzofuran as the observed bridge C-C 
length in that  molecule is also unusually 
long. This point will be taken up again later. 

Only one bond involving sulfur needs to  
be considered, namely the C-S bond. The 
parameters arrived at calculate good bond 
lengths for all sulfur compounds included in 
this study. The calculated and experimental 
bond lengths in the model compounds are 
compared in Table 111. 

THE BENDING PARAMETERS 

A total of 10 different angle types involv- 
ing oxygen are represented by the molecules 
studied. Of these, three are fictious angles 
involving the lone pair. The bending con- 
stants of these are typically assigned a small 
value (ca. 0.35) and the natural angles are 
chosen such that the total value of the three 
angles around the oxygen be as close to 360" 
as possible. Bending parameters for corre- 
sponding angles in ethers and alcohols are 

Table 111. Calculated and experimental C - S bond lengths (in A) and pi bond order. 

Molecule 
Bond length Pi bond order 

Experimental" Calculated Calculated 

Thiophene 
1,4-Dithiadiene 
Thiophthene 
trans -2,2'-bithiophene 
Dibenzothiophene 
Thianthrene 
trans -1,2-bis( 2-thienyllethylene 

1.714 
1.78 
1.73 
1.717 
1.740 
1.773 
1.701 

1.714 
1.781 
1.723 
1.715 
1.738 
1.777 
1.716 

0.389 
0.194 
0.374 
0.388 
0.328 
0.212 
0.385 

"For references to experimental data, see Table IX. 
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used for H-csp3--0 and Csp3-Csp3-0 
angles, as these are not known for any of the 
model compounds. The experimental value 
of the H-C-0 type angle is only known 
for furan and will be discussed later under 
the structure of furan. This leaves angles of 
the types C-0-C, C-C-0, C-0-H, 
and C-O-Csp3 that have been measured 
in more than one molecule. Parameters were 
chosen to  reproduce the experimental data. 
All of the out-of-plane bending parameters 
for the furan type oxygen were assigned a 
value of 0.050 kcal/mol, as  were most of 
those used in the MM2(82) program. The 
calculated and experimental values for the 
four types of bond angles just mentioned are 
presented in Table IV. 

The C - 0 - C angle occurs only in a pla- 
nar ring structure in the three compounds 
studied, therefore it is affected by the other 
bond angles and the bond lengths in the 
same ring. Since C-C-0 angles occur in 
the same ring, the results represent a com- 
prise between the agreements of C - 0 - C 
and C - C - 0 type angles. Furthermore, in 
dibenzofuran and dibenzo-p -dioxin, two 
types of C-C-0 angles exist, one with 
both carbons in the same ring as the oxygen, 
and the other with one carbon in a benzene 
ring fused to the one containing the oxygen 
atom (which will be called the exo C-C- 
0 angle). In both dibenzofuran and dibenzo- 
p-dioxin, the calculated values are too small 
for the former and too great for the latter 
type of angle. In dibenzofuran, the two an- 
gles are  very different from the natural  
angle, therefore increasing the bending force 

constant k would reduce the difference. But 
increasing k would cause the corresponding 
angle to  increase in furan, and to reduce in 
ethers and alcohols, thus giving poorer re- 
sults in those molecules. The C - 0 - H and 
C-O-Csp3 angles are reproduced in the 
alcohols and ethers satisfactorily. It should 
be noted that another molecular mechanics 
study was simultaneously carried out' for 
divinyl ether and its derivatives. Care was 
taken to  coordinate it with this study so that 
identical parameters are used for the same 
angle type. 

Three bond angle types appear for thio- 
phene type compounds. The parameters were 
derived in a similar way, to find the best fit 
among all of the compounds considered. The 
calculated and  experimental values for  
C - S- C and C - C - S types bond angles 
are listed in Table V. The C-S-C angles 
are very well fit. The C-C-S angles could 
be less well but adequately, fit to the experi- 
mental data. 

THE TORSIONAL PARAMETERS 

Since the furan type molecules studied 
here except dioxene are planar, and since 
most molecules exist in only one stable form, 
it is not possible to uniquely assign the tor- 
sional constants in many cases. Experimen- 
tal studies or  ab initio calculations yielded 
information on the conformational energies 
and/or rotational barriers of vinyl alcoh01,~ 
phenol," and methyl vinyl ether." These 
made possible the determination of the tor- 
sional constants of the dihedral angles in- 
volved. Table VI contains the experimental 

Table IV. Comparison of calculated and experimental bond angles (in degrees)." 

c--0-c c-c-0 C-0-H or c-o-c,3 
Molecule Experimental Calculated Experimental Calculated Experimental Calculated 

Furan 
Dibenzofuran 

Dibenzo-p-dioxin 

cis-Vinyl alcohol 
Phenol 
&-Methyl vinyl ether 
Anisol 
1,4-Dioxene 

106.6 106.3 110.7 
104.1 106.0 112.7 

exo 124.3 
116.4 117.2 121.9 

exo 117.7 
126.0 
121.1 
127.7(1.4) 

123.4(.5) 

111.0 
111.4 
127.9 
121.4 
119.0 
121.6 108.9 108.4 
120.4 108.9 108.1 
126.8 118.3(1.1) 119.0 

120.0(2.0) 119.5 
122.1 

"For references to experimental data, see Table VIII. 
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Table V. Comparison of Calculated and Experimental Bond Angles (in degrees)." 

c-s-c c-c-s 
Molecule Experimental Calculated Experimental Calculated 

Thiophene 
1,4-Dithiadiene 
Thiophthene 

trans-2,2'-bithiophene 

Dibenzothiophen e 

Thianthrene 
trans- 1,2-bis 

(2-thienyl) ethylene 

92.2 
100.2 
91.2 

92.0 

91.5 

100.4 
93.2 

92.0 111.5 
100.8 124.5 
91.1 110.2 

116.5 
exo 135.5 

92.6 111.0 
exo 120.1 

91.5 112.3 
exo 126.2 

92.7 111.3 
111.0 

exo 124.4 

101.8 

111.6 
124.0 
111.4 
113.1 
135.1 
111.4 
123.5 
112.4 
126.5 

110.3 
111.4 
126.1 

"For references to  experimental data, see Table IX. 

Table VI. Energy differences between different conformations of vinyl alcohol, of phenol, and of methyl vinyl 
ether. 

Molecule Conformation 
Relative energy (kcal/mol) 

Experimental" Calculated 

Vinyl alcohol cis,w(C-C-0-H) = 0 
maximum at 87" 
trans 
planar, w(C - C - 0 - H) = 0 
maximum at 90" 
cis,w(C-C-O-C,3) = 0 
maximum at w 2= 60" 
gauche 

Phenol 

Methyl vinyl ether 

gauche, 
cis, 

trans 
CH3 group rotational barrier 
CH3 group rotational barrier 

0 
4.3(w = 87") 
1.8 
0 
3.29 - 3.47 
0 
6.33 
1.15 k0.05 
w = 144" 
1.98 *0.05 
1.47 
3.83 kO.1 

0.0 
4.29(w = 87") 
1.81 
0 .o 
3.37 
0.0 
6.30 
1.15 
w = 144" 
1.98 
1.70 
3.49 

"See reference 12 for a b  inztio calculations for structure and torsional potential for vinyl alcohol, and references 8 
and 9 for the experimental torsional profiles of phenol and methyl vinyl ether, respectively. 

and calculated energies of various conforma- 
tions of several compounds which were ob- 
tained using these constants. What follows 
will be a presentation of the way the tor- 
sional constants were arrived at .  To start 
out, the following assignments were made: 

1. The torsional constants for angles C- 

0 -C ,  and H-C-0-Lp were de- 
duced from the study of divinyl ether 
and its derivatives.8 

2. Torsional parameters for angles H- 

0 - C - C: - 0 and 0 - Csp3 - C,,3 - 
0 were available from the MM2 study 
mentioned earlier.5 

C-0-C, C-C-0-Lp, H-C- 

C sp 3 - C sl, 3 - 0,  C s p  3 - C,, 3 - O - C, 

3. All of the three torsional constants V,, 
V,, and V, for angles H-Csp3-O-Lp 
and Csp3-CsP3-O-Lp were set to  
equal to  zero. (These parameters are 
redundant.) 

4. All angles of the type X-C-C-Y 
were assigned V, values of 15.0. 

5. The torsional constants of the remain- 
ing five types of torsional angles - C - 

C-C-0-H, H-C-0-H, and 
H-CC,,3-O-C-were determined 
to best fit the barrier height of phenol; 
the barrier height of vinyl alcohol and 
the angle at which the energy maxi- 
mum occurs; t he  energy profile of 

C - 0- Csp3,  H -  C - 0- C s p 3 ,  
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methyl vinyl ether for rotation about 
the C-0  bond and for rotation of the 
methyl group. 

The agreement is very good in every case 
except for the methyl group rotational barri- 
ers of the methyl vinyl ethers. The calcu- 
lated values of the rotational barrier are 
0.23 kcal too high for the gauche form and 
0.34 kcal too low for the cis form. It is not 
possible to  improve both barriers simulta- 
neously. Because they are both proportional 
to V3(H-C,3-O-C), varying V, would 
not change the difference between the barri- 
ers, which in MM2 is due to the differences 
in van der waal's force between the methyl 
hydrogens and other atoms in the molecule. 

For angles involving the sulfur atom, the 
V, values for dihedral angles about a C-C 
bond were also set  to be 15.0. The other 
torsional constants were chosen to repro- 
duce dihedral angles observed in the three 
nonplanar  compounds: 1 ,4-di thiadine7 
2,2'-bithiophene, and thianthrene.  The 
calculated and experimental values for the 
dihedral angles between two planes in these 
compounds are presented in Table IX. 

BOND MOMENTS 

The dipole moments are calculated as the 
sum of the sigma moments and the pi mo- 
ments. Pi moments are calculated from the 
coordinates of the atoms and the pi charges 
a t  these sites. Sigma moments are calcu- 
lated from the molecular geometries and the 
bond moments. The bond moments studied 
in this work involving an oxygen atom were 
chosen to best fit the experimental moment 
of furan and to minimize the discrepancy be- 
tween experimental and calculated moments 
in the other oxygen-containing molecules. 
Among the sulfur compounds studied, only 
thiophene and dibenzothiophene have non- 
zero dipole moments. The bond moment for 
the C-S bond was chosen to reproduce the 
dipole moment for thiophene. The results 
are shown in Table VII. 

With the SCF scheme used in the current 
method, the pi electronic charges are consid- 
ered to  be ~verest imated.~ This would lead 
to overestimated pi dipole moments. The 
sigma moments are correspondingly under- 
estimated, and hence furan and thiophene 
have their total moments correctly calcu- 

Table VII. 
moments." 

Calculated and experimental dipole 

Dipole moments (debye) 
Molecule Experimental Calculated 

Furan 0.67 0.67 
Benzofuran 0.79" 0.96 
cis-Vinyl alcohol 1.016 5 0.009 0.96 
Phenol 1.28 1.37 
cis-Methyl vinyl ether 0.96 ? 0.02 0.71 

1.03 Anisol 1.30 ? 0.0313 
1,4-dioxene 0.939 k 0.008 0.75 
Thiophene 0.5517' 0.55 
Dibenzothiophene 0.8318b 1.05 

aReferences to experimental data except noted other- 
wise are  the same as those for structures given in 
Table VIII and Table IX. 

lated. The dibenzoderivatives have their 
dipole moments calculated too high, in part 
from the effect of the SCF charges in the 
dibenzo rings, and in part due to the neglect 
of induced dipoles.36 

MOLECULAR STRUCTURE 

The calculated and experimental struc- 
tures of the molecules studied are presented 
in Table VIII for furan and related com- 
pounds, and in Table IX for thiophene and 
related compounds. Furan is the "proto type" 
molecule. Its structure was studied and de- 
termined with great care and preci~i0n.l~ Ef- 
forts were therefore made t o  best fit i t s  
structure. As can be seen from Table VIII, 
the three moments of inertia were each cal- 
culated to within 0.7% of the measured val- 
ues. Accuracy in the predicted C-0-C 
and C-C-0 angles was sacrificed some- 
what to yield a better geometry for dibenzo- 
furan as was discussed earlier. The angle 
H-C-0 was calculated to  be too large by 
1.5" as a result of the small value predicted 
for the neighboring C-C-H angle. Since 
the parameters for C-C-H type angle are 
not adjustable in this work, and since the 
molecule is planar, further improvement on 
the value of 0-C-H would have to  be 
made at the expense of the C-C-0 angle. 
It is interesting to note that the same was 
found to be true in the other five-member 
heterocycles studied. In pyrrole, the N- 
C-H angle; in thiophene, the S-C-H 
angle are calculated to  be too large while 
the neighboring C-C-H angles are too 
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small. The X-ray structure of dibenzof~ranl~ 
is given in Table VIII. The only other study 
found in the 1iteraturel6 gives a virtually 
identical structure. Although these X-ray 
structures are not of very high quality (R = 
0.073 and R = 0.10), the discrepancies be- 
tween the calculated and experimental 
lengths for the C - 0  and for the bridged 
C - C bonds are still astounding. The calcu- 

lated bond lengths are 1.377 A and 1.448 A 
vs. 1.404 A and 1.481 A experimentally. 
Since the corresponding C-C lengths in 
thiophene17 and dibenzothiophene" a re  
1.423 A and 1.441 A and those in pyrrole 
and carbazole (and i t s  derivatives) a re  
1.417 A and 1.438 A respectively, i t  does 
seem strange that the said bonds in dibenzo- 
furan should be 0.050 A longer than  in 

Table VIII. Experimental and calculated structurea for Furan and related molecules. 

Experimental Calculated 
- 

Dibenzofuranb 

Furan'" 1-2 
2-3 
3-4 
2-6 
3-7 

2-1-5 
1-2-3 
2-3-4 
1-2-6 
3-2-6 
2-3-7 

1, 

1, 
1-2 
1-13 
2-3 
3-4 
4-5 
5-6 
5-13 
12-13 
2-1-13 
1-2-3 
2-3-4 
3-4-5 
4-5-6 

4-5-14 
6-5-13 
5-6-7 

5-13-12 
13-1-15 
1-2-16 
2-3-17 
3-4-18 

1-2 
1-14 
2-3 

5-14 
5-6 

2-1-14 
1-2-3 
1-14-5 
14-5-6 
5-6-7 
4-5-6 

16 

cis-Vinyl Alcohol'' 1-2 
1-3 
1-4 
2-5 

1.362 
1.361 
1.430 
1.075 
1.077 

106.6 
110.6 
106.1 
116.0 
133.4 
126.1 

8.885 
9.079 

17.970 
1.389 
1.384 
1.385 
1.388 
1.385 
1.404 
1.393 
1.481 

117.9 
121.9 
120.9 
116.7 
124.3 
123.0 
112.7 
104.1 
105.3 
122.5 
119.5 
117.9 
123.4 

1.400(4) 
1.387(3) 
1.374(4) 
1.387(4) 
1.382(3) 

119.1(3) 
120.5(3) 
120.5(2) 
121.9(2) 
116.3(2) 
117.7(5) 

1.373 
1.332(assigned) 

0.956(assigned) 

1.383(8) 

121.8(6) 
116.4(5) 

~ ~~~ 

1.360 
1.364 
1.428 
1.102 
1.102 

106.3 
111.0 
105.9 
117.5 
131.6 
127.1 

8.837 
9.141 

17.978 
1.391 
1.402 
1.410 
1.392 
1.403 
1.377 
1.399 
1.448 

117.3 
121.2 
121.3 
117.7 
127.9 
120.7 
111.4 
106.0 
105.6 
121.1 
119.4 
119.4 
121.5 

1.398 
1.398 
1.394 
1.406 
1.387 

120.6 
119.9 
119.6 
121.4 
117.2 
119.0 

1.376 
1.341 
1.103 
0.972 
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Table VIII. (continued) 

Experimental Calculated 

cis-Methyl vinyl etherz4 

AnisolZ5 

1,4 DioxeneZ6 

2-1-3 
1-2-5 

1, 
aromatic C-C 

4-7 
7-8 

3-4-7 
5-4-7 
4-7-8 

I ,  

I, 
1-2 
1-3 
2-4 

2-1-3 
1-2-4 

Ib 

I, 

I ,  
aromatic C - C 

Ib 

4-7 
7-8 

4-7-8 
1-2 
1-6 
2-3 
5-6 

2-1-6 
1-2-3 

angle between 
2-3 and 5-6 

1, 

I, 
Ib 

126.0 
108.9 

1.408 
7.951 
9.367 
1.391-1.395 

1.374 
0.957 

121.1 

108.9 
14.855 
32.019 

1.360 
1.341 50.003 
1.428 k0.003 

46.874 

127.7 t 1 . 4  
118.3 i l . 1  

4.607 
13.127 
17.219 

1.398 L0.003 

1.361 k0.015 
1.423 t0.015 

120.0 22.0 
1.403 k0.016 
1.400 t0.015 
1.338 t0.010 
1.523 20.014 

123.4 50.5 

29.9 51.5 
14.741 
16.903 
29.310 

121.6 
108.4 

1.538 
7.718 
9.256 
1.397 
1.401 
1.378 
0.971 

120.4 
119.6 
108.1 

14.962 
32.247 
47.209 

1.386 
1.343 
1.421 

126.8 
119.0 

4.567 
13.803 
17.796 

1.396 
1.403 
1.391 
1.420 

119.7 
1.387 
1.422 
1.344 
1.529 

115.4 
122.1 

27.6 
15.363 
16.632 
29.819 

"Bond lengths in A, bond angles in degrees, and moments of inertia in g cmz x 
bReference 15, X-ray, R = 0.073, deviations are 0.003 A and 0.13" for bond length and bond angle not involv- 

'Reference 21a, X-ray, R = 0.103. 
dReference 21b, X-ray, RL = 0.057, R 2  = 0.062. 

ing H. Values corrected for thermal motion except those involving H atoms. 

Table IX. Experimental and calculated structure" for Thiophene and related molecules. 

Experimental Calculated 

Thiophene l7 1-2 
2-3 
3-4 
2-6 
3-7 

2-1-5 
1-2-3 
2-3-4 
1-2-6 
4-3-7 

I ,  

I ,  
I b  

1.714 
1.370 
1.424 
1.078 
1.081 

92.2 
111.5 
112.5 
119.8 
124.3 

10.44 
15.50 
25.95 

1.714 
1.369 
1.420 
1.102 
1.102 

92.0 
111.6 
112.4 
123.5 
123.7 

10.43 
15.49 
25.92 
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Table IX. (continued) 

Experimental Calculated 

1 ,4-Dithiadiene3' 

Thiophthene:'l 

Dibenzothiophene" 

1-2 
2-3 

2-1-6 
1-2-3 

1-2 
1-5 
2-3 
3-4 
4-5 

2-1-5 
1-2-3 
1-5-4 
1-5-6 
2-3-4 
3-4-5 
1-2 
1-5 
2-3 
3-4 
5-6 

2-1-5 
1-2-3 
1-5-6 
2-3-4 

1-5-6-10 
1-2 
2-3 
3-4 
4-5 
5-6 
6-7 
2-7 
7-8 

2-1-13 
1-2-7 
1-2-3 
2-7-8 
6-7-8 
1-2 
2-3 
3-4 
4-5 
2-7 

2-1-14 

1-2 
1-5 
2-3 
3-4 
4-5 
5-6 
6-7 

2-1-5 
1-2-3 
1-5-4 
1-5-6 
5-6-7 
2-3-4 

Lr) 

0 

1.78(av.) 
1.29(av.) 

100.2 
124.5 
137.1 

1.72 
1.74 
1.36 
1.41 
1.36 

91.2 
116.5 
110.2 
135.5 
111.7 
114.3 

1.717 
1.717 
1.357 
1.433 
1.480 

92.0 
111.0 
120.1 
116.0 
33.8 

1.740 
1.386 
1.384 
1.385 
1.370 
1.392 
1.409 
1.441 

91.5 
112.3 
126.2 
111.9 
129.3 

1.773 
1.385 
1.374 
1.376 
1.379 

100.4 
128.1 

1.701 
1.701 
1.351 
1.44 
1.40 
1.457 
1.309 

93.2 
111.0 
111.3 
124.4 
125.8 
114.4 

1.78 1( av. 
1.348( av. ) 

100.8 
124.0 
136.6 

1.733 
1.722 
1.370 
1.425 
1.382 

91.1 
113.1 
111.4 
135.1 
110.9 
113.5 

1.711 
1.718 
1.369 
1.420 
1.469 

92.5 
111.4 
123.5 
112.5 
27.0 

1.738 
1.409 
1.387 
1.411 
1.387 
1.410 
1.401 
1.447 

91.5 
112.4 
126.5 
111.9 
128.2 

1.777 
1.399 
1.398 
1.394 
1.408 

101.8 
135.3 

1.711 
1.721 
1.369 
1.420 
1.375 
1.463 
1.355 

92.7 
111.4 
110.3 
126.1 
124.2 
112.4 

"Bond lengths in A, bond angles in degree, and moments of inertia in g cm2 x 
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Table X. The C - 0 and bridged C - C bond lengths in dibenzofuran and its derivatives. 

Molecule c-0 c-c 
Bond length, 

Dibenzofuran 1.404 1.481 (exptl)" 
2,3,7,8-tetrachlorodibenzofuran 1.385 1.448 (exptl)b 
1,4-dimethy1-5-hydroxy-7-acetyldibenzofuran 1.400 1.455 (exptl)' 
2,8-dimethoxydibenzofuran 1.386,1.375 1.457 (exptlld 
Di benzofuran 1.378 1.447 (calcd) 

aReference 15, X-ray, R = 0.073. 
bReference 27, X-ray, R = 0.042. 
'Reference 28, X-ray, R = 0.056. 
dReference 29, X-ray, R = 0.04. 

furan. In addition, the furan moities in sev- 
eral dibenzofuran derivatives do not differ 
very much from furan itself. The C-0 and 
the bridged C-C bond lengths of a col- 
lection of these derivatives are  shown in 
Table X for comparison with the calculated 
and experimental bond lengths of dibenzo- 
furan. The 1.481 value seems inconsistent 
with the rest of the data, and appears to be 
an artifact.37 

CONCLUSIONS 

The structures of heterocycles, and other 
conjugated systems containing furan-type 
oxygen or  thiophene-type sulfur may now 
be studied with the molecular mechanics 
(MM2) method, and the calculations gener- 
ally yield reliable results. 
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