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There are many methods in the literature for calculating conformations of a molecule subject to geo- 
metric constraints, such as those derived from two-dimensional NMR experiments. One of the most 
general ones is the EMBED algorithm, based on distance geometry, where all constraints except chiral- 
ity are converted into upper and lower bounds on interatomic distances. Here we propose a variation on 
this where the molecule is assumed to have fixed bond lengths, vicinal bond angles and chiral centers; 
and these holonomic constraints are enforced separately from the experimental constraints by being 
built into the mathematical structure of the problem. The advantages of this approach are: (1) for 
molecules having large rigid groups of atoms, there are substantially fewer variables in the problem 
than all the atomic coordinates; (2) rigid groups achieve in the end more accurate local geometry (e.g., 
planar aromatic rings are truly planar, chiral centers always have their correct absolute chirality); 
(3) it is easier to detect inconsistencies between the holonomic and the experimental constraints; and 
(4) when generating a random sampling of conformers consistent with all constraints, the probability of 
achieving satisfactory structures tends to be greater. 

INTRODUCTION 

The molecular embedding problem consists 
of finding one or more sets of atomic coor- 
dinates such that a given list of geometric 
constraints is satisfied. For instance, sup- 
pose a protein has been investigated by two- 
dimensional NMR, so that we have upper 
bounds on the distances between perhaps a 
hundred assigned pairs of protons. From 
whatever source, we will call these the ex- 
perimental constraints. In addition, one gen- 
erally assumes that such a molecule is under 
no great strain, so that all bond lengths and 
bond angles are known from standard values 
taken from X-ray crystallographic studies 
on small molecules. The absolute handed- 
ness of all chiral centers is also known from 
the covalent structure of the molecule. We 
will refer to these numerous a priori con- 
straints as holonomic. The third constraint 
category consists of the very numerous in- 
teratomic lower bounds on distances due to 
assuming that atoms separated by more than 
two bonds interact as hard spheres, as given 
by their standard van der Waals radii. 
Clearly it is possible in such a problem in- 

volving hundreds of atoms and thousands of 
constraints to have no conformations satis- 
fying them all because of mutual inconsis- 
tencies among some of the constraints, or 
perhaps there will be only one correct con- 
formation, or even a whole family of allowed 
conformers. The goal of the embedding algo- 
rithm is to find out which of these three pos- 
sible outcomes applies, and in the first case 
to identify the source of conflict, while in the 
last case to explore the range of possibilities. 
As a practical matter, a conformation is said 
to satisfy the constraints if none are violated 
more than a given amount. For example, in 
this study we require distance bounds to be 
obeyed within a 0.5 tolerance. 

Out of the many approaches to  this prob- 
lem, the standard and very general algorithm 
is frequently used for the deter- 
mination of conformations of small proteins 
in solution by NMR by applying the spe- 
cially adapted program DISGE0.3 In broad 
terms, the algorithm consists of the follow- 
ing steps: 

1. Convert all experimental, holonomic, and 
van der Waals constraints into upper 
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2. 

3. 

4. 

5. 

6. 

and/or lower distance bounds on some, if 
not all, of the interatomic distances. 
“Smooth” the distance bounds by the tri- 
angle inequality so that  there is some 
upper and some lower bound on all inter- 
atomic distances. 
Choose independent random values for 
each distance within its respective range. 
Convert this trial set of distances to  the 
corresponding metric matrix and find the 
closest corresponding three-dimensional 
metric matrix. 
Calculate trial coordinates from the three- 
dimensional metric matrix and adjust 
them by minimizing an error function 
that has a penalty term for each of the 
constraints given in step 1. 
Go back to step 3 until enough successful 
conformations have been generated. 

Step 2 is important enoughin what follows 
to deserve special comment. For any pair of 
atoms having no given upper distance bound 
we initially assign a large positive number; 
any missing lower bounds are given initially 
as zero. Then any time there are atoms i , j ,  
and k such that uY > u,k + UkJ, then one can 
reduce uY to the sum on the right-hand side. 
This is done repeatedly until no upper bound 
can be lowered further. There is a simi- 
lar procedure for raising some of the lower 
bounds, once again involving triples of atoms. 
This reasoning a t  the triangle inequality 
level is vital for spreading out the informa- 
tion given about some distances to form con- 
servative conclusions about all distances. 
Further tightening of the bounds can be 
achieved by invoking the tetrangle inequal- 
ity, which involves four atoms at a time and 
corresponds in some instances to finding the 
cis and trans distance bounds for two atoms 
joined by three bonds. Tetrangle inequality 
bound smoothing is much more expensive 
than the triangle inequality procedure, so it 
is generally not 

In practice EMBED works well in most 
situations because almost all constraints can 
be adequately represented as distance bounds. 
The main exception is chirality, which is 
only incorporated in step 5 as a term that is 
positive as long as there is a violation. Thus 
when there are multiple chiral centers hav- 
ing distance constraints linking them, this 
local minimization step tends to stick in 
minima with residual errors. Second, planar 

aromatic ring systems tend to be slightly 
puckered, even when the final error value is 
small, because visually disturbing devia- 
tions from planarity actually correspond to 
very small violations in interatomic distance 
constraints. Third, if there are n atoms in 
the molecule, then step 4 deals with n x n 
matrices, and step 5 is a local minimization 
in 3n variables. This seems wasteful when 
positioning a large aromatic ring system 
that may involve a dozen atoms but only six 
degrees of freedom, since the ring is a rigid 
body. Fourth, while there are generally a very 
large number of holonomic constraints, these 
are generally mutually consistent, but when 
inconsistencies are signalled in step 2 or 5,  
it is often difficult to tell whether the experi- 
mental constraints are themselves mutually 
inconsistent or whether they conflict with 
the holonomic constraints. In this article we 
will attempt to improve on some of these 
points by building into the mathematical de- 
scription of the molecule all the holonomic 
constraints from the very outset. 

METHODS 

The molecule is represented in a “linear- 
ized” form very similar to that described in 
our earlier work.5 First, view the molecule 
as a tree graph, where the nodes are the 
atoms and the edges are the covalent bonds 
(neglecting one bond on every ring for the 
t ime being so as  t o  avoid cycles in the 
graph). Choose as its root one of the atoms 
with the smallest maximal distance to  the 
other atoms, in the graph theory sense, tech- 
nically called a center of the tree graph. Since 
the coordinates of the other atoms will be 
expressed relative to  the root atom, choosing 
the center helps keep roundoff errors low. In 
Figure 1, C1 is the root. 

Next, set up a collection of local coordi- 
nate systems to define the position of every 
atom. The location of the root atom is simply 
given by some arbitrary vector, w, relative 
to  an external frame of reference. A t  the 
root atom, define a local right-handed or- 
thogonal coordinate system by letting u1 be 
the unit vector with origin at  C1 along the 
C1-C4 bond, u2 is orthogonal to u1 in the 
Cl-C4-H3 plane, and u3 = u1 X u2. 
This differs slightly from our earlier work,5 
where the coordinate axes were always par- 
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Figure 1. The linearized representation of N-acetylglycine-N'-methylamide. Atoms are labelled with their 
atomic symbol and a unique number. Bonds are drawn with heavy arrows indicating descent in the tree. The over- 
all translation vector is w, and the unit vectors ul,. . . , uI3 are simply indicated by their subscripts. Local coordi- 
nate systems of three unit vectors are always right handed. 

allel to bonds and therefore in general not 
orthogonal. Now we can describe the posi- 
tions of atoms H2, H3, C4, and N5, but that 
of N7 is affected by the rotatable C1-C4 
bond. Therefore we establish yet another 
system centered on C4, but if we assume 
fixed planar peptide bonds, only u4 and u5 
are necessary for the rigid group of atoms 
{Cl,  C4 ,06 ,  N7, H8, C9}. Proceeding in this 
fashion all over the molecular tree, we 
employ altogether nu = 13 unit vectors to 
account for 19 atoms in this example. Then 
the position of the ith atom, ai, is given by 

(1) 

where the as are coefficients that depend only 
on which atom and which unit vector are in- 
volved, not on the conformation. 

As the molecule changes conformation, the 
values of the unit vectors will change, but 
certain relationships among them must be 
preserved. For all dependent unit vectors uk, 

U k  = ui x uj (2) 

nu 

ai = w + cacuj 
j =  1 

local system (orthogonality), equal to some 
other constant in some situations (for ex- 
ample u1 * u4), and otherwise -1 5 I ,  5 
mB I 1. For a small molecule, the limits on 
all unit vector inner products can be set by 
an exhaustive search of all combinations of 
torsion angles for the rotatable bonds, but for 
the larger molecule used as the test case in 
this study, we simply set I, = -1 and mB = 1. 
Letting the dependent unit vectors be deter- 
mined by eq. (2), the embedding problem re- 
duces to determining the components of the 
independent unit vectors subject to the con- 
straint equalities and inequalities of eq. (3). 
Note that this automatically fixes correct 
bond lengths, bond angles, and chirality. 

A complete solution to the embedding 
problem posed in the Introduction also needs 
to treat distance constraints. If atom posi- 
tions a k  and al are given in terms of the unit 
vectors according to eq. (l), then the squared 
distance between them is simply 

where u, and uJ are its two defining unit vec- (akJ - uJ (4) 
tors. For instance in Figure 1, Unit vector 3 
depends On and 2, El depends On and 7, 
and l3 depends On l1 and 12* For unit vet- 

and other geometric constraints of the form 

I ,  5 u, . uJ I m, (3) 

where 1, = m, = 1, whenever 2 = j (normal- 
iZation), = 0 for i # j and both are in the same 

which is a linear function ofthe inner prod- 
ucts. This means that a necessary (but not 
entirely sufficient) condition that the experi- 

be consistent with the holonomic constraints, 
is that the equalities and inequalities from 
eq. (3) added to the inequalities derived from 
eq. (4) have a feasible solution, regarding the 
unit vector inner products as the nE variables. 

tors there are normalization, orthogonality, ment constraints on the (squared) distances 
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This is a standard task for linear program- 
ming, and can be readily solved by the sim- 
plex algorithm, "phase one." (Any standard 
textbook on linear programming6 explains 
in detail what phase one of the simplex algo- 
rithm is and how the calculation can be set 
up and carried out.) The reason the feasibil- 
ity check is not a sufficient condition is that 
the inner products are not really fully inde- 
pendent variables. They must certainly sat- 
isfy eq. (21, which essentially maintains 
correct chirality for each asymmetric center, 
but also for the independent unit vectors, 
the metric matrix 

must have rank 3 in order to have a confor- 
mation in three dimensions.2 

We have not rigorously pursued the idea 
of checking the constraints by linear pro- 
gramming because the test is insufficient, 
although apparently very good. In EMBED 
step 3 (see Introduction) trial distances are 
either chosen completely a t  random within 
their allowed ranges, or after one trial dis- 
tance is chosen, the allowed ranges of those 
distances still to be determined are reduced 
by deductions on the level of the triangle 
inequality. Here the analogous procedure 
would be to  solve two linear programs, both 
involving all inner product inequalities and 
equalities as constraints and all variable but 
so far undetermined inner products as the 
variables. The first program would seek to 
maximize the one inner product whose value 
we wish to choose, and the other linear pro- 
gram would minimize it. Then choose a trial 
value of that inner product from the range 
thus determined. This restricts the feasible 
region of the subsequent linear programs, 
but cannot eliminate it. Then go on to select 
a value for the n.ext variable inner product, 
and so on, until all have been chosen. The 
idea is very appealing, but it is not clear what 
the trade-off is in improved performance vs. 
increased computer time. 

There is one last sort of constraint that  
must be introduced. Referring to the ex- 
ample in Figure 1, C1 is supposed to lie in 
the C4-06-"7-H8-C9 plane, but it 
is inadequately constrained to do so. In this 
case u1 . u4 has a fixed value because u1 
happened t o  be defined to lie along the 

C 1 - C4 bond and u4 lies along the C4 - N7 
bond. That still leaves C1 free to  lie any- 
where on a circle described by spinning 
about the C4-"7 axis. Its correct position 
can be fixed by requiring the C1--4-06 
angle to have the correct value. Actually we 
fix the i - j - k angle by introducing a term 

(6) 
into the error function, where c is the re- 
quired value for the inner product expres- 
sion as determined from any conformation of 
the molecule. Such angle constraints are 
added for every pair of covalently adjacent 
local coordinate systems. 

Finally, the algorithm for linearized em- 
bedding may be summarized as follows: 

1. Begin with the atomic coordinates of the 
molecule in any conformation having 
correct covalent geometry but arbitrary 
dihedral angles for rotatable bonds. The 
covalent bonding is also known, as well 
as which bonds are rotatable. One bond 
from each cycle is formally deleted, and 
in the case of flexible rings, the bond 
length and bond angle constraints for 
proper closure are noted. 

2. Construct the linearized representation 
of the molecule by rerooting the connec- 
tivity tree at  a tree center, and then re- 
cursively set up local coordinate systems 
in a depth-first tree traversal, initiating 
a new system after crossing a rotatable 
bond. Each system introduces one, two, 
or three new unit vectors, depending on 
the dimensionality of the corresponding 
rigid group of atoms. In the case of three 
vectors, note the dependency relationship 
given in eq. (2). 

3. Determine the constraints on all inner 
products between pairs of unit vectors 
without doing an exhaustive conforma- 
tional scan, as explained after eq. (3). 
Also set up angle constraints as in eq. (6) 
between adjacent coordinate systems. 

4. Create a full set of constraints consisting 
of the dependency relations, the inner 
product bounds, angle constraints, van 
der Waals lower bounds on interatomic 
distances, and any experimentally de- 
termined upper and lower bounds on 
distances. 

5. Estimate the maximal and minimal value 
each constrained squared distance could 

((ai - aj) - (ak - aj) - c) 2 
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6. 

7. 

8. 

9. 

10. 

attain by substituting into eq. (4) the 
maximal and minimal values of each 
inner product (depending on the sign of 
each term’s coefficient). When appli- 
cable, raise lower distance bounds and 
lower upper bounds beyond the levels 
stipulated by the original van der Waals 
and experimental constraints. 
Still using eq. (4), the current distance 
bounds may imply that some of the inner 
product lower bounds must be raised or 
upper bounds must be lowered. For ex- 
ample, solve eq. (4) for one of the inner 
products and then substitute in the ex- 
tremal allowed values of the distance 
and the other inner products so as t o  
maximize the one side ofthe equation. If 
this value is less than the current upper 
bound for the chosen inner product, the 
bound must be lowered. 
Iterate steps 5 and 6 until a consistent 
set of bounds on distances and inner prod- 
ucts has been reached. This is a useful 
check on the interrelation of experimen- 
tal and holonomic constraints. Failure 
to reach consistency or producing a lower 
bound higher than its corresponding up- 
per bound is an indication of some sort 
of inconsistency among the constraints. 
Set up a trial metric matrix involving 
only the independent unit vectors as in 
eq. (5) by choosing each entry indepen- 
dently at random (with uniform distri- 
bution) between its upper and lower 
limits. Just as in step 4 of EMBED, find 
the nearest rank three approximation to 
the metric matrix. 
Calculate from this rank three matrix 
the coordinates for the independent unit 
vectors, just as in step 5 of EMBED. 
From this it is straightforward to  cal- 
culate the dependent unit vectors via 
eq. (2), and then the atomic coordinates 
by eq. (1). 
This trial set of coordinates does not in 
general satisfy all the constraints, so one 
must locally minimize an error function, 
as in step 5 of EMBED. The error func- 
tion has the customary distance bound 
terms from the van der Waals and ex- 
perimental constraints, and in addition, 
inner product bound terms involving all 
unit vectors (whether independent or  
dependent) and angle constraints. The 

11. 

C r i p p e n 

error function is viewed as a function of 
the x, y, and z coordinates of all indepen- 
dent unit vectors. 
Additional random conformers may be 
generated by going back to step 8. 

For the sake of clarity, we have omitted 
many computational details in the de- 
scription of this algorithm. The computer 
programs, corresponding to steps 1-11, are 
written in the C+ + language without very 
much attention to execution speed, and run 
on a Sun 3 computerunder the Unix operat- 
ing system. It is difficult to  see how they 
might be translated into fortran. Those in- 
terested in obtaining the code should contact 
_the allkhm 

RESULTS 

When applied to very small test cases, such 
as ethane, the results are spectacular com- 
pared to EMBED’S performance. The bound 
smoothing step corresponds roughly to  te- 
trangle inequality reasoning, so that correct 
bounds are deduced for the distances be- 
tween hydrogens on opposite methyl groups 
and for the equivalent inner product bounds. 
The minimization of residual errors in step 10 
is just not required. The chirality of both 
methyl groups is always correct (thinking of 
each hydrogen as uniquely labelled). Of 
course, one hardly needs fancy embedding 
algorithms to generate ethane conformations 
having required interhydrogen distances. 

Our main test of the  method was on 
[D-Pen2, D-Pen5]-enkephalin (DPDPE), i.e., 
oxidized Tyr-D-Pen-Gly-Phe-D-Pen. Since 
penicillamine is just P,P-dimethylcysteine, 
this is a very sterically hindered cyclic pen- 
tapeptide. Experimental constraints derive 
from the NMR studies of Mosberg and co- 
w o r k e r ~ . ~ ? ~  The issue here is not whether 
these experimental constraints are scien- 
tifically correct or even what they are (see 
reference 6 for that), but rather how does 
the performance of the linearized embedding 
algorithm compare with that of EMBED. 

Steps 1, 2, and 3 are computationally quick 
but intricate. We assumed that all peptide 
bonds should be fixed in the planar trans 
configuration. The pentapeptide is repre- 
sented as 63 atoms, including a-hydrogens, 
amino hydrogens, and pseudo-atoms repre- 
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senting the centers of the two aromatic rings 
and the centers of mass for the P-methyl hy- 
drogens in the penicillamine residues. There 
were 18 proton pairs having restricted dis- 
tance ranges, as derived from NOES. (Where 
the assignment was ambiguous, say as to 
which phenylalanine aromatic hydrogen, 
the corresponding pseudoatom was used.) 
Only 40 unit vectors were needed to fully de- 
scribe the molecule, and of those 33 are in- 
dependent. In step 4, for the purposes of 
comparison, both EMBED and the linearized 
approach were given exactly the same holo- 
nomic, experimental, and van der Waals con- 
straints, except of course the two programs 
express these in different terms. EMBED 
had on the  order of 2000 distance con- 
straints plus a chirality constraint for each 
asymmetric carbon and several extra degen- 
erate chirality constraints to enforce the pla- 
narity of aromatic rings and peptide groups. 
The new algorithm, however, expressed the 
holonomic constraints in the way atoms 
were defined in terms of unit vectors, and by 
means of angle constraints. There were no 
chirality constraints at all, of course. 

Both programs eventually work out a full 
set of upper and lower bounds between all 
atom pairs from the experimental, van der 
Waals, and holonomic constraints. Neither 
reported any inconsistencies a t  this point, 
although no perfectly satisfactory conformer 
(i.e., zero value of the error function) has 
ever been found for this particular test case. 
Steps 5 and 6 of the new algorithm, how- 
ever, reported eight redundancies in the ex- 
perimental constraints, given the holonomic 
ones. For example, the conservatively inter- 
preted NMR results led to requiring the dis- 
tance between Pen5 a-H and the pseudoatom 
on the proto-R P-methyl to lie between 2.02 
and 3.90 A. The holonomic constraints con- 
clude that the range is really only 2.49 to  
3.74 A, thus declaring two experimental dis- 
tance bounds to be redundant. Additionally, 
there were a number of van der Waals con- 
straints between atoms separated by three 
bonds that were lower distance bound values 
smaller than those deduced from the cova- 
lent structure. 

Steps 8, 9, and 10 of the linearized al- 
gorithm were repeated 20 times, while the 
equivalent steps 3, 4, and 5 of EMBED were 
performed 408 times. The success rate noted 

in Table I shows that  the new algorithm 
handles this very taxing test case with sig- 
nificantly lower attrition. "Success" in both 
algorithms was taken to be that no distance 
constraint was violated by more than 0.5 A, 
but one must realize that otherwise the two 
algorithms place their errors in different 
categories. EMBED might have a single 
bond length off by 0.5 A, although this did 
not actually occur for successful conforma- 
tions, whereas bond distortions in the lin- 
earized approach arise from errors in the 
inner product bounds, which were generally 
less than  20% in  successful structures. 
Angle constraints were satisfied to  better 
than 10". EMBED might refine to structures 
having slightly nonplanar aromatic rings, 
but the new method by construction must 
have all these atoms coplanar because there 
are only two unit vectors defining their posi- 
tions. On a problem like this one involving 
only 63 atoms, both methods spend the ma- 
jority of their time in the optimization of 
their respective error functions, using con- 
jugate gradients in both programs, as i t  
so happens. The two error functions are of 
similar complexity, the chirality terms of 
EMBED being replaced by the nearly equiva- 
lent angle terms and distances involving 
dependent unit vectors. In its present im- 
plementation, the linearized computer pro- 
gram requires an average of 1.1 hours per 
attempted structure on a Sun 3/160 com- 
puter with a floating point accelerator. This 
is about three times as much CPU time as 
for EMBED, thus nearly negating its attri- 
tion advantage. No doubt this could be im- 
proved. It is intriguing (but not statistically 
significant) that  the linearized embedded 
structures are much more likely to refine to 

Table I. Comparison of results for solving the em- 
bedding problem in the case of DPDPE using the stan- 
dard EMBED and the new linearized algorithms. 

Number of Success Redundancies 
variables" rateb noted 

EMBED 189 1/14 no 
Linearized 

embedding 99 1/5 Ye5 

T h e  number of variables used in minimizing the er- 
ror function. 

bAverage number of conformations generated hav- 
ing no distance violation greater than 0.5 A, compared 
to the total number of conformations produced. 
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very low energy minima upon subsequent 
energy minimization, than those structures 
produced by EMBED. 

One might ask why neither method ever 
finds a completely satisfactory conformation 
of DPDPE. The answer appears to be that 
there are slight conflicts between the experi- 
mental and holonomic constraints on the 
one hand and the van der Waals constraints 
on the other. Building a space filling CPK 
model of the peptide is nearly impossible 
because of steric crowding, and computer 
graphics using standard van der Waals radii 
shows only the smallest of holes in  the 
middle of the tetrapeptide loop formed by 
the disulfide bridge between the two penicil- 
lamine residues. The linearized method with 
all constraints found 20 conformations hav- 
ing final refined error function values of 71.8 
or greater, of which four were accepted as 
satisfactory. Eliminating the van der Waals 
constraints and running for another 20 tries 
produced values as  low as 2.3, by way of 
comparison. Trivially, when the experimen- 
tal constraints and disulfide bond closure 
constraints were also deleted, the structures 
generated either had zero error, or a local co- 
ordinate system at an a-carbon was stuck in 
the wrong orientation relative to the adja- 
cent peptide group. 

We have not carried out a systematic ex- 
perimental sampling of the dependence of 
the linearized embedding algorithm execu- 
tion time versus tht.. size of the problem. The 
number of variables increases roughly lin- 
early with the number of atoms for “ordi- 
nary” organic molecules. For generating 
small numbers of conformers, the bound 
smoothing step is the most time consuming 
part of the calculation, and the associated 
computational cost apparently scales with 
the cube of the number of atoms for typical 
sets of distance constraints. For small mole- 
cules and large numbers of generated struc- 
tures, the bottleneck is the minimization of 
the error function, the cost of which goes up 
with the square of the number of atoms. 
Keep in mind, however, that the size of the 
problem can be measured in different ways, 
and the time required for these calculations 
can depend sensitively on the interactions 
between constraints. For example, when 
there are few constraints, additional con- 
straints typically slow down EMBED, but 

eventually when there are very many con- 
straints, adding yet more of them tends to 
speed the calculation! Since linearized em- 
bedding deals with roughly half the number 
of variables that EMBED does, one might 
hope for an optimized program running four- 
to eight-times faster, although we certainly 
have not yet achieved that. 

So far, we have not explored the ability of 
the linearized approach to search out the 
allowed conformation space of a molecule, 
and whether its sampling of the space differs 
from that of EMBED or other methods. Work 
is under way to carefully define and examine 
this important question. From our limited 
experience so far, we can only say the sam- 
pling appears to be about as broad, inasmuch 
as substantially different backbone and side- 
chain conformations were seen in the four 
successful structures. 

As it stands, we would recommend the lin- 
earized embedding algorithm for problems 
where the covalent geometry is assumed to 
be rigid and where there are relatively large 
rigid groups of atoms, such as aromatic ring 
systems. Collinearity and coplanarity con- 
straints are elegantly enforced, and one can 
often gain insight into the incompatibili- 
ties between experimental and holonomic 
constraints. 

This work was supported by grants from the Na- 
tional Institutes of Health (GM37123) and the Na- 
tional Science Foundation (DMB-8705006). 
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