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Protein-folding potentials, designed with the explicit goal that the global energy minimum correspond to 
crystallographically observed conformations of protein molecules, may offer great promise toward calculat- 
ing native protein structures. Achieving this promise, however, depends on finding an effective means of 
dealing with the multiple-minimum problem inherent in such potentials. In this study, a protein-folding- 
potential test system has been developed that exhibits the properties of general protein-folding potentials 
yet has a unique well-defined global energy minimum corresponding to the crystallographically determined 
conformation of the test molecule. A simulated-annealing algorithm is developed that locates the global 
minimum of this potential in four of eight test runs from random starting conformations. Exploration of the 
energy-conformation surface of the potential indicates that it contains the numerous local minima typical 
of protein-folding potentials and that the global minimum is not easily located by conventional minimization 
procedures. When the annealing algorithm is applied to a previously developed actual folding potential to 
analyze the conformation of avian pancreatic polypeptide, a new conformer is located that is lower in. 
energy than any conformer located in previous studies using a variety of minimization techniques. 

INTRODUCTION 

Protein-folding potentials are potential-energy 
functions that have been specifically designed 
with the goal that the global minimum of the po- 
tential function correspond to the native confor- 
mations of protein molecules.'~2 They differ from 
commonly used molecular-mechanics potentials in 
that their construction and parameterization is 
mathematically rather than chemically justified, 
i.e., there is no specific attempt for the potential to 
reproduce local geometry of small molecules cor- 
rectly or to have any particular chemical interpre- 
tation aside from the goal that the global minimum 
of the function correspond to observed conforma- 
tions of protein molecules. While such potentials 
cannot be used to ask the variety of questions that 
molecular-mechanics potentials can, they offer nu- 
merous advantages toward the end of calculating 
native protein structures. That molecular-mechan- 
ics potentials give energies of the order of or even 
lower than the native for nonnative protein con- 
f o r m a t i o n ~ ~ - ~  makes them less than ideal for this 
purpose. A further advantage of protein-folding 
potentials is that the functional form can be cho- 
sen to be easily and efficiently computed. 

One difficulty that protein-folding potentials 
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have in common with conventional molecular-me- 
chanics potentials is a multiple-minimum problem. 
While the molecular representation and functional 
form of folding potentials make the multiple mini- 
mum problem less severe than in molecular- 
mechanics potentials, the problem is still drastic 
enough that it is not computationally feasible to 
locate all minima for a protein or to know when the 
global minimum has been found. 

For this study, a test system has been created 
with a known unique global minimum. To accom- 
plish this, a small (21 amino acid) system was cho- 
sen and an excessive number of adjustable parame- 
ters were allowed in parameterizing the potential. 
The energy-conformation surface of the test sys- 
tem was studied to verify that the system exhibits 
all the properties of protein-folding potentials in 
general. With this test system in place, it was then 
possible to explore the feasibility of simulated an- 
nealing to address the global optimization of pro- 
tein-folding potentials. 

Simulated annealing has not previously been 
used with protein-folding potentials, but has 
shown itself in general to be a very powerful ap- 
proach to the global optimization of functions in 
many  variable^.^ The method has recently found 
considerable application to problems arising from 
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the complexity of the energy-conformation surface 
of molecules using conventional molecular-me- 
chanics potentials.8-10 

METHODS 

The Test Problem 

While developing and testing the annealing al- 
gorithm, it was desirable to choose a problem, po- 
tential, and parameterization in which there was 
no question that the potential has a unique global 
minimum corresponding to the crystallographically 
observed conformation. The problem should be 
small enough that extensive computation was fea- 
sible, yet large enough that the conformation 
space retain the overall structure and extensive 
multiple-minimum problem found in very large 
molecules. The 2 1 amino-acid fragment of bovine 
pancreatic trypsin inhibitor (BPTI) containing resi- 
dues 16-36 meets these criteria and was chosen as 
a test system. The structure of BPTI has been de- 
termined crystallographically. l 1 7 l 2  Residues 16-36 
form an antiparallel &sheet that has been identi- 
fied as a relatively rigid structural element by nor- 
mal-mode analysis. l3 

The Potential and Parameterization 

As developed previously, residues are modeled as 
single points centered on the a-carbon. The form 
of the potential is 

E = c e(dij, E ,  P )  
ij 

where e(di j ,  E ,  p )  = &[5(p/di j ) I2  - 6(p/dij)lo] and d ,  
is the distance between atoms i andj. The E and p 
terms are broken into groups and are different for 
nearest neighbor interactions, for (i, i + 2) inter- 
actions (where E and p depend on the class of resi- 
due i + l), for (i, i + 3) interactions (where E and p 
depend on the class of residues i + 1 and i + 2), 
and for long-range interactions (where E and p de- 
pend on the class of residues i andj).  In general, 
the residue classes are chosen so as to keep down 
the number of parameters while maintaining the 
desired properties of the In this case, 
however, each residue was assigned to its own 
class to ensure that the potential could be parame- 
terized with an unambiguous global minimum cor- 
responding to the crystallographically determined 
structure. 

With each residue belonging to its own class, and 
only a single structure to model, it is trivial to para- 
meterize the potential to have a single global mini- 
mum corresponding to the observed conformation. 
If the p s  are chosen to agree with the values ob- 

served in the crystal structure] then any choice of 
the ES where all values are nonzero and not infinite 
will give the desired result. For this study, all near- 
est neighbor interactions had an E of 200 (arbi- 
trary) units, (i, i + 2) interactions had an E of 50 
units, (i, i + 3) interactions had an E of 20 units, 
and long-range interactions had an E of 5 units. 

For the generation of starting conformations and 
for simulated annealing, independent variables 
were taken to be the "bond" angle formed by 
three consecutive a-carbons and the dihedral angle 
formed by four consecutive a-carbons. At this 
stage, C,-C, bond lengths were held fixed at 3.8 
A .  The conjugate-gradients minimization, how- 
ever, was performed in Cartesian space. Conver- 
sion from the angular representation to the Carte- 
sian representation was performed by placing the 
first carbon at the origin, the second on the -5- 
axis, and subsequent atoms in accordance with the 
bond and dihedral angles, with the third atom lying 
in the q-plane. 

Generation of Starting Conformations 

Random starting conformations in the angular rep- 
resentation were generated by choosing bond an- 
gles at random between +90 and +180° and 
choosing dihedral angles at random between - 180 
and +180°. 

The Annealing Algorithm 

The performance of annealing algorithms is highly 
dependent on appropriate choices of the indepen- 
dent variables, step size, initial temperature, and 
cooling ~chedule .~  Each of these variables was ex- 
plored in the development of the algorithm used in 
this study. Dihedral and bond angles were found to 
be far more natural and efficient variables for the 
simulated annealing than Cartesian coordinates, 
although Cartesian coordinates are preferable for 
the final conjugate-gradients minimization at the 
end of an annealing run (see below). A crucial vari- 
able is the step size. Simulated-annealing imple- 
mentations for computational chemistry potentials 
(see, e.g., refs. 8-10) traditionally choose some 
range of possible step sizes from which steps are 
chosen at random, this range of step sizes being 
kept fixed as the temperature is gradually lowered 
over the course of the annealing run. I have found 
it much more effective to gradually lower both the 
temperature and the step-size range over the 
course of the run. If this is done so as to keep the 
acceptance rate of trial conformations in the 50% 
range, the algorithm appears to sample the space 
much more efficiently. This approach is based on 
an idea derived from the work of Haines14 and has 
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been explored by the author on a number of test 
problems. l5 

In outline, the algorithm used here is as follows: 
The simulation proceeds according to the Metropo- 
lis et al. algorithm16 with a move consisting of a 
small step in one of the bond or dihedral angles, an 
evaluation of the energy of the new conformation, 
and a decision, based on the Boltzmann criterion, 
as to whether to keep the conformation. The initial 
step-size range and temperature are inputs to the 
program. An iteration consists of several sweeps 
through all the angles in the molecule, the number 
of sweeps per iteration, n, also being an adjustable 
parameter. If n is too small, trivial local minima are 
located and the procedure does not do much better 
than conventional minimization algorithms. With 
large enough n, only very good minima are located. 
At the bottom of the iteration loop, the acceptance 
rate of trial conformations is calculated and the 
temperature and step-size range may be adjusted 
so as to keep the acceptance rate in the 40-60% 
range. This is accomplished by multiplying the 
temperature by a factor a if the acceptance rate is 
less than 0.4 and by a factor b if the acceptance 
rate is greater than 0.6. a must be greater than 1.0, 
but should be no greater than 2.0 for the algorithm 
to work well. Likewise, b should be less than 1.0, 
but no less than 0.5. If, at the end of an iteration, 
the acceptance rate is in the allowed range, a 
check is made to determine if the best-observed 
energy has dropped since the last iteration. If the 
energy is dropping, both the temperature and step- 
size range remain unchanged for the next itera- 
tion. If the energy has not dropped, the tempera- 
ture and step-size range are both decreased by 
multipliers c and d ,  respectively. These multipliers 
should be less than 1.0 but greater than 0.5, and, as 
a practical matter, the drop in the step-size range 
should not be as great as that in the temperature. 
The ability of the temperature to self-adjust inde- 
pendent of the step-size range allows correct ac- 
ceptance rates to be achieved, even with poor 
choices of c and d ,  but at a cost in performance. I 
have found c = 0.6 and d = 0.75 to be good num- 
bers. Iterations continue until either an iteration 
limit is reached, a lower limit on the step size is 
reached, or a lower limit on the temperature is 
reached. Note that if an inappropriate initial tem- 
perature is chosen it will quickly half or double 
during the initial iterations of the program until 
the acceptance rate is brought into the 50% range. 
Thus, reasonable results will still be obtained, but 
at a slightly increased cost in CPU time. After a 
few runs with a given potential, it becomes appar- 
ent what an appropriate initial temperature is, and 
this parameter can be reset. 

At some point during an annealing run, the tem- 
perature and step size become small enough that 

the procedure is within the radius of convergence 
of a given local minimum. At this point, simulated 
annealing is no longer a cost-effective strategy and 
the program switches to a conjugate-gradients 
minimizerI8 in Cartesian coordinate space. The use 
of Cartesian coordinates at this point in the proce- 
dure makes it possible to achieve the true mini- 
mum. This cannot be achieved in an angle-based 
scheme where bond lengths are held fixed. 

RESULTS 

The Energy-Conformation Space 

If a minimization algorithm designed with this test 
system is to be useful in general, it is essential that 
the test system exhibit the characteristics that 
have been previously observed for standard fold- 
ing potential with large molecules. Such systems 
exhibit numerous local minima, and have the prop- 
erty that low-energy local minima resemble the 
global minimum except for rotation about a few 
bonds such that near-optimal distances are main- 
tained for most atom pairs, i.e., local structure 
tends to be correct, but regions may be rotated 
with respect to each other.',17 

To explore the characteristics of the energy-con- 
formation space of this test system, 50 random 
starting conformations were generated as de- 
scribed in Methods. Twenty-five of these were en- 
ergy minimized using conjugate-gradient minimiza- 
tionI8 and 25 were subjected to a simulated 
annealing run in Cartesian coordinate space, fol- 
lowed by conjugate-gradients minimization. The 50 
minimized structures were analyzed using a previ- 
ously described cluster analysis method.6 In this 
analysis, a distance matrix is constructed for each 
of the structures; then, a new comparative matrix 
is computed by comparing (pairwise) all of the 50 
individual distance matrices. This analysis re- 
vealed that the 50 starting conformations refined 
to 37 distinct local minima. The global minimum 
was located and was reached from 4 of the 50 
starting conformations. The energy of the local 
minima ranged from -5650.94 to -6073.52 units 
(the global minimum). The runs in which Cartesian 
space simulated annealing was used did no better 
than those in which simple minimization was used. 
A very gradual annealing schedule run long 
enough would have probably done better, but this 
was not pursued since annealing in angle space 
was producing superior results in much shorter 
times (see below). It is interesting to note that the 
local minima fall into two distinct populations. 
Thirty-seven of the minimized structures, repre- 
senting 29 local minima, have minimized energies 
between -5650.94 and -5694.26. The other 13 
minimized structures, representing 8 local minima, 
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test problem does indeed have the properties of 
general energy-conformation spaces of protein- 
folding potentials for large molecules. 

Figure 1. Stereo drawings of some of the local minima 
located during the exploration of the energy-conforma- 
tion space. (a) Global energy minimum (energy = 
-6073.52). This is the conformation observed in the 
crystal structure. (b,c) have energies of - 5683.55 and 
-5677.01, respectively. These minima are in the high- 
energy subpopulation of local minima and do not form a 
8-sheet. (d,e) have energies of -5913.71 and -5999.47, 
respectively. These minima are in the low-energy sub- 
population of local minima. They do form a 8-sheet, but 
do not have a correct turn. Conformation (d) is the worst 
(highest energy) structure in the low-energy subpopula- 
tion. It also has the poorest turn. 

have energies between -5913.71 and -6073.52 
(the global minimum). There were no structures 
found with energies between -5694.26 and 
- 5913.71. Further, when the conformations are 
examined visually it is apparent that the structures 
in the second population have formed a correct 0- 
structure, but may show a slight difference from 
the global minimum, primarily in the 0-turn. The 
structures in the first population, however, do not 
have the two strands of the sheet folded correctly 
against each other. The global and a number of the 
local minima are shown in Figure 1. These results 
indicate that the energy-conformation space of the 

Simulated Annealing 

An angle-space simulated-annealing run was at- 
tempted on this system with an initial step size of 
15” for both bond and dihedral angles, an initial 
“temperature” of 1.6, and 50 sweeps per itera- 
tion. The annealing run reached the iteration limit 
(50), then switched to conjugate-gradients minimi- 
zation. This run converged to the global minimum 
and took 604 s of CPU time on a SunSparcstation 
IPC . 

To ascertain whether finding the global mini- 
mum in a single simulated annealing run was a 
fluke, several more runs were attempted from dif- 
ferent random starting conformations. In a total of 
eight runs, the global minimum was located four 
times. The other four runs found very low energy 
minima with energies ranging from -5970.52 to 
-6030.02. The five minima located by this proce- 
dure all fall in the second population of local min- 
ima and all exhibit good &structure (Figs. 2 and 3). 

Results with an Actual Folding Potential 

The unique well-defined global minimum of the 
test problem was essential for the development 
and evaluation of the annealing algorithm. It is im- 
portant, however, to also test the algorithm on an 
actual folding potential. The folding potential de- 
veloped by Crippen and Snow’ has the same func- 
tional form as the test function used in this study 
except that the (i, i + 1) interactions have the 
form E = ~ ( d : , ~ + ~  - p2),2 where d and p are the 
observed and optimal interresidue distance. This 
potential was parameterized by solving a nonlinear 
program that attempts to force previously located 
minima that are not near the native conformation 
to have higher energies than the near-native mini- 
mum.’ The energy-conformation space of the po- 
tential has been studied exten~ively’~’~ for avian 
pancreatic polypeptide.20 Since the global mini- 
mum of this system is not known, achieving the 
global minimum cannot be used as a measure of the 
annealing algorithm in this case. It is possible, 
however, to compare results achieved with the an- 
nealing algorithm to results using several other 
minimization algorithms that have been imple- 
mented with the potential. 

Twenty-five annealing runs were attempted 
withn = 500,a = 1.6, b = 0.75, G = 0.6, d = 0.75, 
and an initial temperature of 30. Trial runs with 
smaller n did not produce good results, indicating 
that this is indeed a more complex potential than 
the test function. The lowest energy conformation 
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Figure 2. Stereo drawings of the five conformations 
located by simulated annealing. (a) Global energy mini- 
mum (energy = -6073.52). This conformation was 
reached from four of the eight random starting points. 
(b,c,d,e) have energies of -6030.02, -5996.22, 
-5984.78, and -5970.52, respectively. All of thee con- 
formations lie in the low-energy subpopulation of local 
minima. All form good P-sheets and closely resemble the 
native conformation. 

located had an energy of -400.01 units at a rms 
distance from the native conformation of 5.49 A .  
Five more runs were attempted with n increased to 
3000 and other parameters unchanged. The lowest 
energy conformation located had an energy of 
-407.33 units at an rms of 5.35 A vs. the native 
structure. This conformation has lower energy 
than any conformer previously located for this po- 
tential. For comparison, in the original paper,' of 
737 conformations generated using the embed al- 
gorithm,21 then conventionally minimized, the 
lowest energy conformation located had an energy 
of -406.9 units at an rms from the native of 1.84 
A .  Further, various attempts at energy embedding 
from higher dimensional spaces22 never achieved a 
minimum lower than -399.6 units at an rms of 
7.52 A.l In a separate study,19 the lowest energy 
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Figure 3. Distribution of local minima. The 50 minima 
located during the exploration of the energy-conforma- 
tion space are marked X and the 8 minima located by 
angle-space simulated annealing are marked by filled oc- 
tagons. The plot is divided into bins having a width of 10 
energy units each. The cluster of structures represented 
by the X s  on the left side of the plot do not have the P- 
strands folded correctly. Note that the eight simulated- 
annealing structures all lie on the right side of the plot 
with low energies. 

conformer located by rotational energy embedding 
had an energy -402.5 at an rms of 2.05 A. 

DISCUSSION 

The test system described here, by having a unique 
well-defined global minimum corresponding to the 
crystallographically determined conformation, has 
provided an excellent opportunity to develop and 
explore simulated annealing algorithms and their 
applicability to protein-folding potentials. 

That the annealing algorithm located the global 
energy minimum from four of eight random start- 
ing conformations is extremely encouraging. Per- 
haps most encouraging is the fact that, with an 
actual folding potential, the algorithm located a 
lower energy conformation for avian pancreatic 
polypeptide than had previously been found using 
hundreds of minimizations from well-chosen start- 
ing points, using energy embedding, or using rota- 
tional energy embedding. 

In the future, annealing algorithms should en- 
hance the feasibility of finding global and near- 
global minima of folding potentials and may make 
it possible to extend the use of folding potentials to 
larger protein molecules. 
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