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The use of redundant coordinate bases in the construction of molecular mechanics force fields is discussed. 
It is shown that the intrinsic indeterminacy in a force field in redundant coordinates in general stems from 
the squares of the fist-order redundancy relations. The necessity to use constraints in such a force field is 
pointed out, and a method to check whether or not a set of constraints makes the force field determinate is 
described. It is also explained how force fields corresponding to different sets of constraints can be transformed 
into one another. To facilitate the utilization of ab init io or other spectroscopic force fields, a procedure is 
given by which force constants pertaining to a nonredundant coordinate basis can be optimized in molecular 
mechanics calculations where redundant coordinates are used. 0 1992 by John Wiley & Sons, Inc. 

INTRODUCTION 

In the process of improving the accuracy of molec- 
ular mechanics calculations to account properly for 
vibrational frequencies, a larger number of interac- 
tion force constants than are necessary for the re- 
production of correct structures has to be included 
in the potential energy functions. Because virtually 
all molecular mechanics programs use a set of in- 
ternal coordinates that, for most molecules, contain 
many redundancies, there is then a danger of opti- 
mizing too many force constants independently. In 
such calculations, it is therefore important to take 
the redundancies correctly into account so that the 
potential energy parameters remain uniquely defined 
and intrinsic correlations between them are 
avoided.' The utilization of ab initio force fields in 
the construction of molecular mechanics energy 
functions also requires knowledge about the treat- 
ment of redundancies because the best way of im- 
plementing an ab initio force field is to make a direct 
transformation of it into the molecular mechanics 
formalism, thus ensuring that subsequent simplifi- 
cations and reoptimizations are on secure ground? 
In spectroscopic force field calculations, where the 
optimization of force fields to vibrational frequen- 
cies is the primary objective, nonredundant coordi- 
nates defined as linear combinations of the (redun- 
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dant) basic internal coordinates are generally used, 
even if it sometimes would be more convenient to 
use directly the redundant set of coordinates. How- 
ever, in performing molecular mechanics calcula- 
tions, where minimization of the potential energy or 
other operations in the conformational space (such 
as molecular dynamics) are the main interest, there 
has so far been no need to implement nonredundant 
coordinates. In fact, explicit inclusion of all the basic 
internal coordinates makes it easier to evaluate the 
computed structures. In these calculations, the re- 
dundancies are also effectively eliminated by the use 
of Cartesian coordinates in the actual computations. 
On the other hand, when constructing a force field 
in redundant coordinates the situation is different, 
and careless optimization of a large number of force 
constants may produce physically meaningless en- 
ergy parameters, although the frequency fit may be 
good. Similar effects can of course also be caused 
by correlations due to an insufficient number of data 
in the fit, but this can be corrected by using a larger 
data set. However, indeterminacy caused by redun- 
dancies remains present regardless of the number 
of data. 

There are basically two types of redundancies: lo- 
cal and cyclic. Local redundancies occur in trigonal 
and tetrahedral configurations if every valence angle 
is chosen as a separate coordinate and in torsions 
if several torsion coordinates are defined for a bond. 
Cyclic redundancies occur in ring structures and 
may involve all types of internal coordinates, often 
in a quite complicated manner. Benzene, cyclopen- 
tane, and cyclobutane are well-known molecules 
that have cyclic redundancies among their valence 
coordinates. A molecular mechanics energy function 
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also contains nonbonded atom-atom interactions 
that, together with the valence force field, describe 
the potential energy surface of the molecule in ques- 
tion. The nonbonded interactions introduce, in prin- 
ciple, still more redundancies in the energy function 
because many closed rings are formed (cf. Urey- 
Bradley force field), but usually this is not a problem 
because the parameters of the nonbonded interac- 
tions are determined independently of the force con- 
stants. 

Many articles dealing with redundancies among 
internal coordinates in spectroscopic force field cal- 
culations have previously been published?-l0 How- 
ever, in molecular mechanics calculations the fact 
that the actual geometry generally differs from the 
reference geometry, with respect to which the force 
field is defined, makes a new analysis necessary.' In 
this article, we explain the origin of the redundancies 
in a new way and show why they cannot be ignored. 
We also describe a method by which they can be 
taken into account in molecular mechanics calcu- 
lations, while still retaining the convenient redun- 
dant coordinate basis, as well as the automatic 
uniqueness and better transferability of parameters 
associated with a nonredundant set of coordinates. 

INDETERMINACY CAUSED 
BY REDUNDANCIES 

In the following, we assume that the parameters of 
the nonbonded interactions are optimized indepen- 
dently of the force constants so that the nonbonded 
interactions merely deform the potential energy sur- 
face defined by the intrinsic valence force field with- 
out causing any correlations between the energy pa- 
rameters. 

The potential energy pertaining to the deformation 
of the internal coordinates of a molecule is usually 
of the form 

1 
2 V = - AqtFAq (1) 

where F is the force constant matrix and the vector 
Aq = q - qo describes the deformation of the in- 
ternal coordinates, contained in the vector q, from 
their intrinsic equilibrium values represented by the 
vector qo. If the internal coordinates are not linearly 
independent but contain redundancies, the dimen- 
sion of the conformational space is smaller than the 
number of internal coordinates. The conformational 
space is then a subspace (hypersurface) in the full 
internal coordinate space. Obviously, the molecular 
geometry can never represent a point outside this 
hypersurface. Figure 1 illustrates (in three dimen- 
sions) the general case of a curved conformational 
surface in a redundant coordinate space. A simple 
example of a real conformational surface is given by 
the relation between the three valence angles in a 

Figure 1. Two-dimensional conformational space (hy- 
persurface) in a three-dimensional redundant internal co- 
ordinate space. The three mutually perpendicular axes rep- 
resent the three coordinates that mathematically can be 
considered independent but are interrelated by the geo- 
metric properties of the molecule. The relation between 
the coordinates is a function that makes up the curved 
surface, the conformational surface. Note that this does 
not illustrate a potential energy surface, the energy being 
a fourth variable that depends upon the molecular coor- 
dinates located on the surface. 

planar trigonal system (e.g., around an spz carbon 
atom). The sum of the three angles is always 360" 
(provided that the configuration stays planar), and 
the conformational space is therefore a triangular 
plane formed by connecting the points (360", 0, 0), 
(0, 360", 0), and (0, 0, 360"). If there are N, redun- 
dancies among the internal coordinates, there exist 
N ,  linearly independent functions, +,(q), r = 
1, . . . , N,, that are zero for every vector q that rep- 
resents a point on the conformational hypersurface. 
Writing the redundancy functions +,(a) as Taylor 
series, we have 

1 
+,(q) = akAq, + 2 AqbA,.Aq, + . . . = 0 (2) 

where r = 1, . . . , N,. Here, Aq, = q - qeX,, denotes 
the displacement of the molecular geometry from 
some expansion center qpx,, in the conformational 
space, and the vector a, and the matrix A,. contain 
the fist-  and second-order expansion coefficients, 
respectively. It is worth noting that the vector qo 
does not necessarily satisfy eq. (2). Cyclobutane, for 
example, is a drastic case where the intrinsic equi- 
librium values of the C-C-C valence angles do 
not satisfy the cyclic redundancy relation. (Clearly, 
the four C-C-C angles cannot all simultaneously 
be, say, 113.5"). The expansion center qa,, is arbi- 
trary, but one of the objectives of the following dis- 
cussion is to determine the locations of qa,, for 
which indeterminacy may arise in the force field. It 
is useful to express Aq, in terms of Aq, which yields 

4, = Aq - (am,, - 90) = Aq - h a , ,  (3a) 
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where we have defined 

A q e r , r  = q,,r - qo (3b) 

The indeterminacy in the energy parameters 
comes about because terms that depend upon the 
redundancy functions +,(q) can be added to the en- 
ergy function without changing the potential energy 
surface in any way. Thus 

(where K,, 'y,, etc. are constants) represents exactly 
the same potential energy as V. The force constant 
matrix is then not necessarily uniquely defined if 
there exist redundant energy terms that can be writ- 
ten in the same form (1) as the energy spanned by 
the force constants. To investigate this further, let 
us look closer at the quadratic term in eq. (4). For 
the moment, we assume that q is not far from q,,, 
so that terms of third and higher order with respect 
to Aq, can be neglected. Let us also assume that qo, 
if it belongs to the conformational space, is corre- 
spondingly close to qu,,. We then have 

1 
2 

= - y,(Aqta&Aq,.) = 0 (5) 

Substitution of eq. (2) and (5) into eq. (4) then yields 
(to the second order) 

v, = v +  

1 1 
2 7 [ K , a : ~ i z ,  + - A ~ K K , ~  + Yra,at) air, (6) 

Using eq. (3a) to obtain explicit dependence upon 
Aq, we then have 

The force constant matrix is indeterminate if some 
of its elements can be continuously modified in a 
way that does not affect the potential energy. Equa- 
tion (7) suggests that the force constants can change 
in any way that is equivalent to addition of the sum 

to the F matrix. Clearly, the F matrix is not well 
defined if an exprfession like (8) ,  containing free 
parameters, can be added to it without causing any 
change in the potential energy. However, although 
eq. (7) always represents the same potential energy 
surface as eq. (l), all of the potential energy repre- 
sented by eq. (7) is not necessarily contained in the 
second-order terms [last row of eq. (7)] .  Obviously, 
no indeterminacy results from the addition of such 
quadratic redundant terms that need to be compen- 
sated by linear or constant terms to preserve the 
potential energy. This is because such a change in 
the force field in reality changes the potential energy 
because linear or constant terms are not included in 
the molecular mechanics energy function. Thus, the 
redundancies make the force constant matrix inde- 
terminate only if the potential energy spanned by the 
sum (8) vanishes, and because the redundancy re- 
lations are linearly independent we must then have 

Aqt(K,A, + 'y,a,aF) A q  = 0 (9) 

for every r = 1, . . . , N,. As we shall see, this condition 
alone fixes the constants K, to zero and thus removes 
the indeterminacy caused by the redundancy matri- 
ces A,. To show this, we assume that the redundancy 
relation under consideration is nonlinear, i.e., 
that A,. is not the zero matrix. Substituting A q  = 
Aq, + Aq,,, into eq. (9), and noting that by 
eq. (2) Aq;&Aq, = -2a:Aq, and that by eq. (5) 
Aq:(y,a,a:) AQ, = 0, we get 

- 2~ratA.ailr + 2 K J q L , r A , . A k  + K J q l x , r A r A q e z > r  
+ 2AqL,r(YraTat) A q T  + AqL,r(rra,aF) Aqar,r = 0 

(10) 

Here, it may be argued that if the force constants 
are optimized only to vibrational frequencies and 
geometry data there is still indeterminacy in the F 
matrix if eqs. (9) and (10) yield any constant, not 
necessarily zero. Therefore, we also have to keep in 
mind the possibility that only the linear terms of eq. 
(10) vanish. The question is then: For what values 
of qPx,, does eq. (10) yield zero, or a constant, in a 
way that leaves freedom to the parameters K, and 
y,. This determines the nature of the indeterminacy. 
When optimizing a force field, this indeterminacy has 
to be removed externally by imposing constraints on 
the force constants. 

As previously mentioned, the vector qo, which de- 
notes the intrinsic equilibrium geometry, may or may 
not satisfy the redundancy relations. Let us first as- 
sume that qo does satisfy all the redundancy rela- 
tions. In this case, we may have q,,, = qo and eq. 
(10) becomes 

-2K,asqT = 0 (11) 

which means that K, must be zero because we as- 
sume that the redundancy relation is nonlinear. Ob- 
viously, eq. (11) cannot yield a constant other than 
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zero. Having qa,, = qo thus fixes K, to zero but leaves 
total freedom to yr. Let us see whether there are any 
other values of qez,r that allow freedom to K, and/or 
yv If qU,, # qo one constant term and three linear 
terms remain in eq. (10). The linear terms cannot 
yield a nonzero constant but must vanish for every 
vector Aq, in the conformational space. Thus, we 
must have 

- K r a W i ,  + KJqL,rA,.Airr 
+ AqL,r(yrarah) hill- = 0 (12) 

This must also be true for q = qo, which gives 

K r a 2 h z , r  - KrAqL,rA,.Aqez,r 
- AqL,r(Yrara3 Aqa,r = 0 (13) 

Here, the last term vanishes by eq. ( 5 )  and if we use 
eq. (2) with q = qo eq. (13) reduces to 

Kra%la,r = 0 (14) 

which cannot hold true unless K, = 0. Substitution 
of K, = 0 back into eq. (10) then yields 

2AqL,r(yrara3 A$ = 0 (15) 

the left-hand side of which is linear with respect to 
Aq, and is not zero to the second order unelss yr = 
0 (or qU,, = qo, or the redundancy relation is linear). 
Thus, for a nonlinear redundancy relation there is 
no freedom for K,., nor for y,, if qa,, f qo. Evidently, 
if the redundancy relation is linear the vector a, does 
not depend upon the location of the expansion cen- 
ter and eqs. (9) and (10) then leave full freedom to 
yr for any location of qar. 

We still have to consider the case that q, does not 
satisfy one or more of the redundancy relations, i.e., 
that eq. (2) is not always true for q = qo. This then 
means that qo is located outside the conformational 
surface, a situation that may occur, for instance, in 
strained ring structures. In this case, of course, qm,, 
cannot be equal to qo because qeZ,, always represents 
a point in the conformational space. However, even 
if qo does not satisfy the r th  redundancy relation eq. 
(12) must still hold if the potential energy is not to 
be changed by the addition of (8) to the force con- 
stant matrix. Regrouping the terms in eq. (12), we 
have 

K r M z , r W i l r  + (YrAqL,rar - Kr>atAil, = 0 (16) 

aWir = 4qL+%4 (17) 

Then, the expansion center qm,, must be such that 

where 

with the provision that 

Substituting ahAq, of eq. (17) into the redundancy 
relation (2), we get 

Obviously, Aqr = - 2c~,Aq,,~ satisfies eq. (18). How- 
ever, this vector Aqr cannot satisfy the original re- 
dundancy relation because it has a component out- 
side the conformational space for every nonzero 
value of ar If a, = 0, eq. (17) gives arAqr = 0, which 
is not true if the redundancy relation is nonlinear. 
Thus, eq. (18) is not identical to eq. ( 2 )  and hence 
an expansion center Aqa,r that satisfies eq. (17) can- 
not exist. We now go back to eq. (16) and consider 
the case that K, = y,Aqk,,a,, which was excluded 
in eq. (17). Equation (16) then gives 

KrAqL&Ailr = 0 (19) 

If the redundancy relation is nonlinear, AqL,rA,. (or 
any other constant vector) cannot be orthogonal to 
every vector Aq, = 0 in the conformational space, 
so if K, # 0 we must have 

AqL,,A, = 0' (20) 

This would mean that there exists an expansion cen- 
ter qex,r for which the A,. matrix has at least one 
eigenvalue that is zero, and that Aqu,r is the cor- 
responding eigenvector. The A, matrix has a zero 
eigenvalue if the redundancy relation is linear 
in some direction, in a neighborhood of qa,T. But, 
hq,,, = qU,, - qo cannot be the eigenvector of such 
a matrix A,. because this would require qo to be lo- 
cated in the linear region of the subspace defined 
by the redundancy relation, and q, would then satisfy 
the redundancy relation, in contradiction with our 
original assumption. Thus, eq. (16) cannot be true 
unless K, = 0. Substituting K, = 0 into eq. (16) gives 

Yr(AqL,,ar)a%ir = 0 (2 1) 

This is zero to the second order for all values of y, 
if AqL,.a, = 0 or the redundancy relation is linear. 
We cannot rule out the possibility of the existence 
of an expansion center qU,, that makes Aqk,,a, = 0 
for a nonlinear redundancy relation. Such a qa,, ex- 
ists if the hypersurface defined by the redundancy 
relation has a tangent that goes through qo. If we 
look at the second row of eq. (lo), we can see that 
in this case the last (constant) term also disappears 
and we have a true indeterminacy. However, if the 
redundancy relation is linear no tangent to the hy- 
persurface can go through qo, and the addition of 
yra,at to the force constant matrix is then equivalent 
to the addition of a constant to the potential energy. 
The constant term depends upon y, and qo but not 
upon the choice of qa,,. The addition of a constant 
to the potential energy does not, or course, affect 
the molecular geometry or the vibrational frequen- 
cies, so from a practical point of view the force con- 
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stant matrix is still indeterminate if no energy data 
are used in the optimization. 

The preceding results were derived under the as- 
sumption that q, qo, and qa,, were close to one an- 
other so that a second-order expansion of each re- 
dundancy function was sufficient. We proved that a 
redundancy relation, satisfied by qo, causes indeter- 
minacy in the force constant matrix only when the 
expansion center qeX,, = qo, that is, Aq, = Aq. How- 
ever, from eqs. (1) and (6) it is then obvious that 
terms of third and higher order with respect to Aq 
could only affect energy parameters related to such 
higher terms. Further, because the second-order ex- 
pansion matrices A,. were shown not to cause any 
indeterminacy (because the K, must be zero), the 
only term in (8) and (9) that needs to be considered 
is ?%at,. Thus, as is seen from eq. (5), the indeter- 
minacy then stems entirely from the squares of the 
fiist-order redundancy relations. For a nonlinear re- 
dundancy relation that qo does not satisfy, there is, 
however, a chance that higher-order terms may 
come into effect. This happens if the values of qeZ,, 
for which eq. (21) is valid (if any such values exist) 
are so far away from q that a second-order expansion 
of the redundancy relation is not sufficient. In this 
case, the nature of the indeterminacy is not fully 
described by the analysis made here. 

We may now draw some conclusions about the 
effect of a redundancy on the force constant matrix. 
If qo belongs to the conformational space and q is 
close enough to qo for the redundancy relation to be 
considered linear, the factors Aqta, and gAq in eq. 
(9) are both zero. Either a, or a: can then be replaced 
by an arbitrary vector (of the same dimension) h, or 
h:, respectively, and eq. (9) will still yield zero. In 
this case, we can therefore replace the symmetric 
matrix a,a: with the more general symmetric matrix 
a,h$ + h,.a:. The parameter yr may then be consid- 
ered to be included in the vector h,, and the matrix 
that can be added to the force constant matrix with- 
out changing the potential energy is 

F, = a,h: + h,ah (22a) 
where the vector a, is calculated at qa,, = qo. This 
represents maximum indeterminacy, i.e., the largest 
possible number of degrees of freedom for the F, 
matrix. Note that the number of constraints needed 
to eliminate this indeterminacy is equal to or larger 
than the number of internal coordinates. If q is so 
far away from qo that the redundancy relation can 
no longer be considered linear, the indeterminacy is 
in principle less serious, and instead of eq. (22a) we 
then have 

F, = yrarg (22b) 
which contains only one free parameter. Theoreti- 
cally, the indeterminacy of the force constants even 
disappears for sufficiently large Aqs if the second- 
order Taylor series fails to describe the redundancy 

relation properly. This is because the addition of F, 
to the force constant matrix then changes the po- 
tential energy. However, it seems difficult to utilize 
this, or eq. (22b), for any practical purposes because 
the indeterminacy given by eq. (22a) decreases only 
in accordance with the nonlinearity of the redun- 
dancy relation, and hence the potential energy and 
the vibrational frequencies are not sensitive to the 
force constants in the same way as if the redundancy 
would not exist. A well-taken precaution is therefore 
to assume that the indeterminacy is given by eq. 
(22a). This also holds even if qo only approximately 
satisfies the redundancy relation. 

If qo does not even approximately belong to the 
conformational space, we have the following pos- 
sibilities: If the redundancy relation is linear, the 
indeterminacy in the force field is of type (22b). 
Strictly speaking, however, the potential energy is 
then not indeterminate because the addition of eq. 
(22b) to the F matrix causes the energy surface to 
move up or down, even though its form does not 
change. If the redundancy relation is nonlinear, but 
all values of qu,, (if any) for which eq. (21) holds 
are close enough to q to make the second-order 
Taylor series valid, the indeterminacy in the F matrix 
is still of type (22b) but now the potential energy 
itself is also indeterminate. If the second-order ex- 
pansion is not sufficient, the nature of the indeter- 
minacy may be more complicated. However, it is not 
worthwhile trying to deduce the nature of the in- 
determinacy in this case because when optimizing a 
molecular mechanics force field involving molecules 
with such redundancies other molecules where the 
problematic redundancies do not occur are usually 
also included in the calculation and the indetermi- 
nacy is thereby removed. Alternatively, if one always 
assumes that the indeterminacy is of type (22a) the 
constraints then applied are likely also to take care 
of possible indeterminacy not adequately described 
by a second-order expansion of the redundancy 
function. 

ELIMINATION OF THE INDETERMINACY 

In the previous section, it was shown that, to elim- 
inate the indeterminacy the redundancies cause in 
the force field, it is sufficient and in most cases nec- 
essary to apply such constraints between the force 
constants that all the redundancy matrices F,. of eq. 
(22a) disappear, i.e., that all the vectors h, become 
zero. We shall now see how this is accomplished in 
practice. 

One way of constructing a uniquely defined force 
field in some redundant coordinates is to start with 
a set of nonredundant internal coordinates and make 
a transformation of the force constants into the re- 
dundant coordinate basis. The transformation is sim- 
ple and requires no detailed knowledge about the 
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redundancy relations, only the definitions of the non- 
redundant coordinates in terms of the redundant co- 
ordinates. This is easily seen by writing the potential 
energy in both bases. Thus, if the relation between 
a set of redundant coordiantes q and a set of non- 
redundant coordinates s is 

s = uq (23) 

the part of the potential energy that depends upon 
the force field can be written 

2V = AstF,As = AqtUtF,UAq = AqtFAq (24) 

where F, is the force constant matrix in the nonre- 
dundant coordinates and 

F = UtF,U (25) 

is the force constant matrix in the redundant coor- 
dinates. This transformation automatically generates 
a valid choice of constraints in the force field. A 
simple example is the redundancy among the three 
valence angles in a planar trigonal system. If the 
angles are denoted a, +, and +', a convenient non- 
redundant basis is formed by the angle a and the in- 
plane wagging coordinate p = 1/2(+ - +'). (An- 
other obvious choice would be the local symmetry 
coordinates for this group.) The force field to be 
transformed and the transformation matrix are then 

respectively, and the force field transformed into the 
redundant coordinate basis is 

1 F:, f a +  f a + <  Fa f f a p  - f f a p  
F = f a 4  F4 f++, dfap 4 F p  - 4 F p  

i fa& f * + t  F + )  = i - f f a p  -fFp 4Fp 

(2 7> 
When the force field is optimized, the constraints 
between the elements of F must be retained at all 
times; otherwise, the force field may become inde- 
terminate. However, the choice of constraints is not 
unique, and many others than those shown in eq. 
(27) are equally well applicable. This has to be taken 
into account, e.g., when comparing different force 
fields. When a redundant basis is used, it is, of course, 
not correct to compare force constants that corre- 
spond to different choices of constraints, even if the 
coordinate basis is the same. Transformations be- 
tween different representations of a force field given 
in a redundant basis are therefore sometimes nec- 
essary. To carry out such a transformation of a force 
field F, each redundancy relation must be used to 
derive a matrix F,, as given by eq. (22a), and the new 
constraints must then be applied to the matrix 

In the trigonal case, the redundancy relation is 

Aa + A+ + A+' = 0 (29) 

and the vectors a and h are given by at = (111) and 
ht = (hlh2h3), respectively, and the matrix F, is 

FT = aht + hat = h2 + hl 2h2 h2 + h3 i 2h1 hi + h2 hi + h3 
h 3  + h, h3 + h2 2h3 

(30) 

i 
By adding this matrix to that of eq. (27) and solving 
for the h parameters when new constraints are ap- 
plied, the force field can easily be transformed to 
correspond to any choice of constraints. For in- 
stance, to transform (27) into diagonal form we add 
(30) and set all the off-diagonal elements in the sum 
matrix equal to zero. The result is then 

Fa - f F p  0 
F = (  0 Z F p  - f a g  0" ) (31) 

0 0 fFp + f a p  

If the molecular mechanics force field is optimized 
directly in a redundant coordinate basis, without any 
reference to a nonredundant basis, eq. (22a) can be 
used to check the validity of the constraints imposed 
on the force field. This is done by applying the same 
constraints to the elements of the matrix F, and 
should yield h = 0. If a diagonal or almost diagonal 
force field is optimized, as has so far mostly been 
the case, the (implicit) constraints are normally strict 
enough to remove the indeterminacy. On the other 
hand, if one wants to construct a more accurate force 
field care should be taken to ensure that proper con- 
straints are really used. It is easy to show that this 
is not trivial. In the trigonal case, at least three con- 
straints (to fix the three h parameters) are needed 
to remove the indeterminacy from the F matrix. 
However, any three constraints are not valid. For 
example, if we choose F+ = F+f, fm+ = f m 4 t ,  and 

f++l = 0, we get 

2h2 = 2h3 

hi + h2 = hi + h3 
h2 + h3 = 0 (32) 

which gives h2 = h3 = 0 but does not fix hl. Similarly, 
if we change the third constraint, f++l = 0, tof++f = 
fa+, the third row of (32) becomes h2 + h3 = hl + 
h2 and the solution of eq. (32) is then hl = h2 = hS, 
which still contains one degree of freedom. These 
constraints therefore are not sufficient in an opti- 
mization of the force constants of a trigonal system. 
Improper constraints are indeed something to look 
out for because they may seem logical or reasonable 
but still be invalid. 

A more complicated redundancy occurs among 
the six valence angles in a tetrahedral configuration, 
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such as, for example, the methyl group attached to 
an atom A. In this case, the redundancy relation is 
not linear, which means that the redundancy vector 
a depends upon the expansion center. Let us denote 
the H-C-H angles by a,, a2, and a3 and the A-C-H 
angles by PI, p2, and P3. If perfect tetrahedral sym- 
metry is assumed for qa = qo, the cosine of each 
angle is - Y' and the redundancy relation to the first 
order is 

A a l  + ACXZ + Ao+ + Ap, + AP, + A& = 0 
(33) 

Then, a' = (1 1 1 1 1 l), h' = (h,h,h,h4h5h6), and the 
matrix F,. is 

F, = 

constraints are sufficient. For example, if we require 
thatf(ai, Pi) = 0, i = 1, 2, 3,  and thatf(ai, aj) = fa 
andf(Pi, Pi) = fb (for i # j), only 14 force constants 
remain. But, these constraints are still insufficient 
because they do not fix the h parameters, giving only 
that h, = h2 = h3 = h4 = h5 = h6. An additional 
constraint is needed to fix the h parameters to zero, 
thus leaving only 13 independent force constants. As 
in the trigonal case, a transformation from a set of 
nonredundant coordinates can be used to circum- 
vent the redundancy. This may often be preferable 
because it actually allows one to work with force 

/ 2h, h, + hz h, + hg h, + h4 h, + hj h, + he 
h2 + h, 2h2 h2 + hg hq + h4 hz + hj hq + he 
h 3  + hi h3 + hq 2h3 h 3  + h, hg + hr, h 3  + h, 
h4 + h, h4 + h2 h4 + h3 2h4 h4 + h5 h4 + h6 
h5 + hl h5 + h2 h5 + h3 h5 + h4 2h5 h5 + h, 
h, + hl h6 + h2 h, + h, h, + h, he + h5 2hfj 

If qa differs from perfect tetrahedral symmetry, the 
elements of a are not all 1 but instead (1 + E,), i = 
1, . . . ,6. The elements h, + hJ of Fr are then replaced 
by (1 + E+, + (1 + e,)hJ2 i,j = 1, . . . , 6. However, 
any set of constraints in F, that fixes the h param- 
eters to zero for tetrahedral symmetry will do so 
also when the symmetry is broken. This is because 
all proper sets of linear constraints give rise to a 
homogeneous system of equations with respect to 
the h parameters, and provided that the coefficient 
matrix does not become singular this always yields 
h = 0. Thus, the same set of constraints removes 
the indeterminacy from the force field also when the 
expansion center, i.e., the intrinsic equilibrium ge- 
ometry, does not correspond to perfect tetrahedral 
symmetry. At least six constraints are needed to 
eliminate the indeterminacy, leaving at most 15 in- 
dependent parameters in the force constant matrix. 
A valid set of constraints is, for example, that the 
interaction force constants of type f(a,, P,) must 
be zero if a, and do not share a bond and that 
flat, a]) = Apt, PI) for i,j = 1, 2, 3 (i # j ) .  Applied 
to the Fr matrix in (34), these constraints give [as- 
suming that a, and p,, (i = 1, 2, 3) do not share a 
bond] 

hl + h 4  = 0 hi + = h4 + hrj 
h2 + h5 = 0 and h, + h3 = h, + h, (35) 

the only solution of which is h, = 0, i = 1, . . . , 6. 
These constraints leave the allowed maximum of 15 
independent force constants. In actual optimization 
calculations, more strict constraints are generally 
preferable, although an exact transformation from, 
or comparison with, an ab initio or other complete 
force field is then not possible. However, even if the 
number of free parameters is smaller than the al- 
lowed maximum this does not guarantee that the 

h 3  + hfj = 0 hz + h3 = hj + h b  

(34) 

constants pertaining to the nonredundant basis even 
if the basic molecular mechanics internal coordi- 
nates are redundant. The following local symmetry 
coordinates are a commonly used nonredundant ba- 
sis for tetrahedral configurations: 

1 
s ,  = - (a1 + a2 + ag - p1 

s, = - (2a, - a2 - ag) 

s g  = - (aq - ag) 

s4 = - (2Pl - Pz - P3) 

s5 = __ (Pz - P 3 )  

6 

6 

v5 

6 

v2 

1 

1 

1 

1 

Thus, if the force constant matrix in these coordi- 
nates has the diagonal elements Fi, i = 1, . . . ,5 ,  and 
the off-diagonal elementsf,., i , j  = 1, . . . , 5 (i < J], 
application of transformation (25)  gives the follow- 
ing for the force constants in the redundant coor- 
dinates: 
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1 1 1 + -f15 - g f 2 4  + - f 2 5  a v3 

1 1 1 
6 6 2 F(cu,, ( ~ 2 )  = - F1 + - F2 + - F3 

These relations are appropriate to use if symmetry 
is utilized in the optimization of the force constants 
or if transformation from, or comparisons with, ab 
initio force fields are made. Even if the linear com- 
binations look somewhat complicated, they, or any 
others, are not difficult to use provided that trans- 
formation (25)  has been automated. An automation 
algorithm that allows optimization of force constants 
pertaining to a nonredundant basis of form (23)  must 
perform transformation (25)  alphanumerically and 
keep track of the positions and weighting factors of 
the nonredundant force constants in the redundant 
F matrix. For instance, in the example above we can 
see that the nonredundant force constant Fl of the 
local symmetry coordinate s1 contributes to every 
element in the redundant F matrix, the weighting 
factor being either + Y6 or - Y6. Similarly, the force 
constant F3 contributes to F(al, a2), f ( a z ,  a3), and 
F(a3, as), weighted by + Yz, - Y2, and + Y2, respec- 
tively, and so on. With this information available, the 
nonredundant force constants can be optimized in- 
stead of the redundant ones, even though the re- 
dundant coordinate basis is retained. 

CONCLUSIONS 

As we have seen, there are two ways of dealing with 
the indeterminacy caused by redundancies. One can 
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either work with force constants pertaining to a non- 
redundant basis by using eq. (25) or use a set of 
constraints between the force constants. The con- 
straints must be such that, when applied to the ma- 
trix F, of eq. (22a), this matrix vanishes. The latter 
alternative may seem simpler from a practical point 
of view but has a problem associated with it: The 
constraints need not correspond to physical reality. 
For example, in the trigonal and tetrahedral cases 
the requirement that all the diagonal force constants 
must be zero leads to a perfectly proper set of con- 
straints. Clearly, though, such force constants do not 
reflect any physical properties of the internal coor- 
dinates involved. Even if less dramatic or seemingly 
physically reasonable constraints are used, the trans- 
ferability of the force constants is not necessar- 
ily as good as that obtained with nonredundant 
coordinates. Therefore, to retain physically mean- 
ingful definitions of all energy parameters it may 
be worthwhile using force constants related to a 
nonredundant coordinate basis. The trigonal redun- 
dancy is especially simple and in this case it is cer- 
tainly recommendable to use the in-plane wagging 
coordinate to avoid indeterminacy with respect to 
force constants within the trigonal group, as well as 
with respect to interaction force constants between 
the trigonal group and other coordinates. For tetra- 
hedral configurations, the use of nonredundant co- 
ordinates is not as straightforward, although quite 
feasible, and it may well turn out that instead some 
simple constraints lead to physically reasonable and 
transferable force constants. Only experience will 
show whether or not this is the case. The same is 
true of cyclic redundancies in ring structures, an 
illustrative example of which has been given by Kydd 
in terms of a spectroscopic out-of-plane force field 
for benzene." In a procedure suggested by Hal- 
gren,ln,ls a set of constraints could be combined with 
the requirement that the off-diagonal force constants 
be as small as possible. However, there is no obvious 
physical reason why the transferability of such force 
constants would be the best possible. 

As regards torsion about a bond, several dihedral 
angles are usually associated with the bond in ques- 
tion. If each one of the dihedral angles is defined as 
a separate torsion coordinate, the corresponding 
barrier heights become intrinsically correlated due 
to the local redundancy. In spectroscopic force field 
calculations, the problem is easy to circumvent by 
using a single torsion coordinate defined as the 
mean of two or more of the dihedral angles. This is 
often a good enough approximation when calculat- 
ing the vibrational frequencies at a known energy 
minimum. However, in molecular mechanics the tor- 

sion potentials are also expected to reproduce cor- 
rect conformations and energy barriers, in addition 
to the frequencies, and one parameter per torsion 
may then not be sufficient. In such cases, the torsion 
parameters should be optimized to data from many 
different conformations, or determined by fitting to 
ad initio torsion potentials. For torsions about dou- 
ble bonds, though, the simple procedure used in 
spectroscopic force field calculations also works in 
molecular  mechanic^.'!'^ In this case, the twofold 
two-component torsion coordinate introduced by 
Bell15 is probably the physically best motivated 
choice for the purpose of obtaining transferable 
force constants (barrier heights) both for the tor- 
sions and out-of-plane bending coordinates. The 
force constants in the redundant (many torsions per 
bond) basis can, as before, be computed using eq. 
(25). Alternatively, explicit redundancy relations can 
also be obtained for the dihedral angles defined 
about the same bond. For example, as shown by 
Schlick,lG if T~ and T~ are the dihedral angles defined, 
respectively, for the bonded atom sequences {i, j ,  k ,  
11} and { i , j ,  k ,  12},  and el, 02, 0, are, respectively, bond 
angles { j ,  k ,  11}, { j ,  k ,  E 2 } ,  and {Z1, k ,  Z2}, then T~ and T~ 

are related by 
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