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ABSTRACT 
In the search for new drugs, it often occurs that the binding affinities of several 
compounds to a common receptor macromolecule are known experimentally, 
but the structure of the receptor is not known. This article describes an 
extraordinarily objective computer algorithm for deducing the important 
geometric and energetic features of the common binding site, starting only from 
the chemical structures of the ligands and their observed binding. The user does 
not have to propose a pharmacophore, guess the bioactive conformations of the 
ligands, or suggest ways to superimpose the active compounds. The method 
takes into account conformational flexibility of the ligands, stereospecific binding, 
diverse or unrelated chemical structures, inaccurate or qualitative binding data, 
and the possibility that chemically similar ligands may or may not bind to the 
receptor in similar orientations. The resulting model can be viewed graphically 
and interpreted in terms of one or more binding regions of the receptor, each 
preferring to be occupied by various sorts of chemical groups. The model 
always fits the given data completely and can predict the binding of any other 
ligand, regardless of chemical structure. The method is an outgrowth of distance 
geometry and Voronoi polyhedra site modeling but incorporates several novel 
features. The geometry of the ligand molecules and the site is described in terms 
of intervals of internal distances. Determining the site model consists of reducing 
the uncertainty in the interregion distance intervals, and this uncertainty is 
described as intervals of intervals. Similarly, the given binding affinities and 
their experimental uncertainties are treated as intervals in the affinity scale. The 
final site model specifies an entire region of interaction energy parameters that 
satisfy the training set rather than a single set of parameters. Predicted binding 
for test compounds results in an interval which, when compared to the 
experimental interval, may be correct, incorrect, or vague. There is a pervasive 
ternary logic involved in the assessment of predictions, in the search for a 
satisfactory model, and in judging whether a given molecule may bind in a 
particular orientation: true, false, or maybe. The approach is illustrated on an 
extremely simple artificial example and on a real data set of cocaine analogues 
binding to a nerve membrane receptor in vitro. 0 1995 by John Wiley & Sons, 
Inc. 
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DRUG BINDING SITE MODELS 

Introduction 

M uch of biochemistry and virtually all of 
modern drug therapeutics revolves about 

the specific binding of small molecules to biologi- 
cal receptor macromolecules, such as inhibitors to 
enzymes. We have to understand why certain lig- 
ands bind to some receptor sites and not others, 
and quantitively why certain ligands bind with 
certain strengths. There are basically two sorts of 
experimental approaches to these questions: mea- 
suring the binding affinity to a certain receptor for 
several different ligands, or directly determining 
the structure of the ligand/receptor complex by 
X-ray crystallography and/or nuclear magnetic 
resonance (NMR) spectroscopy in solution. The 
direct structural methods yield a great deal of 
information that can be relatively unambiguously 
interpreted in terms of the three-dimensional 
structure of the entire macromolecule and its 
bound ligand. Unfortunately, these studies are 
much more difficult to carry out than simply mea- 
suring the binding constant, assuming purity, con- 
centration, crystallization, etc. conditions can be 
met at all. Second, they also tend to speak only 
indirectly about the energetics of the binding. 
Therefore, it is not surprising that the vast major- 
ity of ligand/receptor studies are simple mea- 
suremetns of binding constants. What can we ex- 
tract from such data? There must be some limit to 
the amount of information available in a given 
data set. There must be some way to get this 
information without building in our preconcep 
tions. Ultimately, we want to deduce objectively 
receptor site geometry and energetics, given only 
the binding constants for a series of compunds. 
The ideal method would be completely objective 
and independent of guesses by the investigator. It 
would also not overinterpret the data; insufficient 
input data should yield the lowest resolution pic- 
ture of the site which is still consistent with the 
facts. The resulting model must be predictive in 
that a correct binding energy and positioning 
within the site can be calculated for any novel 
compound whatsoever, and indeed the site model 
should be constructed in such a way as to suggest 
compounds with improved binding characteristics. 
Competing against these goals is the need for a 
method which will handle problems of practical 
magnitude in a reasonable amount of computer 
time. The challenge is that this is not just a matter 

of adjusting a few parameters in some theoretical 
equation to make a least-squares fit to a plot of 
experimental data. Instead, we are dealing with 
sometimes highly inaccurate binding data for 
three-dimensional, conformationally flexible, or- 
ganic compounds, sometimes differing greatly in 
covalent chemical structure. The data arise from 
time averages in the random approaches of these 
ligands to the structurally complex receptor sites, 
all in the presence of solvent. 

Of course, there are many methods in the quan- 
titative structure-activity relations (QSAR) field 
for analyzing such binding data.' (See ref. 2 for a 
recent survey and assessment of current ap- 
proaches.) Most seek an empirical least-squares 
correlation between some measure of biological 
activity or binding affinity and various molecular 
properties, such as physiochemical features of 
various groups of atoms, topological features 
of the covalent connectivity graphs, and three- 
dimensional structures of energetically favorable 
conformers. Whether the correlation is a qualita- 
tive classification of compounds into actives ver- 
sus inactives or a more quantitative correlation, 
the common theme is a comparison of ligand 
molecules with each other in some absolute sense 
unrelated to the particular binding site involved. 
Such comparisons depend on an alignment rule 
that tells which atoms of one molecule are sup- 
posed to correspond to which atoms of a second. 
Typically, the alignment is a working hypothesis 
supplied subjectively by the investigator, which 
can be problematical in examples where extremely 
diverse molecules have strong affinity for the same 
site.3 Many ways have been suggested for auto- 
matically finding good When an 
alignment can be found such that every active 
compound has a common arrangement of a few 
key functional groups in three dimensions, this 
commonality is called the pharmacophore, and 
recently algorithms have been devised to deter- 
mine them.7 However one suggests alignments or 
pharmacophores, the success of the main 3D 
QSAR methods today-the "active analogue" ap- 
proach'-" and the recently popular CoMFA prc- 
gram"-depend on them. 

The alignment problem in isolation from the 
binding site nevertheless remains ambiguous, be- 
cause even with great similarities in chemical 
structure, two molecules may bind in similar spa- 
tial orientations in the experimentally determined 
site/ligand structureI2 or they may bind com- 
pletely re~ersed. '~  Implicit in the different ways 
for choosing alignments is neglect of an important 
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feature of physical reality that is simultaneously a 
substantial constraint on the site. The real ligands 
randomly and repeatedly approach the site and 
attach in mode k (translation and rotation of the 
ligand relative to the site, plus internal conforma- 
tional changes of the ligand and, to a lesser degree, 
the site), having interaction energy E,, with proba- 
bility proportional to exp(-(E, - E,)/RT), where 
E, I E,  is the energy for the best mode. Typically 
RT < ( E,  - E,) for a strongly binding molecule, so 
that one mode predominates. Choosing an align- 
ment corresponds to selecting the one optimal 
mode in advance. We instead require that there be 
one mode for each molecule such that the calcu- 
lated binding agrees with the experimental value 
and that all alternative modes correspond to 
weaker binding. These latter constraints turn out 
to be crucial in determining the site model and in 
giving it better predictive power.', 

Methods 

INTERVAL ANALYSIS 

In much of what follows, molecular geometry 
and binding affinity are expressed not in terms of 
single, scalar numbers but rather intervals. To facil- 
itate the discussion, it is useful to begin by intro- 
ducing some basic ideas and notation from the 
branch of mathematics called interval ana1y~is.l~ 
Intuitively, an interval is like a set with the addi- 
tional notion that all the elements of an interval 
are ordered from the smallest to the largest, and 
there are no missing elements in the middle. Con- 
sequently, many of the relations between intervals 
resemble the corresponding relations from set the- 
ory. 

Let 3 denote the field of real numbers and 
AS) the set of all real intervals, where any partic- 
ular interval A is defined as 

For the sake of definiteness, we will discuss only 
intervals of real numbers in this section, although 
intervals of integers are actually used in the com- 
puter programs described later. Clearly, a, I a, in 
general, and when a, = a,, A should behave like a 
real number. We will refer to the limits of an 
interval by A( A) = a, and u( A) = a,, and we will 
often write A = [a,, a,]. The obvious definition of 
an interval's width, 6, is 

(2) 6 (  A) = V( A) - A( A) 2 0. 

Binary and unary operations on intervals are cus- 
tomarily defined to produce the interval that con- 
tains the results of applying that same operation to 
numbers within the interval(s). Subtraction is of 
particular interest here 

( 3 )  A - B = [ U, - b,, a2 - b,] 

for intervals A = [a,, a,] and B = [ b,, b,]. 
When comparing intervals A and B, we denote 

A c B * a ,  2 b, and a, I b, 
A I B * a,  < b, and b, I a, I b, (4) 
A < B * a, < b,. 

While the customary notation a, I a, for a,, a, E 9 
includes both the cases a, = a, and a, < a,, the 
interval comparisons defined in eq. (4) view A < B 
and A I B as mutually exclusive. To include both 
possibilities, we will write A < I B. In general, 
there are six possible outcomes in a comparison of 
intervals A and B-namely, the three listed and 
their respective reversals. All six are mutually ex- 
clusive except for the possibility that A c B and 
A 2 B iff a ,  = b, and a, = b,, in which case we 
write A = B. Let the notation A < I = B denote 
that either A < B or A I B or A = B. These rela- 
tions allow us to generalize eq. (1) to intervals of 
intervals 

A = { XIA, < I = X < I = A,, A,, A, E Y ( ~ ) }  

E Y ( Y ( 3 ) ) .  (5) 

Just as we have overloaded the < , I notation to 
signify similar relations when applied to real num- 
bers and intervals, we will refer to the limits of A 
by A(A) = A, and u(A) = A,. In bracket notation, 
if A = [[ a,, a,], [ a3, a,]], then we can refer to MA) 
= A(A,) = a3, uA(A) = u(Al) = a,, A2(A) = A(A,) 
= a,, and u2(A) = u(A2) = a4. 

If A and B are sets, A \ B denotes the set of all 
elements of A that are not in B. We will be 
concerned with the equivalent notion for intervals 
A = [ a , ,  a,] and B = [ b,, b,], where B c A and 
b, < b,. Define 

i f A = B  
if b, > a, and b, = a, 

if b, < a, and b, = a,  
if b, > a ,  and b, < a, 

(6) 

[ a , ,  b ,][b, ,a ,]  

noting that the last case produces two disjoint 
intervals. 
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REPRESENTATION OF SHAPE 

As explained in the Introduction, we are con- 
cerned with modeling the interaction of small drug 
molecules with a common receptor site on some 
macromolecule. Although the receptor is, of course, 
part of a large molecule, the term molecule in what 
follows always refers to the drugs, which have 
known structure, and site model or site refers to the 
receptor site, whose structure must be determined. 
The underlying molecular model we use is the 
rigid valence geometry approximation, in which 
atoms are points joined by covalent bonds having 
fixed lengths and vicinal bond angles. Thus, any 
molecule in has atoms a = 1,. . . , n,. A conforma- 
tionally rigid molecule, such as methane or cyclo- 
propane, has a geometrical structure that can be 
(redundantly) specified by the set of all inter- 
atomic distances, { d l ,  ]}. This information is insuffi- 
cient unless we also include the chirality of any 
asymmetric centers, x ( i ,  j ,  k, I )  E { -1, 0, +l}. 
More precisely, for some ordered quartet of distin- 
guishable atoms, z, j ,  k ,  I ,  located at column vec- 
tors of Cartesian coordinates c , ,  c , ,  c k ,  c l ,  we define 

x(i, j ,  k ,  1 )  = signdet 

Interchanging any pair of atoms in the ordered set 
changes the sign of x, but it is invariant under 
rigid body translation and proper rotations. 

Now if the molecule is conformationally flexible 
due to rotatable bonds, we interpret the d l , ,  to be 
intervals Dl, ,, and for some-but not all-6( Dl, ,) 
> 0, because the molecule explores all reasonably 
low-energy conformations. For example, for n- 
butane with carbon atoms numbered 1-4, 6(D,, ,)  
> 0 as it goes from the cis to the trans conforma- 
tions, but 6(D,,,) = 0, because the bond lengths 
and angles are assumed to be fixed. In the process, 
the xs  for some arbitrarily chosen quartets of 
atoms may change srgn, but for most molecules it 
is sufficient to focus on those quartets that are the 
substituents of asymmetric carbon atoms, and for 
these, x is independent of conformation. Even 
when all the distance bounds are known, one can- 
not arbitrarily choose distances for each atom pair 
out of the corresponding range, because there are 
strong correlations between the various distances 
as the torsion angles are varied. Thus this sum- 
mary of conformation space is a necessary restric- 
tion on the interatomic distances, but not a suffi- 
cient one. 

In the applications that follow, the allowed con- 

formation space of each molecule is explored by a 
systematic grid search over all combinations of 
torsion angle values, assuming that rings are rigid 
and rejecting only those conformations having van 
der Waals clashes. Then the distance bounds are 
the minimum and maximum observed values for 
each atom pair over all the allowed sampled con- 
formations. Chiralities are noted for the sub- 
stituents of asymmetric carbon atoms. 

After the conformation space of a molecule has 
been searched, one may simplify the molecular 
structure by grouping specified sets of atoms to- 
gether into united atoms, typically comprising 
functional groups or substituents. This is often 
necessary because the time required for the subse- 
quent analysis increases rapidly with the number 
of atoms. If the original molecule has atoms 
{q, . . . , a,#}, then the simplified molecule has 
united atoms { A ,  ,..., AnA} ,  where nA < n,. A 
united atom A, is just a set of atoms, and each a, 
is a member of one and only one A,. The distance 
bounds on the original atoms determine the dis- 
tance bounds on the united atoms by 

A(D,,,) = min A( i l , , )  

u (D , , , )  = max v ( D l , , )  (8 )  

and for any fixed conformation, the coordinates of 
a united atom are just the mean of the coordinates 
of its constituent atoms. 

On the other hand, the site model is taken to 
consist of a set of n,  regions, R = { r l , .  . ., r , , } ,  
which are assumed to be nonoverlapping and con- 
vex, but otherwise of unspecified shape, and have 
either nonzero finite or even infinite size. Convex- 
ity means that for any two points p,q E Y,, all 
points on the line segment joining them are also in 
that region. 

(9) 

The flexibility of the real receptor site is included 
here in the region sizes, so the regions are taken to 
have fixed relative positions to one another. Specif- 
ically, let D l , ,  be the interval for distances from 
any point in Y, to any point in rl .  Then for i = j ,  
A( Dl,  , )  = 0, and 0 < u( Dl, , 1 I 03 gives the (maxi- 
mal) diameter of r,. Otherwise, 0 I A(D,,,) I 
u(D, , , )  I 00 give the minimal and maximal dis- 
tance between the two points, where A( Dl,  I )  = 0 if 
the two regions touch. See Figure 1, for example. 
Any quartet of regions may or may not have an 
assigned x. Clearly, any realizable set of convex 
regions in 9 T 3  can be represented in this way, but 

Va, E A,,  a, E A ,  

cip + (1 - ci)q E Y, vo I ci < 1 
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FIGURE 1. An example of four precise convex regions 
in the plane and the bounds on the distances between 
them. Not shown are A(D,, ,)  = A@,,,) = A ( D 3 , 3 )  = 

A(D3,4) = 0 and ~(Di.4) = ~(D2.4) = u ( D ~ , ~ )  = U ( D ~ , ~ )  = 
A(D4,4) = A(Di,*) = A ( D 2 , 3 )  = A(Di,4) = A(D,,4) = 

xi. 

not every set of As, us, and x s  corresponds to a 
realizable set. 

In the algorithm to be described, we start with 
full knowledge about the three-dimensional struc- 
ture of the molecules involved, but we are trying 
to proceed from total uncertainty to barely ade- 
quate certainty concerning the site model’s geome- 
try. Thus the relative position and sizes of regions 
r, and r, are not described simply by the interval 
D,,,  E A ~ )  but by the interval of intervals E 

AA9)). Note that the definition of an interval of 
intervals [eq. (511 requires A(D,,,) < I = U ( D , , ~ ) ,  so 
the intervals describing the least and greatest inter- 
region distances may or may not overlap, but at 
least uA(D,, I )  5 u2(D,, ,) and A2(D,, ,) 5 Au(D,, In 
other words, the lower interval may not extend 
above the upper one, nor the upper one below the 
lower. 

Likewise, the site motel has the possibility of 
chirality relations among regions whenever n,  > 3. 
If for every choice of points c ,  E r L ,  c ,  E rl ,  ck  E rk, 
and c ,  E r ,  we find that ~ ( c , ,  c I ,  c k ,  c , )  is the same, 
then we can assign that value to the chirality of the 
corresponding four regions, x ( r , ,  r,, rk, r , ) .  In the 
modeling procedure, however, the sizes and shapes 
of the regions are given only as ranges on distance 
bounds, which makes it impossible to deduce that 
some quartet of regions actually has a fixed chiral- 
ity. Instead, the chirality can either be unassigned, 
as an expression of uncertainty, or arbitrarily spec- 
ified. 

Now we can clearly define what we mean by 
more or less certain site geometries. The geometry 
of site A = ( D,, XA), where for the n ,  regions DA 
is the full set of interregion distance intervals of 
intervals and X, is the set of interregion chirali- 

ties. The least certain site A has DA, i , j  = 

[[O, m] [0, m]] for all DA, i, E DA, and X, = 0. Intu- 
itively, A covers the whole space of site geome- 
tries, and more certain or specialized sites are 
subsets of it in this space. For any two site geome- 
tries A and B ,  we define 

and B c A if there is strict inclusion of either the 
sets of chiralities, or one or more distance inter- 
vals, or both. Note that subsites tend to involve 
supersets of chiralities. Suppose B c A, and we 
want to consider the space covered by A to be 
broken up into B and A \ B. Just as in the last 
case of eq. (61, the site geometry A \ B may consist 
of more than one site. Namely, each member of 
A \ B consists of DA and X A ,  except for just one of 
the intervals where A ( D B , l , , )  C A(D,,,,,) or 
u ( D ~ , , , ~ )  c dDA,, , , ) ,  or for one x,,, E X, \ X,. By 
supposition there is at least one member of A \ B ,  
and possibly many. Where an interval differs, there 
are one or two site geometries having A(DA, I ,  I >  \ 
ND,, ,) or d D A ,  ,, l>  \ dD,, ,, ,I. Where a chirality 
differs, X A , B  = X, U { - x , ,~ )  for one x,,, E X B  \ 
X,. In other words, we include one of the extra 
chiralities after inverting it. 

Suppose, for example, n ,  = 4, and site A has 
- [[O,m],[O,m]] for all i, j and X, = 0. If ’A, 1 , ~  - 

site B is the same except DB,1,3 = “0,171, [O,mll 
and X ,  = (x(l,2,3,4) = l}, then B c A on ac- 
count of both 1-3 distances and one chirality rela- 
tion. Consequently, A \ B consists of two mem- 
bers, E and F, which are the same as A except 

= ~[17,~1 , [0 ,~11 and X, = {x(l,2,3,4) = 
- 1). 

REPRESENTATION OF ENERGETICS 

In this work we consider n p  = 2 physicochemi- 
cal properties of the molecules-namely, the mo- 
lar refractivity and the water/octanol partition co- 
efficient, log P.  One can empirically assign to each 
atom in a molecule an atomic contribution to these 
molecular properties, based on the atom’s element 
and nearby covalently connected neighbors but 
independent of conformation.16 Thus for each 
atom, a, there is a fixed property vector, v, E Z n p .  

When a set of atoms is grouped into a superatom, 
these vectors are simply summed to give the prop 
erty vector of the united atom. Similarly, each 
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region of the site model, T , ,  has a property vector, 
w, ELZ"~, the components of which are treated as 
adjustable parameters when developing the model. 

The physical picture for the interaction between 
a molecule and a site model is that various subsets 
of the atoms fall into one or another of the 
nonoverlapping regions, so that every atom falls 
into exactly one region, although some regions 
may contain no atoms or one region may contain 
all the atoms. There is no particular relationship 
required between the numbers of atoms and re- 
gions. To put it more formally, we define a bind- 
ing mode, p, to be a mapping from atoms in the 
molecule to regions in the site, i.e., p : ( u  E m) + R. 
We assume the calculated binding affinity (e.g., 
- AG,,,,) to be 

(11) g ( m ,  P )  = C va * wf i (n )  
a €  m 

where our sign convention is that algebraically 
larger g values correspond to stronger binding. 
The optimal binding mode, p*, that maximizes g 
for given region property vectors is then the pre- 
dicted binding mode for m, and g(m,  p*) is the 
predicted binding affinity. Notice that the exact 
orientation and conformation of the molecule in 
the bound state are not predicted, but only an 
assignment of (united) atoms to the different re- 
gions, which may or may not correspond to a 
detailed atomic picture in S3. 

Besides the chemical structure of each molecule, 
the only other experimental inputs to the problem 
are the observed binding affinities, expressed as an 
interval, G(m),  from A(G(m)) to u(G(m)). The 
problem then is to determine the w, such that 

g ( m ,  p*)  E G ( m )  (12) 

for all the molecules in the training set. Note this is 
not a least-squares fit. If the error bars are large, 
g(m,  p* ) may turn out to be near one of the limits 
of the observed range and therefore be far from the 
midpoint. 

DEFINITION OF FIT 

To develop a site model, one must look at all 
the different binding modes of each molecule. The 
combinational complexity of this task can be 
greatly reduced by grouping atoms and exploiting 
some general necessary conditions on binding 
modes. A somewhat arbitrary but necessary first 
step is the choice of united atoms discussed near 
eq. (8). For example, Figure 2 shows the reduction 

FIGURE 2. Atom groupings for a-aminoisobutyric acid. 
On the left is a reasonable choice of five united atoms for 
this molecule, where the central carbon remains a single 
atom. In the center are shown four of the 30 possible 
convex sets of these united atoms. At the right is one of 
the possible partitions, consisting of two convex sets. 

of the 16 atoms of a-aminoisobutyric acid down to 
n, = 5 united atoms. The second simplification 
follows from the assumption that every region is a 
convex region of space, so that the set of atoms 
found in one region in a particular binding mode 
must also be ~0nvex.l~ Here, a convex set of 
(united) atoms is defined to be one in which no 
atom outside the set lies within their convex hull, 
at least for one conformation. The middle of Figure 
2 shows four of the 30 possible convex sets for the 
united atom representation of a-aminoisobutyric 
acid. Although there are 2". - 1 = 31 nonempty 
subsets in this example, the subset consisting of 
the four substituents of the central carbon atom is 
not convex, because the central carbon must lie 
within the convex hull (here a tetrahedron) formed 
by the substituents. With more complicated 
molecules, a greater fraction of the subsets tend to 
be eliminated this way. Our current approximation 
to finding convex sets uses the atomic coordinates 
for only one conformation, although it is possible 
for some sets to lose their convexity as the confor- 
mation is changed. 

The third step in simplifying the combinatorics 
is based on the observation that a binding mode is 
not a completely arbitrary assignment of each of 
the nn atoms to one or another of the n,  regions, a 
total of n : ~  mappings. Regardless of the quantita- 
tive sizes and relative positions of the regions, 
their convexity and the demand that each atom lie 
in exactly one region imply that every valid mode 
is a partition of the molecule, where a partition is 
defined to be a set of n,  mutually exclusive and 
exhaustive convex sets of atoms. The right side of 
Figure 2 shows one partition of a-aminoisobutyric 
acid for n ,  2 2. The advantage is that there are 
many fewer partitions than arbitrary mappings, 
typically on the order of the number of convex 
sets. Then in what follows, the only geometric 
features of the molecule that are important are the 
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distance intervals between convex sets and any 
chiral relations among them. For convex sets Ci 
and C j ,  

and for any partition involving convex sets Ci,  C j ,  
C,, and C, where there are a, E Ci, a ,  E C j ,  aK  E 

C,, and a L  E C, having ~ ( 1 ,  I, K, L )  # 0, we iden- 
tify this with the chirality of the corresponding 
convex sets: ~ ( i ,  j, k, I )  = ~ ( 1 ,  I, K, L). 

Out of all the binding modes corresponding to 
partitions, only a small fraction of them agree well 
enough in geometry between molecule and site to 
be permissible. Checking the agreement is done 
only in terms of interset versus interregion dis- 
tances and chiralities, which are necessary but not 
always sufficient criteria. The problem is further 
complicated by the conformation flexibility and 
simplifying united atoms and derived convex sets 
(represented as bounds on interset distances), the 
flexibility and shapes of the regions (represented 
as bounds on the interregion distances), and the 
partially determined site geometry (represented as 
ranges on interregion distance bounds). This leads 
to a curious three-way logic: A binding mode may 
be certainly allowed ("sure"), certainly disallowed 
("bad"), or indeterminate ("may"), depending on 
how the ranges on the interregion distance bounds 
will be contracted at a later time. See, for example, 
Figure 3.  

Suppose for a given molecule and site, a partic- 
ular mode assigns convex atom sets i and j to 
regions I and I, respectively. Then the three-way 

FIGURE 3. Schematic illustration of two regions for 
which the mutual distance limits have not yet been fully 
determined. The gray areas signify the ranges in the 
limits. Suppose an arrow represents the distance 
between two atoms in a molecule having a proposed 
binding mode that puts one atom in the left region and 
the other in the right. Then the top arrow is certainly bad 
as being too long, the middle arrow is may (depending 
on whether the limits will expand to the outer outlines or 
contract to the inner ones), and the bottom arrow is 
sure. 

assessment of the agreement in geometry for this 
pair of atoms is 

and 

(14) 

expressed in terms of Di, GAS) and D,,, E 

AAS)). Suppose, for example, that Di, j  = 

[4.5,7.81. Then the top arrow of Figure 3 corre- 
sponds to the second "bad" case in eq. (14) when 
ID,, , = [[ 0,2.1], [ 1.5,4.0]]. The middle arrow corre- 
sponds to the second "may" case when D,, = 

[[0,2.11, [4.0,7.011, and the lower arrow corre- 
sponds to "sure" when Dr, , = [[ 0,2.1], [5.0,7.0]]. 

If, in addition, the mode assigns convex atom 
sets k and 1 to regions K and L, respectively, all 
four regions are distinct, and there is an assigned 
x(i ,  j, k, I ) ,  then one must check the corresponding 
interregion ~ ( 1 ,  I, K, L )  for agreement. 

Then the entire mode is declared bad, sure, or 
may, depending on the outcomes for every pair of 
atoms [eq. (14)l and every chiral quartet of atoms 
[eq. (1511 in the following way. If any distance or 
chirality is bad, the whole mode is bad. If no 
distance or chirality is bad, but any one of these is 
may the whole mode is may. Only if all distances 
and chiralities are sure is the whole mode sure. In 
what follows, the bad modes are of little interest, 
but we will focus on S, the set of sure modes for a 
given molecule, and T, the set of may modes. 

SEARCH ALGORITHM 

Now that the general model for molecules and 
sites and their interaction has been presented, we 
can turn to the algorithm for finding site models. 
What follows has been implemented as some 4000 
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lines of C code collectively named ”Egsite” (en- 
ergy and geometry of site models). 

The first simplifying observation is that there 
are only relatively few critical values required for 
interregion distances in order to discriminate be- 
tween binding modes according to eq. (14). Given 
a set of nnl molecules interacting with n ,  regions, 
we first determine all A(D,,,) and u ( D , , ] )  for all 
pairs of convex sets within each molecule and plot 
these as points along the real number line. A9y 
two points closer than some tolerance (e.g., 0.1 A) 
are counted as a single point. Then the critical 
distances are the midpoints between these clusters 
as well as some value significantly less than all 
A( D,, (the effective zero distance) and some value 
significantly greater than all u( Dl, I )  (the effective 
infinite distance). Suppose, for example, the plot of 
intramolecular distance bounds is the ordered list 
[2.12,2.16,4.22,4.40,4.44,6.201. Clustering at a tol- 
erance of 0.1 produces the list of four clusters, 
[(2.12,2.16),4.22,(4.40,4.44), 6.201, which have mid- 
points between clusters of [3.19,4.31,5.321. Adding 
the effective zero and infinite distances produces 
the critical distance list, [2.02,3.19,4.31,5.32,6.30]. 
Then in what follows, the ranges on the bounds on 
all interregion distances may take on values cho- 
sen from the discrete, finite list of critical dis- 
tances, denoted by [ d o ,  d,, . . . , co]. This also elimi- 
nates technical questions about what to do in the 
case of equality in eq. (14), because any critical 
distance is always clearly greater than or less than 
any intramolecular distance, by construction. Chi- 
ralities among quartets of regions are already dis- 
crete, having values k 1 or being absent. 

The problem now is to determine the 2n: end- 
points of the ranges on interregion distance bounds 
and possibly introduce some region chiralities such 
that eq. (12) is satisfied for all n,  molecules. Such 
a site will be considered a solution even if its 
interregion distance intervals are wide. Because 
every binding mode assigns a region to each atom, 
the regions are hypothesized to account for all 
space. Physically, some of them may correspond to 
different portions of the receptor site, but one of 
them must amount to the solvent outside the re- 
ceptor. Accordingly, let r1 represent the solvent, 
and we may fix U ( D , , ~ )  = [ x , ~ ]  for all I = 

1,. . . , n,. This guarantees that every molecule has 
available at least the one sure mode, where all 
atoms fall into Y,. Of course, we have also fixed 
ND,, ,) = [ d o ,  d o ]  for all I = 1, . . . , n,. Otherwise, 
at the outset the site is taken to have no chiralities 
and all other MD,, I )  = u(D,, I )  = [ d o ,  m3. 

Finding a solution is viewed as exploring a 
decision tree, where the initial, maximally vague 
site is the root at the top. The first child B of any 
node A is a particular strict subsite of A, and the 
one or more other children are the various subsites 
in A \ B, as discussed above at eq. (10). At every 
node in the tree, the current site model is tested to 
see whether it is a solution, according to methods 
described below. If it is a solution (the node is 
“sure”), one may either halt at the first solution or 
backtrack up the tree to find all solutions eventu- 
ally. The second possible outcome at a node 
(“bad”) is that it is not a solution and, further- 
more, there is no possibility of a solution deeper 
down from here in the tree. In this case, one 
backtracks up a level in the tree and continues the 
search. The third and last possible outcome is that 
the node is ”may,” meaning that although the 
tests have not demonstrated a solution here, there 
is still a possibility that a solution may be found 
by searching further down the tree from here. In 
this case, a particularly promising subsite is cho- 
sen by a method described below to be the first 
child, and this consequently determines the ge- 
ometries of the other children. Because the search 
is carried out in depth first order, taking the first 
chld first, the first solution (if any) tends to be 
located quickly. A step down in the decision tree 
always corresponds to making a more restrictive 
subsite geometry. Because of the definitions of 
subsites and sure/bad/may modes, any sure mode 
in the parent node is still sure in the child, and any 
bad mode remains bad. However, zero or more of 
the may modes are changed into either sure of bad 
modes. Lowering some U ~ ( D , , . ~ )  or raising some 
A2(Dl, ,) may change the classification of no modes 
or move some from may to bad. Similarly, raising 
some Au(D,,,) or lowering some uA(D,, ,) can at 
most move some modes from may to sure. Adding 
a chirality can have either effect. Thus descending 
the decision tree not only makes the site geometry 
more definite, but it more clearly delineates how 
the molecules must interact with the site. 

Evaluation of a node in the search tree consists 
of a sequence of increasingly more time-consum- 
ing tests that are halted as soon as a sure/bad/may 
decision can be made. 

1. Because r1 is infinite, every molecule has at 
least one sure mode. If U ,T, = 0, then make 
test 2, else test 5. 

2. The site is so narrowly specified that no 
molecule has any may modes. Let C, = 
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3. 

4. 

5. 

6. 

7. 

8. 

U ,(g(m, p) I u(G(m))l p E Sm} be the set of 
linear constraints on the ws requiring the 
affinity of all sure modes to be less than the 
greatest observed affinity. If C, has no solu- 
tion (i.e., the constraints are mutually incon- 
sistent), the node is bad. Otherwise try test 3. 
If there is one pg) E S, for each molecule 
such that each of the n ,  sets of inequalities 
C, U {A(G(m)) I g ( m ,  p:))} is consistent, 
then try test 4. Otherwise, at least one of 
these sets is inconsistent and the node is bad. 
If there is some combination of one pg) E S, 
for each molecule such that C, U 
(U ,{h(G(m)) 5 g ( m ,  p:))}) is consistent, 
then the node is sure. If there is no such 
combination, then the node is bad. 
From test 1, it has been established that ev- 
ery molecule has at least one sure mode, and 
at least one molecule has at least one may 
mode. As in test 2, if C, has no solution, the 
node is bad. Otherwise try test 6. 
As in test 3, if C, can be augmented by one 
sure lower bound, considering each molecule 
independently, go on to test 8. Otherwise try 
test 7. 
Consider the following test applied to each of 
the n,  molecules independently. Is there one 
p:) E T, for molecule m such that when the 
site geometry is temporarily minimally mod- 
ified to make it sure (thus changing S to S’ 
for all molecules), the inequalities C,, U 
(A(G(m)) I g(m,  pg))} are consistent? If the 
test is true for all molecules, then the node is 
may. Otherwise it is bad. 
As in test 4, if there is some combination of 
one sure lower bound for each molecule that 
can be simultaneously added to C, and still 
be consistent, then the node is sure. Other- 
wise it is may. 

Clearly the node evaluation procedure is com- 
plicated, but the brief list of tests given here out- 
lines the logic without getting lost in the details. 
Some additional comments may make the individ- 
ual steps seem less cryptic. Remember that search- 
ing for a solution amounts to descending a tree of 
these nodes, proceeding to greater geometric re- 
strictions, which can also be viewed as moving 
may modes to the sure and bad categories. Test 1 
asks whether this procedure has terminated by 
finally eliminating all may modes for all molecules. 
If so, tests 2, 3, and 4 in the left branch of Figure 4 
are the relatively clear-cut questions to ask, as 

(1) No m y  f o r d ?  
ffilse me 

(2) Surc UD- inconsistent? .. 

fa d consistent? 

SUIC Bnd 

FIGURE 4. Decision tree for evaluating a node in the 
geometric search tree. See text for details. 

opposed to the alternative versions in tests 5, 6, 7, 
and 8 along the right branch. Now for a solution 
(i.e., a sure search node), all sure modes of each 
molecule must bind no more strongly than the 
experimental upper limit, and there must be at 
least one sure mode for each molecule that binds 
more strongly than the experimental lower limit. 
Consequently, test 2 asks whether all the current 
sure modes are compatible with the requirement 
that no molecule can bind more strongly than its 
experimental upper limit, regardless of which 
mode it tries. Finding ws that satisfy the set of 
inequalities C, is equivalent to proving compati- 
bility. Failing test 2 certainly determines the node 
is bad, regardless of what mode might be chosen 
as optimal for each molecule, because those choices 
will only add to the set of inequalities to be solved. 
Test 3 makes a first attempt at adding these extra 
inequalities by treating each molecule indepen- 
dently. If for some molecule m there is no sure 
mode p(,) whose calculated binding can be raised 
above the experimental lower limit without violat- 
ing some upper bound in C, due to any of the 
molecules, then there is no hope of a solution. 
Only in test 4 do we try the much more difficult 
problem of designating one sure mode as pc) for 
each molecule simultaneously and adding these 
constraints to C,. Because each molecule may have 
hundreds of sure modes, there are many combina- 
tions to try, so that proving a node bad can be 
tedious, whereas the first successful combination 
of p:)s is sufficient to prove the node is sure. 

Tests 5, 6, 7, and 8 run similarly to 2, 3, and 4, 
but now the possibility exists that a child of this 
node (a more restricted subsite) may be sure, even 
if this node is may. Because any child node will 
have at least this current set of sure nodes and 
maybe more, test 5 checks the mutual consistency 
of C, as a first necessary condition. Test 6 contin- 
ues examining the adequacy of the current sure 
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modes by seeking one p:) to add a lower bound 
energy constraint to C, for each molecule indepen- 
dently. Passing test 6 suggests that the current set 
of sure modes may prove adequate for a solution, 
but failing it leaves open the possibility that there 
exists a child search node in which some may 
modes have been moved to the sure category such 
that the child will pass test 6. Test 7’s job is to 
examine this latter possibility by an inexpensive, 
one-molecule-at-a-time calculation. For each 
molecule in in turn, it chooses a may mode to be 
the pc) corresponding to which a lower energy 
bound will be added to the set of all upper energy 
bounds from all molecules. The reason it is a may 
mode is that one of the two may cases of eq. (14) 
was true for at least one pair of convex sets or the 
may case of eq. (15) was true for at least one chiral 
quartet of convex sets. To make this mode sure 
temporarily, one would have to tighten the corre- 
sponding interregion distance intervals just enough 
to pass the sure conditions of eq. (14) and add any 
required chiral relations among the regions. The 
effect of these minimal site modifications is to 
produce a subsite in which p:) is sure for molecule 
m while possibly moving other may modes for all 
the molecules into the sure and bad categories. 
Therefore, the corresponding new set of energy 
upper bound inequalities, Csr, is combined with 
the one energy lower bound inequality and 
checked for consistency. Passing test 7 still does 
not prove there is some child node that is sure. 
Therefore, the current node is marked may, so its 
children will be examined later in the tree search. 
Finally, test 8 follows up on the success of test 6, 
checking that the current sure modes may be suffi- 
cient to prove there YS a solution. Like in test 4, the 
many combinations of pc’s make this a much 
more expensive test than 6. Failing 8 still leaves 
open the possibility of a successful child node, so 
the current node is only marked as may. 

Any time a search tree node is declared may by 
test 7, there is at least one molecule rn that failed 
test 6 but passed test 7 for a particular mode 
p:) E T,. Making this mode sure involves creat- 
ing a tailored subsite, which then becomes the 
designated site geometry of that node’s first child. 
In the much rarer case (ca. 200 times rarer in our 
experience) that the node is declared may by test 
8, we choose the subsite of the first may mode of 
the first molecule that has one. Thus the initial 
descent of the decision tree from parent to first 
child always corresponds to moving more and 
more may modes to the sure category rather than 
moving them to bad, as long as no chiralities are 

FIGURE 5. An artificial example of the feasible region 
for w E 9* delineated by heavy lines and arrows 
corresponding to nonredundant inequalities. Inside the 
feasible region, light lines represent the level lines for 
g(m,  p) for one particular binding mode p, and the light 
arrow shows the gradient of g(m, p). One redundant 
inequality is also indicated. 

introduced. Eventually backtracking and trying 
subsequent children has more the effect of convert- 
ing may modes to bad. 

Although it is theoretically possible to fail tests 
2 or 5, this almost never occurs in practice. Clearly 
the most time-consuming steps are decisions 4 and 
8, but these are performed seldom, typically just to 
verify the existence of a solution. Test 7 is the 
decisive one generally, in which there may be 
many hundreds of attempts to create a set of 
several hundred inequalities in a dozen variables 
and seek a solution for them. Standard linear pro- 
gramming by the simplex algorithm either locates 
a set of w, for i = 1, ..., n,  that satisfy all the 
inequalities, or it determines unambiguously that 
there is no such solution. (Numerical instabilities 
can cause problems here with naive linear pro- 
gramming code. We currently use an interior point 
method as implemented in the LOQO program.) 
When the inequalities are consistent, there is not 
only a solution point in 9 n r n p ,  but a whole finite 
or infinite polyhedron, called the feasible set, 
bounded by hyperplanes corresponding to some of 
the inequalities (see Fig. 5). These are referred to as 
the nonredundant inequalities because altering any 
one of them would change the feasible set. We 
take the energetic solution to be not just the one 
set of w, values, but the whole feasible set as 
described by the set of nonredundant inequalities, 
C”. Denote the feasible set by W* = {w E 

9 n r n p l ~ , ~  < b, Vcz,  b, E C*}. In the terminology of 
linear programming, we identify the nonredun- 
dant inequalities by a series of ”phase 2” mini- 
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mizations of the slack variable of each inequality 
for which the redundancy status is yet unknown. 
If the minimal value of the slack is zero, that 
inequality is nonredundant, as are any that are in 
the basis at the solution. The approach is simple 
and reliable, but not the emost efficient. As there is 
typically a lot of degeneracy in the inequalities, 
so-called weakly redundant inequalities may be 
declared nonredundant by this procedure, but the 
feasible set so described is still correct. 

PREDICTION 

The successful outcome of the search algorithm 
is the geometry of the regions in terms of chirali- 
ties and ranges on interregion distance bounds and 
the energetics in terms of W *. Because the feasible 
region delineated by C* is larger than a single 
point, and because the geometry of the site may 
permit several different binding modes for each 
test molecule, the predicted binding is not a single 

affinity, which in general occur for different bind- 
ing modes. 

Equation (12) gives the criterion for agreement 
between experiment and calculation when the pre- 
dicted binding is a single number. Instead, we 
now have to compare the experimental interval, 
G(m), with the calculated interval, G*(m). If the 
calculated range lies entirely within the experi- 
mental one, then we judge the site model to agree 
with experiment completely. Otherwise, there are 
two kinds of disagreement: benign excess calcu- 
lated range and outright error. In the excess range 
case (denoted by "xs" in Table I in the Results 
section), the calculated range overlaps the experi- 
mental one to some degree but extends beyond it, 
so the model is not necessarily in disagreement, 
but it cannot exclude erroneous binding affinities. 
As an extreme example, [ -w,  +w]  is a prediction 
that covers the experimentally observed range but 
is so vague as to be trivial. In summary, we define 
the prediction error, E(m), by 

value, but a range. 
To put it more precisely, consider the prediction 

of binding for molecule m, where the geometry of 
the site model permits a nonempty set of sure 
modes, S ,  # 0. Then for any p E S,,, g(m,  p) is a 
linear function of w. Now maximizing or minimiz- 
ing g(m,  p) subject to C* is just the linear pro- 
gramming problem illustrated in Figure 5, result- 
ing in the greatest and the least calculated binding 
affinity, respectively, for that mode. In the figure, 
these values of w are the vertices marked "max" 
and "min." Of course, for different p the linear 
function to be optimized will be different in gen- 
eral, resulting in locating possibly different ver- 
tices of W* corresponding to different extremal 
values of the calculated affinity. Let 

A(G*(m)) = max min g ( m ,  p)  

u(G*(m>) = rnax max g(m,pu)  

y € s ,  W € W *  

@ € S ,  W € W *  
(16) 

be the calculated lower and upper bounds on the 

where the first case covers correct predictions, the 
second and third outright errors, and the fourth 
excess errors. 

Results 

SIMPLE EXAMPLE 

Before considering the performance of the algo- 
rithm on real experimental data, it is helpful to 
examine a tiny, artificial test case. Suppose we 
have two molecules consisting of two important 
functional groups "A" apiece separated by unim- 
portant spacer groups. In the molecule denoted by 
"AA," the spacer is short, so that the distance 
between A's is 1 length unit; the other molecule, 
"A-A," is 3 units long. Let the observed binding 
affinities be G( AA) = [l, 21 < G( A - A )  = 16/71 in 
some arbitrary units. Let n p  = 1 and v, = 1, so 
that w, is just the contribution to binding when an 
A group lies in region ri. The objective is to calcu- 
late the simplest and vaguest site model that gives 
E(AA) = E(A - A )  = 0. Simple models involve 
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few regions, and vague ones have few chiralities, 
wide interregion distance intervals, and broad W * . 

Regardless of the complexity of the site model, 
the only critical distances can be assigned formal 
values of [0,2,4], where 4 is effectively infinite. 
The simplest site has one region, r , ,  where the 
method demands a fixed = [[0,01,[4,411. We 
will write binding modes as ordered tuples (i, j ) ,  
where the first A lies in ri and the second in rI. 
The sets of sure modes are S ,  = ((1,l)) and S, - A  

= ((1, l)}, whereas the sets of may modes TAA = 

TAPA = 0. Because each molecule has only a sin- 
gle sure mode, the unique set of inequalities to be 
solved in step 4 of the search algorithm is just 
{2w, < 7, 2w, < 2, 2w, > 6, 2w, > 1). Clearly 
these are inconsistentm, so that node in the search 
tree is bad; and because it is the only node, there is 
no site model possible with only one region. 

The next step up in complexity is two regions, 
starting the search tree with the maximally vague 
geometry compatible with an infinite first region 
-namely, D l , l  = “0,  01, [4, 411, D1,2 = 

“0,41, [4,411, and D2, = “0,01, [O, 411. With only 
two regions in three spatial dimensions, there can 
be no chiralities. Then S A A  = ((1, I)), S,+, = 

((1, l)), T A A  = ((1, 21, (2, 11, (2,211, and T A - A  = 

((1,2), (2,1), (2,2)). This passes step 5 because {2w1 
< 7, 2w, < 2) is consistent, but in test 6 the intro- 

%z 2 9 > 1  kWI WI + %<7 

\ 
w 1 + 1 *  

FIGURE 6. The final site model corresponding to the 
short AA dimer binding weakly and the long A - A 
isomer binding strongly. At the top, the regions are 
depicted as circles with the distance scale shown for 
reference. Sure binding modes are displayed. Below is 
the energy parameter space showing the nonredundant 
inequalities defining the hatched feasible region. 

duction of the lower bound for A - A creates the 
inconsistent set of inequalities (2w1 < 7,2w1 < 
2,2w1 > 61, forcing test 7. Test 7 is passed by 
altering temporarily A(D,,,) to [0,2] so that still 
S A A  = ((1,1)), but now S,.-* = ((1,1), (1,2), (2,l)). 
This suggested allteration is passed back to the 
search tree, which consequently branches to either 
A(D,,,) = [0,2] or [4,4]. Taking the first branch, 
test 8 declares the node to be sure for the choice 
pya = (1,l) and p$*’, = (1,2), corresponding to 
the consistent set of inequalities (2w, < 7, w, + w2 
< 7,2w, < 2, w, + w2 > 6,2w, > l}. Then elimi- 
nating the redundant inequality, we have C” = 

{w, + w2 < 7,2w1 < 2, w1 + w2 > 6,2w, > 1). 
Checking the solution by “predicting” the training 
set, we find G*( AA) = G( AA) and G * ( A  -- A )  = 

G ( A  - A). Calculating sure modes amounts to as- 
suming the effective Dl, I = [[ uA(D,, ]), uh(D,, ,)], 
[ Au(D,, ,), Au(D,, ,)]I, so the picture of the site model 
consists of a large r ,  having a weak w1 E [ O  5,1.01, 
separated in space from r2 by a gap too long for 
AA to span but short enough for A - A. Then r2 
is so small that it will accept only a single A 
group, but it has a sufficiently strong w2 to make 
g(  A - A, (1,2)) in the range [6,71. 

COCAINE ANALOGUES 

For the sake of comparison, we considered the 
same set of 20 stereoisomers and analogues of 
cocaine binding to a receptor site in brain cell 
membranes, as we had studied earlier.” All 
molecules were simplified as before by grouping 
all atoms of each molecule into five superatoms: 
the atoms and substituents at positions 1 and 7; at 
4, 5, and 6; at 2; at 3; and at 8 (see structure in 
Table I). The experimental binding 
were given as best estimated IC,,,, so the binding 
ranges G in Table I are -log(IC,,) k the previ- 
ously estimated errors. We took the same final 
training set of eight compounds (1,2,3,4, 7,12,15, 
and 17), leaving 12 test compounds. The only dif- 
ference is that the earlier Egsets program has been 
replaced by the current Egsite program. 

Once the training set was chosen and the group- 
ing of atoms into superatoms was selected, Egsite 
requires no manual intervention. Convex sets are 
calculated once and for all for each molecule. Then 
solutions are sought for first one region, then two, 
three, and finally four. For a given number of 
regions, the partitions of each molecule are calcu- 
lated, which determines the full set of binding 
modes. Then the solution tree was searched until 
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TABLE 1. 
Potencies of Cocaine Analogues for Inhibition of the Binding of 13H]WIN-35428 at the Dopamine Transporter. 

.. 

3 

Observed Calculated Error 
G b  G* E 

6 

Moleculea Common 
configuration name Rl R2 R3 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

R 

S 

R 

S 

R 

S 

R 

S 

R 

R 

R 

R 

R 

R 

R 

R 

R 

R 

R 

R 

Cocaine 
(C) 

Cocaine 

Pseudo- 

Pseudo- 
C 

C 
Allo-C 

Allo-C 

Allo Pseudo- 

Allo Pseudo- 
C 

C 

Tropa-C 

Benzoyl- 
ecgonine 

Me 

Me 

Me 

Me 

Me 

Me 

Me 

Me 

Me 

Me 

Me 

Me 

Me 

Me 

p-C0,Me 

p-C0,Me 

a-CO,Me 

a-C0,Me 

P-CO,Me 

p-C0,Me 

a-CO,Me 

a-CO,Me 

P-COzPh 

P-CO, 
CH,CH,Ph 
-H 

P-COZH 

P- 
CO,(Me),- 
(p-NHZ-Ph) 
P-CHZOH 

CH, Ph p-C0,Me 

H p-C0,Me 

Me p-C0,Me 

Me p-C0,Me 

Me p-C0,Me 

Me p-C0,Me 

pO(C0)Ph 

P-O(CO)Ph 

P - 0  (CO) Ph 

p-O(C0) Ph 

a-O(CO)Ph 

a-O(CO)Ph 

a-O(CO)Ph 

a-O(C0)Ph 

p-O(CO)Ph 

p-O(CO)Ph 

P-O(CO)Ph 

p-O(CO)Ph 

P-O(C0) Ph 

P-O(CO)Ph 

p-O(C0) P h 

p-O(CO)Ph 

p-Ph 

p-Ph-p-F 

P-Ph-P-NH, 

p-Ph-p-OMe 

(6.72, 
7.821 

5.471 

5.631 
(4.38, 
5.471 
(4.94, 
6.031 
(4.74, 
5.831 
14.28, 
5.371 
i3.90, 
4.991 
16.68, 
7.781 
16.34, 
7.431 
(5.02, 
6.111 
13.44, 
4.531 
(6.88, 
7.971 

15.98, 
7.071 
(5.91, 
7.001 
(6.25, 
7.341 
17.37, 
8.461 
17.53, 
8.621 
17.34, 
8.431 
f7.83, 
8.921 

14.53, 

14.53, 

16.72, 
7.821 
14.53, 
5.471 
14.53, 
5.471 
14.53, 
5.471 
17.24, 
11.081 
17.24, 
11.081 
14.53, 
5.371 
14.53, 
5.371 
17.43, 
13.121 
(6.55, 
16.311 

10.081 
13.56, 
4.531 
t6.76, 
21.531 

(3.10, 
4.551 
(5.91, 
7.001 
(4.52, 
8.981 

8.461 
(7.32, 
9.271 
l4.63, 
7.961 
[6.72, 
7.881 

14.77, 

(7.37, 

0 

0 

0 

0 

+1.20 

+1.40 

0 

0.38 xs 

5.34 xs 

8.88 xs 

4.22 xs 

0 

13.68 
xs 

- 1.44 

0 

3.38 xs 

0 

0.86 xs 

2.71 xs 

1.11 xs 

aNurnbering as in Table 1 of ref. 17. 
bData from Carrol et a1.'8-2' as - log(lC,,) (pM). 
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TABLE 11. 
First Site Model Found for the Training Set of Eight Cocaine Derivatives. 

14.04, m1 

[O, 01 

- 13.65 
0.76 

l4.32, m] [4.60, MI 
[4.32,8.50] [2.86,2.861 

[5.33,6.191 
[O, 2.861 

[0,01 

-4.16 1.55 
- 0.04 0.57 

The intervals are the interregion distance intervals in A. Also shown is a representative set of values for the hydrophobicity (HP) and 
molar refractivity (MR) interaction energy parameters associated with each region. At the bottom, the one required interregion chiral 
relation is indicated. 

either a solution was found or all branches termi- 
nated in “bad” nodes. Egsite discarded the one, 
two, and three region sites quickly and then lo- 
cated the first four-region solution in 330 seconds 
of central processing unit (CPU) time on a Sun 
Sparcstation 2 (compared to ca. 2 months’ CPU for 
Egsets). The solution’s most conservative interre- 
gion distance intervals and representative interac- 
tion parameters arc. given in Table 11. The full 
description of the eight interaction parameters in 
terms of 26 linear inequalities has been omitted. Its 
predictions are given in Table I in terms of calcu- 
lated G* and errors E, where of course E = 0 for 
all members of the training set. The best site model 
we had been able to find with Egsets mispredicted 
compounds 14,19, and 20, and it was unable to fit 
13 into the site structure at all. Now Egsite’s first 
solution mispredicts compounds 5, 6, and 14, all 
compounds certainly are accommodated due to 
the large first region, and the remaining nine pre- 
dictions all agree with the observed binding inter- 
vals but extend beyond them by varying amounts. 
As an extreme example, Egsite predicts that 13 
should bind at least rather well, and possibly ex- 
traordinarily tightly; but from this explanation of 
this training set, it is impossible to be more pre- 
cise. 

In our previous work, Egsets produced literally 
thousands of relatively narrowly specified site 
models, and searching through these for ones of 
high predictive power was a great challenge. Now 
Egsite produces only 52 solutions for this training 
set, of which 27 are unique. The other solutions 
give predictions of quality similar to that pre- 
sented here. The difference is that Egsite solutions 

are much more broadly specified and correspond 
to whole classes of Egsets solutions. 

According to the abstract mathematical rules of 
the game, Table I1 is indeed a solution, but at this 
stage of development of the method, a detailed 
physical interpretation of the result is a dubious 
undertaking. Although r2 and rg have very small 
diameters, they can still be occupied by a single 
superatom apiece. In at least one direction r4 has a 
moderate size, whereas y1 is very large without 
approaching any of the other regions closely. Tech- 
nically these distance intervals are not exactly em- 
beddable in three-dimensional space, and intro- 
ducing such a constraint would constitute a future 
improvement of the method. On the energetic side, 
r1 does not have zero interaction with all types of 
atoms, leaving the possibility that a large molecule 
(which could certainly always fit in r l>  would 
have a predicted extremely favorable or unfavor- 
able binding to the site. Because the experimental 
results we are trying to fit are generally the mea- 
sured binding at the site relative to being free in 
solution, it would be reasonable to introduce a 
constraint that all ws for r1 be fixed to zero. 
Pending these and other improvements, we can at 
least conclude that Egsite is capable of handling 
some realistic data sets with modest computa- 
tional requirements. This abstract approach with 
interval analysis and ternary logic is not only con- 
ceptually intriguing, but also useful. 
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