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The synthesis, by two different reaction path-
ways, of boron-modified polysilylcarbodi-imides
of general type {B[CH4SI(R)NCN]3}, (R=
singly bonded organic ligand) and the plastic-
forming and the thermal behavior of these
polymers are described. Compounds
{B[C 2H4S|(R)NCN]3}n [23., R=H; 2b, R= CH3,
2c, R=(NCN) ¢ can be obtained by treatment
of the vinyl-substituted polysilylcarbodi-imides
[(H2C=CH)(R)SINCN], [1a, R = H; 1b, R = CHj3;
1c, R=(NCN) g with borane dimethylsulfide
BH3-S(CHs),. The polysilylcarbodi-imides 1a—1c
themselves are accessible via the reaction of
vinyl-substituted  chlorosilanes  (H,C=CH)-
(R)SICl, with cyanamide HoN-C=N in the
presence of pyridine or by a non-oxide sol—gel
process of vinylated chlorosilanes and bis(tri-
methylsilyl)carbodi-imide, (H3C)3SiN=C=N-
Si(CH3)s. In the second method for the
synthesis of 2a-2c, hydroboration of vinyl-
substituted chlorosilanes (HBC=CH)(R)SiCl,
with borane dimethylsulfide, borane trimethyla-
mide or borane triethylamide to vyield the
tris[(chlorosilyl)ethyl]boranes B[C,H 4Si(R)Cl]3
(3a, R=H; 3b, R=CHs; 3c, R=Cl) is followed

modified polysilylcarbodi-imides are suitable
precursors for the preparation of dense bulk
ceramics. Therefore, the preparation of green
bodies of the hydroborated polysilylcarbodi-
imides 2a—2c by plastic forming (PF) is de-
scribed. A series of experiments points to the fact
that the microstructure of the as-obtained
ceramic monoliths obtained by subsequent
thermolysis of the plastic-formed green bodies
is strongly influenced by the conditions during
plastic forming. © 1998 John Wiley & Sons, Ltd.

Keywords: precursor; ceramic; thermolysis;
silicon; carbodi-imide; boron; hydroboration;
plastic forming

Received 1 July 1997; accepted 1 August 1997

1 INTRODUCTION

Boron-containing polycarbosilazan&g, carbon-
containing polyborosilazangs and silylated bor-
azine derivative§'? have been shown to be

by treatment of the as-obtained compounds with
bis(trimethylsilyl)carbodi-imide, which results
in the formation of the hydroborated polysilyl-
carbodi-imides 2a—2c. The thermogravimetric
behavior of the polymers la-1c and 2a—2c up to
230CC is reported. It is shown that boron-

excellent precursor molecules to ceramic composite
materials in the quaternary system Si—B—C-N.
These molecules in general consist of Si—N
skeletons, which are more or less crosslinked by
B, B—-N, B—C or borazine units, carrying different
substituents bonded to the silicon centers. The
synthesis of the Si—B—C—N precursors is commonly
* Correspondence to: M. Weinmann, Max-Planck-Instititr fu realized either by reaction of chlorosilanes or
Metallforschung, Pulvermetallurgisches Laboratorium, Heisen-chloroboranes with amines or ammoﬁTé,or by

bergstralle 5, D-70569 Stuttgart, Germany. - . . .
Contract/grant sponsor: Deutsche Forschungsgemeinschaft (DFG&/‘Ehydrogenatlve coupllng reactions of silazanes

Contract/grant sponsor: Japan Science and Technology Corporatio#ith derivatives of borane or of boraziffe:
(sm. The polymeric precursors are then transformed
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into amorphousSi—-B—C—N ceramic materialsby

subsequenthermolysegqfor selectedreviews,see
Refs>~*® and literative cited therein). Due to the

considerablesensitivity of these compoundsto-

wardsmoistureand oxygen,the ceramizationstep
hasto be performedin aninert-gasatmosphereln

some cases,the as-obtainedSi—-B—C—N ceramic
compositeexhibit excellentthermochemicaprop-

erties, which can be attributedto the presenceof

nanocrystalline SIC and SisN, surrounded by

turbostratic BN(C) segregation$®>*°>~° These
inhibit the thermodynamicallyfavoreddecomposi-
tion of the Si—-B—C—Nceramicskinetically. There-
fore, the multicomponentSi—-B—C—Nceramicsare
interestingmaterialsfor high-temperaturapplica-
tionsin industry.

Moreover, we have shown that solutions of
polymers containing the elementssilicon, boron,
carbon, nitrogen and hydrogen of convenient
viscosity are applicablefor coatingson non-oxide
compositamaterialsn orderto protectthesubstrate
efficiently from oxidationandcorrosion,especially
at very high temperature§®-2?

In this study,we describewo differentsyntheses
and the plastic-forming and high-temperature
behaviorof a new classof Si—-B—C—Nprecursors,
the boron-modified polysilylcarbodi-imides. In
contrastto known Si—B—C-N precursors,these
compoundsconsistof repeatingSi-N=C=N units,
which are crosslinked by C-B—-C bridges®*%*
Dependingon the monomericstartingcompounds
(H.C=CH)(R)SiC} (R=H, CHs, CI) and the
reaction pathwayapplied, ceramic materialswith
variouscompositionsmicrostructureandthermal
behaviorsare obtained.

PRECURSOR SYNTHESIS

Synthesis of vinyl-substituted
polysilylcarbodi-imides

We showedpreviously that boron-modifiedpoly-
silylcarbodi-imides are accessible by different
reaction sequence$>?* A possible synthesisof
the title compounds{B[C ;H;Si(R)NCNL}, [2a,
R=H; 2b, R=CHg; 2c, R=(NCN)p g is givenby
hydroboratiorof vinylatedpolysilylcarbodi-imides
of the [(HC=CH)(R)SINCN}, type (R=singly
bonded organic ligand) with suitable borane
compounds, e.g. borane dimethylsulfide,
BH3*S(CHz),. The synthesesf vinyl-substituted
polysilylcarbodi-imides [(H>C=CH)(R)SINCN},

© 1998JohnWiley & Sons,Ltd.

[1a, R=H; 1b, R=CHg; 1¢c, R=(NCN)q g them-
selves,which have beendescribedpreviously for
compound 1b,2°?%27 can be performed by the
reaction of (H,C=CH)(R)SiC) (R=H, CHs, Cl)
with H,N-C=N in the presencef pyridine (Py) in
tetrahydrofurar(THF) solution, Egn[1].

Ho gz CH HogzCH2
[ THF, 0°C [}

Cl-Si-Cl  +H;N-C=N+Py Si—-N=C=N [1]
I — PyeHCI 1
R R n

= | 1aR=H
R=H,CHs, C 1bR = CH,
1c R = (NCN)g5

Thereforethevinylchlorosilanesredissolvedn
THF and a pyridine/cyanamidesolution is added
carefully at 0°C. After appropriatework-up, the
polysilylcarbodi-imides 1la-1c are obtained as
colorlesswaxy solids (1a, 1b) and as a colorless
powder(1c). Whereasla and1lb canbeisolatedin
highyields(1a, 85%;1b, 78%),themaximumyield
for the polysilylcarbodi-imidelc was15%via this
reactionsequenceThis is possibly causedby the
highercrosslinkageandthereforethe lower solubi-
lity of this precursorcomparedwith polymersla
and 1b. This finally resultsin a significantproduct
lossduring thefiltration.

Furthermore,compoundsla-1c are also avail-
able by the reactionof bis(trimethylsilyl)carbali-
imide, which itself was synthesizedrom cyana-
mide, trimethylchlorosilae and pyridine, with the
corresponding vinylchlorosilanes (H,C=CH)(R)
SiCl, (Eqn [2]). As-obtained bis(trimethylsilyl)
carbodi-imide containstraces of pyridine which
catalyzethetranssilylation adequatelyln compar-
ison, the use of pure bis(trimethylsilyl)carbali-
imide is lesseffectivefor this reaction.Hence,the
reactiontimesincreaseconsiderably.

HogrCHe H. .CH,
v . [Py], 25°C !
Cl-Si=Cl  + (H3C)3Si-N=C=N-Si(CHz); ————» Si—-N=C=N 2]
i — (HsC)3SiCI |
R R n
R=H, CH; Cl 1aR=H
1bR=CH,
1cR=(NCN)gs

We haveshownthatthis trans-silylation reaction
can be carried out under different conditions.
Performingthe synthesisof compoundsla-1c in
toluenesolutionsresultsin the precipitationof the
productsas colorlesspowders(1la, 70%; 1b, 58%;
1c, 78%). Therefore the reactionmixtureshaveto
be refluxedfor sevendaysor longer.

Much more convenientis the synthesis of
compoundsla-1c without solvent. The eductsare
carefully mixed at room temperature even stoi-
chiometrically [1a, 1b, 1 mol bis(trimethylsilyl)-
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carbodi-imideper mol (H,C=CH)(R)SIiC}; 1c, 1.5
mol bis(trimethylsilyl)carbdli-imide per mol
(H,C=CH)SIiCk] or with a slight excess of
bis(trimethylsilyl)carbdli-imide and stirred for an
additionalthreehours.To quantifythereaction the
materialis thenslowly heatedo 90°C to distill off
built-up trimethylchlorosilaneTo removeresidual
(H3C)sSiCl andpossiblyexcesis(trimethylsilyl)-
carbodi-imide the as-obtainegholymersarefinally
dried at 70°C in high vacuum.The yields of the
productsare 80% (1a), 87% (1b) and85% (1c).*
Theseinvestigationsindicate that the syntheses
of compounds of the [(H,C=CH)(R)SINCN]},
type [1a, R=H; 1b, R=CHz; 1c, R=(NCN)yg
are best performedby reactingthe chlorosilanes
(H-C=CH)(R)SIiC} and bis(trimethylsilyl)carbodi-
imide without solventeventhoughthe synthesesf
la-1c by the reaction of cyanamide and the
chlorosilanesare somewhatcheaper.The main
advantage®f the transsilylation reactions,com-
paredwith the synthesisof the polysilylcarbodi-
imides by a salt-elimination process, are the
simplified work-up andthe possibility of isolating
the more highly crosslinkedpolymer 1c in out-
standingyields. This, andespeciallythe possibility
of avoiding use of solvent, make thesereactions
interestingfor industrialapplications.

Synthesis of Si-B-C-N precursors
from polysilylcarbodi-imides

The as-obtained polysilylcarbodi-imides carry
vinyl units which can easily be hydroboratedwith
suitableboranereagentslt wasfound that borane
dimethylsulfideaddsonto the vinyl units fast and
selectively; an addition onto the carbodi-imide
grouping as describedby Kienzle et al., who
applied higher temperature$;**** could not be
observed.

Thereforethe vinylated polysilylcarbodi-imides
were dissolved (1a, 1b) or suspended(1c) in
toluene/THF, and a 2v solution of borane di-
methylsulfidein toluenewasaddedslowly at 0°C.
Thereactionmixturescloudedimmediatelyandthe
products{B[C ;H4Si(R)NCNL}, [2a, R=H; 2b,
R =CHs; 2¢, R=(NCN)o 5] were directly precipi-
tatedfrom thesesolutionsdueto their high degree
of crosslinkagdEqn|[3]). After beingstirredfor an
additional2h at 25°C the solventanddimethylsul-
fide could be removedin high vacuumto yield the
boron-modified polysilylcarbali-imides quantita-
tively as colorlesspowders.No further work-up
wasperformed.

© 1998JohnWiley & Sons,Ltd.

T.
H_ _CH, _B.. .CHy

\?/ toluene/THF,0°C R C'? e 3
3 {i- N=C=N j +n BHge S(CHy), —Twz—» %SA N=C: N—}n [3]
1aR=H R’ = [C,H4Si(R)NCN]
1R = (NCNos 2bR - CH,
2cR=(NCN)g5

Thelessreactiveaminetrialkylamidesof general
type RsN*BH 3 (R=H, CHs, C,Hs) could alsobe
used,but in this casethe reactiontimesincreased
considerablyand for a complete permutationthe
reactionmixtureshadto be refluxedover a period
of severaldays.

The structuresof the boron-modifiedpolysilyl-
carbodi-imidesobtainedfrom the vinyl-substituted
polymers[(H,C=CH)(R)SINCN]}, [1a, R=H; 1b,
R=CHs;; 1c, R=(NCN)yg could be assigned
unequivocallyby spectroscopienethods Whereas
the C=C stretchingvibrationsin the FT IR spectra
of compoundsla-1lc are observedat approx.
1595cm %, theseabsorptionsignalsare not found
in the correspondingproduct spectra.Moreover,
compounds2a—2c¢ show very strong absorption
signals for the asymmetric stretching of the
carbodi—imidegroupingsat 2236 (1a), 2232 (1b)
and 2168cm™~ (1¢), respectively.This indicates
thatthehydroboratiortakesplaceexclusivelyatthe
vinyl units. Neitheradditionto the N=C=N group-
ing nor B—H stretchingabsorptionis observedby
thisspectroscoPimethodSimilarobservationsan
be madein the **C{*H} CP-MAS (cross-polariza-
tion/magicanglespinning)NMR spectraWhile the
olefinic carbonatomsof compoundsla-1c show
resonancesignals at approx. 130-135pm, the
signalsof the correspondingcarbonatomsof the
boron-modified products 2a-2c are found at
approx. 5.0 (CHs), 10.0 (CH,) and 25.0ppm
(CH), whereby the boron-bondedcarbon atoms
are detectedwith the typical line broadening.
Moreover,anadditionof the hydroboratiorreagent
boranedimethylsulfideto the carbodi-imideunit,
which would directly be reflectedin a chemical
shift of the carbodi-imide carbonsin 1a-1c at
approx. 122-12%pm to higher field, is not
observed.

Synthesis of Si-B-C-N precursors
from tris[(chlorosilyl)ethyllboranes

An alternativeprocesswhich finally resultsin the
formation of boron-modifiedpolysilylcarbodi-imi-
desinvolvesreactionof tris[(chlorosilyl)ethyl]bor-
ane$® of the generaltype B[CzH4SI(R)CE]5 (3)
with bis(trimethylsilyl)carbodi-imid&=*The pro-
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ducts3 areavailableonaddingatoluenesolutionof
boranedimethylsulfide,boranetrimethylamideor
boranetriethylamideto thecorrespondinginylated
chlorosilanegH,C=CH)(R)SiC} (R=H, CHs, Cl)
in a 1:3 molarratio (Eqn[4]). After distillation in
vacuum (10 ?mbar: 3a, 102°C; 3b, 105°C; 3c,
115°C), compoundsB[C,H;Si(R)Ch]s (38, R=H;
3b, R=CHs; 3¢, R=Cl) areobtainedascolorless,
highly air-sensitiveoils in 95%yield.
T,
H.gzCHz R~ BcH

|
3 Cl-Si-Cl + BHyeDo t°';2"e ol-8i-C 4]
R R

Do = SMe,, NMe;, NEts, R’ = C,H,Si(R)Cl,

.CHs

3aR=H
3bR=CHj;
3cR=

In contrastto the well-known hydroborationof
olefinic hydrocarbonsthe addition of B-H to a
silylated olefin is not regioselectivé® This is
demonstratedn the NMR spectraof compounds
3a-3c, which are obtainedas mixturesof isomers.
Dependingon the silicon-bondedsubstituentR, o-
and S-hydroborationboth take place to various
extentsdirectly reflectedin the multiplet character
of theCH, CH, andCHs resonancsignalsin theH
NMR and *C{*H} NMR spectrain which the
boron-bondedcarbonatoms once more show the
typical line broadeningas mentionedabove.The
lower regioselectivity of the hydroboration of
vinyl-substituted silanes comparedwith terminal
olefinic hydrocarbons,which can result in the
formationof aoa-, aafS-, afff- and ff-hydrobora-
tion productscanalsobe observedn the 2°Si{*H}
NMR spectra. Moreover, the oaao- and oof-
productsexist asdiastereotopiégsomerswhich can
also be distinguishedin the NMR spectra.As an
example, B[C,H,4SIHCL]; (3a) obtained from
(H,C=CH)SIHC}L shows resonance signals at
—6.5t0 —7.9ppm (Si-CH,, p-hydroboration)and
at approx. 10.3 to 11.6 and 15.0 to 16.1ppm
(CHCH, o-hydroborationf®

The pyridine-catalyzedsynthesisof the boron-
modified compounds{B[C ;H;Si(R)NCNL}, [2a,
R=H; 2b, R=CHgs; 2c, R=(NCN)y g from the
reactionof thetris[(chlorosilyl)ethyl]boraes3a-3c
and a slight excessof bis(trimethylsilyl)cabodi-
imide (Eqn [5]) can be performedunder various
conditions. Whereas their reaction in boiling
toluene solution leadsto the precipitation of the
precursorsascolorlesspowders the reactionwith-
out solventresultsin the formation of compounds
3a-3c as hard, glass-like materials. The greatest

© 1998JohnWiley & Sons,Ltd.

disadvantageof the former processis the slow
reactionrate. Against this, reactionof the educts
without solvent occurs immediately and has
finishedin specialcaseswithin a few minutes.In
a series of experimentsit was found that the
reaction time dependson the one hand on the
tris[(chlorosilyl)ethyl]boaneused:thereactivity of
the startingcompounds®B[C,H,Si(R)CbL]; towards
bis(trimethylsilyl)cabodi-imide increases with
respect to the substituent R in the order
CHs < H < CI. Additionally, the reactiontime is
stronglyinfluencedby the temperatureppliedand
thesizeof the batch,sothelatter hasa directeffect
upon the former: with increasing batch size,
effective cooling of the viscousreaction mixture
becomesmore difficult. This finally resultsin a
higher reaction temperature,which is directly
reflectedin anincreasedeactionrate.

T T
RI,ELCIH,CH3 ; R',B\CIH,CHg
m-s}g-u + €x0ess (H3C)3Si-N=C=N-Si(CH2)3 -(chﬁs?l’ %E—Nzczw{»” [5]

R’ = CoH,Si(R)Cl

3aR=H
3bR=CH;
3cR=Cl

R’ = [CoH4Si(R)NCN]

2¢ R=(NCN)g5

Riedeland co-workersinvestigatedn detail the
reactioncoordinateof this kind of non-oxidesol—
gel processfor the synthesisof Si—C—N ceramic
precursorsrom chlorosilanesand bis(trimethylsi-
lyl)carbodi-imide?®~32 However,in this study the
concentrationof pyridine was identical in all
experiments (bis[trimethylsilyllcarbodiimide is
obtainedby the reactionof chlorotrimethylsiane,
cyanamideandpyridineandthereforecontaind).5—
1 mol% of the catalyst).

With respectto possibleindustrial applications
of the boron-modified precursors,it should be
mentionedhatin additionto thevery shortreaction
times observedfor the synthesisof the polymers
{B[C-H4SI(R)NCNE},, from 2a —2c, and the
elimination of the needfor solvents,an attractive
property of the whole processis that it works
withoutwastethe chlorotrimethylsilanesliminated
andthe excesdis(trimethylsilyl)carbodi-imidecan
be recycled efficiently by distillation after the
reactionshavefinished.

CompoundgBJ[C ,H4Si(R)NCNL} , [2a, R=H,;
2b, R =CHg; 2¢, R=(NCN)g 5] wereidentified by
various spectroscopic methods and elemental
analysis. First, solid-state *C{*H} CP-MAS
NMR spectraof compound®2a —2¢ eachdepicted
the resonancesignal of the carbodi-imidecarbon
atomsat approx.125ppm (Table 1). This is very
closeto the resonancesbtainedfor the boron-free

Appl. OrganometalChem.12, 725-734(1998)
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Tablel CP-MASNMR data(ppm)of compound®a-2c obtainedfrom bis(trimethylsilyl)carbodi-imideand B[C,H,Si(R)CL] 3

2a 2b 2c
BC{*™H} NMR N=C=N 123.5 123.0 125.8
CH 24.1 26.6 —
CH, 11.2 10.6 10.7
CHs 5.0 1.7
29Si{*H} NMR NSICs . 2.0 2.7
N,SICH —36.2 — —-36.2
N>SIC, — -23.0 —
NsSIiC — — —55.4
HB{H} NMR BC; —6.5 -0.1,8.1 —12.1

vinyl-substituted polysilylcarbodi-imides of the
[(H>C=CH)(R)SINCN]}, type as well as those of
the CH3, CH, and CH carbonatom®f the borated
C,H,4 unit at 0-5,10-12and24—-27ppm (Table1).
Terminal NCN-Si(CH53)3 in compounds2a —2c¢ as
well as SiCH5 in compound2b overlapwith CHs
from the C,H,4 units and cannotbe separated.

Secondthe ?°Si{*H} CP-MASNMR spectraof
the title compoundsalso showed the expected
signals at 1-3ppm for terminal NCN-Si(CHs)3
groupsandthe silicon atomsboundin the polymer
frameworkin the expectedarea(Table1). Surpris-
ingly, for compound2c a resonancesignal was
found at —36.2ppm which may correspondio a
silicon with anHCN, environmentTheidentity of
this moiety is not clarified yet.

Finally, the *B{*H} CP-MAS NMR spectraof
the boron-modifiedcompounds2a-2c show reso-
nancesat approx.—12to +8 ppm.

Moreover, FT IR spectroscopyidentified the
different functional groupsin compounds2a-2c,
confirming the proposedstructuresof the isolated
boron-modifiedpolysilylcarbodi-imides.The most
remarkableabsorptiorsignalsdetectedare v(C-H),
vadN=C=N), v(Si-H) (2a), J(CHs), »(Si-C) and
(B-C) (Table?2). Signalsfor Si-Cl, C=C, B-H or B-
N vibrations, which would indicate unintended

side-reactionsr non-quantitativeeduct-to-polymer
conversionsyerenot observed.

THERMOGRAVIMETRIC
INVESTIGATIONS

The thermal conversionof elementorganigooly-
mers into ceramicsusually resultsin amorphous
materials(see,for example,Refs 13-16 and 33—
38). During this processthe oligomeric or poly-
meric precursorsdecomposewith elimination of
gaseousspecies. For the production of dense
precursor-derivedbulk ceramics,it is of interest
to designthe preceramicsso that the massloss
during thermolysisis low, in order to inhibit the
appearanceof cracks and to minimize open
porosity.

The polymer-to-ceramicconversionwas mon-
itored using thermogravimetricanalysis (TGA),
which was performedin a purified argon atmo-
sphere in the temperature range 25-1100C
(heating rate 2°C min™*, Figs 1 and 2) for
compounds[(H,C=CH)(R)SINCN]}, [1la, R=H;
1b, R=CHs; 1c, R=(NCN)y g obtained from
(HoC=CH)(R)SIiC} and (H3C)sSiN=C=NSi(CH)3

Table 2 SelectedFT IR data (cm %)? of compounds2a—2c (in KBr) obtained from bis(trimethylsilyl)carbodi-imideand

B[C,H,Si(R)ChL]3

2a

v(C-H) 2961(m), 2873 (w)
vadN=C=N) 2236(vs,br)
v(N=C=N) 1578(m)
v(Si-H) 2171(vs,br)
d(CHgp) 1457 (m)
v(Si-C) 1260(m), 756 (s)
v(B-C) 1090(br)
o(SiH) 845 (vs)

2b 2c
2963(m), 2880 (w) 2962(m), 2877 (w)
2232(vs) 2179(vs,vhr)
1560(m) —
14':'; (m) 14££ (m)
1260(m), 788(s) 1255(m), 770(vs)
1051(m) 1164(m)

2 Intensityin parentheses.

© 1998JohnWiley & Sons,Ltd.
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Figure 1 Thermogravimetric analysis of [(H,C=CH)(R)-
SiINCN]J, [1a, R=H; 1b, R=CHg; 1c, R=(NCN), g]; heating

rate2°C min~?, argon.

aswell asfor compoundgB[C -H;Si(R)NCNI}
[2a, R=H; 2b, R=CHs;; 2¢c, R=(NCN)y g syn-
thesized by the reaction of B[C,H4Si(R)ChL]3
(3a, R=H; 3b, R=CHs 3c, R=Cl) and
(H3C)3SIN=C=NSIi(CH)a.

Thethermalbehaviorof compoundda-1c (Fig.
1) is very similar and resultsin two-stepdecom-
positionsof thesecompoundsThe ceramicyields
are (1a) 71%, (1b) 73% and (1¢) 69%. In the
temperatureange150-250C, masslossesof 5%
(1c) and 10% (1a, 1b) are observedwhich are
mainly causedy the elimination of hydrogenand
hydrocarbonsas identified by TG—MS studies.At
temperaturesaround 450-650C, elimination of
nitrogenandcyanogenC,N,) takesplace.

Eventhoughthe compositionf the preceramic
polymers are different, the masslossesof com-
pounds la-1c in this temperature range are
comparable(la, 13%; 1b, 15%; 1c, 16%). It is
remarkablethat at temperaturesabove900°C the
elimination of nitrogenas well as of cyanogenis
againobserved.

In contrastto compoundsla-1c, for which the
thermolysestake placein two steps,the thermal
behaviorof compound®a-2cis characterizedhy a
continuous mass loss over the full temperature
rangefrom 25 to 1100°C. The ceramicyields of
thesepolymersare lower (2a, 63%; 2b, 53%; 2c,
53%)thanthoseof the polysilylcarbodi-imide 1a—
1c, eventhoughcompoundfa-2caremorehighly
crosslinked.

To investigatethe high-temperatte stability of
theceramicmonoliths(monolithswereobtainedoy
plasticforming of the preceramigolymerpowders
and then subsequenthheatedto 1400°C; heating

© 1998JohnWiley & Sons,Ltd.

Figure 2 Thermogravimetric analysis of {B[C ;H4Si(R)-
NCN]a}n [28, R=H; 2b, R=CHs; 2¢c, R=(NCN), g]; heating

rate,2°C min~%, argon.

rate 1°C min™ ") obtainedfrom compoundsla-1c
and2a-2c, thermogravimetri@analysiswascarried
outfor thesematerialsn thetemperatureange25—
2200C (argon; heatingrate at 25—-1200C, 20°C
min~t, and at 1200-2100C, 2°C min™%). The
results of these investigationsfor the materials
obtained from the boron-free polysilylcarbodi-
imides 1a-1c are shownin Fig. 3. Surprisingly,
the molecularstructureof the precursothasonly a
negligible influenceon the thermalstability of the
as-synthesizedceramic powders. (In contrastto
compounds2a-2c, intact green bodies from the
boron-freepolysilylcarbodi-imidesla-1c havenot
yet beenobtainable The ceramicmaterialsdecom-
poseat approx.1540°C (1a, 1¢) and157CC (1b).
This is possiblydueto the decompositiorof SisN4
in the presenceof free carbonaccordingto Eqgn
[6].2>'* The weight losses during the thermal
analyseswere 25% (1a), 28% (1¢) and 35% (1b)
respectively.

T > 1440C
SicNg+3C ——> 3SiC+2N, [f]

From a few examplesit is known that Si—-C—N
ceramicscanbe stabilizedthermally by addingthe
elementboron’™" These composites,in general
obtainedfrom the thermolysisof boron-containin
polysilazane$;* silylated borazinederivative§
or highly crosslinkedpolysilazanes/bomanes,’
are composedf SizN,, SiC, BN andfree carbon.
The as-obtainedmaterialssometimesshow excel-
lent thermal stability up to 2000°C,*’ which
thermodynamically cannot be sufficiently ex-
plained. It is supposedthat the incorporation of
boronleadsto astabilizationof theamorphoustate
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Figure 3 High-temperatur¢hermogravimetri@analysisof the
ceramicsobtainedfrom [(H,C=CH)(R)SINCN}, [1a, R=H;
1b, R=CHs; 1c, R=(NCN)q g; heatingrate at 25-1200C,
20°C min~%, andat 1200-2100C, 2°C min~?, argon.

and shifts the temperatureof the crystallizationof
the thermodynamically stable phasesto higher
values. High-resolutiontransmissionelectron mi-
croscopy(HRTEM) investigationscarriedout with
aprecursor-derivederamicmaterialobtainedrom
the ammonolysisof B[C,H,Si(CHs)Cl,]5> point to
the fact that (turbostratic) BN(C) segregations,
which surroundnanosizecrystallineareasof SiC
and Sig]N%, inhibit diffusion processes effi-
ciently}"*%19 These processeshowever, would
finally leadto the thermaldecompositiorof SizNa.

Figure4 depictsthe resultsof the high-tempera-
ture thermogravimeic investigationsof the cera-
mics obtained from the boron-modified
polysilylcarbodi-imides2a—2c. It is observedthat
thedecompositiorof thesematerialsbeginsaround
1500 C (2b, 2¢) whereaghe ceramicobtainedrom
the hydrogen-substitutedorecursor 2a starts to
decomposeat approx. 1600C. Theseresultsare
comparablewith those found for the boron-free
materials.In conclusion,a significantincreasein
the thermal stability due to the modification of
compounds la-1c with boron could not be
detected.Likewise, the thermogravimetricyields,
at approx. 70% (200C0°C), are comparablewith
those of the ceramicsobtainedfrom compounds
la-1c.

As mentionedabove,one can presumethat the
decompositionof the ceramics,whetherobtained
from the boron-freeor from the boron-modified
polysilycarbodi-imidesjs causedby the elimina-
tion of nitrogen.In Fig. 4 it is shownthat,in afirst
decompositionstep, masslossesof approx. 25%
(23, 2¢) and28% (2b) aredetected Thesefindings

© 1998JohnWiley & Sons,Ltd.
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Figure 4 High-temperaturéghermogravimetri@nalysisof the
ceramicobtainedirom {B[C ;H4Si(R)NCNL} , [2a, R = H; 2b,
R =CHs; 2c, R=(NCN), 5]; heatingrate at 25—-1200C, 20°C
min~%, andat 1200-2100C, 2°C min~%, argon.

are in a good accord with the results of the
elemental analysis performed for the ceramics
obtainedfrom 2a (found: 23.5wt% N), 2b (found:
25 wt% N) and2c (found: 23.4wt% N).
Remarkably,monoliths obtainedfrom the title
compoundslid nottendto crackattemperaturesp
to 2300°C in an argon atmospherealthoughthe
shrinkagewvasroughlyproportionalto themasdoss
during thermolysis. The crystallization of these
materialsjnvestigatedy X-ray diffraction (XRD),
beganat approx.1650-1700C andfinally resulted
in theformationof SiC. Crystallinephasesontain-
ing boronwere not observedpossiblybecauseof
thelow boroncontenty5—6 wt%) of the materials.

a0l 4

%)
5 o) -
g
- 2auiwog)
----- 2a(agon) T
30k - ]
200 400 600 T80 2000

Tenperature [°C]

Figure 5 High-temperatur¢ghermogravimetri@nalysisof the
ceramicobtainedrom {B[C ,H4Si(H)NCN]z}, (28) in different
atmospheresheatingrate at 25-1200C, 20°C min~%, and at
1200-2106C, 2°C min~*.
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Table 3 Selecteddataobtainedby mercurypressurgorosimetryof ceramicmonolithssynthesizedrom {B[C -H,Si(H)NCN]z} ,

(29)
Pressingemp.(°C)

100 120
PressurdMPa) 31.0 38.7 42.6 31.0 38.7 445
Spec.surfacearea(m? g~ 17.64 7.67 8.92 3.63 3.76 5.68
Averageporeradius(um) 0.028 0.033 0.033 0.02 0.011 0.01
Bulk density(g cm3) 1.43 1.72 1.58 1.93 1.82 1.68
Corr. bulk density(g cm3) 1.77 1.995 1.801 2.066 1.927 1.768
Total sampleporosity (%) 19.26 13.79 12.26 6.60 5.53 4.95

With respectto the above-mentioneddecom-
positionof SisN, in thepresencef freecarbonit is
of generainteresto investigateheinfluenceof the
atmospheren the thermalbehaviorof the ceramic
materialsobtained For example a comparisorwas
made for the ceramic obtainedfrom the boron-
modified precursor {B[C -H;Si(H)NCNJz},, (2a)
which is shownin Fig. 5. It is observedthat in
contrast to the thermal decompositionof this
material which occurredin an argon atmosphere
at approx. 1600C, thermal decompositionin
nitrogenbeganat 1700°C.

PLASTIC FORMING OF BORON-
MODIFIED POLYSILYCARBODI-
IMIDES

To obtain precursor-derivedulk ceramicmateri-
als, preceramicsare in general shapedby cold
isostatic pressing (CIP). The as-obtainedgreen
bodies are then transformed into amorphous
ceramic monoliths by subsequentthermolysis.
However, a remarkable disadvantageof this
method is that it is less applicable for the
densificationof highly crosslinkedpolymer pow-
derssuchasthetitle compounda-2c becausef
their inelastic nature.Yet a high degreeof cross-
linkage in the polymeric stateis neededto avoid
softening of the green parts during thermolysis.
Therefore,plastic forming (PF), hasbeenapplied
for the shaping of green bodies from boron-
modified polysilylcarbodi-imidepowders®

For the determinationof optimized conditions
for this process,TMA investigationsof the green
bodies obtained by CIP were performed. These
studiesindicatethat the title compoundssoftenin
therange100-180C, but melting is not observed.
At temperatureabovel8(°C the decompositiorof
theprecursordegins(Fig. 2). Hence thedensifica-

© 1998JohnWiley & Sons,Ltd.

tion of the polymer powders, which were first
milled usinga ball mill andthensieved(meshsize
0.16mm) in orderto obtaina homogeneougrain
size distribution, was achieved at temperatures
around 100-150C at various pressuresAccord-
ingly the as-obtainedfine-grainedpowderswere
compactedy uniaxialpressingn graphitediesand
thenpyrolyzedat 1400°C (25-1400C, heatingrate
1°C min™) in an argon atmosphereDue to the
significantsensitivity of the boron-modifiedpoly-
merstowardsoxygenand moisture,the complete
processvascarriedout in aninert-gasatmosphere
or in vacuum.

To investigate the microstructure of the as-
synthesizedmonoliths, scanning electron micro-
scopy (SEM) and mercury pressureporosimetry
were carried out for the ceramicsobtainedfrom
compound{B[C -H,Si(H)NCN]3}, (2a; Table 3,
Fig. 6). The results of the mercury pressure
porosimetry show that the microstructureof the
precursor-derivednonolith is strongly influenced
by thepressingemperatureapplied.Increasinghe
pressingtemperatureresults in a lower specific

T T T T
A 100C
0 i o I0°C .
T I5) i
% A
£ A
E 10} .
[}
sk [ ] P 4
1 1 i 1 1
7] 30 35 40 5

Pressure [MPa]

Figure 6 Correlationof pressureapplied for PF and total
sample porosity of ceramic monoliths obtained from
{B[C 2H4Si(H)NCNL} , (2a).
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140°C 150°C

1cm

Figure 7 Ceramicmonoliths, obtainedby thermolysis(25—
1400C, heating rate 1°C min!, argon) of
{B[C ;H,4Si(H)NCN]s} , (28) greenbodiesplastic-formedat 35
MPaat 140°C and 150°C, asindicated.

surfaceareaaswell asin a decreas®f theaverage
pore size, which is correspondingly directly
reflected in an increasedbulk density of the
monoliths. Furthermore the total sampleporosity
also decreaseawith increasing pressure,as ex-
pected. As depictedin Fig. 6 thereis a linear
correlationof the pressureappliedfor PF andthe
total sampleporosity after thermolysis.

From Fig. 6 one shouldconcludethat addition-
ally increasingthe pressingtemperatureand the
pressureapplied results in sampleswith further
increaseddensity and decreasedporosity. With
respectto the preparationof denseand crack-free
ceramicmonolithsit soonbecameclearthatthereis
a limit to densifying the green bodies. Our

MPI/-PML

Figure 8 SEM (Magnificationx17) of a cross-sectiorof a
ceramic monolith, obtained by thermolysis (25-1400C,
heating rate 1°C min~?, argon) of a {B[C 2H,Si(H)NCNg}
(2a) greenbody, plastic-formedat 140°C, 35 MPa.

© 1998JohnWiley & Sons,Ltd.

01 1HH

pm—

Figure 9 SEM (magnificationx 1040)of a cross-sectionf a
ceramic monolith, obtained by thermolysis (25-1400C,
heatingrate 1°C min~2, argon) of a {B[C ;H,Si(H)NCNIs}
(2a) greenbody, plastic-formedat 140°C, 35 MPa.

investigationsrevealthat openporosity is needed
to allow the releaseof gaseousdecomposition
products during thermolysis and therefore to
preventbloatingof the monoliths(Fig. 7).

SEMinvestigationshowthatceramicmonoliths
obtained from boron-modified polysilylcarbodi-
imidespossesa very homogeneoumiicrostructure
(Figs 8 and 9). Figure 8 shows a cross-section
throughacompletespecimerwhichemphasizethe
homogeneityof thewhole bulk material.No cracks
nor bubblesare observed.The impurities (white
layer) at the surfacesof the material are residual
boron nitride with tracesof graphite. Theseare
causedby the useof boronnitride-treatedgyraphite
diesfor powderdensification.

Figure9 showsthemonolithcross-sectiownf Fig.
8 at higher magnification. The homogeneous
microstructure suggeststhat ceramics obtained
from boron-modified polysilylcarbodi-imidesare
suitablefor the preparatiorof densebulk materials.
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